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Abstract
Theoretical frames for analyzing information in biological and molecular multicomponent 
structures are proposed. The mathematical foundations of the proposal are presented. Both 
the information encoded in structures is defined and the method of calculating the amount 
of this information is introduced. The proposed approach is applied to the operation of a 
molecular multicomponent machine.

Keywords Structure · Relation · Structural information · Molecular machines · Molecular 
cybernetics

1 Introduction

Information, together with matter and energy, is contemporarily regarded as a fundamen-
tal component of the existing world—see, for instance, Barreiro et  al. (2020), Krzanowski 
(2020a) and references given there. This implies a widely postulated thesis that specific infor-
mation processing, in various contexts and on various levels, is an immanent property of liv-
ing beings. This processing takes place not only on the level of the nervous system and a 
single neuron—see, for instance, (Bielecki, 2019; Sadeh & Clopath, 2020; Schepherd, 1994; 
Tadeusiewicz, 2010; Rosslenbroich, 2014), chapter 8, but also on the levels of biological sys-
tems and subcellular organelles and processes (Bielecki, 2015; Hellerman, 2016; Jablonka 
& Lamb, 2006; Nurse, 2008; Perez Velazquez, 2009), including viruses (Rohwer & Barott, 
2013). The problem is that, so far, there is no adequate information theory that can be used 
in biology, although the problem is considered—see, for instance (Smith, 2000; Walker et al., 
2016). First of all, the existing information theories—Shannon and Kolmogorov theories can 
be put as the best-known examples—provide the measure for the amount of information rether 
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than tools for analyzing of information type and specifics, except the probabilistic aspect of 
information in the case of Shannon theory. Shanon information theory adequately describes 
the transmission of signals over a channel and, therefore, it can be used successfully to ana-
lyze information in digital-type chains, such as genetic code (Schneider, 2000). It is useless, 
however, for the analysis of information encoded in non-sequential structures. This is a key 
disadvantage because this type of information, being a special type of ontological information, 
is crucial in biology (Krzanowski, 2020b).

The Hellerman proposal (Hellerman, 2006) that is dedicated to the analysis of the level of 
organization in structures as such, first of all, biological ones, seems to be a proper starting 
point for working out the adequate biological information theory. The fact that information 
in organisms is encoded by biological structures—see Bielecki (2015), Jablonka and Lamb 
(2006) for details—is the most important reason for the adequacy of Hellerman approach. In 
the current state of development of the presented theory, the simplest possible level should be 
used to test the efficiency of the proposed approach. The supramolecular cybernetics, includ-
ing molecular machines controlled by molecular switches (Biswas et  al., 2020; Goswami 
et al., 2019; Paul et al., 2019; Schmittel, 2019), is the most appropriate level for testing the 
theory at its current level of development. On the one hand, there are a lot of examples of 
molecular machines that are relatively simple structures, at least in comparison with most bio-
logical structures. Such machines are suitable for testing the proposed theory at its current, 
initial stage. On the other hand, dynamic biological structures are molecular machines—the 
ribosome can be put as an example (Rodnina & Wintenmeyer, 2011; Spirin, 2002, 2009).

This publication presents a theoretical framework for defining and analyzing information 
encoded in the structure of a multicomponent ensemble and it is a far-reaching extension of 
the context in which the problem of coding information with the use of physical structures is 
normally considered—see, for instance, (Goldfeld et al., 2021). It should be emphasized that 
the existence of this type of information results only from the fact that a given structure has 
such and no other form. The presented approach is a development of the ideas sketched in 
Bielecki (2015), sections 5.2 and 5.3, and is the realization of the first stage of the research 
program outlined there including introduction of formal definitions of the proposed terms and 
studying their properties and relations between them. This is related to creating the formaliza-
tion which describes biological phenomena properly. It should be stressed that lack of such 
formalization was emphasized in Perez Velazquez (2005). The introduced formalization was 
applied to calculate amount of information contained in the molecular machines described in 
Paul et al. (2019).

The paper is organized in the following way. The proposed mathematical formalization is 
presented in Sect. 2. It should be emphasized that the proposal includes only the formalization 
of static, non-hierarchical structures. The theory of dynamic structures, as well as hierarchical 
ones, is planned to be the topic of the subsequent papers. Foundations of molecular cybernet-
ics are briefly presented in Sect. 3, whereas application of the proposed theory to molecular 
machines is put forward in Sect. 4. Potential utility of the propsed approach is discussed in 
Sect. 5.

2  Formulation of Information Theory

In this section formalization of the concept of information contained in a structure is pro-
posed. Furthermore, the way the amount of such information can be measured is presented. 
The approach is formulated in a pure mathematical aspect. The authors by no means reject 
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the concept of information as an entity. At the current stage of the studies, however, the pri-
mary goal was to develop a mathematical basis of structural information. The enhancement 
of the concept with physical aspects will be the next step in the proposed approach and it is 
planned to be a topic of subsequent papers.

