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Abstract
Newtonian physics is based on Newtonian calculus applied to Newtonian dynamics. New

paradigms such as ‘modified Newtonian dynamics’ (MOND) change the dynamics, but do

not alter the calculus.However, calculus is dependent on arithmetic, that is the ways we add

and multiply numbers. For example, in special relativity we add and subtract velocities by

means of addition b1 � b2 ¼ tanh
�

tanh�1ðb1Þ þ tanh�1ðb2Þ
�
, although multiplication

b1 � b2 ¼ tanh
�

tanh�1ðb1Þ � tanh�1ðb2Þ
�
, and division b1øb2 ¼ tanh

�
tanh�1ðb1Þ=

tanh�1ðb2Þ
�

do not seem to appear in the literature. The map fXðbÞ ¼ tanh�1ðbÞ defines an

isomorphism of the arithmetic in X ¼ ð�1; 1Þ with the standard one in R. The new arithmetic

is projective and non-Diophantine in the sense of Burgin (Uspekhi Matematicheskich Nauk

32:209–210 (in Russian), 1977), while ultrarelativistic velocities are super-large in the sense of

Kolmogorov (Technika Molodezhi 10:16–19 (11:30–33 in Russian), 1961). Velocity of light

plays a role of non-Diophantine infinity. The new arithmetic allows us to define the corre-

sponding derivative and integral, and thus a new calculus which is non-Newtonian in the sense

of Grossman and Katz (Non-Newtonian calculus, Lee Press, Pigeon Cove, 1972). Treating the

above example as a paradigm, we ask what can be said about the set X of ‘real numbers’, and

the isomorphism fX : X ! R, if we assume the standard form of Newtonian mechanics and

general relativity (formulated by means of the new calculus) but demand agreement with

astrophysical observations. It turns out that the observable accelerated expansion of the Uni-

verse can be reconstructed with zero cosmological constant if fXðt=tHÞ �
0:8 sinhðt � t1Þ=ð0:8 tHÞ. The resulting non-Newtonian model is exactly equivalent to the

standard Newtonian one with XK ¼ 0:7, XM ¼ 0:3. Asymptotically flat rotation curves are

obtained if ‘zero’, the neutral element 0X of addition, is nonzero from the point of view of the

standard arithmetic of R. This implies f�1
X ð0Þ ¼ 0X [ 0. The opposition Diophantine versus

non-Diophantine, or Newtonian versus non-Newtonian, is an arithmetic analogue of Euclidean

versus non-Euclidean in geometry. We do not yet know if the proposed generalization ulti-

mately removes any need of dark matter, but it will certainly change estimates of its param-

eters. Physics of the dark universe seems to be both geometry and arithmetic.
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1 Dark Universe and Its Dark Arithmetic

The difficulty lies more in the notions themselves

than in the construction

Bernhard Riemann (1854)

Two hundred years ago the very idea of abandoning Euclidean axioms of geometry seemed

so self-contradictory that even C. F. Gauss, a mathematician of highest reputation, found it

imprudent to publish his thoughts on the subject. Euclid’s fifth axiom of parallels was a

truism for contemporaries of Bolyai, Lobachevski, and Gauss, and we basically understand

why: their everyday experiences were small-scale. Nowadays, not only are we all

accustomed to non-Euclidean geometries, but we even find it difficult to think of

gravitational physics in categories different from just a geometry.

Yet, modern space-time physics is clearly at crossroads. The experimental value of the

cosmological constant is some 10120 smaller than its theoretical estimate (Weinberg

1989)—probably the worst disagreement between theory and experiment in history of

science. A radical change of paradigm should not be a surprise.

The goal of this paper is to draw the attention of the dark-universe community to an

overlooked mathematical freedom: the axioms of arithmetic. Problems with dark energy

and dark matter may indicate that physics is geometry... and arithmetic.

To begin with, many would probably agree that if we were to give an example of an

absolute and self-evident truth, one would mention 2 þ 2 ¼ 4. Now, is it as obvious as the

axiom of parallels, or perhaps ‘more obvious’? Is

2100100100

þ 2100100100

¼ 2100100100þ1

equally obvious? Has anybody any practical experience with adding numbers that big?

Even supercomputers cannot process numbers greater than the so-called machine infinity, a

finite number N1 which does not increase if we add 1 to it. So, N1\1 and

N1 þ 1 ¼ N1. This type of arithmetic is either inconsistent, or non-Diophantine. The later

means that some of the rules of arithmetic, formalized by Diophantos of Alexandria, may

have to be dropped. Similarly to the rules of geometry, formalized by Euclid of Alexandria.

