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Abstract
We aim to show from a new perspective that Quine’s ontological relativity, based largely 
on his so-called “proxy-function argument”, falls short of being a rigorously coherent phil-
osophical conception, as it exhibits significant formal defects. This new perspective ena-
bles exposing the shortcomings of Quine’s position and suggests a possible reformulation 
of the original position. Moreover, we argue that his ontological relativity is inconsistent 
with the empirical data associated with some of our best physical theories, such as quan-
tum mechanics. We refer to fundamental concepts of philosophy and the foundations of 
mathematics in order to clarify our critique of Quine’s position concerning the relation 
between formalized theories and both what we can know about the real world and how we 
come to know it.

Keywords Quine’s ontological relativity · Ontology of scientific theories · Proxy function · 
Ontological commitments · Empiricism

1 Introduction

Take a formalized scientific theory such as, for example, the arithmetic of natural numbers. 
It is intended that this theory should pertain to natural numbers, describing their properties 
and relations between them. Quine argues that such a theory will not have any distinctive 
ontology, so it is impossible to say what particular objects the theory is talking about. Now 
imagine particular objects, of whatever type you will, but equinumerous to, for instance, 
the natural numbers in the sense of von Neumann, Frege, Zermelo, or Peano arithmetic 
(PA). According to Quine, if we “replace” objects of one kind with objects of another 
using a special “proxy function”, then the theories under consideration will have no formal 
means for perceiving and describing any difference between these objects. The ontology 
of a given theory is thus relative. This is, leaving (temporarily) aside many other relevant 
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details, the intuitive import of Quine’s important and influential set of views on the rela-
tions between formalized theories on the one hand, and both what they refer to in the real 
world and how they do so on the other. We aim to show that Quine’s ontological relativity, 
based largely on the so-called “proxy-function argument”, is not a strict and coherent phil-
osophical conception, as it possesses significant formal flaws. In our analysis, we do not 
refer to an absolute determination of an ontology, which Quine considers impossible, but to 
its relative determination: for example, with reference to an appropriate background theory. 
Such a relative determination was explicitly postulated by Quine. Moreover, we shall argue 
from a new perspective that Quine’s ontological relativity is inconsistent with the empiri-
cal data associated with some of our best physical theories, such as quantum mechanics. 
This new perspective, which uses the concept of substitution and substitutional models 
described below, enables exposing the shortcomings of Quine’s position and suggests a 
possible reformulation of the original position. We will invoke fundamental concepts from 
philosophy and the foundations of mathematics in order to clarify our critique of Quine’s 
position on the relation between formalized theories and both what we can know about the 
real world and how we come to know it. Our focus, however, will be on the ontology of 
science.

Quine’s argument involves constructing a philosophical theory that is “holistically 
coherent” with empiricist assumptions: this sophisticated kind of coherence provides the 
main justification for his views. Thus, our first and basic task in these considerations will 
be to check whether Quine’s ontological relativity is really consistent with basic empirical 
and naturalistic suppositions and whether it is precise and consistent from a formal point 
of view.

In “General Comments on Quine’s Analytical Empiricism and Ontological Relativity” 
section below, we recall the main determinants of Quine’s philosophical position insofar 
as these are relevant to our considerations. We cannot analyse here all of the theories and 
concepts relevant to Quine’s position—and, in particular, we will not analyse the details 
of his theory of the indeterminacy of translation or its relationship to the inscrutability 
of reference. These matters have been extensively analysed elsewhere [cf., for instance, 
(Hylton, 2004; Kirk, 2004; Romanos, 1983), and Quine’s works (1976a, 1977, 1981, 1983, 
1986, 1992a, 1992b, 1995a, 1995b)]. The basic forms taken by translations in the context 
of formalized theories are ontological reductions and the use of a proxy function. In “Criti-
cal Remarks on the Proxy-Function Argument” section, we then consider those details of 
Quine’s proxy-function argument that are fundamental to his account of ontological rela-
tivity. We point to formal deficiencies within this argument by referring to the concept of 
interpretation in Tarski’s sense, and also by referring to the concept of intuitive models, 
and substitution operations within these models.1 Quine’s argument turns out to be impre-
cise, informal, and intuitively indeterminate, with serious negative consequences for his 
ontological relativity. In particular, we argue—contrary to Quine—that a certain ontology 
for extensional formalized theories is absolutely distinguished by its elementary simplicity 
and consistency with empirical data. In “Physics, Experiments and Ontological Relativity” 
section, we discuss various possible descriptions of such a minimal ontology and give one 
example of its exact formalization (Minimal Set Theory, MST). We present an example of 
the incompatibility of Quine’s conceptualization with one of our best contemporary sci-
entific theories, namely quantum mechanics, in the context of the discussion concerning 

1 See our more detailed description elsewhere (Król & Lubacz 2021), where we deploy substitutional mod-
els for the purpose of falsifying quantificational ontological pluralism.
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the so-called “hidden parameters”. It follows from this that ontological relativity cannot be 
applied in an unrestricted way to all scientific theories and that it can be empirically falsifi-
able in some contexts.

2  General Comments on Quine’s Analytical Empiricism and Ontological 
Relativity

One can point to a number of elementary observations that seem, intuitively, to justify the 
plausibility of Quine’s relativistic philosophy. Almost all expressions, including sentences 
of natural languages, can be used (even not necessarily by different users) in many differ-
ent specific situations, at different times, etc., and yet retain their syntactic identity together 
with their referential capacities. “My name is John”, “this is my mother”, etc., do not desig-
nate any particular person or situation, do not refer to anything specific, and can be used by 
different people and across a variety of different contexts. However, they cannot be used in 
any type of situation. Similarly, we can describe a certain situation giving the same infor-
mation, but in a very different manner and linguistic form. A situation does not designate 
uniquely its description, nor does a certain set of sentences (a “prototheory”) designate the 
only possible mode of reference to objects.

According to Quine, it is quite the same with mature scientific theories and, in par-
ticular, with formalized mathematical theories. This carries consequences for the so-called 
“Duhem-Quine thesis” [cf. (Quine, 1998)], and for Quine’s ontological relativity: the crea-
tor of a theory may have, in their head, their own individual ontology or privately intended 
model, but we do not have any extra-theoretical or extra-linguistic and objective access to 
reality itself, such as would be “the same” for all users of a given language or theory. In 
consequence, only the linguistic forms are the same for everyone, even though they do not 
refer to the same “things” [cf., for instance, (Quine, 1969a, 1976a, passim].

For the purposes of this discussion, we shall consider Quine’s position in its entirety and 
examine its internal coherence in some detail using only the means permitted by his phi-
losophy. To clarify the key elements of that philosophy that are relevant to the definition of 
ontological relativity we first need to consider his commitment to scientism. Quine treats 
all ontological issues as issues belonging to natural science. This conviction follows from 
the assumption that the only access to the ontology of the so-called “real world” is pro-
vided by the mathematical and natural sciences. The result of this decision is that Quine is 
obliged to deny the objective existence of the whole world given to us in direct experience, 
along with the very fact—and even the mere possibility—of the existence of such direct 
experience. If something is given directly, Quine considers it irrelevant, as he holds that it 
is only given in a purely subjective way, and is a subjective product of our neural apparatus 
[cf., for example, (Quine, 1969b, 1995a)]. Man’s only objective epistemic ability consists 
in the ability to speak and use language.

What emerges from Quine’s scientism is not so much an appreciation of the achieve-
ments of science as we actually know it, but an implicit demand contained in his philoso-
phy for the reform of science by means of its formalization: that is, the “scientification” of 
all science and philosophy. Without this healing procedure, science has no precise ontolog-
ical commitments and is as impervious to ontological analysis as any informal conversa-
tion. At most, certain fragments of knowledge develop to the point of attaining the status of 
science: e.g. certain formalized theories of physics, logic, pure mechanics, or mathematics. 
What follows from this is that existing scientific knowledge not formulated in a first-order 
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theory will be incapable of having ontological referents, or will be an instance of defective 
empirical science; cf., e.g., (Quine, 1969a, 1976b).

Quine does not hold that every single sentence of formalized scientific theory must con-
tain a direct empirical reference; science is rather a “web (or field) of beliefs” that comes 
into contact with empirical data only “at the edges”; cf. (Quine, 1969a, pp. 78–79). This 
is a manifestation of his holism—one that seems to follow in particular from his convic-
tion that if physics uses some formalized first-order mathematical theory (or a fragment of 
it), then the mathematical theory itself need not have any direct empirical reference, and 
its empirical character will be revealed by its use in certain empirical and/or theoretical 
contexts.