In this paper, only information on finite sets is studied. The very idea can be put forward 
as follows: 

(a) There is no information in general. Information always exists in a given set.
(b) Information is generated by relations defined on this set.
(c) The generated information is unambiguously related to a certain graph.
(d) Both the information as such and the amount of information are determined by the 

structure of this graph.

Let us start with recalling the classical way the mentioned graph is generated—see, for 
instance, (Carnap, 1928), paragraph 11.

Definition 2.1 Let the set X consist of the elements x1,… , xn and let R be a relation on 
X. The oriented graph (orgraph) G ∶= {V ,E}, where V is the set of its nodes and E is the 
set of its oriented edges, is the graph generated by the relation R if V = X and (xi, xj) ∈ E 
iff xiRxj, i, j ∈ {1,… , n}.

The graph generated by the relation R on the set X will be denoted, in the sequel, by 
G(X,R).

Definition 2.1 simply implies the following corollary.

Corollary 2.2 A finite set X and a relation R, defined on X, generate a unique oriented 
graph (orgraph). Furthermore, each orgraph G ∶= {V ,E} generates a unique relation R 
on the set X = V  in the following way: if (xi, vj) ∈ E, then xiRxj.

In the sequel, it is assumed that R is an anti-reflexive relation on X i.e. ∀x∈X ¬(xRx). 
This means that the graph G has no loops, i.e. the edges of the form (x, x) because no ele-
ment is in relation with itself. A set X with a relation R will be denoted, in the sequel, as 
(X,R).

Let us define node-balls on orgraphs.

Definition 2.3 Let G = (V ,E) be an orgraph. A node-ball Bnode
G

(x, 1) of 
radius 1 and a center at the node x ∈ V  is a subgraph (V1,E1) such that 
V1 ∶= {y ∈ V ∶ y = x ∨ (x, y) ∈ E ∨ (y, x) ∈ E} and E1 ∶= {(u, v) ∈ E ∶ u ∈ V1 ∧ v ∈ V1}. 
A ball Bnode

G
(x, n) of radius n ∈ {2, 3,…} is a union

where y ∈ Bnode
G

(x, n − 1). Let us also put Bnode
G

(x, 0) ∶= ({x}, �). Let us also define rnode(G, x) 
as a minimal natural number such that Bnode

G
(x, rnode(G, x)) = Bnode

G
(x, rnode(G, x) + 1).

Bnode
G

(x, n) ∶=
⋃

y∈X

Bnode
G

(y, 1),
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Intuitively, rnode(G, x) is a maximal radius of the node-ball with the center at the node x 
which means that for this radius the ball is equal to the graph G connected component that 
contains the node x.

Let us define node information.

Definition 2.4 Node information Inode on X introduced by R is a set of all node-balls on 
G(X,R), i.e. Inode ∶=

{

Bnode
G

(x, n), x ∈ V , n ∈ {0,… , rnode(G, x)}
}

.

The node information is the set of all node-balls in the graph because based on this set 
the elements of the set X are identified. This identification is carried out by distinguishing 
the nodes of the graph that represent the elements of the set X.

Let us define indistinguishable nodes of a graph G(X,R).

Definition 2.5 Let G = (V ,E) be an orgraph and let x, y ∈ V . The nodes x and y are indis-
tinguishable if they belong to the same connected component of G and for each n ∈ ℕ

+ the 
balls Bnode

G
(x, n) and Bnode

G
(y, n) are isomorphic. Otherwise the nodes are distinguishable.

Let us define indistinguishability by R of two elements x, y ∈ X in (X,R).

Definition 2.6 Let (X,R) be given. The elements x, y ∈ X are indistinguishable by R if 
they are indistinguishable as the nodes of G(X,R).

Let us define the indistinguishability relation Dnode(X,R) for a given (X,R).

Definition 2.7 For x, y ∈ X, xDnode(X,R)y if the element x is indistinguishable from the 
element y by R.

It is obvious that the relation Dnode is an equivalence relation on X. The equivalence 
classes of Dnode define the organization of the set X in the Hellermann sense (Hellerman 
2006). Thus, the amount of node information generated by R on X is given by the formula 
introduced by Hellerman:

provided that n is a number of elements in the set X,   K is a number of elements of the 
quotient set X∕Dnode, and nk is the number of elements in the k− th equivalence class. 
This means that the said organization of the set X in the Hellermann sense has the form 
(n1,… , nK), where n1 +⋯ + nK = n.

In formula (1) and in the sequel log denotes log2 .
Let us introduce the labeling of the nodes. Let L be an equivalence relation on X.

Definition 2.8 The canonical projection fL(x) = [x]L is the labeling function of the set X.

Remark 2.9 Classically labeling is done by using the labeling function. In this paper, it is 
done by using an equivalence relation and canonical projection so that the labeling is not 
arbitrary, but is implied by the properties of the elements of the set X. For example, in a 
chemical molecule, the atoms of the same chemical element will have the same label.