To put what I write in a wider context let me mention that A. N. Kolmogorov himself

proposed to split natural numbers into classes of small, medium, large, and super-large, and

each class might in principle be based on different rules, dependent on our computing

capabilities. Kolmogorov expressed his views in two papers addressed to high-school

pupils (Kolmogorov 1961). We do not know if he had any concrete mathematical system in

mind. A step further was done by Rashevsky (1973) whose letter to Uspekhi Matem-

aticheskich Nauk explicitly formulated the program of going beyond the ‘dogma’ of

natural numbers. Similarly to Kolmogorov, Rashevsky did not propose any concrete non-

Diophantine system of axioms. The first explicitly non-Diophantine arithmetic of natural

numbers was described in the same journal four years later by Burgin (1977, 1997, 2010)

and Burgin and Meissner (2017).

Independently of the efforts of Rashevsky and Burgin, M. Grossman and R. Katz

worked out a form of calculus which culminated in their little book Non-Newtonian
Calculus (Grossman and Katz 1972; Grossman 1979, 1983). It went basically unnoticed by

the mainstream mathematical community, and was completely ignored by physicists. Their

main idea was rediscovered two decades later by E. Pap in his g-calculus (Pap 1993, 2008;
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Grabisch et al. 2009). Another two decades later, but in its currently most general form, it

was rediscovered by myself (Czachor 2016, 2017, 2019; Aerts et al. 2016a, b, 2018).

The term ‘non-Newtonian’ refers here to the level of calculus, and not to the laws of
physics. It should not be confused with Milgrom’s ‘modified Newtonian dynamics’

(MOND) (Milgrom 1983, 2019; Bekenstein 2004), Moffat’s ‘modified gravity’ (MOG)

(Moffat and Toth 2009; Green and Moffat 2019), or similar theories. A non-Newtonian

calculus is based on a non-Diophantine arithmetic. The Newtonian calculus is based on the

Diophantine arithmetic. But Newton’s equation relating force and acceleration, the three

Newton laws of dynamics, or the ‘inverse square’ Newton law of gravity remain

unchanged. Theoretical freedom is hidden in various possible meanings of ‘plus’, ‘times’,

‘minus’, ‘divided by’, ‘squared’... This is the new paradigm.

Non-Diophantine arithmetic and the non-Newtonian calculus it implies automatically

lead to two types of ‘dark universes’: the ones where super-small and super-large physical

quantities behave differently even though they satisfy the same physical laws, and those

identified with zero-measure sets whose physics is equipped with the usual laws, but which

are invisible from the point of view of standard quantum measurements.

In the present paper we will discuss simple examples illustrating each of the above

concepts. In Sect. 2 we begin with a concrete arithmetic of a Burgin type which naturally

splits real numbers into small, large and super-large. We note that relativistic velocities are

in this sense super-large. Then in Sect. 3 we briefly explain the idea of non-Newtonian

differentiation and integration. In the next section we combine the ideas from Sects. 2 and

3 and show that the standard Friedman equation without dark energy in fact can imply an

accelerated expansion of the Universe. In Sects. 5 and 6 we show how to derive a ‘dark-

matter’ type of asymptotically flat velocity curve by means of the standard Newton

equation of motion for a ‘1/r’ potential. The non-Newtonian general prediction is briefly

compared with the MOND paradigm in Sect. 7. In all the above examples the trick lies in a

mismatch between the arithmetic employed in our modeling, and the arithmetic employed

by the Universe. The problems with dark energy and dark matter look like an experimental

indication that the arithmetic we all work with is not necessarily the one preferred by

Nature. This is the main message of the paper.

In Sect. 8 we return to the dilemmas of the nineteenth century thinkers. We stress that

we do perceive non-Diophantine arithmetic in our everyday life, but typically being

unaware of it. Finally, in the ‘‘Appendix’’ we show how to formulate the issue of dark

energy as an eigenvalue problem for a quantum system that ‘lives’ in a set of zero

Lebesgue measure, namely in a Cantor-dust fractal.

