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Abstract
There is a well-known variety of contact paradoxes which are significantly linked to to-
pology. The aim of this paper is to present a new paradox concerning contact with bod-
ies composed of a denumerable infinity of parts. This paradox establishes the logical 
necessity, in a Newtonian context, of contact forces (herein called “phantom forces”) that 
violate what is probably our most basic causal intuition, embodied in what I call the Prin-
ciple of Influence: any force exerted on a body B induces (causes) change of movement 
of B or (inclusive disjunction) the emergence of internal forces in B. However, the above 
paradox can be made strictly compatible with a Newtonian framework by introducing 
phantom forces as ideal elements in the Hilbert sense, though it will be seen that this does 
not solve all the problems.

Keywords Contact · Infinity · Newtonian Forces · Paradox · Phantom Forces

1 Introduction. The Principle of Influence

A paradox is a particular type of problem, but there is no general consensus as to the exact 
nature of this particularity. Proposals range from the most demanding extreme to the most 
lax. The former includes the notion of paradox in the sense of logic (antinomy): contradic-
tion between the conclusions of two inferences that seem equally sound. At the opposite 
extreme Sorensen (2003) could be cited, to whom a paradox is a kind of enigma, where 
none of its possible good responses (not all compatible with each other) need to be based 
on arguments. My own preferences tend toward the more lax sense, which also possesses 
the virtue of encompassing the other senses as particular cases. I understand a paradox as a 
problem arising from the conflict between two or more equally powerful intuitions (this is 
the meaning of the term adopted herein). So, for example, when both intuitions are based 
on apparently correct inferences from apparently true premises, a classical logical antinomy 
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arises. At the opposite extreme, even optical illusions are examples of paradoxes (and I 
presume that Sorensen would agree with me on this). In these, at least one of the intuitions 
is purely visual (“visual paradoxes”).

There is a well-known variety of contact paradoxes which are significantly linked to 
topology (Zimmerman, 1996). A second, less discussed, class of problems involves contact 
with bodies composed of a denumerable infinity of parts. Here the emphasis lies not so 
much in topology as in the possibility (or not) of coherently describing the physical interac-
tion (forces involved) with such entities and/or the properties of such interaction (Alper & 
Bridger, 1998; Peijnenburg & Atkinson, 2010; Prosser, 2006). This will be my aim here. 
This is also where I shall seek to highlight the existence of a conflict between powerful 
intuitions that authorizes us to speak of paradox in the sense specified at the beginning. The 
order of presentation is as follows. This Sect.(1) introduces the principle of influence, which 
will be central to this paper up to Sect.5, and whose initial plausibility will also become evi-
dent. The following Sect.(2) introduces the infinite system, which (with several variations) 
will be involved in most of the analyses to be conducted. Having considered a non-paradox-
ical case in Sect.3 where the infinite system’s properties are compatible with the principle of 
influence, the following Sect.(4) describes a variation of this system which is problematic. 
Its problematic nature is explained in Sect.5 as an incompatibility with the principle of 
influence (this is where a conflict between intuitions will be revealed; the source of the new 
contact paradox), which I propose to solve by renouncing this principle and by introducing 
the new concept of phantom force. Section6 explains that not all the paradoxical aspects 
of the infinite configuration analyzed can be accounted for by resorting to phantom forces, 
but the most important ones can (I hope). Section7 then presents a new, simpler and more 
elegant infinite configuration, whose analysis leads not only to the rejection of the principle 
of influence and the need for phantom forces, but to the actual need for phantom interactions 
(the relationship between the two concepts is explained here). Finally, Sect.8 puts forward 
(by way of conclusion) a way of understanding the role of phantom forces in the context of 
Newtonian mechanics that connects with the role of ideal elements in Hilbert’s philosophy 
of mathematics. Furthermore, the essence of the new contact paradox is explained in detail.

1.1 The Principle of Influence

The notion of force is a theoretical construct that corresponds to a certain kind of physical 
experience. It must therefore be required that this construct has some kind of empirical rel-
evance. Thus, a non-zero force acting on a body must have at least causal effects in the form 
of change of movement and/or non-zero internal forces induced within it. This is a plausible 
requirement for any reasonable theory on forces (even if it is not empirically correct, like 
Newtonian mechanics). The forces to which we are accustomed causally entail change of 
movement or (inclusive disjunction) the presence of some other forces (typically in the form 
of internal stresses in the bodies on which they act). This justifies the following intuitively 
evident principle, which I shall henceforth assume (unless expressly stated otherwise).

PRINCIPLE OF INFLUENCE: any force exerted on a body B induces (causes) change 
of movement of B or (inclusive disjunction) the emergence of internal forces in B.

Note that this principle cannot be summed up by stating that “force induces motion”, i.e., 
basically that F = m⋅a. Indeed, the term “F” in F = m⋅a designates the net force, which is the 
force causing acceleration (change of movement). But even when there is no acceleration 
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and no net force, (balanced) forces may be present that cause the occurrence of internal 
stresses without causing change of movement. This is a possibility that is covered precisely 
by the principle of influence. The inclusive disjunction in its formulation makes it clear 
that, in addition to causing movement and internal forces, a force can cause movement 
without the emergence of internal forces (e.g. when acting upon a point particle) and can 
also cause the emergence of internal forces without movement (e.g. when a spring is com-
pressed by the action of equal and opposite forces acting upon its ends). Note also that the 
term “induces” in the principle of influence formulation has the meaning of “causes” and is 
therefore sufficiently precise to be evaluated in the usual language of mathematical physics.

The role of principle of influence in infinite component systems is clear. Consider for 
example the following description of an infinite stack of slabs (Benardete, 1964). Lying 
upon the ground there is a slab of stone 1/2 thick, weighing 1/2. Resting squarely on this first 
slab is a second slab of stone 1/4 thick, weighing 1/4. Resting squarely on this second slab 
is a third slab of stone 1/8 thick, weighing 1/8, &c. ad infinitum. It follows that the i + 1-th 
slab exerts an upward force of 1/2i + 1 (on the i + 2-th) and a downward force of 1/2i (on the 
i-th). Now, suppose that a man of weight P climbs to the top of the stack of slabs. Obviously, 
he exerts a (downward) force of magnitude P on it. This force does not cause movement 
but it does cause new internal forces to emerge in the stack. The i + 1-th slab now exerts an 
upward force of P + (1/2i + 1) (on the i + 2-th) and a downward force of P + (1/2i) (on the i-th).

