
Vol:.(1234567890)

Foundations of Physics (2020) 50:1794–1808
https://doi.org/10.1007/s10701-020-00341-9

1 3

SICs: Some Explanations

Ingemar Bengtsson1

Received: 7 February 2020 / Accepted: 28 March 2020 / Published online: 9 April 2020 
© The Author(s) 2020

Abstract
The problem of constructing maximal equiangular tight frames or SICs was raised 
by Zauner in 1998. Four years ago it was realized that the problem is closely con-
nected to a major open problem in number theory. We discuss why such a connec-
tion was perhaps to be expected, and give a simplified sketch of some developments 
that have taken place in the past 4 years. The aim, so far unfulfilled, is to prove exist-
ence of SICs in an infinite sequence of dimensions.

Keywords SIC-POVMs · Number theory · Discrete structures

1  What’s in a Name?

We will be concerned with configurations of vectors known as SICs, and pro-
nounced ‘seeks’ because a proof of their existence in all finite dimensions is being 
sought [1]. The problem is easy to state, but soon reveals unexpected depths. A little 
more generally we want to find sets of N unit vectors in the finite dimensional Hil-
bert space �d , and constants c1 and c2 , such that

Such sets are called equiangular tight frames [2]. They can be thought of as N equi-
distant points in complex projective space, or as a regular simplex in the space con-
taining the convex set of all mixed quantum states, carefully centred and arranged so 
that all its corners are pure. One proves easily that if the arrangement can be done at 
all then

(1)
N�

i=1

��i⟩⟨�i� = c1�

(2)�⟨�i��j⟩�2 = c2 if i ≠ j.

 * Ingemar Bengtsson 
 ingemar@fysik.su.se

1 Stockholms Universitet, AlbaNova, Fysikum, 106 91 Stockholm, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s10701-020-00341-9&domain=pdf


1795

1 3

Foundations of Physics (2020) 50:1794–1808 

Existence is not a foregone conclusion. If d = 3 the possible values of N are 3, 4, 
6, 7, and 9, while N = 5 and N = 8 are impossible [3]. Minimal ETFs are known 
as orthonormal bases, while maximal ETFs consisting of d2 unit vectors are called 
SICs. At first they were called Maximale Quantendesigns [4]. Finding SICs is of 
interest in classical signal processing and in quantum information theory. In the lat-
ter context the long acronym SIC-POVM is often used, and then the first three let-
ters stand for “symmetric informationally complete” and the last four for “positive 
operator valued measure” [5]. Fortunately, in some quantum applications there are 
conceptual reasons to drop the ungainly last set of four letters [6].

SICs have a background in engineering, but they have recently moved into unex-
plored regions of algebraic number theory. In 2016 it was conjectured that the 
numbers needed to construct them are the kind of numbers that appear in the first 
unsolved case of Hilbert’s 12th problem [7, 8]. The hypothesis was supported by 
some solid evidence [9, 10]. It bears the hall-mark of truth, because over the last 
4 years it has led to explanations, and predictions, of a very large number of bewil-
dering facts about SICs in various dimensions. Thus the status of the SIC existence 
problem has changed. There always were good reasons to seek them [11], but now 
they also seem to be intimately connected to a grand unsolved problem in number 
theory. In the spirit of the Växjö meetings [12] we hope to provide at least some 
explanations of this development here: Of the way that the connection to number 
theory arises (Sect. 2), of the finite groups that generate SICs and their symmetries 
(Sect. 3), and of how the theory as developed so far organizes Hilbert spaces of dif-
ferent dimensions into sequences (Sect. 4). To keep the discussion simple we will 
restrict the technical part to the case of odd dimensions only. We do this with some 
regret because, like the rotation group [13], the groups that generate SICs treat even 
dimensions in a subtle but ultimately very satisfying way.