In our view, Quine does not clearly distinguish between the ontological commitments 
and the empirical commitments of a theory: he identifies these commitments and treats the 
empirical reference of a theory as precisely expressible by his theory of quantificational 
criteria of ontological commitment. Moreover, he does not clearly distinguish the onto-
logical commitments of pure (uninterpreted) mathematical theories from the ontological 
commitments of these theories as used in certain empirical or “impure” theories. Instead, 
he merely argues that any theory with some variables that has non-eliminable sentences 
of the form “there is an x such that…” has ontological commitments—even “pure” math-
ematical theories. This is what the possibility of their use in “more empirically committed” 
contexts further indicates. Putnam is more precise in this respect (cf. the Quine-Putnam 
indispensability argument).2 To be sure, Quine figures in the name of this argument, but 
it is not entirely clear whether he agrees with Putnam throughout, or whether he simply 
recognizes that any pure mathematical theory can be used in some empirical and scientific 
context, and thus that even pure theories, meaning empirically uninterpreted ones, have an 
object of reference, indicated by the existential quantifier. However, judging by the exam-
ples Quine gives—e.g. concerning “pure” arithmetic of natural numbers [cf., for instance, 
(Quine, 1976b) at many points, such as p. 211]—he regards such theories as having the 
same ontological commitments as scientific theories. Therefore, all (quantifier-expressible) 
ontological commitments of formalized theories are equally valid, and in this sense, Quine 
votes for ontological monism—i.e. the idea that there is only one way of being. Thus, more 
particularly, he does not distinguish between different modes of existence, such as abstract 
and real: existence is univocal, as van Inwagen would say; cf. (2009, p. 482). If natural 
numbers in a given empirical (or impure) theory are needed in the same way that electrons 
are needed, then one must assume that the theory obliges us to accept the existence of both 
numbers and electrons. Whether something is needed (i.e. exists) is uniquely indicated by 
the non-eliminable existence of sentences of the form “there is an x such that x is a natural 
number”, and “there is an x such that x is an electron”.

Nevertheless, given that not all sentences of scientific theories have an empirical refer-
ence, we are apparently supposed just to assume that sentences of the form “there is an x 
such that …” will have such a reference in some theories. Moreover, Quine often speaks of 
the “empirical consequences of whole theories” [cf. (Quine, 1969b)], but does not indicate 
any specific linguistic forms that correspond to them, so they all seem to have the same 
form: namely, “there is an x such that …”.3 One could also consider the points of empirical 
contact with the world of a given theory to be provided by the predicates “of an empirical 

2 See (Putnam, 1971). Note that Putnam changed his views soon after this.
3 For example, it may follow from a given theory that there will be a centre of equilibrium for some system, 
or that there will be some body possessing a temperature higher than the average one for the system, etc.
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nature” used within it: e.g. by “x is a dog”, or “x is white”. However, these must still be 
used in the above context—i.e. with an existential quantifier. As we explain below, such 
predicates alone mean nothing “in reality”, or from the extensional point of view preferred 
by Quine.4

According to Quine, only some regimented theories are ontologically useful: i.e. only 
certain theories have ontological commitments and thus, we suppose, also a precise empir-
ical reference. In general, if “To be is to be the value of a variable”, cf. (Quine, 1948, p. 
32), then the only theories that can have ontological references will be those in which there 
are free variables bound by an existential quantifier. Therefore, these will be some first-
order theories that have an infinite model. Theories with finite models of named objects 
have no direct ontological reference since any sentence using a quantifier—be it universal 
or existential—can be replaced by a finite alternation or conjunction of certain atomic sen-
tences that do not contain bound variables. Quantifiers and variables are thus eliminable 
from such theories; cf. (Quine, 1968, p. 209). Such theories do not have ontological ref-
erences that are self-defined by their own linguistic means, because the proper name of 
something cannot indicate something exactly (in a one-to-one way). Thus, according to 
Quine, such theories are not themselves ontologically committed to anything. We can, nev-
ertheless, associate with a constant’s denoting of concrete individuals a certain ontological 
interpretation (“decoration”), using some “background theory”; cf., e.g., (Quine, 1968, p. 
209). Such a theory, however, will in principle not be unambiguously defined, and there are 
infinitely many possibilities for such an ontological interpretation: Many different individu-
als can be called “John”, and this name alone does not indicate any particular “John”.

A similar problem pertains to complete and decidable theories in which we know how 
to eliminate all quantifiers. Moreover, such theories may have a mechanical procedure for 
the assignment of truth values, and if that is so, then we are not interested in the values of 
variables and quantifiers (cf. ibid.). Only some theories with infinite models have ontologi-
cal commitments. It seems to follow from Quine’s assumptions (assuming that the major-
ity of objects known to us from direct informal experience exist only in a finite number) 
that the only objects known to us that form infinite sets are certain abstract mathematical 
objects and that only theories that speak about abstract objects have an object reference—
ergo only abstract objects do exist. But having an infinite model is not yet sufficient for a 
theory to have any object reference of an ontologically significant kind. In particular, theo-
ries that speak of an infinite number of certain objects, each of which has a particular indi-
vidual name, are not ontologically committed. An example of such a theory is the Peano 
arithmetic of natural numbers (PA), where each of an infinite number of natural numbers 
has an individual name: 0, S0 (or 1), SS0 (or 2), etc. This theory is not decidable. For such 
a theory to have ontological commitments, its quantifiers must be employed in a referential 
manner, and so not as so-called substitutional quantifiers.5 According to the latter interpre-
tation, “∃x ϕ(x)” is true iff, for some singular term “t” of the language, “ϕ(t)” is also true. 
Thus, “∃x ϕ(x)” is equivalent to “ϕ(t)”. In the case of an objectual (referential) interpreta-
tion, however, the formula “∃x ϕ(x)” is true iff there is an object t (not only a term/name in 

4 For example, Quine (1969a) denies the existence of a realm of meanings (cf. analyses of the “museum 
myth of meanings”) while accepting the existence of extensions and designations of a concept. Cf. also 
(Quine, 1995a).
5 This remark applies not only to theories that have names for each individual, but in general to all theories 
that aspire to have ontological commitments on the basis of their own structure, and not just through onto-
logical interpretation at the level of a background theory.
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the vocabulary of the theory) in the model of this theory which satisfies the open formula 
“ϕ(x)”. Therefore, in the objectual case, a given object in a model satisfying the formula 
“ϕ(x)” need not have a name in the language of the theory. There may be more objects than 
names. For instance, not every real number has a name in the analysis of real numbers, 
because the set of real numbers is uncountable, and we only have a denumerable number of 
names. Ontologically, the difference between the two approaches to quantification is that, 
in the case of substitutional quantification, we can speak of certain non-existent objects 
which nevertheless have a name (e.g. Pegasus): so we can name them, and some sentences 
containing these names of non-existent objects are nevertheless true (for instance “Pegasus 
has wings”). In the case of objectual quantification, the object in question must be some 
individual in the model of the theory, even if it has no name in the theory. For example, we 
can then say that the general sentence “for every x, ϕ(x)” entails the sentence “there exists 
such an x that ϕ(x)”, and even if we cannot point to such an x specifically (i.e. by name), 
we are obliged to assume its existence. Meanwhile, in the substitutional case, “variables 
are placeholders for words (only) of any syntactical category”; cf. (Quine, 1968, p. 209). 
However, even in the substitutional instance, as in the above case of a finite theory, one 
can assign it an ontological interpretation within the corresponding background theory—
though only if, in such a theory, referential quantifiers are used.

With regard to the question of the ontological commitments of finitary and infinitary 
theories, it should be noted that Quine does not consider all possibilities. Although a the-
ory can have an infinite model, it can also have finite models. It should also be noted that 
it does indeed follow from Quine’s favorite (downward) Löwenheim-Skolem theorem that 
the existence of even just one infinite model of a given first-order theory will entail the 
existence of an infinite denumerable model, but the existence of a finite model will not. 
Similarly, it is not the case that if any first-order theory has a finite model, it cannot have an 
infinite model. Therefore, according to Quine’s criteria, ontological commitments are both 
present and absent.

So let us assume that we have some first-order theory with referential quantifiers, and 
with a denumerable infinite model: e.g. PA. Of course—and independently of Quine’s 
philosophical claims—this theory will have various non-isomorphic models, including a 
countable intended (standard) model. From a purely mathematical point of view, PA (or 
any other such theory) does not explicitly designate to which model its purely syntactically 
specified form refers. To take another example, the axioms of group theory apply just as 
well (i.e. correctly and efficiently) to a trivial one-element group as they do to a group with 
an infinite number of elements. The reader should note that we have here an example of a 
theory possessing both finite and infinite models.

3  Critical Remarks on the Proxy‑Function Argument

Our considerations in “The Proxy Function and the Mutual Interpretablity of Formal Theo-
ries” section are confined to an analysis of Quine’s definition of “proxy function” and the 
related argument for ontological relativity in the light of Tarski’s notion of the interpreta-
tion of a theory formalized in another one. In “The Proxy Function Viewed in the Light 
of Substitutions and Substitutional Models” section we use the concepts of substitution 
and substitutional models introduced in this context to point to the formal flaws in Quine’s 
account of ontological relativity.
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3.1  The Proxy Function and the Mutual Interpretability of Formal Theories

Central to the definition and construction of Quinean ontological relativity is the notion 
of a proxy function. Usually, this is explained by giving an example concerning only 
one predicate, say P1, in a given theory T1 referring to certain objects from the set/class 
D1 (e.g. of elephants). Then, a second theory T2 is indicated, in which we can find a 
predicate R2 (corresponding to P1 in T1), and whose objects belong to the set/class D2 
of objects of the second theory (e.g. ants). A proxy function F will be a function that 
assigns, usually mutually unambiguously, and in a one-to-one manner, objects from D1 
to objects from D2, and to each predicate P1, P2, …, from T1, a corresponding predi-
cate R1, R2, …, in T2, such that P1x is true in T1 iff F(P1)(Fx) is true in T2: i.e., more 
precisely, T1 ͱ P(x)[a/x] ⇔ T2 ͱ R(x)[F(a)/x]. Obviously, if ∀x.P1x → P2x in T1, then 
∀x.F(P1)x → F(P2)x ≡ ∀x.R1x → R2x in T2. Thus, in fact, and from a purely syntactic 
point of view, we have two theories that have exactly the same number of correspond-
ing sentences, predicates, relations, functions and constants (or else the first theory is 
embedded within the second one), but they are named differently (denoted by different 
“letters”), and in the second theory there is a domain (or, in the given model of T2, only 
a subdomain) D2 equinumerous to the basic set of elements of a model of T1. In terms 
of model theory, if we assume that the proxy function is one-to-one, then these theories 
will be identical. If the proxy function is not one-to-one, then T1 will be a subtheory of 
T2.