Another illustrative example is as follows. Let us consider a set of infinite point particles 
pn+1 of identical unit mass at rest at points xn = 1/n (n = 1,2,3,4….). Now let a particle p1 
also of unit mass and velocity v (moving to the left) approach them from the right (Larau-
dogoitia, 1996). Particle p1 has been set in this state of motion by a given force F exerted on 
it to the left. Taking into account that in a binary collision between identical particles, the 
particles simply exchange their velocities, it is clear the final state resulting from the infinite 
sequence of successive binary collisions that takes place is as follows: an infinite set of point 
particles pn of identical unit mass at rest at points xn = 1/n (n = 1,2,3,4….). Indeed, velocity 
v is transferred first to p2, then to p3, and so on successively until no particle continues in 
movement. We shall use the term P for the system of infinite particles p1, p2, p3, … pn, …. 
Since it has been exerted on p1, force F has also obviously been exerted on P. Even though 
it does not cause its movement 1, it does cause new internal forces to emerge in P. In effect, 
pi+1 experiences a force exerted on it by pi and then exerts a force on pi+2.

What makes the principle of influence eminently plausible is its weak character. It speaks 
of the causal effects of a force without going into much detail. For example, it does not 
specify exactly where the force that produces such effects acts (beyond generically indicat-
ing that it does so “on a body B”). This lack of specification averts numerous problems when 
dealing with material systems with an infinite number of component parts. For example, in 
the previous case of the man on the stack of slabs, what this principle says is quite clear and 
blatantly true. This is precisely because it makes no commitment to any specific statement 
concerning which part (if any) of the stack of slabs is in contact with the man and therefore 
feels his “direct and immediate” pressure. Also note that the principle of influence DOES 
NOT DEFINE the way in which a force acts, what it does is DESCRIBE (very succinctly) 

1  F causes the movement of p1, but not of P, whose center of masses remains fixed at x = 0. By definition, the 
movement of P is the movement of its center of masses. Broadly speaking, as is well known, the movement 
of a material body is the movement of its center of masses.
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the way in which a force acts. There is therefore no danger of circularity due to the fact that 
forces appear in it as possible effects of forces.

Neither is what I call the Principle of Influence (POI) a dubious eventual intuition, but 
rather something deeply rooted in the very nature of Newtonian mechanics. And it is easy 
to see why this is so. Newtonian mechanics is traditionally divided into three parts: statics, 
kinematics and dynamics. Only the first and last parts explicitly consider the role of forces. 
The first considers them as the cause of internal stresses in bodies in equilibrium and the 
third as the cause of their changes of movement. It is precisely these two aspects, internal 
stresses and change of movement, which are reflected in the POI. Its meaning is therefore 
clear and is very precisely grounded in the content provided by statics and dynamics as 
parts of classical mechanics. No one in the philosophy of physics community can be found 
who has postulated such a principle as the POI. The reason for this is not, however, its 
mysterious or controversial nature but rather its trivial nature: no one has as yet considered 
it worthwhile to make something so seemingly self-evident explicit. Of course (as previ-
ously stated) both aspects mentioned above (internal stresses and change of movement) do 
not always need to manifest themselves simultaneously. Indeed, if force F on a body is not 
balanced, it causes a change of movement (acceleration) and internal stresses, which would 
deform it were it not rigid (unless it is a point particle); and if F is balanced, it causes internal 
stresses (and not acceleration), which would also deform it were it not rigid. For example, 
two equal and opposite forces acting on an uncompressed spring cause only internal stresses 
within it, but no movement of its center of masses and, therefore, according to note (1), no 
movement of the spring itself (even though there is movement of the spring’s two halves, 
which move towards each other during the compression process as a result of the non-
balanced forces acting upon each one). Similarly, a couple of forces generates a torque 
that spins a homogeneous disc which also causes internal stresses therein, but its center of 
masses does not move (and, in this sense, the disc does not move, as stated in note (1), even 
though it rotates). Finally, an increase in the pressure of an ideal gas in volume V alters the 
internal stresses inside (its internal pressure) also without changing the position of its center 
of masses. Thus, it is clear that the POI is a very general principle in Newtonian mechanics, 
but by no means a vague principle. Its concrete, quantitative manifestations depend on the 
specific application of the laws of statics and/or dynamics, whose most general features are 
described by the POI. Finally, since forces are par excellence the most fundamental causal 
agents in a Newtonian conception of the world, the POI reflects what is probably our most 
fundamental causal intuition, given that it is a Newtonian conception that underlies most of 
our physical intuitions (now far from Aristotelian “common sense physics”).

2 Starting Point

As shall be seen, the new contact paradox that I propose violates the principle of influence 
and is based on a variant of the configuration introduced for other purposes by Laraudogoi-
tia 2020. This mechanical system is in turn a variation of previous similar configurations. 
The important point, however, (as will be seen in detail below) is that what I have to say 
drawing on my version is entirely new and different from what has been stated thus far in the 
context of literature on infinite systems. I shall describe the initial configuration as follows.
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A rigid, hollow cylinder C of unit section and length H contains an infinite number of 
rigid circular disks D0, D1, D2, D3, …, Dn, … (order type ω) that fit perfectly inside C and 
divide its interior into an infinity of separate compartments C0, C1, C2, C3, …, Cn, … Cω 
(order type ω + 1). The location of each Di in the interior of C may be identified, for instance, 
by measuring its horizontal distance yi from the left end of C, as shown in Fig.1. Note that yω 
is the limit of the Di locations (namely, lim i→∞ yi = yω) but it is not the location of any disks. 
There is no Dω. I assume that the masses of the Di decrease sufficiently for the total mass 
of the configuration to be finite, and that the thickness of the Di is decreasing sufficiently. I 
also assume that the Ci compartments (0 < i < ω) are full of gas at different pressures. As we 
already know, where there is no friction between the Di and C’s inner surface, the evolution 
of the whole will direct us to a final location of the former (generally changing their yi coor-
dinates) that guarantees pressures will be equal in all the Ci compartments. In order to make 
things more interesting and highlight the new contact paradox presented herein, I will use 
only a marginally different context: suppose there is friction between every Di and C to the 
extent that the net horizontal force required to move any Di inside C must be greater than 
a certain finite value k* > 2. This will ensure that no Di slides inside C in any of the cases 
discussed below. It must also be assumed that C0 and Cω are initially empty, so their internal 
pressure is p(C0) = p(Cω) = 0. I will use the following abbreviations to refer to forces exerted 
on material bodies by material bodies:

F[A/B] = Force that body A exerts on body B.
In the following only horizontal forces will be of interest, therefore F[A/B] will be posi-

tive or negative depending on whether the force of A on B is directed to the right or to the 
left respectively. Occasionally, in order to be clear, I shall also add the subscript notation:

Fx[A/B] = X-type force that body A exerts on body B.
So the case may arise where F[A/B] = Fx[A/B] + Fy[A/B] + ….
In particular, if the force that body A exerts on body B is type X, then F[A/B] = Fx [A/B]. 

To ease notation, when it is clear from the context that F[A/B] = Fx [A/B], I will not make 

Figure1A hollow cylinder with an infinity of separate compartments
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this explicit and, in which case, I will use Fx [A/B] or F[A/B] indistinctly to designate 
exactly the same thing.