There is a school of thought maintaining that SICs will ultimately prove to be as 
important [1, 14, 15] for quantum foundations as are the orthonormal bases [16]. We 
do not pursue this argument here, but we do hope to convince the reader that SICs 
deserve to be spelt with capital letters.

2  Smelling the Problem

Why are SICs so hard to find, and why are they connected to number theory? To see 
this we begin with the famous problem of dividing a circle into n equal parts. We 
choose n = 7 as our example. Some group theory clearly enters the problem. What 
we need are the seven corners of a regular heptagon inscribed in the circle, and we 
observe that these corners are the orbit of an abelian and cyclic group, C7 . On closer 
inspection we realize that the heptagon is left invariant by a larger dihedral group, 
which is conveniently thought of as a subgroup of the rotation group SO(3). Let us 
choose one corner to sit at (x, y) = (1, 0) . As it turns out, placing the remaining six 

(3)d ≤ N ≤ d2, c1 =
N

d
, c2 =

N − d

d(N − 1)
.
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corners leads us to perform some complicated root extractions in order to find their 
coordinates x and y. See the illustration in Fig. 1.

If we view the plane as a complex plane the position of the corner in Fig. 1 is 
given by the complex number � = x + iy . It must be a seventh root of unity, so that 
�7 = 1 . It follows that the coordinates of the six corners that we need to construct 
are the six roots of the polynomial

There must be something special about our polynomial, because the roots of a 
generic polynomial of degree higher than four cannot be given by root extractions at 
all. This point was explained by Galois, who considered the group that permutes the 
roots of a given polynomial equation. In our case this group is easily identified. Sup-
pose we consider the permutation that takes � to �3 . For consistency we can then 
deduce that

We have gone through all the roots! It follows that the Galois group of the polyno-
mial is the abelian group C6 , and Galois proved that roots of polynomials having an 
abelian Galois group can always be given in terms of root extractions [17].

Root extraction is a complicated affair, but a beautiful and extremely important 
feature is waiting in the wings. Introduce the transcendental function

We get the seven corners of our heptagon by evaluating this function at seven 
rational points. And we see that the trigonometric and exponential functions—dis-
coveries without which our modern civilization would be unthinkable—appear natu-
rally out of the regular polygon problem.

When the problem of the regular n-gon is viewed with the eyes of number the-
ory, the key role is played by the cyclotomic or circle-dividing number field with 

(4)p(z) = z6 + z5 + z4 + z3 + z2 + z + 1.

(5)� → �3
→ �9 = �2

→ �6
→ �18 = �4

→ �12 = �5
→ �15 = �.

(6)e(x) = e2�ix.

Fig. 1  The construction of a regular heptagon involves both group theory and number theory. Inciden-
tally, the fact that cube roots appear in the numbers means that the heptagon cannot be constructed with 
ruler and compasses
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conductor n. We obtain this number field by adding an nth root of unity to the set 
of rational numbers and then applying addition and multiplication in every possible 
way to this set, keeping in mind that �n solves an equation analogous to that of set-
ting the polynomial (4) to zero. In this way we take the step from � to �(�n) . The 
extended number field can be described as a vector space over � . For n = 7 this vec-
tor space has 6 dimensions, because any number in �(�7) is a linear combination of 
the basis vectors 1,�,… ,�5 . The dimension of the vector space is also known as the 
degree of the number field.

Kronecker and Weber proved that every abelian extension of the rational field, 
that is to say every extension whose Galois group over the rationals is an abelian 
group, is a subfield of a cyclotomic field with some conductor n. Given that we have 
an elegant description of the generators of all the cyclotomic fields in terms of a 
transcendental function evaluated at rational points, this is very satisfactory. A gen-
erator of the cyclotomic field with conductor n is obtained as e(1∕n) = e2�i∕n . We 
use the notation �n = e2�i∕n from now on.