Quine’s so-called “proxy-function argument” indicates that with the use of a proxy 
function we can freely change the ontology of a given theory; cf. (Quine, 1969a, 1976a). 
The ontology of T1 is determined by the full-blooded objects of D1—i.e. objects deter-
mined, for instance, in the relevant background theory—and it can be replaced in an 
innocent way (i.e. without changing the logical form and truth conditions of the given 
theory) by the ontology of different full-blooded objects from D2. T1, thanks to the 
proxy function, can start talking about objects from D2 and not, as before, from D1. 
Thus there is no absolute ontology, but only theories and an infinite number of possible 
ontologies. “Arithmetic is, in this sense, all there is to number: there is no saying abso-
lutely what the numbers are; there is only arithmetic”; cf. (Quine, 1969a, p. 45).

It should be emphasized that the idea of ontology change using a proxy function is 
reliant on some extremely strong ontological and mathematical assumptions. Quine 
wants to show how a given theory, e.g. PA, which talks—in his view—about certain 
specified objects, can speak about certain other objects that are specified in some other 
theory (e.g. ZFC), and vice versa. Such new objects are not recognizable by the the-
ory in question, so he postulates that this whole operation of object-changing should 
be described in some stronger (or at least equally strong) theory—a background theory. 
This means that the proxy function is based on the relationship between the models 
of these theories, rather than that obtaining directly between the theories themselves. 
He, therefore, assumes that these models are distinguished in some way. This distinc-
tion between them seems to be—at least at the beginning—some kind of extra-linguistic 
one, as (1) the theories in question cannot themselves distinguish between their models, 
and (2) a background theory cannot distinguish between its own models either. As will 
be shown below, it seems possible that the proxy-function argument rests on our assum-
ing the absolute and extra-linguistic existence of certain objects.

At least in some cases, Quine (and most of his followers) treats both theories and 
background theories as if they were talking about “full-blooded” objects with certain 
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characteristics, and as if the models of these theories were made up of “full-blooded” 
objects of a certain kind: e.g. numbers, electrons, stones or elephants. Yet he never 
explicitly constructs such a formal theory of full-blooded objects. Intuitively, the prob-
lem of the use of such “real” objects seems very simple and obvious. It also seems 
that some formalized physical theories say something directly about “atoms” and “elec-
trons”, at least in the opinion of most physicists.6 If not, then a related Quinean back-
ground theory will be required: i.e. a theory in which it will be possible to explain, 
precisely and in formal terms, what “electrons” and “atoms” ontologically are. Note 
also that physicists usually use some mathematical objects such as natural numbers “as 
if” they were definite and independent from formal arithmetical theories and formal 
descriptions—e.g. as in QM without the formal use of PA. At the same time, it is well 
known that formal theories—especially first-order theories—can have different, non-
isomorphic models. So it is surely worth asking what the significance of such a Platonist 
stance could be for physics itself.7

Nowhere did Quine give any regimented description of how background theories and 
proxy functions should be constructed. The only strict examples are the mathematical 
“reductions” he cites: e.g., pure and impure numbers (cf., for instance, (Quine, 1964, p. 
209)), von Neumann’s definitions of natural numbers, or Frege’s, or Zermelo’s or Gödel 
numbers (cf., for example, (Quine, 1964, p. 211; 1968, p. 197)). In fact, the procedures for 
constructing background theories and proxy functions are—in most cases—very complex, 
and it is difficult to furnish a single common method for constructing them. However, it 
is worth noting that the “mathematical reductions” Quine refers to are interpretations in 
Tarski’s sense—albeit only in some situations. (We shall explicate this point in due course, 
at the end of the present section.) This lack of precision represents, we think, a significant 
flaw in Quine’s argumentation. In order to substantiate this thesis, however, we will first 
need to define a few auxiliary terms.

Let us first briefly remind ourselves of the notion of the interpretability of a theory S1 
in a theory S2. We will only give an intuitive description of this concept here. For this 
purpose, we must recall something we have described more precisely elsewhere (Król & 
Lubacz, 2021). There are different possible definitions of this concept: Tarski et al. (1968, 
pp. 20–22) defined it in a syntactical way (cf. also (Friedman, 2007, 2009, 2012)), but 
one can also do so using models—i.e. in a semantical manner. The details are rather well-
known and the reader can find them in the works indicated above.

Thus, from an intuitive point of view, S1 is interpretable in S2 when one is able to 
extend S2 with definitions of all relations and functions present in S1, but making use only 
of formal means accessible in S2. When S1 is interpretable in Tarski’s sense in S2, one 
can speak about objects of S1 in S2. However, from the formal point of view, S2 should 
be enriched with the corresponding translations of all functions and relations present in 

6 The same goes for the intended models of formalized arithmetic: i.e. it was intuitively obvious to every-
body, as well as unproblematic, that these theories were devoted precisely to “the natural numbers”. Then, 
after the discovery of non-standard models of arithmetic, it became clear just how many formal details had 
been previously unaccounted for, and how much of a simplification it had been to intuit the theory as apply-
ing only to the natural numbers.
7 We characterize this as “Platonism” because physicists (usually) treat numbers as if they were singular 
objects existing independently and apart from formal theories or models. The elimination of this kind of 
Platonism in physics may well prove important—for example, in the context of recent applications of math-
ematical models to quantum gravity; cf. (Król, 2004,2005a, 2005b,2008). However, model-theoretic relativ-
ism is not the same as Quine’s ontological relativism.
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S1, but expressed only in the language of S2. Let us refer to such an enriched S2 as “S”. 
For example, in three-dimensional Euclidean geometry, one can interpret two-dimensional 
plane geometry and one can describe all the properties of a plane surface known to plani-
metry. In the same way, the von Neumann definition, or the Quinean “reduction” of natural 
numbers to some sets in ZFC, is an interpretation of PA in ZFC in Tarski’s sense.

Note that the S-theory described in the above definition is the only example of a pre-
cisely defined “background theory” that Quine speaks of on multiple occasions. S also 
allows for a precise descriptive account to be given of his proxy function. However, as 
explained below, the two descriptions, Tarski’s and Quine’s are not equivalent.

The second concept needed for a precise grasp of Quine’s position turns out to be that 
of substitutional models and substitution operations. (See the next point in this section.) 
However, before we proceed to the definition of these, we must draw the reader’s attention 
to the fact that in mathematics only some pointwise models are in use. In pointwise models, 
the objects of a formal theory are “points” with no other qualities and without any inter-
nal structure—or some sets of such “points”. The possession of a property is modelled by 
the set-theoretic relations obtaining between these unqualified points: e.g. sentences of the 
form “x has the property R” come out as instances of the one-place relation R(x), proper-
ties obtaining between two points as R(x, y), etc. “To be an Elephant” means “to be an 
element of a set of Elephants”, not “to be something with a trunk”. Thus, in the case of for-
malized theories, we never meet directly any such non-point-like objects, either in an ini-
tial theory or in a “background theory”. Take an example of Euclidean geometry, in either 
Hilbert-Ackermann’s or Tarski’s version; cf. (Hilbert, 1950; Tarski, 1959). We encounter 
only points, sets of points, sets of sets of points, etc. Models and languages in extensional 
theories, which Quine prefers, are simply some point-like algebras: i.e. atoms, the empty 
set, sets composed of the empty set, set of sets composed of the empty set, etc.—or, at any 
rate, something like that. We only decorate these “points” externally and informally with 
certain additional “real” (intensional) properties not directly described by the given exten-
sional theory; for instance, one can imagine some extensional set as a sphere.

The point-like models are therefore distinguished by minimalist requirements imposed 
on properties of the objects in the model of some theory. Proxy function does not change 
the minimal ontology in any way. Proxy function shows how to move from one intuitively 
“decorated” theory to another. Strictly speaking, usually only the names are subject to 
change. The only real change in the ontology is that, for instance, “points” representing 
numbers in PA can be replaced by certain sets of points, e.g. in ZFC: i.e. there emerge 
some additional properties pertaining to them (i.e. points). For example, you may now 
ask whether the number 7 belongs to a set called “number 9” (something which, in PA, is 
meaningless). If, in PA, we replace the numbers in the intended model with a “denumer-
able ontology for the elephant”, then it can be said that the number 7 has a tail and a trunk. 
Similarly, there is no such thing as formally defined and full-blooded “numbers” in PA, or 
time–space areas in set theory. This issue becomes clearer when one moves to its equiva-
lent description in category theory, where one can describe the concept of a set without 
any concepts of the internal structure of sets: i.e. without the concepts of “element” and the 
“ ∈ ”-relation; cf. (Lawvere, 1964). Sets are points in a category and possess only external 
properties.