(1)Hnode = −n

K
∑

k=1

nk

n
log

nk

n
,
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In the sequel, labeling be the only relation that will be denoted by node labels, not by 
the edges of the graph—see Sect. 4.

Let us define a structure.

Definition 2.10 Let X = {x1,… , xn} be a finite set and let R1,… ,Rn be relations on X. 
The n + 1-tuple S : 

is said to be a structure on X.

Each relation generates an orgraph on X in the way described in Definition 2.1. In 
order to define amount of node information in the structure S ∶= (X,R1,… ,Rn) let us 
recall a simple property.

Corollary 2.11 Let � = {At}t∈T and � = {Bs}s∈S be partitions of the set X. Let us define 
Ct,s ∶= At ∩ Bs, t ∈ T , s ∈ S. Then, the family ℭ ∶= {Ct,s ∶ Ct,s ≠ �} is a partition of X.

The above property remains true for a finite number of partitions.
In the structure S(X, n) the equivalence classes Di, i ∈ {1,… , n}, created by relations 

R1,… ,Rn generate n partitions of X. The partitions are constituted by the equivalence 
classes of Di—see Definition 2.7 Let � be the family of all nonempty sets of the form

where Yki is the ki-th equivalence class generated by Di. By Corollary 2.11 the family � is a 
partition of X.

Definition 2.12 The amount of node information generated by R1,… ,Rn on S(X, n) is 
given by the formula:

provided that n is the number of elements in the set X,  K is a number of elements of the 
family � and nk is the number of elements in the k− th set of �.

Formula (2) tells how pieces of information generated by various relations overlap.
Let us notice that node information is insufficient to describe information that is rep-

resented by a graph generated by a relation. It is obvious that the amount of information 
in a cyclic graph is different from the amount of information in a fully-connected graph 
that has the same number of nodes. Therefore it is necessary to introduce information 
represented by edges.

Edge information can be defined in a similar way as node information. Thus, let us 
define edge-balls on orgraphs.

Definition 2.13 Let G = (V ,E) be an orgraph. An edge-ball Bedge

G
(e, 1) of radius 1 

and a center at the edge e = (u, v) ∈ E is a subgraph (V1,E1) such that V1 ∶= {u, v} and 
E1 ∶= {(u, v), (v, u)} ∩ E. A ball BG

ed
(e, n) of radius n ∈ {2, 3,…} is a union

S(X, n) ∶= (X,R1,… ,Rn),

� ∶=
{

Yk1,…,kn
∶= Yk1 ∩⋯ ∩ Ykn

}

,

(2)Hnode = −n

K
∑

k=1

nk

n
log

nk

n
,



1332 A. Bielecki, M. Schmittel 

1 3

where (c = (x, y) ∨ c = (y, x)) ∧ y ∈ Vn−1, provided that B
edge

G
(e, n − 1) = (Vn−1,En−1). 

Let us also define redge(G, e) as a minimal natural number such that 
B
edge

G
(e, redge(G, e)) = B

edge

G
(e, redge(G, e) + 1).

Let us define edge information.

Definition 2.14 Edge information Iedge on X introduced by R is a set of all edge-balls on 
G(X,R), i.e. Iedge ∶=

{

B
edge

G
(e, n), e ∈ E, n ∈ {0,… , redge(G, e)}

}

.

The edge information is the set of all edge-balls in the graph because this set pro-
vides information about the variety of relations on X.

Let us define indistinguishable edges of a graph G(X,R).

Definition 2.15 Let G = (V ,E) be an orgraph and let e1, e2 ∈ E. The edges e1 and e2 
are indistinguishable if they belong to the same connected component of G and for each 
n ∈ ℕ

+ the balls Bedge

G
(e1, n) and Bedge

G
(e2, n) are isomorphic. Otherwise the edges are 

distinguishable.

Let us define indistinguishability by R of two elements e1, e2 ∈ E in G(X,R).

Definition 2.16 Let G(X,R) be given. The elements e1, e2 ∈ E are indistinguishable by 
R if they are indistinguishable as the edges of G(X,R).

Let us define the edge indistinguishability relation Dedge(X,R) for a given G(X,R).

Definition 2.17 For e1, e2 ∈ G(X,R) xDedge(X,R)y if the element e1 is indistinguishable 
from the element e2.

Relation Dedge is an equivalence relation on E. The equivalence classes of Dedge define 
the organization of the set E in the Hellermann sense (Hellerman 2006). In the case of 
edges, the amount of information should be calibrated by all possible edges, not only by 
the total number of the existing ones. Thus, let N be the number of all possible edges, 
N = n(n − 1), where n is a number of elements in X. Let us remember that R is anti-
reflexive which means that there are no loops. Therefore n is multiplied by n − 1, not by 
n. The amount of edge information generated by R on E is given by the modified Hel-
lerman formula:

provided that K is a number of elements of the quotient set E∕Dedge, and nk is the number 
of elements in the k− th equivalence class. Let us denote the modified Hellerman organiza-
tion as (n1,… , nK)(N), where n1 +⋯ + nK = n.