Then Kronecker had a dream. Start with the degree 2 number field obtained by 
adding the square root of an integer D to � , and consider the most general abe-
lian extension of that number field. The Galois group of this field considered as an 
extension of � need not be abelian, but it will enjoy a normal series of the form 
e ⊲ H ⊲ G , where H is the Galois group of �(

√
D) over � . The notation means that 

H is a normal subgroup of G and that the group G/H is abelian. Hence the Galois 
group is close to abelian, and again Galois assures us that the numbers that occur 
can be arrived at from the rationals by root extractions. Kronecker saw, as in a 
vision, that if the quadratic base field we start out with uses a negative integer D, 
then it should be possible to complete the story to find special ray class fields hous-
ing every abelian extension of this base field, and moreover it should be possible to 
find transcendental functions (elliptic and modular, in this case) such that the gener-
ators of the ray class fields are obtained by evaluating the functions at special points 
on special elliptic curves.

The program was not quite completed by the time Hilbert posed his famous prob-
lems for the twentieth century, but it was soon after [18]. Hilbert was impressed. 
In his 12th problem he asked for a similar description of the most general abelian 
extension of an arbitrary base field [19]. Mathematicians soon set to work on this, 
wisely concentrating on the simplest open case, that of real quadratic base fields 
�(

√
D) with D > 0 . The twentieth century proved too short for the task. Still a clas-

sification of the relevant ray class fields was achieved. They are specified by two 
positive integers, D that gives the base field and d which gives the conductor. Algo-
rithms for finding generators of these ray class fields have been implemented in 
computer algebra packages. But the problem of writing down explicit generators for 
them, preferably by starting from some transcendental function, remains open. As 
the example of the heptagon shows, a solution may have far-reaching consequences.

Now we come to the point. The Ray Class Hypothesis states that the numbers 
needed to construct a SIC in dimension d > 3 generate a ray class field over a real 
quadratic base field [7, 8]. The conductor of the field is equal to d if d is odd and 
2d if d is even, while the integer D that determines the base field is given by [20]
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We will return to this interesting formula in Sect. 4. It does make it appear as if the 
SICs may be the geometrical objects that hold the key to a part of Hilbert’s 12th 
problem.

There is a complication here, which is that in almost all of the dimensions that 
have been investigated several unitarily inequivalent SICs do exist [9, 22]. Then 
the hypothesis says that at least one of them can be constructed using the ray 
class field. If one of the SICs is singled out as having the highest symmetry, this 
is it [10]. The other SICs require further abelian extensions of the ray class field.

As a preparation for Sect. 3 we notice the fact that for the special choice of con-
ductors implied by the formula the ray class field will contain the cyclotomic field 
�(�2d) as a subfield [7]. We also note that if d is odd then −�d is a 2dth root of 
unity, and it certainly belongs to �(�d) . Thus �(�d) = �(�2d) when d is odd, but 
not when d is even. As a preparation for Sect. 4 we observe that if we fix the base 
field and consider two different conductors d1 and d2 then, by the very definition of 
conductors, the ray class field with conductor d1 is a subfield of that with conductor 
d2 if and only if d1 is a divisor of d2 . The reader may easily check this for the special 
case of cyclotomic fields.

3  The Acting Groups

To find SICs we first ask if they are orbits of a group, as the n-gons are. Zauner, 
and independently Renes et  al., conjectured that a discrete Heisenberg group 
plays this role [4, 5]. This group is a central extension of the product of two 
cyclic groups Cd × Cd , and its unitary representation is essentially unique. Its uni-
tary automorphism group, from which extra symmetries of the SICs are taken, 
contains as a factor group the discrete symplectic group acting on the discrete 
‘plane’ of the group elements. Zauner made a further mysterious conjecture, later 
sharpened [21] to say that every SIC has an extra symmetry of order 3. Closer 
examination led to more detailed conjectures about higher symmetries appearing 
in special cases in special dimensions [9, 22, 23].