2 Non-Diophantine Arithmetic: An Example

Let the set X of physical variables have some physical dimension (length, say) and let ‘ be

a fundamental unit. Consider the set X of dimensionless numbers obtained by dividing

elements of X by ‘, that is X ¼ fx ¼ a=‘; a 2 Xg. We assume that X has the same car-

dinality as the continuum R. Just to have a feel of the generality we have at our disposal

think of the following examples: R itself, the open unit interval (0, 1), the three-dimen-

sional space R3, the Minkowski space, a Cantor dust, a Sierpiński triangle, a Koch curve...

All these sets have the same cardinality as reals, and therefore there exist one-to-one maps f
mapping them onto R. Typically these maps are quite bizarre and discontinuous in metric

topologies of X (try to invent a one-to-one f : R3 ! R), but this is not a problem, even if

calculus is concerned.
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Now, consider a bijection f : X ! R and the arithmetic in X induced by f,

x� x0 ¼ f�1
�
f ðxÞ þ f ðx0Þ

�
; ð1Þ

x� x0 ¼ f�1
�
f ðxÞ � f ðx0Þ

�
; ð2Þ

x� x0 ¼ f�1
�
f ðxÞ � f ðx0Þ

�
; ð3Þ

xøx0 ¼ f�1
�
f ðxÞ=f ðx0Þ

�
: ð4Þ

The bijection is a field isomorphism of X and R,

f ðx� x0Þ ¼ f ðxÞ þ f ðx0Þ; ð5Þ

f ðx� x0Þ ¼ f ðxÞ � f ðx0Þ: ð6Þ

For this reason � and � are associative and commutative, and � is distributive with

respect to �1. Any such X is also ordered: x�Xx
0 if and only if f ðxÞ� f ðx0Þ. The neutral

elements of addition and multiplication read, respectively, 0X ¼ f�1ð0Þ and 1X ¼ f�1ð1Þ.
Indeed, for any x 2 X

x� 0X ¼ f�1
�
f ðxÞ þ f ð0XÞ

�
¼ f�1

�
f ðxÞ þ 0

�
¼ x; ð7Þ

x� 1X ¼ f�1
�
f ðxÞ � f ð1XÞ

�
¼ f�1

�
f ðxÞ � 1

�
¼ x: ð8Þ

0X and 1X can be generalized to arbitrary natural numbers n 2 N,

nX ¼ 1X � . . .� 1X|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n times

¼ f�1ðnÞ; ð9Þ

and to any real numbers, since for r; s 2 R

rX � sX ¼ ðr þ sÞX ð10Þ

if one defines rX ¼ f�1ðrÞ, sX ¼ f�1ðsÞ. So, 2X � 2X ¼ 4X, but typically 2X 6¼ 2 and

4X 6¼ 4. To put it differently, even if 2X ¼ 2 it does not yet mean that 4X ¼ 4.

To focus our attention let us imagine that X is the open interval ð�L=2; L=2Þ,
X ¼

�
� L=ð2‘Þ; L=ð2‘Þ

�
,

f ðxÞ ¼ L

p‘
tan

p‘x
L

ð� x for small xÞ; ð11Þ

f�1ðrÞ ¼ L

p‘
arctan

p‘r
L

ð� r for small rÞ: ð12Þ

The neutral elements are

0X ¼ f�1ð0Þ ¼ 0; ð13Þ

1 Exercise: check it explicitly by means of (1)–(4).
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1X ¼ f�1ð1Þ ¼ L

p‘
arctan

p‘
L

ð14Þ

Taking L at the order of the radius of the visible Universe, L ¼ 8 	 1026 m, and ‘ at the

order of the Planck length, ‘ ¼ 2 	 10�35 m, we find 1X � 1. For bigger numbers we find

nX ¼ f�1ðnÞ ¼ L

p‘
arctan

p‘n
L

ð15Þ

¼ 4 	 1061

p
arctan

pn
4 	 1061

: ð16Þ

Notice that the available real numbers are limited by

jrXj\2 	 1061 ¼ L=ð2‘Þ: ð17Þ

The upper bound L=ð2‘Þ plays the same role as the machine infinity N1. The arithmetic we

have constructed is consistent but non-Diophantine. Numbers such as 1055 are not small,

but still medium-large in the sense of Kolmogorov, since

1055 � 1055 ¼ f�1
�
f ð1055Þ þ f ð1055Þ

�
� 2:	 1055; ð18Þ

1055 � 1055 � 1055 ¼ f�1
�
f ð1055Þ þ f ð1055Þ þ f ð1055Þ

�

�3:	 1055:
ð19Þ

The symbol of approximate equality � in (18)–(19) is here practically determined by the

computing capabilities of Wolfram Mathematica. However 1061 is already Kolmogorovian

super-large:

1061 � 1061 ¼ f�1
�
f ð1061Þ þ f ð1061Þ

�

�1:40967 	 1061;
ð20Þ

1061 � 1061 � 1061 ¼ f�1
�
f ð1061Þ þ f ð1061Þ þ f ð1061Þ

�

�1:59033 	 1061:
ð21Þ

An arithmetic defined by a bijection f is, in the terminology of Burgin, an example of a

projective arithmetic with projection f and coprojection f�1.