3 Case I. An Unproblematic Case

The following unproblematic case is first considered (which we will call Case I): p(Ci ) = 1/i 
(i > 0). Clearly, p(Ci) < k*, hence no Di slides inside C. Given that p(Ci) > p(Ci+1) (i > 0), 
it is evident that every Di (i > 0) is given a net push to the right Ei by the gases that it 
is in contact with. However, Di is at rest, so a force − Ei acts on it to the left, evidently 
exerted by C. So, each Di (i > 0) pushes C to the right, in turn, with force Ei. Moreover, 
Ffriction[D0/C] = − Ffriction[C/D0]. Since the net force on D0 must also be zero (considering 
that D0 does not slide inside C either) Ffriction[C/D0] + F[the gas in C1/D0] = 0. I shall use the 
abbreviation GCα to refer to the material system formed by the gas in compartment Cα. It 
follows that Ffriction[C/D0] = − F[GC1/D0] = 1. For i > 0, Ffriction[Di/C] = Ei = − Ffriction[C/Di]. 
As the net force on Di (i > 0) must be null (considering Di does not slide inside C, which is 
at rest) and, therefore Ffriction[C/Di] + F[the gases in Ci and Ci+1/Di] = 0 (i > 0), it follows that 
− Ffriction[C/Di] = F[the gases in Ci and Ci+1/Di] = (1/i) − [1/(i + 1)] = 1/[i(i + 1)] (i > 0). I will 
also use the abbreviation S1 + S2 to denote the material system made up of subsystems S1 and 
S2 (S1 and S2 being exclusive and exhaustive parts of S1 + S2). In general, with S1 + S2 + S3 
+ …, I will designate the material system composed of the denumerable infinity of sub-
systems S1, S2, S3, … (S1, S2, S3, … being exclusive and exhaustive parts of S1 + S2 + S3 
+ …). Therefore, Ffriction[Di/C] = − Ffriction[C/Di] = F[GCi + GCi+1/Di] = 1/[i(i + 1)] (i > 0) and 
hence Ffriction[D1 + D2 + D3 + … /C] = ∑ Ffriction[Di/C] = ∑ Ei = ∑1/[i(i + 1)] = 1. This force is 
annulled by the force D0 exerts on C = Ffriction[D0/C] = − 1, thus we can deduce the existence 
of equilibrium.

4 Case II. A Problematic Case

Case II will differ from Case I in just one respect: compartment Cωwill also contain gas and, 
furthermore, at pressure p(Cω) = 1 (therefore identical to p(C1)). However this new pressure 
affects (obviously, at best, indirectly) the pressures of the gases in the other compartments, 
in no event would value 2 be exceeded (as 1 + (1/i) ≤ 2). Since 2 < k*, it follows that none 
of the Di (i ≥ 0) pistons will alter their position inside cylinder C. Consequently, neither 
will any of the gas pressures. It will continue to be p(Ci ) = 1/i (i > 0), p(C0) = 0 y p(Cω) = 1. 
It should be acknowledged that this new configuration with non-empty compartment Cω 
exemplifies the typical contact problem in the case of a series of material bodies of ordinal 
type ω + 1. This problem is by no means new in the literature. Nonetheless, as mentioned 
earlier, it is what I am about to say in relation it that is novel.

As previously stated, when I mention forces, I will always be referring to horizontal 
forces (understood as forces parallel to the cylinder axis, the X axis, so to speak). The rea-
son is that the forces in a perpendicular direction to the X axis (which exist, and are exerted 
by the gases on the side walls of cylinder C) play no part in the problem to be discussed in 
this paper. Given the known pressures, it is still true that Ffriction[D1 + D2 + D3 + … /C] = 1 y 
Ffriction[D0/C] = − 1. But now too F[GCω/C] = 1. Since Ffriction[D0/C] + Ffriction[D1 + D2 + D3 + 
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… /C] + F[the gas in Cω/C] = 1 ≠ 0, apparently the net force on C is not null, so C would seem 
to cease to be in equilibrium simply because it has filled compartment Cω. This semblance 
will turn out to be deceptive but is directly linked to the contact paradox discussed in this 
paper.

The gas in Cω is at unit pressure. The force exerted on C by this gas is F[GCω/C] = 1. 
2 The existence of such pressure also implies (again, according to Newton’s third law of 
action and reaction, see note (2)) that GCω must exert a force of unit magnitude directed 
to the left. In a sufficiently generic way, we could say that this force acts on the material 
system made up of the set of Di (i ≥ 0) plus the set of gases enclosed between them. In 
other words, it acts on system D0 + GC1 + D1 + GC2 + D2 + GC3 + … although (clearly) it 
does not do so on any of the component parts D0, GC1, D1, GC2, D2, GC3, …. 3 Hence, 
F[GCω/D0 + GC1 + D1 + GC2 + D2 + GC3 + …] = − 1.

5 Case II. The New Contact Paradox. Phantom Forces

The force GCω exerts on system D0 + GC1 + D1 + GC2 + D2 + GC3 + … violates the principle 
of influence. We shall see why. The presence of gas at unit pressure in Cω leads to a force 
acting on itself by system D0 + GC1 + D1 + GC2 + D2 + GC3 + … (obviously F[D0 + GC1 + D1 
+ GC2 + D2 + GC3 + … /GCω] = − F[C/GCω] = F[GCω/C] = 1). But there is no contact inter-
action (internal force) which has been induced by the gas at unit pressure in Cω between 
the Di (i ≥ 0) and the gases enclosed between them. Moreover, no matter how system 
D0 + GC1 + D1 + GC2 + D2 + GC3 + … is broken down (even purely formally) into exclusive 
and exhaustive parts, there is no contact interaction (internal force) between the parts which 
has been induced by the gas at unit pressure in Cω. That is, GCω at unit pressure does not 
cause the emergence of internal forces in D0 + GC1 + D1 + GC2 + D2 + GC3 + … that did not 
previously exist, when Cω was empty. In fact, this unit pressure, added to the pressure of 
any of the gases enclosed between two contiguous pistons (which is never higher than 1), in 
no event exceeds the k* > 2 value required for the displacement of at least some Di inside 
C. However, if the Di do not move, the initial values of the gas pressures in the Ci compart-
ments will not change either. And if these pressures do not change, neither will the friction 
forces that kept the different Di pistons in their initial positions (i.e. before compartment Cω 
was filled with gas at unit pressure). This means that there is no contact interaction (internal 
force) which has been induced by the gas at unit pressure in Cω between the Di (i ≥ 0) and the 
enclosed gases between them, as stated above. And, as also stated earlier, GCω does not cause 
the emergence of internal forces in D0 + GC1 + D1 + GC2 + D2 + GC3 + … that did not previ-
ously exist, when Cω was empty. We therefore observe an instance of contact interaction that 
violates the principle of influence. This is a truly unique type of interaction one is tempted 
to call “phantom”. The gas in Cω exerts a unit force on D0 + GC1 + D1 + GC2 + D2 + GC3 + …, 

2  The fact that a gas is subjected to pressure p implies that its environment exerts certain forces on it. The fact 
that it also acts on its environment is a consequence of the law of action and reaction.