Numerical searches for SICs are made easier once it is assumed that they are 
orbits under a group. It is then enough to find a single fiducial vector from which 
the group creates the SIC. In this way SICs have been found numerically in all 
dimension d ≤ 193 and in some higher dimensions, the record being d = 2208 
[22, 24]. In his thesis Zauner also provided exact solutions in dimensions 4 and 
5. (Dimension 2 is trivial. A solution in dimension 3, related to an elliptic curve 
invariant under this very group, was provided by Hesse in 1844 [25].) By now 
more than one hundred exact solutions are known [9, 10, 24].

Heisenberg groups are important throughout quantum mechanics and signal 
processing alike. For us a convenient starting point is the book by Weyl [26]. The 
Weyl–Heisenberg group is generated by X, Z,� , subject to the relations

(7)D = (d + 1)(d − 3).



1799

1 3

Foundations of Physics (2020) 50:1794–1808 

There is one such group for each choice of the integer d. Weyl thought of them as 
toy models of the group that encapsulates the non-commutativity of position and 
momentum, which at some point became known as the Heisenberg group. The dis-
crete group has an essentially unique irreducible unitary representations in a Hilbert 
space of dimension d. We first fix � to be

(times the unit matrix, which is understood). Actually any primitive dth root of unity 
would do, which is why the representation is only ‘essentially’ unique. In the basis 
where Z is chosen to be diagonal it is

where the basis vectors are labelled by integers counted modulo d.
The representation makes use only of numbers from the cyclotomic field 

�(�d) . But if the dimension d is odd then �(�d) = �(�2d) . To save the one-to-
one correspondence between dimensions and cyclotomic fields one can extend 
the centre of the group to include 2dth roots of unity if d is even. There are actu-
ally several good reasons for this move [7, 21], but as advertized in the introduc-
tion we will restrict the discussion to the case of odd d from now on in order to 
keep the story brief.

To understand how the Weyl–Heisenberg group depends on the dimension d 
we begin by recalling an interesting fact about cyclic groups. It is easy to see that 
C4 ≠ C2 × C2 , because every element of the product group squares to the identity, 
while C4 contains elements of order 4. On the other hand it is easy to convince 
oneself that C6 = C2 × C3 . What makes this case different is that 2 and 3 are rela-
tively prime, that is to say their greatest common divisor equals 1. Here it means 
that the cyclic groups, and indeed the Weyl–Heisenberg groups, can be broken 
down into relatively prime atoms. That is to say, if H(d) denotes the group in 
dimension d, and if d can be decomposed into primes as

then

To prove this one applies the Chinese remainder theorem from elementary number 
theory [27]. So it suffices to understand the group in prime power dimensions. We 
remark that if the dimension is prime then it can be proved that every SIC that is 
generated by a group is generated by the Weyl–Heisenberg group [28].

The central extension, with its troublesome phase factors, is there only to pro-
vide an interesting representation theory. When the group acts on projective space 
it does so as the product of two cyclic groups, so it makes sense to select a set of 

(8)ZX = �XZ, �X = X�, �Z = �Z, Xd = Zd = �d = �.

(9)� = �d = e
2i�

d

(10)Z�i⟩ = �i�i⟩, X�i⟩ = �i + 1⟩ ,

(11)d = p
n1
1
⋅ p

n2
2
⋅ ⋯ ⋅ pnr

r

(12)H(d) = H(p
n1
1
) × H(p

n2
2
) ×⋯ × H(pnr

r
).
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only d2 group elements to work with. Nevertheless it pays to pay careful attention 
to the phase factors when we do so. We define the displacement operators [21]

Notice that � is a dth root of unity when d is odd, as we assumed it to be for simplic-
ity. A key fact about the displacement operators is that they form a unitary opera-
tor basis, which is why Schwinger allowed the Weyl–Heisenberg group to take the 
centre stage in his presentation of quantum mechanics [29]. The group law takes the 
form