It is evident that relativistic addition of dimensionless velocities b ¼ v=c is also an

example of projective-arithmetic non-Diophantine addition: X ¼ ð�c; cÞ, X ¼ ð�1; 1Þ,
f ðxÞ ¼ tanh�1ðxÞ, f�1ðxÞ ¼ tanh x. The neutral elements are 0X ¼ f�1ð0Þ ¼ tanh 0 ¼ 0,

1X ¼ f�1ð1Þ ¼ tanh 1 ¼ ðe2 � 1Þ=ðe2 þ 1Þ � 0:76. Does v ¼ 0:76c have any special

physical meaning? Non-Diophantine infinity equals 1X ¼ f�1ð1Þ ¼ 1. Velocity of light

is infinite, at least in the non-Diophantine sense.

3 Non-Newtonian Differentiation and Integration

Consider two sets X, Y, with arithmetics f�X;�X;�X; øX; �Xg and

f�Y;�Y;�Y; øY; �Yg, respectively. A function A : X ! Y defines a new function ~A :
R ! R such that the diagram
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X �!A Y

fX

??y
??yfY

R �!
~A

R

ð22Þ

is commutative. The neutral elements of addition read 0X ¼ f�1
X ð0Þ, 0Y ¼ f�1

Y ð0Þ, where

we assume continuity limr!0� f
�1
X ðrÞ ¼ limr!0þ f

�1
X ðrÞ and limr!0� f

�1
Y ðrÞ ¼

limr!0þ f
�1
Y ðrÞ of the inverse bijections, so that 0X and 0Y are unambiguously defined.

The derivative of A is defined as

DAðxÞ
Dx

¼ lim
h!0

�
Aðx�X hXÞ �Y AðxÞ

�
øYhY; ð23Þ

where the limit is appropriately constructed (Aerts et al. 2018; Czachor 2019). Notice that

this is just the standard undergraduate-course definition of a derivative, but formulated in

terms of a general addition, subtraction, and division. One proves that (23) implies

DAðxÞ
Dx

¼ f�1
Y

d ~A
�
fXðxÞ

�

dfXðxÞ

 !

: ð24Þ

here d ~AðrÞ=dr is the usual Newtonian derivative of ~A : R ! R, and we assume of course

that the latter is differentiable. The form (24) is an alternative form of the definition of the

non-Newtonian derivative, which is extremely useful in practical calculations. Readers

interested in explicit examples involving different choices of arithmetics in X or Y should

look into (Czachor 2019).

The non-Newtonian derivative is linear with respect to �Y and satisfies the Leibniz rule

D
�
A1ðxÞ �Y A2ðxÞ

�

Dx
¼ A1ðxÞ �Y

DA2ðxÞ
Dx

� �
�Y

DA1ðxÞ
Dx

�Y A2ðxÞ
� �

: ð25Þ

One also proves a chain rule for compositions of functions (Czachor 2019) which, in

particular, implies

DfXðxÞ
Dx

¼ 1 ¼ DfYðxÞ
Dx

; ð26Þ

Df�1
X ðxÞ
Dx

¼ 1X;
Df�1

Y ðxÞ
Dx

¼ 1Y: ð27Þ

The bijections themselves are therefore always differentiable with respect to the deriva-

tives they define, while the resulting derivatives are always equal to appropriate unit

elements. This is true also in cases where the domains X and the images AðXÞ are highly

nontrivial sets such as fractals. Although typically such bijections are discontinuous in

metric topologies of X and Y, it is enough that they are always continuous in topologies

they induce in X and Y from the open-interval topology of R.

Once we have the derivatives we define a non-Newtonian (Riemann, Lebesgue,...)

integral of A by

Z b

a

AðxÞDx ¼ f�1
Y

Z fXðbÞ

fXðaÞ
~AðrÞdr

 !