On the other hand, from a pragmatic point of view, the mathematics of mathematicians, 
logicians and scientists is not a pure, uninterpreted formal game. They usually work with 
intuitive models and objects that possess some extra-formal properties: i.e. not only unqual-
ified extensional “points”, but also “more real” entities not formally described by the theo-
ries in question. It is possible to formulate a thesis (or at least a hypothesis) to the effect 
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that a mathematician always works in a world of ideas that are somehow concretized, and 
concepts somehow intuitively interpreted. More precisely, one may claim that a mathema-
tician cannot work in a world completely free of and devoid of “intuitive surroundings”. 
For instance, we usually use the “full-blooded” letters “x”, “y”, etc., as elements of the 
alphabet (or language) of a formal theory. Such “letters” have a definite “shape” which is 
not precisely and formally described, yet it remains a fact that such objects prove useful in 
practical thinking. These informal “additional properties” not described by any formula 
of a given language of a given theory (usually) turn out to be inessential in formal proofs, 
as we never explicitly use any such extra-formal properties in formal proofs. For example, 
even though there is no definition of “spatial separation” in, say, ZFC, one can imagine or 
think of a set as a collection of “dots” separated by some spatial distances. In certain appli-
cations of formal theories (cf. the next section) the import of such an “intensional decora-
tion” is responsible for the emergence of some additional empirical properties.

In order to make such a “substitution” of real objects for mathematical ones possible, 
real objects must be endowed realistically, or even just intentionally, with certain minimal 
ontological properties: they must be treated as (or just apprehended, conceived, and taken 
by implication to be) separate (or distinguishable) individuals (even if only mentally), and 
as preserving their ontological identity throughout the substitution operation. This means 
that the possibility of carrying out the whole operation without a formal description (e.g., 
without an explicit background theory) of certain real objects points to their “absoluteness” 
(in the Quinean sense). Quine, however, being a relativist, himself denies this. Yet the data 
of direct intellectual experience, and the mere description of what actually happens, stand 
here in stark opposition to Quine’s a priori analyses—as will be clear from the justification 
of this assertion given below.

3.2  The Proxy Function Viewed in the Light of Substitutions and Substitutional 
Models

Our claim will be that substitutional models can be viewed as providing a necessary formal 
clarification of Quine’s theory. We shall briefly present the main intuitive ideas concerning 
substitutional models and substitutions,8 before illustrating how one can make use of them 
in a formal description of Quine’s proxy-function argument.

Consider transformations between formal theories in mathematics and substitutions of 
objects from one mathematical (or formalized) theory for ones defined in another. We refer 
to such substitutions as intuitive mathematical models. There are two basic kinds of intui-
tive model in mathematics: models consisting of points without any internal structure and 
models consisting of qualified objects. The key idea when it comes to describing intuitive 
models in formal terms is the notion of substitution and substitutional models.

Suppose we are presented with some formal theory T1, and that the elements of the 
model of such a theory are some “unqualified points”, or sets of such points, etc. T1 might 
be, for instance, ZFC, ZFA, PA, Euclidean geometry, group theory, linear continua, etc. 
Suppose, next, that every such point (or only some of them) is replaced or substituted by 
an object defined formally and present in the model of a second theory T2. For example, 
every point on a line is substituted by a linear algebra, a group, a circle or a whole model of 
ZFC or PA, etc. In effect, every unqualified (or “minimally” qualified in T1) point becomes 

8 We offer a more detailed description elsewhere (Król & Lubacz, 2021).
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an object that has some additional internal properties defined formally in T2 but “invis-
ible” to the formal tools of T1. Such substitutions of formal theories are examples of intui-
tive models in mathematics. The effects of many substitutions can be easily comprehended 
intuitively. For example, the substitution of every point of a Euclidean planar surface by a 
straight line can yield a planar surface, a 3-dimensional space, or some other objects. Even 
Tarski’s concept of truth in a model implies that such a definition of truth from a formal 
point of view is an intuitive “decoration”, as the relations it captures formally concern only 
certain algebras and morphisms; cf. (Rasiowa & Sikorski, 1963, Chapter VI and VII, pp. 
354–362).

There are many possible types of substitutions, together with the corresponding substi-
tutional, “intuitive” models: e.g. local substitutions that may be finite, infinite, countable, 
singular, etc., as well as global homogeneous or non-homogeneous substitutions, self-sub-
stitutions, and many others. Substitutions can be iterated, re-iterated, etc. For instance, in 
“local substitution”, only one “point” or some “points” will be replaced by objects taken 
from the other theory, whereas “global substitution” refers to substitution of such objects 
for every “point” in T1. “Homogeneous substitution” means substitution of the same kind 
of objects, meaning that every point is substituted by the same type of object, while “non-
homogeneous” designates a substitution of different types of objects taken from a single 
theory or from several different theories. Obviously, such substitutions can, in principle, be 
homogeneous or non-homogeneous, locally or globally. Self-substitutions are replacements 
of the points in a given theory with objects defined in that theory. Substitutions also make 
it possible to replace, say, the empty set with the entire model of ZFC or an infinite class of 
objects; cf. (Król & Lubacz, 2021).

The informal conception of such substitutions seems quite clear and easy to compre-
hend. However, there is no one universal method for formally describing the resulting 
substitutional theories and corresponding substitutional models. With respect to one and 
the same kind of substitution, there result many different possible theories. Such a formal 
description of it may involve certain standard concepts from model theory and category 
theory. In the next section, we describe in more exact terms one example of such a possible 
formal description in category theory.

To show the complexity of the formal description of such substitutions, let us consider 
now an example of global homogeneous substitution. The elements of a model of some 
theory T1, in which we substitute several items or copies of objects described in some 
other theory T2, can be used as a class I of indexes over which one can place objects (or 
even whole models) of T2. Thus, to every global homogeneous substitution corresponds 
a bundle of sets (or models) over the base space I, and the stalk space A, containing the 
objects which we substitute for every point from I. Then, in the usual way, we can con-
struct a category Bn(I) of bundles over I, which is a comma category Set↓I, and thus Bn(I) 
is a topos. When we also take into account some other possible structural properties such 
as the algebraic or topological structure of the elements of A, the corresponding bundle 
structure will be a spatial topos, or some other structures like this. A more exact descrip-
tion will depend on the special, individual properties of the theories that participate in the 
substitution, the type of substitution, and some other unspecified strictly formal choices of 
possible variants. (Compare the example in the next section.)

Such constructions as Bn(I) show what a proxy function can be in strict terms. It 
turns out that a proxy function corresponds to a whole range of formally very differ-
ent situations, and it is difficult to speak simply of “the proxy-function argument”. The 
proxy function does not explicitly designate a theory, and a formal description of the 
ontology of a given theory, after a change in respect of that ontology. It only states 
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which objects are replaced, and which new objects are used for this purpose. However, 
as a result of such substitution or replacement, we do not obtain a single possible theory. 
The latter is evident if we actually try to give a formal description of either a new theory 
concerning new objects or a background theory. In both cases the number of possibili-
ties is enormous, and an accurate description of the situation enriches the new objects 
with some more properties than just those of the theory in which the new objects are 
defined.

In the wake of these intuitive explanations, we can apply the concept of substitution to 
Quine’s ontology. Now it becomes apparent what is missing from the formal side within 
his description of a proxy function in the context of full-blooded things: the intuitive con-
struction of a proxy function is in fact a kind of substitution or interpretation. The approach 
of Quine himself, as regards the initial step of substitution and only this initial step, is 
more strictly captured by the topos structure indicated above. Moreover, the construction 
of a structure of, say, Bn(I), is at most an incomplete beginning of such a strict description 
and not its culmination (cf. also the example in the next section). For instance, the “reduc-
tion” of PA to ZFC is an interpretation in Tarski’s sense. On the other hand, “in the oppo-
site direction”, i.e. when we replace the natural numbers (“points”) in PA with sets from 
ZFC defined in the manner described by von Neumann, we have a substitution, since PA 
is interpretable in ZFC, but ZFC is not interpretable in PA. The formal description of PA, 
where instead of the initial “points” representing natural numbers in the model we insert 
von Neumann sets, differs from the initial theory of PA and is de facto a completely dif-
ferent theory. Thus, one and the same proxy function works completely differently in one 
direction than in the opposite one. Moreover, there is also a corresponding change in the 
background theory—contra Quine, who considers only one background theory for “both 
directions”. He thus fails to see these issues. Strictly speaking, if one wants to describe his 
proxy function, one should rather speak of a certain relation between some models of ZFC 
and PA. The problem, however, is that these are not simply two models linked by some 
“proxy function”, but two completely different background models. These distinctions are 
well illustrated by the description, considered by us elsewhere (Król & Lubacz, 2021), of 
the result of substituting the whole model of the “other copy” of ZFC for the empty set 
in the ZFC model. To reiterate: Quine does not register these matters at all and treats the 
substitution of ontologies as formally conservative: i.e. as changing nothing in the theories 
under consideration from a formal perspective. His description does not concern a formal 
situation, but it is related to the implicitly Platonic approach of taking certain (absolute) 
objects (e.g. apples) from one “basket” and putting them in another.