The total information contained in the structure is given by the formula

B
edge

G
(e, n) ∶=

⋃

c∈E

B
edge

G
(c, 1),

(3)Hedge = −n

K
∑

k=1

nk

N
log

nk

N
,
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To sum up, the labeling information tells which elements make up the structure—see Def-
inition 2.8 and Remark 2.9. The node information generated by the remaining relation-
ships, on the other hand, tells how the elements relate to each other. Edge information tells 
how many nodes are in a relation and what is the specifics of relationships between the 
elements.

3  Supramolecular Cybernetics: Molecular Machines and Switches

Although artificial molecular machines have received ample attention over the past 30 
years and despite the spotlight that the awarding of the Nobel Prize has inevitably given 
this field (Sauvage, Stoddart, and Feringa in 2016) (Boyer, 1998), they are predominantly 
designed and studied as stand-alone devices. Cybernetic aspects, which play a vital role 
in the operation of natural machines, have so far been completely left out (Schmittel & 
Howlader, 2020). This deficit is rooted in the extreme complexity of even small cybernetic 
circuitry that has so far eluded any planning approach. It has thus been emphasized that 
any developments in this area will depend on the systematic expansion and improvement 
of molecular communication, which requires a broad range of purposeful molecular recep-
tors, switches, and regulators. Only with those molecular constituents in hand one may be 
able to build cybernetic control loops and feedback mechanisms in a bottom-up approach.

3.1  Artificial Molecular Machines

Let us start with a thought experiment on a simple molecular machine. The minimum 
requirements for its cybernetic control involve control of the directionality of the move-
ment (for instance, unidirectional or forward vs. backward) and the provision of energy 
for the regulation of the motional amplitude. There are spectacular machines alternately 
driven by light and thermal energy (van Leeuwen et al., 2017) as well as pumps (Qiu et al., 
2020) in turns operated by redox potential changes and thermal energy (Baroncini et al., 
2020). In those cases, light/redox processes allow overcoming a high barrier whereas the 
thermal energy enables a directional motion by overcoming a small barrier. In contrast, 
the cybernetic regulation of biological machines is achieved by a gamut of networked and 
interdependent chemical inputs including a chemical form of energy (ATP), all of which 
copperate in adapting the machine’s operation to the environmental needs. While recently 
molecular machines have successfully been driven with chemical energy, it would be 
important to influence their modus operandi with further control variables. The Schmit-
tel group has focused on wiring molecular machines to molecular switches that influence 
the state of the machine, actually in many cases catalytic machinery, with the goal to later 
drive them with chemical energy (Schmittel & Howlader, 2020). At present, the machines 
operate on thermal energy whereas directionality is controlled through molecular switch-
ing via chemical signaling. In some instances, a level of information handling was reached 
that characterizes smart mixtures (Goswami et  al., 2019). Without going into detail, an 
ensemble of 13 constituents was designed to respond to the availability of a single outside 
trigger in a way that two different catalytic processes were initiated, one in the presence of 
the trigger, another in its absence.

(4)H = Hnode + Hedge
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3.2  The Studied Case

In the next section, the theoretical proposal introduced in Section 2 is applied to ana-
lyze information in the molecular machine described in Paul et al. (2019). Let us briefly 
recall the results: In this work, a networked seven-component ensemble is utilized to 
control initially the synthesis and afterward the shuttling of a [2]rotaxane. Operation 
of the networked system was achieved by the addition and removal of zinc(II) ions that 
internally triggered copper release the latter being monitored by distinct colorimetric 
and fluorimetric signals. The mode of the operation depended decisively on communi-
cation within the ensemble where the chemical signal, i.e. copper(I) ion, exerted two 
different roles: 

(a) In the beginning it served as a catalyst to build a [2]-rotaxane (NetState I → II),
(b) Later it enabled switching ON/OFF of the thermal oscillations in the rotaxane (NetState 

II  ⇆ III).

Addition of zinc ions led to liberation of copper(I) ions from the dimeric release system 
(Fig. 1). The dimeric aggregate had been chosen, because the assemblies [Cu 2(�)2]

2+ , 
[Zn 2(�)2]

4+ and ligand 1 displayed different emissions in the fluorescence channel 
allowing to monitor changes in the overall system.

Upon the first addition of zinc(II) ions (2 equiv.) the release system [Cu 2(�)2]
2+ dis-

charged two equiv. of copper(I) ions that acted as catalyst to afford two equiv. of the 
copper-loaded [2]-rotaxane [Cu(5)]+. Due to the thermal energy at room temperature the 
macrocycle in [Cu(5)]+ was found to oscillate at k298 = 30 kHz between the two triazole 
stations (Fig. 2). At this point, removal of zinc(II) freed [Cu(5)]+ from copper(I) ions 
and regenerated [Cu 2(�)2]

2+ The copper-free [2]-rotaxane 5 did not show any oscilla-
tions (on the NMR time scale).