; ð28Þ
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i.e. in terms of the Newtonian (Riemann, Lebesgue,...) integral of ~A. The two functions A

and ~A are related by (22). Under standard assumptions about differentiability and conti-

nuity of ~A we obtain both fundamental theorems of non-Newtonian calculus, relating

derivatives and integrals.

Let us note that (28) reduces an integral over X to a 1-dimensional integral over

½fXðaÞ; fXðbÞ
 � R. So, for example, if X ¼ R3 we reduce a 3-dimensional integral to a

1-dimensional one. The clue that such a counterintuitive possibility exists can be found

already in Wiener’s lectures on Fourier analysis (Wiener 1933).

Any model which is usually formulated in terms of the Diophantine arithmetic and the

Newtonian calculus can be regarded as a special case, with fXðxÞ ¼ x and fYðyÞ ¼ y, of a

general projective-arithmetic non-Diophantine and non-Newtonian one. All physical the-

ories have their non-Newtonian generalizations.

4 Arithmetic Analogue of Dark Energy

If the arithmetic we employ in mathematical modeling of physical theories is identical to

some putative Objective Arithmetic of the Universe, then there is no possibility of veri-

fying if the physical arithmetic is Diophantine or not. Simply, we will always find ‘two

plus two equals four’ and the like. We will not know that ‘two’, ‘four’ or ‘plus’ implicitly

involve some fX, so should be written with some subscript X. However, what if the

Universe ‘works’ with some other arithmetic, not necessarily the one we are accustomed

to? In principle, we can discover a mismatch between the two arithmetics, and thus

discover a nontrivial fX (Czachor 2017).

4.1 Matter Dominated Universe

Let us illustrate the phenomenon by the Friedman equation

daðtÞ
dt

¼ x=aðtÞ1=2; ð29Þ

for a flat, matter dominated FRW model with exactly vanishing cosmological constant

(Hartle 2003). With the initial condition að0Þ ¼ 0 we get

aðtÞ ¼ ð3xt=2Þ2=3: ð30Þ

The non-Newtonian generalization reads for A : X ! Y,

DAðtÞ
Dt

¼ xYøYAðtÞð1=2ÞY ; Að0XÞ ¼ 0Y; ð31Þ

where Að1=2ÞY �Y Að1=2ÞY ¼ A, i.e.

Að1=2ÞY ¼ f�1
Y

ffiffiffiffiffiffiffiffiffiffiffiffi
fYðAÞ

p� �
: ð32Þ

Employing the diagram (22) we rewrite (31) as

f�1
Y

d ~A
�
fXðtÞ

�

dfXðtÞ

 !

¼ f�1
Y

fYðxYÞ
~A
�
fXðtÞ

�1=2

 !

; ð33Þ
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so that

~A
�
fXðtÞ

�
¼
�
3fYðxYÞfXðtÞ=2

�2=3
; ð34Þ

AðtÞ ¼ f�1
Y

��
3fYðxYÞfXðtÞ=2

�2=3
�
: ð35Þ

Now let X ¼ Y ¼
�
� L=ð2‘Þ; L=ð2‘Þ

�
, L ¼ 8 	 1026 m, ‘ ¼ 2 	 10�35 m, xY ¼ f�1

Y ðxÞ.
Let the arithmetic be given by the example from Sect. 2,

fXðxÞ ¼ fYðxÞ ¼
L

p‘
tan

p‘x
L

: ð36Þ

The resulting A(t) is shown in Fig. 1 (the dashed curve). For super-large times A(t) bends

up in a characteristic way, typical of dark-energy models of accelerating Universe. It is

instructive to discuss also the tanh�1 we mentioned in the abstract. Therefore, let

fXðxÞ ¼ fYðxÞ ¼
L

2‘
tanh�1 2‘x

L
: ð37Þ

The resulting A(t) is shown in Fig. 1 (the dotted curve). In both cases the ‘dark energy’

effect is of purely arithmetic origin. However, the ‘dark energy’ behavior of a(t) is here

only qualitatively similar to the exact XM ¼ 0:3, XK ¼ 0:7 data (Reiss et al. 1998; Perl-

mutter et al. 1999).

So, is there a kind of arithmetic which is exactly compatible with the data? The answer

is in the next subsection.