3  This is an example of what has been called “global” interaction in the literature. See, for example, Larau-
dogoitia (2005). Similarly, in Sect.1 we saw that the man of weight P exerts a force of magnitude P on the 
stack of slabs although (clearly) he does not do so on any of the component slabs.
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the set consisting of the Di (i ≥ 0) and the GCi (1 ≤ i < ω) gases, 4 without inducing any inter-
nal force between them or, indeed, causing any kind of movement (nor any internal stress in 
the Di that did not previously exist, when Cω was empty). Its sole function is purely formal: 
to ensure compliance with the law of action and reaction (since, according to the definition 
of pressure, it has been seen earlier that F[D0 + GC1 + D1 + GC2 + D2 + GC3 + … /GCω] = 1). 
We will describe this phantom-formal character by writing “ph” in subscript to denote this 
force: Fph[GCω/ D0 + GC1 + D1 + GC2 + D2 + GC3 + … ] = − 1. Note that the phantom force 
is the force that GCω exerts on D0 + GC1 + D1 + GC2 + D2 + GC3 + …, but not the force that 
D0 + GC1 + D1 + GC2 + D2 + GC3 + … exerts on GCω. This latter force, unsurprisingly, causes 
the emergence of internal forces in GCω in the form of gaseous pressure.

Comparison with Benardete’s infinite stack of slabs may be enlightening here. Before the 
man climbs the stack, the i + 1-th slab exerts an upward force of 1/2i + 1 on the i + 2-th. Once 
he has climbed up, this force has a value of P + (1/2i + 1). In other words, the man’s weight has 
caused the emergence of internal forces in the stack, altering those existing previously. In our 
case, prior to filling Cω with gas, the internal forces in system D0 + GC1 + D1 + GC2 + D2 + GC3 
+ … had certain defined values. However, these values are not altered in any way when Cω 
is filled with gas at unit pressure! The man’s weight has a causal influence on the stack of 
slabs on which it acts (altering the internal stresses within it). However, the pressure of the 
gas in Cω has no causal influence on system D0 + GC1 + D1 + GC2 + D2 + GC3 + … on which 
it acts (it does not alter the internal stresses within it). The contrast can be seen clearly intui-
tively in this way. Suppose that one and only one of the slabs in Benardete’s infinite stack of 
slabs (let us say, i + 1-th) is an elastic but non-rigid solid. The weight of the other slabs will 
have deformed (compressed) it to some extent. However, when the man climbs to the top of 
the stack, the compression deformation of slab i + 1-th will be greater, displaying an increase 
in the stress to which it was subjected (an increase caused by the man’s weight). Alterna-
tively, now suppose that in our system in Fig.1, one and only one of the circular disks (let us 
say, i + 1-th, Di+1) is an elastic but non-rigid solid. The gas pressure in Ci+1 and Ci+2 will have 
deformed (compressed) it to some extent. However, when compartment Cω is filled with gas 
at unit pressure, deformation of Di+1 is not be altered in the slightest (and neither are pres-
sures p(Ci+1) and p(Ci+2)), proving that the stress to which it was subjected has not changed. 
In short, the paradox of Benardete’s slabs does not violate the Principle of Influence, but 
rather confirms it. As confirmed (as far as I know) by all the examples considered thus far 
in the relevant literature. The new contact paradox presented above is radically different on 
this point, because the configuration in Fig.1 in Case II does in fact violate this principle. It 
constitutes the first counterexample to the POI, that is to say, to our most fundamental intu-
itions concerning the causal role of forces in the Newtonian conception of classical mechan-
ics. It can also be seen in this way: the Case II configuration presents a conflict between the 
powerful intuition based on Newton’s third law of action and reaction (a law requiring the 
existence of force F[GCω/D0 + GC1 + D1 + GC2 + D2 + GC3 + …] = − 1) and the no less pow-
erful intuition based on the Principle of Influence (a Principle requiring causal efficacy from 
F[GCω/D0 + GC1 + D1 + GC2 + D2 + GC3 + …] which F[GCω/D0 + GC1 + D1 + GC2 + D2 + GC3 
+ …] does not have). The new contact paradox arises from this conflict. Hence, in infinite 
physical systems as in Fig.1, it is not only a question that the constraints make the contact 
with a sequence of physical objects of ordinal type ω difficult to implement into the dynam-

4  Some philosophers would prefer to speak here of the fusion of material bodies Di (i ≥ 0) and gases GCi (1 
≤ i < ω). The difference between the two terms is irrelevant for the purposes of this paper.
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ics, or that it is implemented using forces that play a purely formal role. It is a question that, 
in such systems, one of our most fundamental “mechanical intuitions” must be abandoned: 
it could be the principle of influence, but it could also be Newton’s third law (although 
this is not the solution I will advocate here). Both intuitions are deeply rooted in the usual 
interpretation of Newtonian mechanics, which thus warrants that the new contact paradox 
be treated as a problem for philosophers of physics.

Again the comparison with the paradox of Benardete’s slabs is illuminating. Here the 
difficulty that justifies reference to “paradox” (a difficulty yet to be discussed) is of a com-
pletely different nature (in particular, as already seen, there is no issue with Newton’s laws 
or the POI). In Benardete’s words (1964): “Let us plant our foot firmly upon this infinite 
pile of slabs. But what is there to plant our foot upon? There simply is no top surface to the 
whole pile. For the pile is constituted exclusively by the slabs ex hypothesi: absolutely noth-
ing else has been added.“ (p. 237). It is easy to extract the opposing intuitions underlying 
the paradox of Benardete’s slabs from this statement. As is evident, the core of the issue here 
relates to the question of the topologically open or closed (or neither) character of material 
objects, that is, to the question of whether or not the topological boundary of any object O 
belongs to O. This is at the heart of a much debated (and subtle) metaphysical question that 
overlaps with what is sometimes referred to as the mathematical philosophy of contact. 
However, it is, in any event, far removed from the kind of questions that are central to the 
new contact paradox.

5.1 The New Contact Paradox in a Simple Form

Herein is the new contact paradox in a simple form. From the analysis conducted above, it 
can be seen that, ultimately, the gases in compartments Ci (0 < i < ω) do not play any essential 
role in the new contact paradox. It follows that this will arise in a simpler form when all 
the Ci (0 ≤ i < ω) are empty, leaving only gas in Cω (at the usual pressure p(Cω) = 1). In this 
case, this gas will not have any causal influence on system D0 + D1 + D2 + …, on which it 
nevertheless exerts force Fph[GCω/ D0 + D1 + D2 + … ] = − 1. That is, given that prior to fill-
ing Cω, the internal forces in D0 + D1 + D2 + … are now null, when p(Cω) = 1 continue to be 
null. In order to see this formally, one needs only to reproduce all the developments of the 
previous sections (cases I and II) by simply suppressing the occurrences of GCα (1 ≤ α < ω) 
and performing p(Cα) = 0 (0 ≤ α < ω). Nevertheless, analysis of these sections is important in 
order to appreciate the meaning of the new contact paradox in the more overall context of 
the paradoxical non-phantom forces seen in Sect.6 below.