The complete picture in Fig. 3 describes how the three networked states (NetStates) 
arise from combing all constituents in the proper stoichiometry prior to addition and 
after removal of zinc(II) ions. An important issue is that the initial addition of zinc(II) 
triggers an irreversible formation of the [2]-rotaxane (NetState I→II), whereas alternate 
addition and removal of zinc then allows shuttling the system between NetStates II and 
III. Removal of zinc(II) was readily accomplished by the addition of hexacyclene.

Fig. 1  Liberation of copper(I) ions from the dimeric [Cu 2(�)2]
2+ upon addition of zinc(II) ions
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4  Information in Supramolecular Cybernetics: Static Case

The proposed approach to information encoded in structures has been applied to the molec-
ular machine, described in Paul et al. (2019) and briefly recalled in Sect. 3.2. It should be 
stressed, that although in the previous section as well as in Paul et al. (2019) the dynamic 
aspect is discussed as well—the full cybernetic system dynamics (Figs. 1, 2, 3) and shut-
tling of [ Cu (�)(�)]+—in this paper only the static aspect is considered. This means, that 
we study only information encoded in structures. The problem of information processing 
during synthesis, self-sorting, and structural transformations, including stoichiometric 
aspects, will be studied in the next paper.

It should be also stressed that only information of the highest level of organiza-
tion is taken into account in our calculations below. This means that only relations 
between substructures that form the final structures are considered i.e. information con-
tained in the said substructures is not included. Moreover, let us ephasize that in below 

Fig. 2  The copper(I)-catalyzed formation of the copper(I)-loaded rotaxane and the reversible copper(I) 
removal and addition

Fig. 3  The full cybernetic system connecting three networked states
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considerations, we use a large simplification by introducing only one relation: “element 
� is connected to the element � ” without taking into account various types of connec-
tions between elements.

The presented application covers the case where the nodes of the generated graph are 
labeled and, apart from the labeling relation, only one additional relation on the set is 
established. Thus, the set X = {x1, x2, x3, … x12} consists of twelve elements that are 
chemical compounds. Let us introduce the labeling in such a way, that labels correspond 
to chemical compounds, according to Definition 2.8 and Remark 2.9. Thus, let the labe-
ling relation be denoted as L and let xiLxj if xi and xj are the same chemical compounds. 
After labeling the set X has the following form:

The order of the specified above labels corresponds to the order of the indices of 
the elements which means that x1 has the label ��, i.e. lab (x1) = tr , lab (x2) = tr , 
lab (x3) = arm , lab (x4) = arm , lab (x5) = hex , lab (x6) = hex , lab (x7) = Cu , 
lab (x8) = Cu , lab (x9) = Zn , lab (x10) = Zn , lab (x11) = rg , lab (x12) = bar . The used 
labels correspond to the following chemical compounds: 

tr  denotes ligand 2—see Fig. 2 and Paul et al. (2019)
arm  denotes ligand 4—see Fig. 2 and Paul et al. (2019)
hex  denotes hexacyclen,
Cu  denotes [ Cu(CH3 CN)4)PF 6],

Zn  denotes Zn(OTf)2,
rg  denotes the macrocycle—see Fig. 2 and Paul et al. (2019),
bar  denotes the phenyl ring as part of diazide 3—see Fig. 2 and Paul et al. (2019).

The graphical symbols of the above structures, the same that have been used in Paul 
et al. (2019), are shown in Fig. 4. As it has been mentioned at the beginning of this sec-
tion, the inner structure of the above compounds is not taken into consideration. Thus, 
the labeling relation L generates the following partition of X :  (2, 2, 2, 2, 2, 1, 1) and, as 
a consequence, it creates the following amount of information:

Apart from the defined labeling relation L only one relation, let us say R,  is defined 
on X :  xiRxj if xi is connected to xj.

{ tr, tr, arm, arm, hex, hex, Cu, Cu, Zn, Zn, rg, bar }.

H = −12
[

5
(

2

12
log

2

12

)

+ 2
(

1

12
log

1

12

)]

= 33.007.