The next point is that, as a result of the construction of substitutional models, Quine’s 
relativity starts to prove too drastic—even for Quine himself. In his view, one can replace 
dogs and mammals in the sentence “every dog is a mammal” not with any other objects x 
and y, but with those that remain in the same structural relationship—i.e. those that fulfil 
the form “every x is y” and are related in a one-to-one fashion to “dogs” and “mammals”. 
Here, again, it is assumed that there are some formalized theories of dogs and cats and, 
additionally, their infinite number and countable equinumerosity is also taken for granted. 
The construction of substitutional models demonstrates that the given structure can be for-
cible imposed upon any kind of objects—even ones that are such that, “taken in them-
selves”, they cannot fulfil a given sentence. This is because substitutions can be performed 
between any (even not necessarily different!) theories, providing one neglects all possible 
empirical consequences.

We now show how a given structure can also be imposed on objects of any kind within 
the framework of Quine’s theory: i.e. in the relevant background theory, and even without 
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explicitly invoking our method of substitutions. It will then turn out that three, not just two, 
theories operating within a single background theory actually need to be involved.

Let us examine in more detail how the construction of local formal theories of elephants 
(H1) and ants (H2) could proceed in Quine’s philosophy. If we restrict ourselves to intro-
ducing only the predicate “Ex”, i.e. “x is an Elephant” (in H1) and “Ax”, i.e. “x is an Ant” 
(in H2), and the theories contain only mutually corresponding axioms, H1 and H2 differ 
only alphabetically (being de facto identical, as certain merely “linguistic variants”). Note 
that the two theories are mutually interpretable in Tarski’s way: one within the other. As 
elephants differ from ants, we need some specific axioms present in one theory but absent 
from the other: e.g. “For every x, x is the largest land mammal and never flies” (in H1) and 
“For every x, x can be either a queen or a worker or a larva” (in H2). It seems, therefore, 
that such theories cannot have the same logical and linguistic structure, because they have 
to possess some different axioms, and that will we not find a proxy-equivalent in H2 for 
every predicate in H1 (or vice versa), making it impossible to directly replace the “elephant 
ontology” with the corresponding “ant ontology”. H1 and H2 have different structures. So 
there are clear formal limitations to the applicability of Quine’s method.

However, one can try to find a way out of this problem, since it turns out that we can 
always construct an equivalent elephant-theory within the realm of ants. We only need 
(informally, of course) to consider some model of H2, say M2, whose elements are “ants”, 
and then construct some H2* theory of ants along the following lines:

1. We create a one-to-one proxy function, F, between the set of elephants (given in some 
model M1 of theory H1) and some subset of the set of ants given in M2. We may assume 
that both ants and elephants are countably infinitely many, or simply that both creatures 
are finitely many, but that there are more ants than elephants.

2.  For each predicate (or relation) from H1, e.g. Ex (“x is an Elephant”), let us define a 
corresponding predicate (or relation) E*x in the theory H2* under construction, such 
that “for every x, Ex” in H1 iff “for every x, E*Fx”. E*Fx need not be defined in H2. 
Obviously, the relation E operates on elements of M1 (on “elephants”), and E* applies 
to elements of M2 (“ants”).

The resulting theory H2* already applies to ants and, according to Quine’s theory, 
allows one to move from the ontology of elephants in H1 to an ontology of ants also in 
H1. The only problem is that “Ax” is defined additionally in H2, and in H2* it is basi-
cally impossible to distinguish A from E. The latter is what Quine was trying to get at, 
but one might ask whether it was really that way. It now seems that in order to perform a 
little more meaningfully the shift from elephant-ontology to ant-ontology (in H1), Quine’s 
postulated background theory should include three theories: H1, H2 and H2*. However, 
we have the impression that this is not what Quine had in mind, because he speaks only 
of one background language or theory (cf., for instance, (Quine, 1968, p. 201)). Note: we 
have assumed intuitively here that our initial theories say something about full-blooded 
“elephants” and “ants”, although they are in fact certain “punctual” theories, and no real 
properties are in fact expressed in the theories.

According to Quine, in order to talk about “elephants”, we can use a certain formalized 
background theory. (However, he himself does not explicitly construct any such theory.) It 
seems possible prima facie to construct a consistent “tower” consisting of a background 
theory, a meta-theory, a meta-meta-theory, etc. There are, however, limitations facing the 
construction of such an infinite “tower”, of which Quine, and also Tarski, apparently were 
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not aware. As Król has proved for some classical theories, such as the theory of smooth 
4-manifolds, if we assume the existence of such an actually infinite tower of classical 
meta-theories, the basic theory of manifolds will necessarily be inconsistent: otherwise, 
one must assume that from some finite stage of the stack construction non-classical intui-
tionistic meta-theories are going to have to be used; cf. (Król, 2005a, pp. 24–26). Thus, it 
will be necessary at some finite stage to use some informal classical elementary meta-envi-
ronment; this contradicts Quine, because it implies not only that the building of the stack 
has to be stopped, but also that no “next-stage” classical background theory will be possi-
ble. The pragmatic necessity at some stage of an intuitive meta-environment indicates that 
an intuitively and instantly determined ontology exists before any formalization. Moreover, 
on any particular layer of a “tower” of theories, there will be a practically unlimited num-
ber of possible ways of formalizing a given meta-background theory.

Let us therefore once again recall what it is that extensional and formalized theories 
talk about, and what objects they refer to. All extensional models of such theories must be 
“point-wise models”: i.e. they must talk about objects that either have no internal structure 
(like the empty set or atoms in ZFA), or, if they do have such a structure, are “higher-
order point-like objects”—i.e. sets of points, sets of sets of points, etc. Thus, we addition-
ally assume that we are dealing with well-founded theories, which Quine seems to pre-
fer, along with the extensionality of such theories. This means that in every set there will 
be an ∈ -minimal element, say a that is such that there will no longer be an x such that x 
belongs to a. In short, a is an atom: a point without internal structure.

As was already mentioned, Quine often talks about “reductions”—e.g. when defining 
natural numbers as certain sets, for instance in ZFC. The arithmetic of natural numbers PA 
is interpretable in terms of Tarski in ZFC, but not vice versa. As a result of this interpreta-
tion, the natural numbers in ZFC are certain higher-level objects in ZFC: i.e. they are sets 
of certain elements in ZFC, and so have some additional internal structure in ZFC. How-
ever, all sets in ZFC are constructed from an “atom”—the empty set that no longer con-
tains any elements. The moral of this is that an initial theory, namely PA, cannot speak of 
certain objects that have a pointwise ontology of a higher-level and that giving these points 
an ontological interpretation in the second pointwise ontology is possible not through the 
proxy function of Quine, but as the result of an interpretation of such a theory, meaning an 
interpretation in Tarski’s sense, in another theory. The interpretation in the Tarskian sense 
is a special kind of formal description of some cases of our more general concept of sub-
stitutions. However, if some theories are mutually interpretable in Tarski’s sense, then they 
are model-theoretically and syntactically equivalent and speak of the same objects in a way 
that is precise to the point of isomorphism. If one wants to give them certain individual 
characteristics, of the kind that some objects have and others not (and vice versa—after 
all, we guess that elephants are different from ants, at least in our frame of reference), then 
one goes beyond formalism and does so in an intuitive and informal way. This situation is 
not explicitly excluded by Quine from his considerations, since in the case of a one-to-one 
proxy function we may be dealing with such a case: i.e. the extensional ontology of one 
theory cannot be distinguished from that of the other. Therefore, the proxy-function argu-
ment is informal and imprecise, and in order to explain the “reduction” of one ontology to 
another in a precise manner, it is necessary to use not a proxy function, but an interpreta-
tion in Tarski’s sense, or—more generally—the corresponding substitutions.

It can also be seen from the above discussion that for certain types of extensional theo-
ries, such as PA, group theory and other algebraic structures, there is a certain ontology 
that is absolutely distinguished. This “distinction” comes from the fact that this ontol-
ogy is a kind of “minimal ontology”. In order to show precisely that a certain kind of 
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points-ontology is mathematically distinguished—contrary to what Quine claims—we owe 
the reader some additional explanations, which we present below; an explicit axiomatiza-
tion of such a theory will then be set out in the next section.