It should not be forgotten that the new contact paradox “in a simple form” has the advan-
tage of showing, in a much clearer way, the broad spectrum of circumstances in which its 
central ingredient, phantom forces, may appear. Contact “at the limit” with some ordinal 
type ω series of bodies (which themselves are not always in contact with each other) seems 
to be necessary, although this is obviously not enough (as shown in Benardete’s example 
of the man standing on the stack of slabs). Pinning things down is an open task here; a task 
transcending what has been done thus far in the philosophy of contact and analysis of its 
paradoxes.
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5.2 More Phantom Forces

After the brief hiatus in 5.1, let us return to the overall situation regarding Case II. The 
consequences do not end here and lead to the need for new forces with the same phantom 
characteristics. Since system Di (i ≥ 0) plus gases GCi (1 ≤ i < ω) was in equilibrium with Cω 
empty, it will cease to be so if the only thing that has changed in this respect is the presence 
of the new force on said system Fph[GCω/ D0 + GC1 + D1 + GC2 + D2 + GC3 + … ] = − 1 as 
deduced above. Therefore, (according to Newton’s first law of equilibrium) something must 
counteract it. The only option is cylinder C, so there must be a new “phantom” force Fph[C/ 
D0 + GC1 + D1 + GC2 + D2 + GC3 + … ] = 1, which neither induces movement or any internal 
force in the set made up of the Di (i ≥ 0) and gases GCi (1 ≤ i < ω) (i.e. no internal force 
that did not previously exist, when Cω was empty). Again, this phantom force has a purely 
formal role to play, in this case ensuring compliance with the law of equilibrium. Finally, the 
principle of action and reaction requires a final additional force F[D0 + GC1 + D1 + GC2 + D2 
+ GC3 + … /C] = − 1. As F[GCω/C] = 1, equilibrium of C is finally reached. 5

By abstracting the specific details, what characterizes a phantom force becomes clear. 
The force F exerted on an extended body B is a phantom force if and only if it does not 
induce (cause) change of movement of B or the emergence of internal forces in B. Conse-
quently, a phantom force violates the principle of influence. One might believe that such 
entities are idle. One could populate the world with a multitude of entities that (apparently at 
least) are of this kind, all of which can be eliminated using Occam’s razor. In reality, the gods 
of Olympus, elves or demons play no role in the causal structure of the world. However, 
phantom forces are not exactly of the same “empty” nature. Although they violate the prin-
ciple of influence, they play (at least indirectly) a role in the causal description of the world 
through the Newtonian laws of equilibrium, and action and reaction. The reason is that, as 
we have seen, they are required by these laws. Fph[GCω/D0 + GC1 + D1 + GC2 + D2 + GC3 + 
…] = − 1 was required by Newton’s third law (the law of action and reaction) and Fph[C/ 
D0 + GC1 + D1 + GC2 + D2 + GC3 + … ] = 1 by Newton’s first law (law of equilibrium).

6 Paradoxical Non-Phantom Forces

6.1 Reactions to Phantom Forces

The role of “phantom” forces in the contact paradox is more subtle than the above comments sug-
gest. We have seen that, by virtue of F[GCω/C] = 1, Fph[GCω/ D0 + GC1 + D1 + GC2 + D2 + GC3 
+ … ] = − 1, and that friction is the cause of forces Ffriction[D1 + D2 + D3 + … /C] = 1 and 
Ffriction[D0/C] = − 1 (both frictional forces were previously obtained in the unproblematic 
case in Sect.3). As the gases in the compartments do not interact by friction, it follows from 
the penultimate equality that Ffriction[D1 + GC2 + D2 + GC3 + D3 + GC4 + …… /C] = 1, a force 
also caused by friction (evidently, the friction of Di, i ≥ 1, with C). Furthermore, as there are 
no interactions at a distance in our model, F[GCω/D0] = F[GCω/GC1] = 0. The principle of 
superposition of forces therefore leads to Fph[GCω/ D1 + GC2 + D2 + GC3 + D3 + GC4 + … ] = 

5  Note that we have written F[D0 + GC1 + D1 + GC2 + D2 + GC3 + … /C] and not Fph[D0 + GC1 + D1 + GC2 + D
2 + GC3 + … /C]; the reason being that this is a force with obvious causal power. It induces internal stresses 
in cylinder C by opposing F[GCω/C], thus reaching equilibrium.
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− 1. 6 Since system D1 + GC2 + D2 + GC3 + D3 + GC4 + … was already in equilibrium with Cω 
empty, it will cease to be so if the only thing that has changed in its respect is the presence 
of the new force Fph[GCω/ D1 + GC2 + D2 + GC3 + D3 + GC4 + … ]. Therefore, (according to 
the law of equilibrium) something must counteract it. It cannot be the gas in compartment 
C1 (GC1) because this gas has already annulled the force that C exerts by friction on system 
D1 + GC2 + D2 + GC3 + D3 + GC4 + … from the beginning. Indeed, it follows directly from 
what was seen in unproblematic Case I (Sect.3) that F[GC1/D1 + GC2 + D2 + GC3 + D3 + GC4 
+ …] = F[GC1/D1] = 1 = Ffriction[D1 + D2 + D3 + … /C] = (as the gases in the compart-
ments do not interact by friction) = Ffriction[D1 + GC2 + D2 + GC3 + D3 + GC4 + … /C] = − 
Ffriction[C/D1 + GC2 + D2 + GC3 + D3 + GC4 + …]. As before, the only option is cylinder C, so 
there must be a new phantom force Fph[C/D1 + GC2 + D2 + GC3 + D3 + GC4 + … ] = 1, which 
neither induces movement nor any internal force in the set of Di (i ≥ 1) and gases GCi (2 ≤ 
i < ω). Also, as before, this phantom force has a purely formal role to play, ensuring com-
pliance with the law of equilibrium. Lastly, the principle of action and reaction requires a 
final, additional force: F?[D1 + GC2 + D2 + GC3 + D3 + GC4 + … /C] = − 1. As F[GCω/C] = 1, 
equilibrium of C is finally reached (note that C was already in equilibrium with Cω empty). 
The interesting point here is that there are two non-zero forces of a very different nature 
acting between the same material bodies. As seen above, Ffriction[D1 + GC2 + D2 + GC3 + D3 
+ GC4 + …… /C] = 1 is a force caused by friction and, as we have just seen, F?[D1 + GC2 
+ D2 + GC3 + D3 + GC4 + … /C] = − 1 is a “non-phantom” force 7 originating in phantom 
force Fph[C/D1 + GC2 + D2 + GC3 + D3 + GC4 + … ] = 1 (which, in turn, originated in the phan-
tom force Fph[GCω/ D1 + GC2 + D2 + GC3 + D3 + GC4 + …]). In contrast, non-phantom force 
F[D0 + GC1 + D1 + GC2 + D2 + GC3 + … /C] = − 1 (from Sect.5.2 and note (5)) should be 
taken into account, which coexists only in a trivial sense with zero force Ffriction[D0 + GC1 
+ D1 + GC2 + D2 + GC3 + … /C] = (as the gases in the compartments do not interact by fric-
tion) = Ffriction[D0 + D1 + D2 + … /C] = Ffriction[D0/C] + Ffriction[D1 + D2 + D3 + … /C] = (as seen 
in Case I in Sect.3) = − 1 + 1 = 0.