Fig. 4  Graphical symbols corresponding to the chemical compounds
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Let us consider the NetState I (NS-I, for abbreviation)—see Fig. 5a. The following 
elements are in relations:

which generates the graph GNS−I(X, L,R) shown in Fig. 5b. For both nodes labeled as arm 
all node-balls are isomorphic (see Fig. 6) becuse in both cases

see Fig. 6. Similarly, in both cases, Bnode
G

(���, 2) is equal to the whole connected compo-
nent of the graph containing the nodes labeled with labels arm and Cu. We have a similar 
situation in the case of node-balls with the center in the nodes labeled as Cu. Thus, for both 
nodes labeled by Cu and arm all balls are isomorphic (see Definitions 2.3 and 2.5), the 
relation R does not enable to distinguish nodes in both mentioned pairs. Therefore the rela-
tion R does not introduce the possibility of distinguishing additional elements of X in rela-
tion to the distinction made by labeling and, as a consequence, in the graph GNS−I(X, L,R) 
no two nodes that have the same label can be distinguished. As a result, we get

x7Rx3, x8Rx4, x3Rx8, and x4Rx7,

Bnode
G

(���, 1) = ({���,��,��}, {(��, ���), (���,��)}),

Hnodes( NS-I) = 33.007.

Fig. 5  NetState I (NS-I)

Fig. 6  Two isomorphic node-
balls Bnode

G
(���, 1) in NS-I
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In GNS−I(X, L,R) there are four edges—two ( arm , Cu) and two ( Cu , arm). Both edges 
( arm , Cu) are indistinguishable. Indeed, in both cases (see Fig. 7) we have

and, in both cases, edge-ball Bedge

G
((���,��), 3) is equal to the whole connected compo-

nent of the graph containing the nodes labeled with labels arm and Cu. We have a similar 
situation in the case of edge-balls with the center in the edges (Cu, arm). The number of 
all possible edges is equal to 12 ⋅ 11 = 132 (let us remember that R is anti-reflexive which 
means that there are no loops; therefore 12 is multiplied by 11,  not by 12.) Thus, the pairs 
that are in relation generate the partition of the set of edges: (2, 2)(132),  so

and—see formula (4)

Let us consider NS-II—see Fig. 8a. The following elements are in relations:

which generates the graph GNS−II(X, L,R) shown in Fig. 8b. The specified relation allows 
us to distinguish Cu elements because one is free whereas rg element is connected to the 
second one. Thus, in relation to the distinction made by labeling, the additional distinction 
in the set of the graph nodes is created and the partition of the set of nodes has the follow-
ing form: (2, 2, 2, 2, 1, 1, 1, 1). As a consequence

In GNS−II(X, L,R) there are three pairs of indistinguishable edges: ( arm , Zn), ( Zn , arm), 
and ( bar , tr). Furthermore, there are two single distinguishable edges—( rg , Cu) and 
( Cu , bar). This creates in the set of edges the partition (2, 2, 2, 1, 1)(132),  so

and

B
edge

G
((���,��), 1) = ({���,��}, {(���,��)}),

B
edge

G
((���,��), 2) = ({��, ���,��}, {(��, ���), (���,��), (��, ���)})

Hedges( NS-I) = −4 ⋅
[

2 ⋅
(

2

132
⋅ log

2

132

)]

= 0.725

H( NS-I) = 33.732.

x9Rx3, x10Rx4, x3Rx10, x4Rx9, x7Rx11, x11Rx12, x12Rx1 and x12Rx2,

Hnodes( NS-II) = −12 ⋅
[

4 ⋅
(

2

12
⋅ log

2

12

)

+ 4 ⋅
(

1

12
⋅ log

1

12

)]

= 35.000.

Hedges( NS-II) = −8 ⋅
[

3 ⋅
(

2

132
⋅ log

2

132

)

+ 2 ⋅
(

1

132
⋅ log

1

132

)]

= 3.030

Fig. 7  Edge-balls in NS-I. The balls presented in a are isomorphic as well as the balls in b 
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Let us consider NS-III—see Fig. 9a. The following elements are in relations:

which generates the graph GNS−III(X, L,R) shown in Fig. 9b. In graph GNS−III(X, L,R), as 
in GNS−III(X, L,R), no two nodes that have the same label can be distinguished. Thus, the 
partition of the set of nodes has the form (2, 2, 2, 2, 2, 1, 1) and

In GNS−III(X, L,R) there are four pairs of indistinguishable edges: ( arm , Cu), ( Cu , arm), 
( bar , tr) and ( Zn , hex). Furthermore, there is a single distinguishable edge—( rg , bar). 
This creates in the set of edges the partition (2, 2, 2, 2, 1)(132),  so

H( NS-II) = 38.030.

x7Rx3, x8Rx4, x3Rx8, x4Rx7, x11Rx12, x12Rx1 x12Rx2, x9Rx5, and x10Rx6,

Hnodes( NS-III) = 33.007.