Here we introduced two-component ‘vectors’ �, � whose components are integers 
modulo d, as well as the symplectic form ⟨�, �⟩ . The latter is very useful when we 
consider the unitary automorphism group, that is to say the group of unitary opera-
tors that permute the elements of the Weyl–Heisenberg group under conjugation. It 
is known as the Clifford group [30], and contains the symplectic group SL(2,�d) as 
a factor group. The latter has a defining representation in terms of two-by-matrices 
F obeying

These are precisely the matrices having unit determinant and entries that are inte-
gers modulo d. Once the representation of the Weyl–Heisenberg has been chosen the 
unitary representative UF of the symplectic matrix F is completely fixed up to phase 
factors [21] by the defining relation

Here we want to stress that the entire Clifford group is represented by matrices all 
of whose entries lie in the cyclotomic number field. Acting on any vector whose 
components are built using a number field that includes the cyclotomic field, it will 
produce new vectors built from the same kind of numbers. This is clearly relevant 
for us.

The Chinese remainder theorem again makes itself felt at this point, so that 
the Clifford group splits into a direct product determined by the decomposition 
of the dimension into prime factors: it is enough to understand how it behaves 
in prime power dimensions. For d = 3, 5 the symplectic groups enjoy the group 
isomorphisms

where � and � are the symmetry groups of the tetrahedron and the dodecahedron 
(or icosahedron), respectively. A reader equipped with cardboard models of these 
polyhedra can therefore take in the structure of these groups at a glance. But some 

(13)Di,j = � ijXiZj, � = −e
�i

d .

(14)Di,jDk,l = �ki−ljDi+k,j+l ⇔ D�D� = �⟨�,�⟩D�+�.

(15)⟨F�,F�⟩ = ⟨�, �⟩ modulo d.

(16)UFD�U
−1
F

= DF�.

(17)SL(2,�3)∕ ± � = �

(18)SL(2,�5)∕ ± � = �,
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structure is hidden since we have divided out the centre of the symplectic group. It 
consists of an order two matrix with a simple unitary representative,

We denote this particular unitary operator UF either as UP or as A� . It is known as 
the parity operator. We can use it to construct an alternative unitary and Hermitean 
operator basis, consisting of the phase point operators [31]

This operator basis is significant in the SIC problem in more ways than one. One 
can show that the spectrum of a phase point operator consists of (d + 1)∕2 eigen-
values +1 , and (d − 1)∕2 eigenvalues −1 . (Our self-imposed restriction to odd d is 
still in force.) It follows that the phase point operators define a set of d2 subspaces of 
dimension (d + 1)∕2 , defined by the projectors

We can think of these subspaces as points in the Grassmannian Gr(d+1)∕2,d , analo-
gously to how we regard one-dimensional subspaces as points in projective space. 
There is a natural notion of chordal distance between points in a Grassmannian, 
which if we identify the subspaces with the projectors is given by

A quick calculation confirms that the subspaces defined by the operator basis form a 
set of d2 equidistant points in the Grassmannian. Exactly why we bring up this curi-
ous point will become clear in Sect. 4, but it may not be amiss to remark that these 
subspaces play a role in the theory of elliptic normal curves transforming into them-
selves under the Weyl–Heisenberg group [32].

4  To Build a Ladder to the Stars

We now return to the key formula (7), to see how different dimensions are connected to 
each other by the number theoretical properties of the SICs they contain. We rewrite it 
a little by setting D = m2D0 , where m is any integer and D0 does not have square fac-
tors. Clearly �(

√
D) = �(

√
D0) . The formula becomes

It can be read in two directions. If we begin in a Hilbert space of dimension d we use 
it to determine D, and hence the base field needed in the construction of SICs. But 
we can also fix the square-free part D0 and solve the Diophantine equation for d in 
order to establish, via the SICs, a number theoretical connection between different 
dimensions. Because the integer m is free the result is an infinite sequence {di}∞i=1 of 

(19)F = −� ⇒ ⟨i�UF�j⟩ = �0,i+j.

(20)A� = D�A�D
−1
�
.

(21)Π� =
1

2
(� + A�).