4.2 Arithmetic Behind XM = 0:3, XK = 0:7

The case XM ¼ 0:3, XK ¼ 0:7 involves the Friedman equation,

daðtÞ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XKaðtÞ2 þ XM

aðtÞ

s

; aðtÞ[ 0; ð38Þ

for a dimensionless scale factor evolving in a dimensionless time. Equation (38) is solved

by

Fig. 1 Plots of a(t) (Eq. (30),
full) and A(t) (Eq. (35)) for
x ¼ 1. The dashed and dotted
curves correspond to arithmetics
given by Eqs. (36) and (37),
respectively. The models involve
no dark energy
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aðtÞ ¼

ffiffiffiffiffiffiffi
XM

XK

s

sinh
3
ffiffiffiffiffiffiffi
XK

p
ðt � t1Þ
2

 !2=3

; t[ t1: ð39Þ

The dimensionless time is here expressed in units of the Hubble time tH � 13:58 	 109 yr.

The present time, t ¼ t0, satisfies aðt0Þ ¼ 1 and thus

t0 � t1 ¼ 2

3
ffiffiffiffiffiffiffi
XK

p sinh�1

ffiffiffiffiffiffiffi
XK

XM

s

� 0:96: ð40Þ

For XK � 0, t1 ¼ 0, we reconstruct (30) with x ¼
ffiffiffiffiffiffiffi
XM

p
,

aðtÞ � 3
ffiffiffiffiffiffiffi
XM

p
t=2

� �2=3

: ð41Þ

A comparison of (39), written as

aðtÞ ¼ 3

2

ffiffiffiffiffiffiffi
XM

p 2

3
ffiffiffiffiffiffiffi
XK

p sinh
3
ffiffiffiffiffiffiffi
XK

p

2
ðt � t1Þ


 �2=3

; ð42Þ

with (35),

AðtÞ ¼ f�1
Y

3

2
fYðxYÞfXðtÞ

� �2=3
" #

; ð43Þ

suggests fYðyÞ ¼ y, and

fXðtÞ ¼
2

3
ffiffiffiffiffiffiffi
XK

p sinh
3
ffiffiffiffiffiffiffi
XK

p

2
ðt � t1Þ � 0:8 sinh

t � t1
0:8

; ð44Þ

f�1
X ðrÞ ¼ t1 þ

2

3
ffiffiffiffiffiffiffi
XK

p sinh�1 3
ffiffiffiffiffiffiffi
XK

p

2
r; ð45Þ

0X ¼ f�1
X ð0Þ ¼ t1: ð46Þ

Notice that there is some freedom in the choice of fY since one can take a linear function

fYðyÞ ¼ ay,

AðtÞ ¼ 3

2
a�1=2xYfXðtÞ

� �2=3

; ð47Þ

which just rescales the parameter xY.

Accordingly, (39) solves both (38) and (31). If fYðyÞ ¼ y, both Friedman equations are

equivalent to

DaðtÞ
Dt

¼
ffiffiffiffiffiffiffiffi
XM

aðtÞ

s

; t[ 0X: ð48Þ

The cosmological constant has disappeared from the right-hand-side of the Friedman

equation, but is hidden in the non-Newtonian form of the derivative. The fact that a is a

map X ! Y, with the non-Diophantine projective arithmetic defined in X ¼ R by (44),
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and the usual Diophantine arithmetic in Y ¼ R, implies that the metric tensor gab should

be regarded as a map gab : X
4 ! R.

5 Arithmetic Analogue of Dark Matter

Kolmogorov, Rashevsky, and Burgin contemplated non-Diophantine arithmetics of natural

numbers. In non-Newtonian calculus we deal with non-Diophantine arithmetics of real

numbers. The argument on practical indistinguishability of super-large numbers can be

equally well applied to numbers that are very small. Indeed, one can argue that 2 þ 2 ¼ 4

is as obvious as 4=2 ¼ 2. However, is

2�100100100

=2 ¼ 2�100100100�1

equally obvious? Similarly to machine infinity N1 one can speak of machine zero, a

nonzero finite number N0 satisfying N0=2 ¼ N0 (e.g. N0 ¼ 1=N1). In non-Diophantine

projective arithemetic zero is the neutral element of addition, 0X ¼ f�1
X ð0Þ. No matter

which bijection fX : X ! R one takes, one always finds x�X 0X ¼ x, Such a zero can be

non-zero in the ordinary Diophantine sense, so is a natural candidate for N0.