Fig. 8  NetState II (NS-II)

Fig. 9  NetState III (NS-III)
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and

Let us discuss the obtained results. Intuitively, according to the complexity of the structures 
(see Figs. 5, 8, 9), we expect that the amount of information should be significantly less in 
NS-I than in both NS-II and NS-III. Furthermore, the amount of information in NS-II and 
NS-III should be approximately equal. The last condition is satisfied. The first condition, how-
ever, is satisfied only partially. It is true that the amount of information in NS-II and NS-III is 
greater than in NS-I, but not much. Contrary to appearances, however, in the case under con-
sideration, this result is correct. A large amount of information HL generated by labeling the 
elements of the set X,  that is common to all three states, is the reason for the small difference 
in the amount of information between NS-I and NS-II as well as between NS-I and NS-III. 
Labeling generates partition (2, 2, 2, 2, 2, 1, 1) of X which corresponds to generating large 
amount of information. This causes the additional node information generated by the structure 
to be zero (NS-I and NS-III) or small (NS-II). On the other hand, the amount of edge informa-
tion Hedges is small in comparison with node information Hnode because in all three states the 
number of existing edges of the graph is small in comparison with the number of edges in the 
fully connected graph.

In support of the above claims, let us perform calculations for the above structures assum-
ing no labeling. In NS-I, see Fig. 5b, there are four indistinguishable nodes cyclically con-
nected by edges and eight isolated nodes, which generates the partition of the nodes (4, 8). 
The partition of the edges is (4)(132). Thus

and

As a result

In NS-II, see Fig.  8b, there are three isolated nodes, four indistinguishable nodes in the 
cyclic component of the graph, and five nodes in the acyclic component of the graph. In 
the last subset of the nodes, three nodes are fully distinguishable—one has only outcoming 
edges, one has two outcoming edges and the third one has one outcoming edge and one 
incoming edge. The other two vertices only have one outcoming edge, so they are distin-
guishable from the other three, but indistinguishable from each other. To sum up, unlabeled 
graph in Fig. 8b generates the partition (4, 3, 2, 1, 1, 1) in the set of the nodes. Similarly, in 
the set of the graph edges, the partition (4, 2, 1, 1)(132) is generated. Thus

Hedges( NS-III) = −9 ⋅
[

4 ⋅
(

2

132
⋅ log

2

132

)

+
(

1

132
⋅ log

1

132

)]

= 3.737

H( NS-III) = 36.744.

Hnodes( NS-I) = −12 ⋅
[(

4

12
⋅ log

4

12

)

+
(

8

12
⋅ log

8

12

)]

= 11.016.

Hedges( NS-I) = −4 ⋅
[(

4

132
⋅ log

4

132

)]

= 0.611.

H( NS-I) = 11.627.

Hnodes( NS-II) = −12 ⋅
[(

4

12
⋅ log

4

12

)

+
(

3

12
⋅ log

3

12

)

+
(

2

12
⋅ log

2

12

)

+ 3 ⋅
(

1

12
⋅ log

1

12

)]

= 28.260.
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and

As a result

In NS-III, see Fig.  9b, there are four connected components of the graph. Two of them 
consist of two nodes connected by one edge. Two nodes of these components with outcom-
ing edges are indistinguishable, as well as two nodes with incoming edges. Two additional 
indistinguishable nodes, each with one incoming edge, exist in the non-cyclic component 
that consists of four edges. Two other nodes in this component are fully distinguishable. 
Thus, we have three pairs of indistinguishable nodes, two fully distinguishable nodes, and 
four indistinguishable nodes in the cyclic component which gives partition (4, 2, 2, 2, 1, 1) 
and the following amount of node information is generated

In the set of edges, there are four indistinguishable edges in the cyclic component and one 
fully distinguishable edge that outcomes from the node that has not any incoming edge in 
the acyclic component that consists of four nodes. The other two vertices in the acyclic 
four-node component are indistinguishable from each other as well as the two in the com-
ponents that consist of two nodes. This generates partition (4, 2, 2, 1) and the following 
amount of information,

As a result

The calculations done for the unlabeled version confirm the hypothesis that in the consid-
ered case the labeling provides a large amount of information that for NS-I and NS-III fully 
and for NS-II largely overlaps the structural node information. This causes the mentioned 
small difference between the amount of information between NS-I and both NS-II and NS-
III for the labeled version.

5  Discussion

A question naturally arises as to the usefulness of the proposed theoretical concept. It 
should be stressed strongly, that in this section we will think beyond static cases.

Let us start with the idea of molecular robots in which all modules, i.e. not only sen-
sors and effectors but also the controlling computers are molecular devices, as outlined by 
Hagiya et al. (2016). As in these molecular computers the authors only considered DNA 
computing. They pointed out that this type of molecular computing does not satisfy reusa-
bility which means that the computational device can be used only once. Such an approach 
implies, in turn, the necessity of a continuous supply of new devices—(Hagiya et  al., 
2016), Section 2. In the light of the concept presented in our paper, however, computations 

Hedges( NS-II) = −8 ⋅
[(

4

132
⋅ log

4

132

)

+
(

2

132
⋅ log

2

132

)

+ 2 ⋅
(

1

132
⋅ log

1

132

)]

= 2.810.

H( NS-II) = 31.070.