6.2 How Paradoxical Can the Reaction to a Phantom Force Be?

This previous point highlights an additional paradoxical dimension of the philosophy of 
contact in the presence of phantom forces. Even if the reaction force to a phantom force is 
not in itself phantom, it can also be of an enigmatic nature. This is exactly what happens 
in the case of force F?[D1 + GC2 + D2 + GC3 + D3 + GC4 + … /C] (and, to a somewhat lesser 
extent, in the case of F[D0 + GC1 + D1 + GC2 + D2 + GC3 + … /C]). As seen, F?[D1 + GC2 + D2 
+ GC3 + D3 + GC4 + … /C] (just as F[D0 + GC1 + D1 + GC2 + D2 + GC3 + … /C]) is neither a 
frictional force nor a usual contact force originating in the impenetrability of matter (such as 
that which typically arises when two material bodies press against each other). However (in 
contrast to F[D0 + GC1 + D1 + GC2 + D2 + GC3 + … /C]), it can coexist with them, as exem-

6  The principle of superposition of forces applies here to a finite number of forces, namely: F[GCω/
D0 + GC1 + D1 + GC2 + D2 + GC3 + … ] = F[GCω/ D0] + F[GCω/GC1] + F[GCω/ D1 + GC2 + D2 + GC3 + D3 + GC4 
+ … ]. When the number of forces considered is infinite, it is not always satisfied. As seen at the end of 
Sect.4, F[GCω/D0 + GC1 + D1 + GC2 + D2 + GC3 + …] = − 1 even though ∀i ≥ 0F[GCω/Di] = 0 and ∀i (1 ≤ 
i < ω) F[GCω/GCi] = 0. This is characteristic of many standard examples in the literature of systems with 
infinite components (such as the slab stack seen in Sect.1).

7  This is exactly the same as F[D0 + GC1 + D1 + GC2 + D2 + GC3 + … /C], whose non-phantom character was 
substantiated in note 5.
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plified by the case of the non-zero friction force that D1 + GC2 + D2 + GC3 + D3 + GC4 + …. 
exerts on C. Even if the reaction force to a phantom force does not violate the principle of 
influence, it may in itself be a mysterious entity. We lack an adequate causal mechanism to 
explain its genesis in the physics of contact. This is the reason for subscript “?“ in F?[D1 
+ GC2 + D2 + GC3 + D3 + GC4 + … /C].

Note that F[D1 + GC2 + D2 + GC3 + D3 + GC4 + … /C], the total force that 
D1 + GC2 + D2 + GC3 + D3 + GC4 + … exerts on C, has a value of F[D1 + GC2 + D2 + GC3 
+ D3 + GC4 + … /C] = Ffriction[D1 + GC2 + D2 + GC3 + D3 + GC4 + …… /C] + F?[D1 + GC2 + D2 
+ GC3 + D3 + GC4 + … /C] = 1 − 1 = 0. Also, (as should be the case, given C’s state of equi-
librium) F[D0 + GC1/C] = F[D0/C] = Ffriction[D0/C] = Ffriction[D0 + GC1/C] = − F[GCω/C] = −1, 
so that F[D0 + GC1/C] + F[GCω/C] = − 1 + 1 = 0. We have seen that friction is the physical 
cause of term Ffriction[D1 + GC2 + D2 + GC3 + D3 + GC4 + …… /C], but that the physical cause 
of F?[D1 + GC2 + D2 + GC3 + D3 + GC4 + … /C] remains an enigma (if it seems shocking to 
discuss physical causes when considering a system such as in Fig.1, which clearly cannot 
exist in reality, please refer to my discussion of the concept of physical system in Sect.8). 
In particular, it is an enigma how D1 + GC2 + D2 + GC3 + D3 + GC4 + … can exert equal and 
opposite forces on C. Likewise, when GCω was empty, Ffriction[D0 + GC1/C] and Ffriction[D1 
+ GC2 + D2 + GC3 + D3 + GC4 + …… /C] were already creating internal forces of stress in C. 
However, on filling GCω with gas, new internal stresses in C are generated by F[GCω/C] 
and enigmatic force F?[D1 + GC2 + D2 + GC3 + D3 + GC4 + … /C], confirming the latter’s non-
phantom character (in accordance with notes (7) and (5)).

7 Some Final Variations

7.1 Trivial

There is nothing special regarding value p(Cω) = 1 in the contact paradox. Many other 
values will serve equally well to illustrate it. Most certainly, any that do not entail the 
possibility of pressures equal to or greater than k*. Let us take for example p(Cω) = 1/3. 
The gas in Cω now exerts a 1/3 force on system D1 + GC2 + D2 + GC3 + D3 + GC4 + … 
(Fph[GCω/D1 + GC2 + D2 + GC3 + D3 + GC4 + …] = − 1/3) but without exerting it directly 
on any of the Di, GCi+1 (i ≥ 1) or inducing any force between them (or inside them). 
The forces involving only C, Di and GCi+1 (i ≥ 1) remain unaltered (taking p(Cω) = 1/3 
changes nothing to this effect, like taking for example p(Cω) = 1 or p(Cω) = 0). The sin-
gle role of Fph[GCω/D1 + GC2 + D2 + GC3 + D3 + GC4 + …] is purely formal: to ensure 
compliance with the law of action and reaction (given that p(Cω) = 1/3). Moreover, as 
F[GC1/D1 + GC2 + D2 + GC3 + D3 + GC4 + … ] = − Ffriction[C/D1 + GC2 + D2 + GC3 + D3 + GC4 
+ …] = 1 (as seen in Sect.6.1), it follows that Fph[C/D1 + GC2 + D2 + GC3 + D3 + GC4 + 
…] = 1/3 (this, which is a consequence of the law of equilibrium, is analogous to the result 
Fph[C/D1 + GC2 + D2 + GC3 + D3 + GC4 + … ] = 1 seen earlier for the case of p(Cω) = 1). 
Thus, F[D1 + GC2 + D2 + GC3 + D3 + GC4 + … /C] (the sum of a force caused by friction 
and another that is not) = Ffriction[D1 + GC2 + D2 + GC3 + D3 + GC4 + … /C] + F?[D1 + GC2 
+ D2 + GC3 + D3 + GC4 + … /C] = 1 − 1/3, which again ensures equilibrium of C, because 
F[D0 + GC1/C] = − 1 and F[GCω/C] = 1/3. As in the case of p(Cω) = 1, now F?[D1 + GC2 + D2 
+ GC3 + D3 + GC4 + … /C] is also required by the principle of action and reaction applied 
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to Fph[C/D1 + GC2 + D2 + GC3 + D3 + GC4 + …]. And the diagnosis is clearly the same. The 
phantom forces that violate the principle of influence have a purely formal role: to ensure 
compliance with the law of action and reaction and law of equilibrium. And the paradoxical 
non-phantom forces are reaction forces to phantom forces.