Let us consider a simple example. Actually, the example is so simple that it might seem

it cannot produce anything interesting: X ¼ R, fXðxÞ ¼ x� �, f�1
X ðrÞ ¼ r þ �. Here � is an

arbitrary real number, for example � ¼ N0. The neutral elements of addition and multi-

plication are 0X ¼ f�1
X ð0Þ ¼ �, 1X ¼ f�1

X ð1Þ ¼ 1 þ � ¼ 1 þ 0X. Analogously, all real

numbers will satisfy rX ¼ f�1
X ðrÞ ¼ r þ 0X. To simplify notation let us skip the index X in

the bijection and in the arithmetic operations it generates,

x� x0 ¼ f�1
�
f ðxÞ þ f ðx0Þ

�
¼ xþ x0 � �; ð49Þ

x� x0 ¼ f�1
�
f ðxÞ � f ðx0Þ

�
¼ x� x0 þ �; ð50Þ

x� x0 ¼ f�1
�
f ðxÞ � f ðx0Þ

�
¼ ðx� �Þðx0 � �Þ þ �; ð51Þ

xøx0 ¼ f�1
�
f ðxÞ=f ðx0Þ

�
¼ ðx� �Þ=ðx0 � �Þ þ �: ð52Þ

‘Minus x’ is given by

�x ¼ 0X � x ¼ f�1
�
� f ðxÞ

�
¼ �xþ 2�: ð53Þ

Let us cross-check:

�x� x ¼ ð�xþ 2�Þ þ x� � ¼ � ¼ 0X ð54Þ

as required. An arbitrary real power of x reads

xrX ¼ f�1
�
f ðxÞr

�
¼ ðx� �Þr þ �: ð55Þ

It satisfies the usual rules

xrX � xsX ¼ f�1
�
f ðxÞrf ðxÞs

�
ð56Þ

¼ xðrþsÞX ¼ ðx� �Þrþs þ �; ð57Þ

and
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DxrX

Dx
¼ f�1

�
rf ðxÞr�1

�
ð58Þ

¼ rX � xðr�1ÞX ¼ rðx� �Þr�1 þ �: ð59Þ

Let us apply the above formulas to a general non-Newtonian Newton-Coulomb ‘1/x’

potential

UðxÞ ¼ xð�1ÞX ¼ x�1X ¼ f�1
�
1=f ðxÞ

�
: ð60Þ

The non-Newtonian force

�DUðxÞ
Dx

¼ f�1
�
1=f ðxÞ2

�
¼ 1

ðx� �Þ2
þ � ¼ 1

ðx� 0XÞ2
þ 0X ð61Þ

has singularity at x ¼ 0X, and tends to 0X with x ! 1.

In our example both Diophantine and non-Diophantine arithmetics, and both Newtonian

and non-Newtonian calculi, are defined in the same set R. All the formulas can be thus read

in terms of either of them. But since the laws of physics are formulated here in a non-

Diophantine/non-Newtonian way, attempts of interpreting them in the Diophantine/New-

tonian formalism will lead to inconsistencies. For example, the attractive gravitational

force will asymptotically achieve a constant value 0X ¼ � and not just 0. An appropriately

formulated centrifugal force on a circular orbit, as well as the linear velocity along the

orbit, will also asymptotically tend to 0X ¼ �, and not just to 0. The mismatch of the two

arithmetics will have observable consequences analogous to those of a dark matter.

In the next Section we solve step by step the problem of velocity on a circular orbit

around mass M. The solution is valid in any projective arithmetic. One can analogously

formulate all of the standard ‘Newtonian physics’ by means of a non-Newtonian calculus.

All the formulas will have the usual textbook form. One only will have to replace dx=dt by

Dx=Dt, þ by �, 0 by 0X, and so on and so forth.

What is even more important, one can analogously reformulate any theory which is

based on some form of a calculus. General relativity will not be an exception from the rule.

Paradoxically, if needed, one could consider mathematically non-Newtonian versions of

physically non-Newtonian theories such as MOND or MOG.