Hnodes( NS-III) = −12 ⋅
[(

4

12
⋅ log

4

12

)

+ 3 ⋅
(

2

12
⋅ log

2

12

)

+ 2 ⋅
(

1

12
⋅ log

1

12

)]

= 29.014.

Hedges( NS-II) = −9 ⋅
[(

4

132
⋅ log

4

132

)

+ 2 ⋅
(

2

132
⋅ log

2

132

)

+ ⋅

(

1

132
⋅ log

1

132

)]

= 3.503.

H( NS-III) = 32.517.
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do not need to be performed digitally, i.e. on the basis of processing digital code such as 
DNA. Computations may be performed based on creating new structures and modifying 
existing ones as well as modifying relations between structures. This opens up a new per-
spective on the problem of information processing in general and the problem of comput-
ing in particular. The problem is discussed in detail in Bielecki (2015), section 5.1, where 
prokaryotic transcription is studied in this context. It should be also mentioned that the 
problem of biological and molecular computations and the possibility of their applications 
is a topic of some studies—see, for instance, (Burgin & Adamatzky, 2017) and references 
given there.

The theory proposed in our paper enables us to quantify the information encoded in the 
structures and processed by altering the structures. The change in the value of H informs 
about the changing amount of information encoded in a structural transformation, a proto-
col that can be readily applied to characterized molecular computers. In this type of com-
puter, computations will be performed on the basis of changes in molecular structures. As 
a consequence, data will have to be encoded in molecular structures, as well.

The problem of autonomous systems strongly refers to robotics and, consequently, to 
molecular cybernetics. In the years to come, autonomous systems will face numerous new 
types of challenges which, in turn, will enforce a new approach to the design, analysis, and 
construction of autonomous robots (Harel et al., 2020). In this type of robot, the issue of 
their decomposability is crucial. It enables to understand and anticipate their behavior by 
decomposition of the whole autonomous system into well-understood functional and struc-
tural subsystems. The presented theory provides additional tools for the required analysis, 
making it possible to study the degree of complexity of the robot which, in turn, determines 
its computational capabilities. This information is crucial especially when constructing the 
above-discussed molecular robots, the complexity of which is related to its computational 
capabilities in a very direct way.

In biology, our approach will provide a tool for analyzing information processing on 
various levels of complexity. First of all, it was postulated that three-componential process-
ing, in which information, matter and energy are closely intertwined, is the basis of metab-
olism in living individuals—see Bielecki (2015) and references given there. At the subcel-
lular level, for instance, the interaction between cell receptor and ligand—that trigger a 
signal pathway—is an example of information processing realized by modifying structures 
with simultaneous processing of energy. The aforementioned symbiosis and endosymbiosis 
consist in connecting two structures. The natural question emerges whether the amount of 
information encoded in the created structure is greater, equal or less than the sum of infor-
mation contained in the components. The proposed approach can be also used for analyz-
ing the hypothetical creation of information during transitions in evolution (Rosslenbroich, 
2014).

To sum up, the proposed formal approach can be applied in molecular robotics to assess 
the computational power of the robot modules, for instance, receptors but, first of all, 
molecular computers. Furthermore, based on the introduced theory, molecular devices may 
be designed precisely according to their informational capacity. Various models of coop-
eration between molecular robots, including their structural and functional combination 
(symbiotic computing—(Harel et  al., 2020)), which corresponds to biological symbiosis 
and endosymbiosis, can be analyzed with regard to the information processing ability of 
the robot. Additionally, the proposed formalism will allow the evaluation of informational 
aspects of life processes, which, on the one hand, have so far been less studied than struc-
tural and energetic aspects and, on the other hand, belong to the fundamental manifesta-
tions of life.
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6  Concluding Remarks

The formalization introduced in Sect.  2 made it possible both to define various aspects 
of information related to the structure and to measure its quantity. The formalization is 
based on the graph generated by the elements and relations between them. The proposed 
approach has been applied in molecular cybernetics to measure the amount of information 
in the structure of molecular machines. This is the first step towards applying it to biologi-
cal structures.

As it has been already mentioned, the formalization presented in this article refers only 
to the mathematical aspects of the theory of structural information adequate in biological 
applications and covers only the case of static, non-hierarchical structures. The planned 
subsequent steps will include:

• Information in hierarchical structures,
• Information in dynamical structures, including self-replicate systems
• Extending the approach to the physical aspect of structured information, including 

energetic aspects.

Let us explicitly emphasize that the aim of the undertaken studies is to enable the inves-
tigation of biological processes in their informative aspect. The biological entities are 
structures that, in a way, compute themselves by, among others, modifying their structures. 
Therefore, working out the approach enabling analysis of the informative aspect of struc-
tures as such is a necessary step to attack the problem effectively. It should be also epha-
sized that the presented version of information theory can be also used in network struc-
tures, including artificial ones, for which adequate information theory is also look for—see, 
for instance, (Tao et al., 2021).
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