(22)D2(Π�,Π�) = Tr (Π� − Π�)
2.

(23)(d + 1)(d − 3) = D = m2D0.
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dimensions known as a dimension tower. The entries of the sequence are given by a 
simple formula [7, 8] which however we do not give here since this would require a 
detour to introduce the unit group of the base field [27]. Instead we give the begin-
nings of two such towers in Fig. 2.

The figure encodes information about when an entry di is a divisor of another 
entry dj . This is important because when one conductor is a divisor of another it 
implies that the first ray class field is contained in the other. The vertical ladders 
in Fig.  2 are meant to attract attention. They arise from the simple observation 
that

The square free part D0 , and hence the base field, is unchanged by the substitution. 
Moreover, since (obviously) d divides d(d − 2) the field used in the higher dimen-
sion always contains that used in the lower. With our choice of labelling, every odd 
numbered entry d2n+1 in a tower starts its own ladder, while the entries d2r ⋅(2n+1) are 
said to sit on rung r of some ladder.

It is tempting to believe that some unknown physics is hidden in these 
sequences. It is also tempting to believe that one can prove SIC existence for all 
the dimensions in such a sequence in some inductive way. At the moment this is 
just a dream, but bits and pieces of what looks like an argument to this effect have 
materialized [34–37]. We can simplify the story quite a bit by starting it from an 
observation by Renes et al. [5], and this is what we propose to do here.

Let ��0⟩ be a fiducial vector for a SIC in dimension d. Form the vector 
�𝜓0⟩⊗ �𝜓0⟩ in the symmetric subspace �d(d+1)∕2 of �d2 . The Weyl–Heisenberg 
group can be made to act on this vector. Pausing to polish our conventions we 
define � = e2�i∕d and

(24)d → d(d − 2) ⇒ (d + 1)(d − 3) → (d − 1)2(d + 1)(d − 3).

Fig. 2  The first ten dimensions connected by D
0
= 5 and by D

0
= 3 . Dimensions for which exact SICs 

are known [9, 23, 24, 33] are in boldface. A field is a subfield of another if its conductor divides that of 
the other. In the picture this happens if the other field can be reached by walking along upwards directed 
links. When d is even the conductor equals 2d, but this does not affect this ordering. Vertical lines (or 
‘ladders’) arise from the substitution d → d(d − 2)
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Note that our restriction to odd d is still in force. The case of even d is more interest-
ing [35, 37], but takes more space. We now have the Weyl–Heisenberg group H(d) 
acting on �d2 , and can define the displacement operators

By assumption

where the phase factor is a SIC overlap phase from dimension d. Using the defini-
tion of D̃� we see that

From the SIC in dimension d we have obtained an ETF consisting of d2 vectors in 
dimension d(d + 1)∕2 [5].

We are representing the Weyl–Heisenberg group H(d) in �d2 , and from Weyl’s book 
we know that the representation must be reducible [26]. To take advantage of this we 
introduce the orthonormal basis

We now forget about the tensor product structure, and introduce a new one. With a 
suitable ordering of the new basis vectors we can ensure that the representation uses 
block diagonal matrices D̃� carrying copies of the dimension d displacement opera-
tors D� in the blocks. Hence we can write

where we let the dimension in which the identity operator acts depend on the con-
text. If we act on �nd we need n blocks, and the dimension we need is n.

Elementary linear algebra tells us if there exists an ETF with d2 vectors in dimension 
d(d + 1)∕2 then there must exist an ETF with d2 vectors in dimension d(d − 1)∕2 . To 
see why we renormalize the vectors by defining

(25)
� = X ⊗ X

� = Z
d+1

2 ⊗ Z
d+1

2

}
⇒ �� = 𝜔��.

(26)D̃ij = 𝜏 ij�i�j.