7.2 Non-Trivial. The New Contact Paradox in Its Simplest Form. Phantom 
Interactions

Herein is the new contact paradox in its simplest form. In addition to its ultimate simplicity, 
(I believe) it has the added interest of showing how (unlike the examples thus far discussed) 
the reaction force to a phantom force can itself be phantom, which leads to the concept of 
phantom interaction. Sn shall denote an elastic spherical body of radius Rn = (n + 1)/n (n ∈ 
Z+), when unstressed, and zero thickness (for simplicity). Sn+1 will have a smaller radius 
Rn+1 = (n + 2)/(n + 1) < Rn. Let us assume that the elasticities are such that, when Sn+1’s inte-
rior is filled with gas at pressure p, its volume grows until the new radius takes value R*n+1 
= (n + 2)/(n + 1) + (p/(p + 1))[((n + 1)/n) − ((n + 2)/(n + 1))] = (n + 2)/(n + 1) + (p/(p + 1))[1/
(n(n + 1))] 8. Note that R*n+1 < Rn. The physical system formed by the infinite concentric Sn 
spheres (embedded in one another) will be designated by Σ. It is assumed that the Sn masses 
decrease sufficiently for the configuration’s total mass to be finite. As is evident, the com-
mon interior to all the Σ spheres is a given ball B. We shall now assume that ball B is filled 
with gas G at pressure p. The resulting configuration can be mentally divided by symmetry 
plane Π, as in Fig.2 (marked by a thick dashed line). Gas G is split into left and right parts 
Gleft, Gright. Analogously, Σ is split into parts Σleft and Σright.

This is evidently an equilibrium configuration in which the radius of Sn continues to be 
Rn, i.e., as if gas G were not present. This is so because: (a) no elastic sphere Sn+1 filled 
with gas inside at finite pressure p would dilate so much as to come into contact with elastic 
sphere Sn (note that R*n+1 < Rn); (b) no elastic sphere Sn is FULL of gas inside (it is only 
partially filled). Using the notation in Sect.2, it is clear that F[Σ/G] = 0, but this is a net force, 
and of little interest. More revealing is what occurs regarding Σleft, Σright, Gleft and Gright. 
Fluid statics guarantees, unremarkably, that F[Gleft/Gright] = − F[Gright/Gleft] = F[Σleft/Gleft] 
= − F[Σright/Gright] = pπ. However, the reaction forces of Gleft on Σleft and Gright on Σright are 
phantom forces: Fph[Gleft/Σleft] = −pπ = − Fph[Gright/Σright]. This is evident since, regardless 
of whether or not there is gas under pressure in the common interior of the elastic spheres 
(previously called ball B), these spheres will neither move nor be subjected to any inter-
nal stress (each sphere’s surface is always separated from the other surfaces by a finite 
distance), which violates the principle of influence. At this point, Σleft and Σright resemble 
the sequence of material bodies D0 + D1 + D2 + … in Sect.5.1. There is, however, a highly 
significant difference. Σleft is in equilibrium and Fph[Gleft/Σleft] = −pπ. The force balancing 
this must evidently be a phantom force exerted by Σright: Fph[Σright/Σleft] = pπ. And likewise, 
since Fph[Gright/Σright] = pπ, the force which balances it must be the phantom force exerted by 
Σleft: Fph[Σleft/Σright] = − pπ. The important point is that Fph[Σright/Σleft] and Fph[Σleft/Σright] are 
a pair of phantom forces of action and reaction. This shows that, as stated at the beginning, 
the reaction force to a phantom force can itself be phantom. When, as in this case, a force 
and its reaction are both phantom, then it is appropriate to use the term phantom interaction. 
The situation can be summarized by saying that the configuration in Fig.2 not only shows 

8  This shows that elastic spheres Sn are increasingly “less elastic” as n grows, though none of them is rigid.
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the existence of phantom forces but also of phantom interactions: this is the case of the inter-
action between Σleft and Σright. This was not possible with the system in Fig.1, and shows 
the extremes to which the purely formal role (in order to ensure compliance with the law of 
action and reaction and law of equilibrium) of phantom forces that violate the principle of 
influence can go.

8 Tentative Conclusion. Comments on Physical Systems, Infinitism and 
the New Contact Paradox

I would like to mention a positive interpretation of the new contact paradox. Perhaps this is 
a paradox that we should accept in our theoretical treatment of mechanical forces. By unam-
biguously allowing what I have called phantom forces (which violate the principle of influ-
ence), we are allowing the Newtonian laws involved (the first and third) to be formulated 
with total generality (as they usually are). Otherwise, by rejecting such forces we would 
be forced to complicate the highly intuitive and simple axiomatic format of Newton’s laws 
(their extreme generality) in view of configurations (such as in Case II and Sect.7.2), where 
some of these laws would fail. The situation is suggestively similar to what can be found 
in other theoretical domains. The closest probably being that of projective geometry, where 
“ideal elements” are accepted without any visual or “empirical” correlate (ideal points and 
ideal lines as opposed to ordinary points and ordinary lines) in order to enable axioms of 
the projective plane to be formulated simply and generally. Even though the theory of ideal 
elements has its origin in Hilbert’s philosophy of mathematics, he himself drew a clear anal-

Figure2A hollow sphere with an infinity of inner concentric hollow spheres
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ogy between the use of ideal elements in mathematics (which we add to make a smoother 
theory) and the use of hypotheses involving theoretical terms in physics (in his words: “All 
of physical thought …. appears for this view as nothing other than an implicit application 
of the method of the extension of a system through the addition of ideal elements” (Hilbert, 
1919, p. 159)). As Hallett (1990) points out when interpreting Hilbert’s theory of geometry: 
“… there is no absolute difference in status between theoretical terms like ‘force’ in physics, 
‘point’ in geometry and ‘irrational’ in analysis” (1990, p. 223) and “Once new concepts or 
‘ideal elements’ or new theoretical terms have been accepted, then they exist in the sense 
in which any theoretical entities exist” (1990, p. 239). Admitting phantom forces as ideal 
elements in a simple and general formulation of Newtonian mechanics avoids the main dif-
ficulties seen in the previous points, albeit not all of them, as evidenced by the paradoxical 
non-phantom forces in Sect.6. The concept of force has indeed come under suspicion since 
at least the 18th century (see, for example, D’Alembert’s Traité de dynamique). In the 19th 
century, three distinct strategies had already been clearly defined (Capecchi, 2014) that per-
sist to this day (with varying degrees of support and nuances): to consider the concept of 
force as a derived concept (e.g. Kirchhoff), a primitive concept (Euler) or an obscure and 
therefore rejectable concept (Hertz). I do not intend to take sides in this controversy here, 
but I believe that the new contact paradox may be relevant to this effect. If one considers 
phantom forces as ideal elements, then one seems to be closer to the viewpoint that regards 
forces as primitive elements of mechanics. If, on the other hand, one considers phantom 
forces to be an unacceptable construct and incapable of properly accounting for the para-
dox, then one may be favoring conceptions such as Hertz’s, which advocate an essentially 
kinematic formulation of mechanics.