One further point should be clarified. Arithmetic can be considered a formal codifica-
tion of “the art of counting something”. As such, it could not unambiguously determine 
just one area of its reference, because this would mean that it is only suitable for count-
ing objects from that area (for instance, PA would count only “the” natural numbers)—
and that, for some unknown reason (and against everyday experience), its use for anything 
else was precluded. In this, we have to agree with Quine. However, theories such as PA 
explicitly define a certain minimal ontology: i.e. they show what properties the objects we 
count must all have in common.9 Certainly, they need not be discrete in the sense of being 
realistically separate from each other: the mere possibility of a (countable) purely intel-
lectual distinction is sufficient. The natural numbers referred to by, say, PA, will therefore 
be objects such as are equipped with a certain minimal set of ontological features making 
it possible to count them. “The” natural numbers are therefore objects—non-existent in the 
real world—possessing only those features that PA attributes to them, together with some 
minimal ontological “decorative” assumptions enabling counting. (The theory models can 
be standard or non-standard, but from the ontological standpoint they all contain identi-
cal abstract point-objects.) They are therefore ideal (or abstract) objects, stripped of any 
individuality they might acquire as a result of some interpretation or reduction or other, 
and exhibiting when it comes to their need to possess some form of individuality, some 
additional minimal intensional decoration. MST (cf. the next section) is only one example 
of the attempts at formalizing such an additional ontology that is possible. Natural numbers 
must simply be some individual things, or be at least something (in the sense of a minimal 
ontology), to be countable. And this is what the proxy-function argument shows. However, 
this “being something” can be defined in terms of a minimal ontology, which as abstractly 
non-individual and general cannot be the ontology of any real object. The proxy-function 
argument thus shows that natural numbers, as defined by and exclusively in PA, are not real 
(sensuously manifested) objects, but ideal or at least abstract objects. Every formal math-
ematical theory is non-naturalistically directed to something ideal.

4  Physics, Experiments and Ontological Relativity

In this section, we aim to offer a concise demonstration to the effect that, applied unre-
strictedly, Quine’s doctrine of ontological relativity can be considered inconsistent with 
some of our best physical theories—e.g. quantum mechanics (QM). Moreover, there are 
situations in which his naturalized and relativistic ontology cannot be used in conjunction 
with the proxy-function method (cf. “The Proxy Function and the Mutual Interpretablity 
of Formal Theories” section). We will, further, point to examples of substitutions (cf. “The 
Proxy Function Viewed in the Light of Substitutions and Substitutional Models” section) 
involving a change of ontology that consists in changing (or imparting) a certain internal 
structure pertaining to the objects of one theory by means of objects defined by another, 

9 Thus, natural numbers are objects possessing only minimal-ontological properties according to given for-
mal arithmetic and are absolutely distinguished as such. When it comes to different number theories, “the 
natural numbers” are the most minimal objects. Therefore, PA-ontology will be “more minimal” than ZFC 
arithmetic-ontology.
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where this generates some additional empirical effects. We will, for this purpose, make 
use of the conceptual apparatus and conclusions of the analyses carried out here (mainly 
in “Critical Remarks on the Proxy-Function Argument” section). In particular, we will 
deploy the conclusions pertaining to the minimal ontology of theories, which will allow us 
to offer, in the present section, a formalization of the theory by describing an example of 
such an ontology.

As was already indicated, Quine considers ontology change to be empirically harm-
less, and even to be an operation empirically indistinguishable in terms of replacing cer-
tain objects with others. These matters undoubtedly call for a more systematic clarification. 
Therefore, we first show that Quine’s ontological relativity, in conjunction with empirical 
theories, makes it necessary to assume the existence of some additional “hidden param-
eters”: i.e. properties actually and absolutely undetermined by the theory. We will then 
consider the problem of the “theory of hidden parameters (or variables)” in QM, and show 
that Quine’s unlimited ontological relativity contradicts QM itself.

The aim of using a proxy function is to change the original (or initial) ontology of 
a given theory. The objects of the original and transformed ontologies must differ with 
respect to some properties, even if they are defined only locally in the corresponding back-
ground theory. These properties may either be empirically determined (by the results of 
certain experiments, or even only by some sense-data), or they may be non-empirical in 
nature. Some “mixture” of these sorts of properties is also possible. In doing so, it is irrel-
evant whether such objects exist in reality or not. Quine denies the existence of any abso-
lute reality, so he denies the existence of a world of things in themselves, and of properties 
of objects that would be independent of both the observer and any particular theory being 
considered. At first glance, then, it would seem that his theory contradicts the assumption 
of hidden parameters; cf. below. Note, however, that he allows for the possibility of a rela-
tive determination of ontology—locally in a background theory, or through an appropri-
ate ontological reduction. This is described formally in “The Proxy Function Viewed in 
the Light of Substitutions and Substitutional Models” section in terms of substitutions and 
substitutional models. Such operations, even though intended by Quine merely as formal 
procedures with nothing behind them in reality, generate certain empirical consequences 
when described within an empirical theory (which may also involve thought experiments/
concepts). Therefore, it seems that in the case of Quine’s ontological relativity, we should 
rather consider those properties that are non-empirical at least according to the given the-
ory, since relativity is only possible if changing the ontology has no effect on the form 
and results of our empirical theories. If a change in ontology were to produce empirically 
measurable consequences, we would be able to observe such a change experimentally, 
and it would be possible to say objectively that the two ontologies are different accord-
ing to the given theory. For this reason, ontological relativity assumes a form of realism 
and some sort of absolute ontology: i.e. it assumes that there are, at least “locally” (i.e. for 
an ontologist, or a person using “his/her” ontology), objects possessing certain “private” 
properties, or that properties attributed in a certain context to these objects are regarded 
as belonging to them “in themselves”, in that they are not formally described by the given 
theory,10 or defined by the latter unambiguously and in an experimentally distinguishable 
way. These properties, in the case of QM ontologies, are therefore typically called “hidden 

10 If we substitute elephants for ants, then the individual characteristics of ants and elephants cannot be 
defined in the given theory, otherwise, the whole substitution becomes impossible. However, some minimal 
set of ontological properties must be identically present in ants and in elephants.
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parameters”; cf. (Genovese, 2007, p. 4). Let us emphasize again that it is irrelevant here 
whether such substitution and refinement in respect of the ontology is only of a local nature 
(e.g., for a given observer, and in his or her environment), or of a global sort (i.e. affect-
ing all objects in the universe of a given theory). This is because in both cases there are 
specific empirical consequences that can be rationally investigated. An operation may be 
formally permissible, i.e. described in a consistent way within the formal framework of a 
given theory, and yet may lead to impermissible empirical consequences. We will therefore 
seek to show that the changes with regard to ontology described by Quine lead to conse-
quences that (1) are not empirically neutral, and (2) are to the best of our present knowl-
edge inconsistent with QM.

The term “hidden parameters”, in physics generally and QM in particular, refers to any 
situation in which a given physical theory is not complete, at least in terms of its reference 
domain. An example is the theory of ideal gases, since we are convinced that a real gas, 
e.g. hydrogen, has some other properties, for instance chemical and optical ones, that are 
not determined by an ideal theory, the latter being eo ipso a certain “idealization” of real-
ity. Theories with hidden parameters are therefore obviously incomplete, as they give only 
a partial (or “minimal”) description of objective full-blooded reality. The problem of the 
completeness of QM was already apparent right at the outset of its development. Immedi-
ately after the probabilistic interpretation of the wave function by Max Born (1926), prob-
lems with the realistic interpretation of this theory appeared. They concerned the question 
of whether objects of the micro-world “in themselves” possess certain properties, deter-
mined independently of the measurements made. It was also connected with the question 
of the possibility of the world’s having a deterministic character, in contrast to the openly 
indeterministic character of QM itself. Einstein’s saying that “God does not play dice” is 
well-known, and he was absolutely convinced that QM does not describe the whole of 
reality, even where just the micro-world is concerned; cf. (Einstein, 2018, p. 403; Einstein 
et  al., 1935). In order to salvage determinism, it was necessary to recognize that QM is 
a partial, incomplete theory of reality, and therefore that there are certain properties of 
objects that “accrue” to them independently of the theory and that are indescribable by 
QM. It was therefore a significant question, whether there are any parameters hidden from 
QM “in reality”. Indeed, such a QM theory, possessing an underlying deterministic char-
acter, has been proposed. This is the theory commonly known as the “de Broglie-Bohm 
mechanics/theory” (Bohm, 1952). In this theory, the hidden parameters are the trajectories 
of the electrons or the origin of such trajectories. However, this theory is not local and has 
other disadvantages.11 The year 1964, when Bell formulated his famous theorem together 
with Bell’s (1964) inequalities, should be considered a breakthrough moment. Bell’s theo-
rem implied that it was possible to perform certain experiments on “entangled states”, the 
results of which should satisfy Bell’s inequality as long as a given theory contained hidden 
parameters. If the inequality was not satisfied (i.e. was violated), the given theory could not 
have hidden parameters. It is not possible within the scope of this text to discuss, even just 
in review, the issue of hidden variables in QM and the possibility of testing them empiri-
cally. (We refer the interested reader to the literature on this matter: e.g. (Genovese, 2007; 
Nordén, 2016); or the relevant information in The Stanford Encyclopedia of Philosophy.) 
There are more and more papers and experiments concerned with testing the empirical 
consequences of assuming the existence of hidden parameters in QM (cf. ibid.). The results 

11 “Local” means that the properties of a physical system are describable in terms of its local environment, 
and not “all of the world”; cf. (Nordén, 2016, p. 2).
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do not definitively falsify the possibility of the existence of QM with hidden parameters, 
although in the overwhelming number of cases they do falsify such theories—a fact which 
is in line with the spirit of the Copenhagen interpretation of QM.