(27)⟨�0�D���0⟩ =
�

1 if � = �
e
i�i,j

√
d+1

if � ≠ �,

(28)⟨𝜓0�⟨𝜓0�D̃��𝜓0⟩�𝜓0⟩ =
�

1 if � = �
e
2i𝜃

i,j�

d+1
if � ≠ �

, j� =
d + 1

2
j.

(29)

�ii⟩ = �i⟩�i⟩, �(i, j)⟩ = 1√
2

(�i⟩�j⟩ + �j⟩�i⟩), �[i, j]⟩ = 1√
2

(�i⟩�j⟩ − �j⟩�i⟩).

(30)D̃� = �⊗ D�,

(31)�� =
√
d + 1D̃��𝜓0⟩�𝜓0⟩.
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We let these vectors form the columns of a d(d + 1)∕2 × d2 matrix M. From the tight 
frame condition (1) it follows that the rows of this matrix are orthogonal to each 
other, MM† = 2d�d(d+1)∕2 . We then fill out this rectangular matrix to a unitary matrix

This is always possible. From unitarity it follows that

Finally we renormalize the �� to obtain a set of unit vectors in �d(d−1)∕2 , and we 
sneak in the assumption that the columns of U are generated, in their entirety, by 
acting with D̃� on the first column. We obtain

We now have an equiangular tight frame in �d(d−1)∕2,

This is known as the Naimark complement of the ETF we started out with. We know 
that it exists, and its Gram matrix is completely known.

A little rewriting will reveal what we are driving at:

The displacement operators that occur here are those for dimension d, but the abso-
lute value of the right hand side is that appropriate for a SIC in dimension d(d − 2) , 
the dimension one rung above the dimension we started out with. The vectors do not 
sit in that dimension, but we now observe that

From Sect. 3 we recall that this is the dimension of the positive parity eigenspace 
in �d−2 . Hence we can embed the fiducial vector �Ψ0⟩ in that eigenspace to obtain a 
vector in �d−2 ⊗ �d , taking care to adjust the basis so that the representation of the 
parity operator UP becomes the standard one (19). We then have

and the symmetry

(32)U =
1√
2d

�
�0 �1 … �d2−1

�0 �1 … �d2−1

�
, UU† = U†U = �d2 .

(33)(��, ��) =

{
d − 1 if � = �

−e2i�i,j� if � ≠ � .

(34)�Ψ�⟩ =
1√
d − 1

�� = D̃��Ψ0⟩.

(35)⟨Ψ0�D̃��Ψ0⟩ =
�

1 if � = �

−
e
2i𝜃

i,j�

d−1
if � ≠ �.

(36)⟨Ψ0�D̃��Ψ0⟩ = −
e2i𝜃i,j�

d − 1
⇔ ⟨Ψ0�� d−1

2

⊗ D(d)
�
�Ψ0⟩ = −

e2i𝜃i,j�√
d(d − 2) + 1

.

(37)
d − 1

2
=

d − 2 + 1

2
.

(38)⟨Ψ0��d−2 ⊗ D(d)
�
�Ψ0⟩ = −

e2i𝜃i,j�√
d(d − 2) + 1

,
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Looking carefully at the Scott–Grassl conjectures [9, 22] we find that they say that a 
SIC fiducial with this symmetry always exists in dimensions of the form d(d − 2) , so 
this looks like a SIC.

It remains to arrange that

This is the hard part. However, it is at least consistent with our observation (in 
Sect. 3) that the Grassmannian of (d + 1)∕2-planes in �d contains a Weyl–Heisen-
berg multiplet of planes at constant mutual chordal distance, see Eq. (22). When we 
change the dimension to d − 2 and then factor in an extra Hilbert space of dimension 
d, it implies that can create a Weyl–Heisenberg multiplet consisting of (d − 2)2 equi-
distant subspaces of dimension d(d − 1)∕2 sitting in �d(d−2) . Each of them contains 
an ETF, and the total number of vectors is d2(d − 2)2 , just right for a SIC.