The systems in Figs.1 and 2, analyzed in this paper, are examples of physical systems. By 
physical system I mean a system whose essential characteristics can be studied with the aid 
of a standard physical theory (in our case classical Newtonian mechanics). Here the expres-
sion “physical system” can be considered synonymous to “physical model”, although I tend 
to prefer the first expression since the general concept of system seems to me to be more 
manageable and interesting than the general concept of model (at least for non-formal dis-
ciplines). Note that a physical system need not be physically realizable (analogous to how 
a model need not model anything real), and the systems in Figs.1 and 2 are most certainly 
not (basically because of their infinite character). They are, however, analyzable in the con-
text of Newtonian mechanics, so the causal vocabulary used in certain parts (consider, for 
example, reference to physical causes in Sect.6.2) holds its own. And this is so, not because 
the systems referred to are physically realizable (there is agreement that they are not), but 
because the causal content of the Newtonian theory within the framework they are studied 
is (precisely as a consequence of said study) directly transferable to such systems. The fact 
that the systems in Figs.1 and 2 are non-physically realizable physical systems also explains 
why their analysis in the context of Newtonian mechanics has consequences for this theory 
under which they are analyzed but no consequences for reality. Lastly, having consequences 
for the theory under which it is analyzed but not for reality is a feature that the new contact 
paradox shares with many other theoretical results concerning infinite physical systems (be 
it in the philosophical literature or in the more technical scientific literature) such as the 
beautiful supertask (Laraudogoitia, 1996). In this sense, the new contact paradox therefore 
belongs to a well-established “tradition” in science and in its philosophical reflection.
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The new contact paradox arises in some physical systems with an infinite denumerable 
number of component parts. Faced with this, there is always the drastic option of avoiding 
difficulties by rejecting the actual infinitude in physical models (like the Newtonian models 
considered here). There are at least three overriding objections to this course of action. 
First, the fact that it ignores (and condemns) from the outset the existence of a multitude of 
infinite physical systems studied in the philosophical, physical and mathematical literature 
(not even always in the form of supertasks). In many of these cases interesting results are 
obtained that help frame the scope of validity and interpretation of the physical theories 
involved. Second, the fact that it even rejects cases of uninteresting infinite physical systems 
that pose no problem of inconsistency in the physical theories admitting them. And third, 
the fact that (as a result) it fails to discriminate between both types of systems. In particular, 
it puts on an equal footing (unchecked, which is scarcely compatible with philosophical 
practice):

a. cases of interesting infinite systems from which something can be learned;
b. other cases that are quite simply incompatible with the physical theory in which they 

are studied;
c. cases that are perfectly consistent, albeit trivial.

My personal intuition is that the new contact paradox falls within the framework of type 
(a) cases. Moreover, it is conceptually different from all other cases of this type seen in the 
literature. In addition, the differentiation criterion is clear: none of the other infinite New-
tonian systems studied to date (and, of course, neither non-infinite systems) contradicts the 
principle of influence (POI). Only the new contact paradox does so. Given this contradic-
tion, one might consider including the new contact paradox within type (b) cases. In such a 
circumstance, it would simply be argued that the infinite material configurations of the new 
contact paradox go against Newtonian physics. There are, however, two immediate objec-
tions to this:

1) The paradox does not arise if (everything else remaining the same) compartment Cω 
in Fig.1 is simply left empty (with no gas) in such a configuration. This already seems to 
imply that it is not the presence of the actual infinite as such that is the problem; rather that 
the root of the paradox lies elsewhere. Furthermore, it would be necessary to explain how it 
is possible that the mere absence or not of a single material body (in this case the gas in Cω) 
is what makes the difference between an infinite material system that does not go against 
Newtonian physics and one that does. 9

2) This incompatibility does not occur, strictly speaking, with Newtonian physics (sum-
marily condensed into Newton’s three laws) but with the principle of influence (POI). I have 
in fact proposed something along these lines here. Continuing to uphold Newton’s laws 
(Newtonian mechanics) and rejecting the universal validity of POI.

9  The analogy (yet to be explored) is interesting between this and what Sainsbury (2009) calls the “principle 
of tolerance” in the analysis of paradoxes of vagueness (“a gram cannot make the difference between not 
enough wood to make a table and enough wood”, p.48). This analogy is more pertinent if one takes into 
account that, even where there is gas in Cω, the paradox will not arise if its pressure p(Cω) is high enough to 
move some final segment of discs Di despite friction (for this reason a value of p(Cω) was chosen in Sect.4, 
which would ensure that p(Cω) + p(Ci) < k*). And even where p(Cω) is small, no paradox will arise in this 
case if friction is low enough (for the same reason).
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Note also that, in the new contact paradox, the ordinal type of the set of compartments 
filled with gas is ω + 1. In the absence of gas in compartment Cω, the ordinal type is ω. Yet 
the contrast between ω and ω + 1 cannot be what makes the difference between an infinite 
material system that does not go against Newtonian physics and one that does. To see this, 
one only needs to go back to Benardete’s example (1964) considered in the introduction, 
where a man of weight P climbs to the top of the infinite stack of slabs. Here, the set of 
relevant material bodies’ ordinal type (man and slabs) is ω + 1. And, as made clear from my 
analysis, this material system not only does it not go against Newtonian physics, it also does 
not go against the POI. We conclude that the contrast between ω and ω + 1 can in no way be 
what makes the difference between an infinite material system that does not go against the 
POI and one that does 10.

I would like to conclude with a consideration that summarizes the essence of this paper 
in a very succinct and expressive way. At first sight it may seem impossible for two physi-
cal systems X and Y to interact in such a way that X’s state is independent of Y’s presence 
or absence. It has been shown, however, that in principle there is no such impossibility if 
X has a natural order of type ω and the joint system X + Y one of type ω + 1 (a condition 
which, albeit not sufficient, appears to be necessary) 11. This is precisely the essence of the 
new contact paradox.
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