Our present discussion of Quine’s ontological relativity indicates that, interpreted in the 
context of hidden variables, it has empirically testable consequences that undermine the 
commitment to relativism. The unlimited version of this relativity, to the effect that onto-
logically different objects can be freely interchanged/substituted with others—even, let us 
again emphasize, purely theoretically and/or as a thought experiment—is untenable. It is 
not enough to have at one’s disposal classes of objects that, so long as they are equinumer-
ous, are arbitrary. It is not empirically the same whether we are talking about electrons or 
elephants or other macroscopic objects. Objects cannot have arbitrary features—not even 
just ones hidden from a given theory, or that are merely “coextensive”. An elephant, or 
even just the “space–time complement of an elephant”, is different from an electron, and 
one should not expect a positive result from an experiment concerning, for example, the 
diffraction of elephants. It is also impossible even to just freely interchange micro-world 
objects, such as photons with protons.

Of course, Quine nowhere explicitly proposes such a thing as, for example, the replace-
ment of a local ontology of elementary particles by a local ontology of elephants; but the 
possibility undoubtedly follows from what he says in many places. (Compare, for instance, 
his remarks to the effect that every universe of any infinite theory can be reduced to the 
Pythagorean universe of natural numbers (at several points in (Quine, 1964), e.g., pp. 
211–12.) Such a prima facie absurd consequence also follows from his repeatedly men-
tioned possibility of replacing a given object with its spatio-temporal complement—i.e. 
the whole of the remaining world, or “cosmic complement”; see, e.g., (Quine, 1995a, pp. 
71–73). If this were not the case, one would have to restrict his ontological relativity to 
the interior of certain kinds of objects: for example, mathematical objects, elementary par-
ticles, etc. But how can we, according to Quine, precisely and non-relatively distinguish 
such broader kinds unambiguously? Note also that in the formulation of the proxy-function 
argument there are no extensional conditions concerning, for example, the coextensivity of 
the replaced objects, and excluding certain kinds of replacements.

Nevertheless, one can at least pose the question of whether there is a group of objects 
that allow for such “ontological permutations” (as Quine assumes). It turns out that in 
order for such objects to be absolutely indistinguishable, they should not have any internal 
hidden structure, in the sense of a structure describable by certain hidden parameters. Let 
us also note that this applies not only to the theory after ontological re-interpretation but 
also to the initial theory interpreted ontologically in terms of some “background theory” or 
other. The reason is that if the empirical ontologist, in his/her ontological frame of refer-
ence, uses his/her specific objects, this specificity must be described by some hidden non-
empirical properties, which may turn out to be falsifiable. Thus, from a mathematical point 
of view, permutations and ontological changes can only be made using “point ontologies”, 
and this kind of ontology is—contrary to Quine—empirically discerned.

We shall begin our discussion of this matter by giving an example of a theory that for-
malizes the notion of a minimal point ontology since it follows from our discussion so far 
that minimal point ontologies are the only ontologies admissible by QM, and in this sense 
are empirically distinguishable. In the case of QM, Quine’s ontological relativism is only 
possible with respect to the substitution of one point ontology for another. Intuitively, a 
theory of “point-wise ontology” can be constructed by first defining an infinite and denu-
merable class of atoms in the sense of ZFA: i.e. where an atom a will be an object for 
which it is true that “for every x, it is not true that x is an element of a”. The only sets will 
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be sets of atoms. There will be no sets of which any set of atoms is an element, and so on. 
One will be able to create a sum, difference, product, etc., of sets of atoms, but the result 
of this operation will also have to be a set of atoms. Thus, one will be unable to create, say, 
the Cartesian product of two sets of atoms, and there will be no power set of a given set, 
but one will be in a position to say that one set is “smaller” than another set, etc. We shall 
describe one example of such a MST theory more precisely in due course. Moreover, we 
shall only state some of the axioms involved explicitly, leaving others that exhibit an analo-
gous form to the corresponding axioms of ZFC to be only mentioned by name.

The language of MST:
A two-sorted domain: A—a class of atoms; B—a class of sets of atoms.
Symbols:
(,), = , ∈ , logical connectives and quantifiers, symbols for variables and constants:
constants denoting elements of A—aA, aA’, aA’’, bA, …; constants denoting elements of 

B—aB, aB’, bB, ….
variables referring to the elements of A—ai, b1, bi, …; variables referring to the ele-

ments of B—Xi, X1, Zi ….
(no functions).
Relations: ∈ , = ,
Terms: variables and constants.
Atomic formulae:

1. aA = bA;
2. aB = bB;
3. aA ∈ bB (an element of A ∈ an element of B);
4. aA ∈ Xi (an element of A ∈ a set from B);
5. ai ∈ aB (variable denoting an element of A ∈ a set from B);
6. ai ∈ Xi: (variable denoting an element of A ∈ variable denoting an element of B).

Well-formed formulae (WFF): formed as usual from the atomic formulae with the use 
of logical connectives and quantifiers. Usual definitions of “open formula”, “free variable”, 
etc.

Rule of inference: modus ponens.

Axioms: Logic: Logical axioms of first order predicate calculus with identity.

Comprehension: () ∀Xj …∀Zk ∃Yi ∀ai (ai ∈ Yi ↔ φ (Xj, …, Zk, ai)) (and Yi is different 
from all Xj, …, Zk as a new object).

Extensionality: ∀Xi ∀Yi ∀ai (Xi = Yi) ↔ (ai ∈ Xi ↔ ai ∈ Yi).
With the use of Comprehension and Extensionality, it is possible to define and prove the 

existence of the universal set of points, V, the empty set, the existence of singletons, etc.
Infinity: ∀Yi ∃ai. ∼(Yi = V) → ∼(ai ∈ Yi).
The intuitive content of MST will be simple: sets are formed from atoms (“points”), 

and are themselves different objects from them. This elementary system corresponds to the 
first two layers in type theories, or to a simple subsystem of ZFA (MST is interpretable in 
ZFA). Therefore, if these systems are consistent, MST will also be so.

MST “generates” point-like structures that are “proxies” for the sets either from such 
theories as PA or from other theories of algebraic structures in which we operate with-
out any need to discern an internal structure of objects. To use such a theory as a “point 
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ontology generator” one can use the proxy function as described in the previous section 
(cf. “The Proxy Function and the Mutual Interpretablity of Formal Theories” section). 
Then MST acts as our theory H2, and the constructed theory H2* will be a theory H1, but 
already based on a well-defined point ontology. Also, natural numbers can be interpreted 
thus in MST in many different ways. For instance, if we accept the existence of an infinite 
set of atoms, this will mean that there is a one-to-one correspondence between the natural 
numbers 0, S0, SS0,.., and atoms from the set. One can also use the concept of Tarskian 
interpretability (cf. “The Proxy Function and the Mutual Interpretablity of Formal Theo-
ries” section) to demonstrate that PA is interpretable in MST (with some additions). Obvi-
ously, MST is not the sole possible theory descriptive of a “point ontology”. For instance, 
any well-ordered infinite set of points can also be used, or some other structures based on 
pre-order categories with some additional conditions.

Formally speaking, MST is a certain subsystem of second-order arithmetic. This remark 
is important, because of the possible applications in reverse mathematics. MST can be said 
to be distinguished as a theory, because it is the simplest instance of set theory enabling 
one to talk about sets of objects without internal structure. The theory is also ontologically 
distinguished by the fact that it can be considered to provide models for theories that are 
minimally ontologically interpreted. A point ontology of objects without any additional 
internal structure seems like the simplest possible one. From the above, it follows that MST 
can also be regarded as an empirically distinguished theory.

Let us now return to the question of other possible “minimal set theories”. The above 
MST seems to be the simplest of them, but some so-called “concatenation theories” can 
also be used; cf. (Corcoran et al., 1974). There are also other examples of MST formulated 
in the language of category theory, and we also find there so-called “forgetful functors”, 
which allow one to “forget” (or omit) the internal structure of some or all objects in a given 
theory. For example, very many quotient structures of certain algebraic structures have an 
initial structure—e.g. groups. Forgetful functors make it possible to omit such an internal 
or underlying structure of elements of a given quotient structure, and de facto reduce these 
to an underlying point structure; cf., also, (Król & Lubacz, 2021).

The possibility of unrestricted construction of proxy functions runs counter to the prac-
tice and intentions of scientists for whom, for example, QM does not say anything about the 
“quantum states of cows or donkeys”, but only about states of certain micro-world objects. 
There are also many substitutions that are known in science and that generate certain addi-
tional empirical effects. Below, we give an example of such a substitution for points in the 
space–time continuum of certain Boolean algebras which generates such empirical effects 
in quantum gravity—although, according to Quine, it should only be a neutral form of 
“ontological relativity” and this, moreover, should be consistent with naturalistic and holis-
tic empiricism.