The reader can see that our story exists only in bits and pieces that do not quite 
hang together. It is being improved [38]. At first it was told backwards [34]. For 
the 22 cases where numerical solutions were available (or were made available by 
Andrew Scott) in the higher dimension, it was found that for every SIC in dimen-
sion d one of the SICs in dimension d(d − 2) is aligned to it in the sense that it has 
the property described by Eq. (38). It was then proved that this property implies the 
existence of embedded ETFs according to the pattern we just discussed—except that 
the proof in the even dimensional case was given later [35] due to the complications 
that we have ignored here. Notice that, given that the aligned higher dimensional 
SIC fiducial vector contains only 2d(d − 2) real numbers to be solved for, the num-
ber of overlap phases that are known ‘from below’ is quite significant. This obser-
vation was used to obtain the solution in d = 323 = 19 ⋅ 17 in exact form [23]. The 
upshot is that we know 23 instances where squared SIC overlap phases are helpful 
when we try to climb from one rung to another on some ladder—but we still cannot 
do it in an effortless manner.

But squared SIC overlap phases also provide a concrete bridge from the SIC 
problem to the Stark conjectures [39]. The latter were proposed in 1976, and their 
proofs would constitute a significant advance towards the solution of Hilbert’s 12th. 
A little bit more precisely: It was shown by Kopp [40] that in some, and conjectur-
ally all, prime dimensions equal to 2 modulo 3 a Galois transformation of the base 
field turns the squared SIC phases into Stark units. This has now been elucidated 
somewhat further [41], and provided that the restriction to special choices of d can 
be removed it seems to add credibility to our program.

Still it may seem that we have been ignoring the harsh realities of number theory. 
They tell us that the degrees of the ray class fields rise very quickly as we ascend 
the ladders. Going from Eqs. (38) to (40) will be difficult. But to get to heaven it is 
enough to climb one ladder, and it could be that it would be easier to do so on a spe-
cial one. A candidate is perhaps the ladder starting at d = 5 , because the SIC fidu-
cials appearing on its first three rungs can be written down exactly in a remarkably 

(39)U
(d−2)

P
⊗ �d�Ψ0⟩ = �Ψ0⟩.

(40)�⟨Ψ0�D(d−2)
�

⊗ D(d)
�
�Ψ0⟩�2 =

1

d(d − 2) + 1
.
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simple way [33]. Some of the reasons why this works continue to hold throughout 
the entire D0 = 3 tower, and have to do with the way the dimensions appearing in 
the sequence decompose into primes once we are above the second rung [42], and 
with the fact that SIC symmetries are especially transparent in prime dimensions 
equal to 1 modulo 3 [21]. It also has to do with the ‘decoupling’ phenomenon first 
observed in dimension d = 323 [23], according to which that SIC fiducial vector 
can be constructed using a fairly small subfield of the ray class field, the cyclotomic 
numbers entering the displacement operators providing the rest.

5  The Fifth Section

Is it likely that the SIC problem will have a happy end, in the sense that it will prove 
important for the Foundations of Physics? I think so. The QBist approach to the founda-
tions of quantum mechanics certainly suggests it [1, 14, 15]. The number theoretical angle 
suggests additional arguments. SICs force us to pay attention to the nature of the numbers 
that are being used in quantum physics, and this shows that quantum mechanics knows 
more about discrete structures inside the continuum than one might think [43]. There have 
been many attempts to build up physical theory from discreteness. It may be more inter-
esting to concentrate on things which, in fact, are discrete in existing theory and try to use 
them as primary concepts. (Yes, this has been said before [44].) It is also striking to the 
eye that SICs arrange Hilbert space dimensions into ordered sequences. When the repre-
sentation theory of Lie groups was worked out for the first time, sequences of dimensions 
such as 3, 8, 10,… must have seemed rather divorced from reality. They are not, as we 
were taught by the originators of the quark model. Because of the uncertain state that the 
SIC problem is presently in we must let the matter rest here, but more things may come.
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