Take the following as an example of global homogeneous substitution: every point 
of R4 (space–time) is replaced by an atomless Boolean algebra Bx: i: R4 → {Bx |x ∈ R4}, 
i ∈ Bx. Bx is a complete atomless Boolean algebra in the countable transitive model 
V of ZFC, by which the forcing in V can be given. J. Król has demonstrated that for 
a local observer, the space–time will be the 5-dimensional structure R1 x R4. Thus, 
map  i can be considered the replacement of (0,1) Boolean algebra corresponding 
to every point x of R4 by Bx. There is a correspondence between every point x of R4 
and the geometric morphisms SET → Sh(R4), where the category of sheaves Sh(0,1) 
is isomorphic to the category of sets SET, and Sh(R4) is a topos-category of sheaves 
over R4. The reader can find more details of the construction of a topos corresponding 
to this substitution in the most general case in the work of Król (2008, pp. 1786–7). 
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There is also an analogy between the emergence of higher dimensions for an observer 
in 4-dimensional space–time described in the work just referred to and, for example, 
the emergence of higher dimensions in the case of a global substitution in a line (R1) 
of infinite numbers of lines or planes.

Another example concerns the so-called “model-theoretic approach” to quantum 
gravity [cf. (Król, 2004, 2005a, 2005b)], in which it is possible to describe certain 
quantum gravity effects—taking into account the fact that the formal mathematical 
theories needed in QM (for instance, a number theory, exotic R4s, etc.) have differ-
ent models. The so-called “exotic R4”—i.e. an infinite number of topologically non-
equivalent differential structures that exist only in four dimensions (space–time) and 
are not present in any other dimension—are responsible for the emergence of quantum 
gravity fields.

In describing hidden parameter theories, we have employed a formulation accord-
ing to which we refer either to empirical theories that are fully formalized or to theo-
ries that are strictly yet only partially formalized, in the given context of interest. As 
applied to QM, this remark is important, because the theory may not be axiomatizable; 
cf. (Wightman, 1976; Tsilerson, 1994; Deutsch, 1985). Quine does not consider this 
kind of possibility. Moreover, his remarks point to a formalization that is obligatory 
and necessarily couched in a first-order language. So Quine’s theory may ex defini-
tione not apply to some of our best empirically tested theories. However, this raises 
the possibility of describing ontological relativity and proxy functions for fragments 
of non-axiomatizable empirical theories (i.e. only “locally” formalized theories), or for 
“locally” formalizable theories—in the event of their global non-axiomatizability.

Let us emphasize that our discussion has left unmentioned a whole range of options 
with respect to the consistency of Quine’s theory with different kinds of approach to 
QM. For example, a problem worth considering is the consistency of Quinean onto-
logical relativity with the so-called “superdeterministic” account of QM. This account 
assumes that there are no QM-independent choices in the world as to what quantity is 
currently measured, and that such a choice is causally determined [cf. (Brans, 1988; 
Hall, 2010)]; in effect, one may assume the existence of some hidden parameters. Yet 
even in this case, completely arbitrary substitutions cannot be performed, because 
unlimited reductions and substitutions of ontologies are empirically impossible.

Another empirical limitation of Quine’s ontological relativity is that certain kinds 
of ontological changes, which we described in “The Proxy Function Viewed in the 
Light of Substitutions and Substitutional Models” section as local and global substi-
tutions, may violate the rules for describing entangled states in QM. If we consider 
a system of two entangled particles with opposite spins, then swapping one particle 
(object) with the other will be consistent with QM, providing that we swap them syn-
chronously so that their spins are still opposite. This is an example of the limitations of 
the application of a “fixed-point rule” to ontological changes. Thus, again, it turns out 
that unlimited ontological relativity is inconsistent with QM.

Note, moreover, that were it to be possible to replace one of the electrons in a sys-
tem containing several electrons with another indistinguishable electron, then the 
Pauli exclusion principle would not apply, and atoms would not be able to exist—only 
degenerate objects would then be possible. This shows that a purely formalist interpre-
tation of QM is untenable, as it proclaims that there are no objects, in that only certain 
structures can exist, and that names and variables are merely empty and indistinguish-
able “placeholders”.
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5  Concluding Remarks

Let us bring together the results of our reflections, and the conclusions we seek to draw 
from them. In the introduction, we put forward the basic intuitions that seem to indicate the 
plausibility of Quine’s ontological relativity. In “General Comments on Quine’s Analytical 
Empiricism and Ontological Relativity” section, we reconstructed in some detail the basic 
explicit and implicit grounding of his views. In this section, we also indicated, without 
going into details, some general doubts concerning issues related to ontological relativity 
that are associated with his scientism, holism, naturalism, formalism, and empiricism. In 
particular, we pointed out that Quine’s theory does not apply to science at large, but rather 
only to its formalized versions. In “Critical Remarks on the Proxy-Function Argument” 
section, we subjected his proxy-function argument to close scrutiny, this being the back-
bone of his ontological relativity. We have shown that the argument, seemingly obvious, is 
informal and leads to ambiguous results. This conclusion is based on strictly defined con-
cepts and formal constructions. In particular, we have shown that in formulating this argu-
ment in the part dealing with the so-called “ontological reductions”, the notion of interpre-
tation in Tarski’s sense should be taken into account, since most of the examples given by 
Quine are de facto based on this notion (although Quine does not mention this).

We have also considered in some detail the question of the introduction of “full-blooded 
objects” into formalized theories. To this end, we reasoned that extensional formalized the-
ories mainly use what we call “pointwise models”, and that real objects, such as elephants, 
have additional and completely informal features grounded in an intuitive and non-formal 
sense of conceptual “decorum” not defined by formalization. In particular, we considered 
the question of how to introduce objects strictly and formally defined in other theories, in 
place of “points”, into a given formalized and extensional theory: e.g. how, in Euclidean 
geometry, certain algebraic structures (groups, interiors of circles, etc.) can be introduced 
in place of, say, points of a plane. These issues have been addressed formally here using 
our proposed account of “substitutional models” and the “operation of substitutions”.

From the considerations presented, it follows that it is not sufficient to say in general 
terms that objects of one theory are replaced by objects of another theory via a proxy func-
tion. This is because the initial theory, after proxy-substitution of other objects, can, and 
even must, be further specified and completed by additional axioms. That implies that the 
proxy-substitution changes significantly the initial formal properties of a given theory. 
After the proxy-function-substitution, the theory becomes a significantly different theory in 
comparison to the initial one. This situation was not appreciated by Quine, who treats the 
initial theory as formally identical to the theory after proxy-substitution—i.e. he assumes 
that the change of ontology is “formally innocent”. For this reason, proxy-models provide 
an infinite number of counter-examples to Quine’s ontologically conservative ontological 
relativity. What is more important, such new theories, when used in science, can have dif-
ferent empirical consequences. We have also explained why a one-to-one proxy function 
can work in an asymmetric way: replacing objects of theory T1 by objects of theory T2, 
and replacing objects of T2 by objects of T1, are not symmetrical. A symmetry requires 
that, in Tarski’s sense, T1 be interpretable in T2 and T2 interpretable in T1.

In “Physics, Experiments and Ontological Relativity” section, we have sought to show 
that there are no empirically neutral transformations of ontology. Contrary to Quine’s 
conviction, theories distinguish a certain type of “absolute” ontology (i.e. minimal ontol-
ogy), because the “real” objects imposed on the structure of a model are not neutral. Obvi-
ously, as theories determine only minimal point-structures, all other properties must be 
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pre-existent in a non-linguistic way. Quine implicitly assumes in his proxy-function argu-
ment an absolute reality. The language(s) and structures determining “nodes” and models 
are also absolute. For this reason, in our discussion related to pointwise models, we also 
argued that certain models of formalized theories are distinguished by the fact that they 
have a set of minimal ontological-formal requirements—ones that the theories impose on 
them so that they are “the objects about which the given theory speaks”. We have addition-
ally indicated how the proxy-function argument could be formulated more precisely, show-
ing that more theories must be involved in its description than Quine has considered.

In that same section, moreover, we presented the empirical consequences of the formal 
refinements of Quine’s ontological relativity and gave there an example of strict formaliza-
tion of minimal ontology in the sense of set theory, i.e. Minimal Set Theory (MST). At this 
stage, we mainly referred to the theory of hidden parameters, well-known to physicists, by 
showing that Quine’s ontological relativity based on the proxy-function assumes opera-
tion on objects having hidden parameters. In quantum mechanics, there are convincing 
empirical reasons for the impossibility of objects with hidden parameters. Since a change 
in ontology, if it is to be formally and empirically neutral, must involve the substitution of 
hidden parameters, and since certain theories cannot possess objects with hidden proper-
ties, Quine’s ontological relativity is falsified by such theories. This falsification is related 
to empiricism since the impossibility of the existence of hidden parameters is indicated by 
the results of experiments. A point worth noting is that if hidden parameters cannot exist in 
QM, then this would indicate that QM-ontology must be some kind of minimal ontology in 
the sense introduced in this paper.

To repeat again: there are no formally and empirically neutral changes of ontology. 
Quinean ontological relativity has serious flaws, both from a formal point of view and in 
terms of its being inconsistent with some important empirical data. Let us, however, note 
that science and ontology, for more than two thousand years, have developed brilliantly 
without such restrictive clarifications, making massive use of direct and informal contact 
with the real world.
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