6 Non-Newtonian Velocity on a Circular Orbit

Arithmetic works with dimensionless variables, so we need dimensional ‘fundamental

units’ (denoted by the Gothic font). For example: position ðx; y; zÞl, velocity ð _x; _y; _zÞv,

acceleration ð€x; €y; €zÞa, time tt, mass mm. We do not yet specify which units are truly

fundamental. Velocity perhaps satisfies v ¼ c, but at this stage we leave it arbitrary. The

arithmetic is projective in the sense of Burgin, i.e. is defined by means of some one-to-one

f : X ! R. We assume that arithmetics of domains and images of the maps in question are

identical (which is not obvious, so this is an assumption about this concrete model). By this

it is meant that, for example X 3 t 7!xðtÞ 2 X, so _xðtÞ ¼ DxðtÞ=Dt 2 X. Employing our

previous notation we write rX ¼ f�1ðrÞ 2 X for r 2 R. The same concerns the infinity

1X ¼ f�1ð1Þ. Elements of X are ordered by x�Xx
0 iff f ðxÞ� f ðx0Þ. Minus means

�x ¼ 0X � x. In particular, minus infinity is �1X ¼ f�1ð�1Þ. Recalling that an nth

power of x 2 X is denoted by xnX one should similarly denote higher derivatives by

DnXxðtÞ=DtnX , but I prefer the less redundant, simpler and yet unambiguous form
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DnxðtÞ=Dtn. The chain rule for derivatives of compositions of functions A;B : X ! X

reads (Czachor 2019)

DAðBðtÞÞ
Dt

¼
DA
�
BðtÞ

�

DBðtÞ � DBðtÞ
Dt

: ð62Þ

The non-Newtonian Hamilton equations

DpaðtÞ
Dt

¼ �DHðqðtÞ; pðtÞÞ
DqaðtÞ ; ð63Þ

DqaðtÞ
Dt

¼ DHðqðtÞ; pðtÞÞ
DpaðtÞ

; ð64Þ

imply the non-Newtonian Poisson bracket

fA;Bg ¼ DA

Dqa
� DB

Dpa
� DB

Dqa
� DA

Dpa
ð65Þ

(with non-Newtonian summation convention for �). Now, let

H ¼ ðp2X
1 � p2X

2 � p2X
3 Þøð2X � mXÞ � GX � mX �MXør ð66Þ

¼ f�1 f ðp1Þ2 þ f ðp2Þ2 þ f ðp3Þ2

2m
� G

mM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðx1Þ2 þ f ðx2Þ2 þ f ðx3Þ2

q

0

B@

1

CA; ð67Þ

where r ¼ ðx2X
1 � x2X

2 � x2X
3 Þð1=2ÞX , and all the variables are dimensionless. The non-

Newtonian Hamilton equations read explicitly

Dpj
Dt

¼ f�1 �GmMf ðxjÞ
�
f ðx1Þ2 þ f ðx2Þ2 þ f ðx3Þ2

�3=2

 !

; ð68Þ

Dxj
Dt

¼ f�1 f ðpjÞ
m

� �
¼ vj: ð69Þ

The analogue of the diagram (22),

X �!
xj ;pj

X

f
??y

??yf

R �!
~xj ; ~pj

R

; ð70Þ

defines the functions ~xj, ~pj such that

xjðtÞ ¼ f�1
�
~xjðf ðtÞÞ

�
; ð71Þ

pjðtÞ ¼ f�1
�
~pjðf ðtÞÞ

�
; ð72Þ

DxjðtÞ
Dt

¼ f�1 d~xj
�
f ðtÞ
�

df ðtÞ

� �
; ð73Þ
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DpjðtÞ
Dt

¼ f�1
d~pj
�
f ðtÞ
�

df ðtÞ

 !

: ð74Þ

The non-Newtonian Hamilton equations can be therefore rewritten as

d~pj
�
f ðtÞ
�

df ðtÞ ¼ �GmM ~xjðf ðtÞÞ
�
~x1ðf ðtÞÞ2 þ . . .þ ~x3ðf ðtÞÞ2

�3=2
; ð75Þ

d~xj
�
f ðtÞ
�

df ðtÞ ¼
~pjðf ðtÞÞ

m
¼ f
�
vjðtÞ

�
¼ ~vjðf ðtÞÞ; ð76Þ

which is the standard Newtonian problem for the intermediate quantities ~xj and ~pj.

However, once we have found them, we still have to compute the observable quantities

xjðtÞ and pjðtÞ.
The circular orbit r ¼ RX ¼ f�1ðRÞ is equivalent to

R2 ¼ ~x1ðf ðtÞÞ2 þ ~x2ðf ðtÞÞ2 þ ~x3ðf ðtÞÞ2; ð77Þ

d2 ~xj
�
f ðtÞ
�

df ðtÞ2
¼ �GM

R3
~xjðf ðtÞÞ ¼ �xR

2 ~xjðf ðtÞÞ: ð78Þ

An orbit located at x3 ¼ 0X corresponds to the circle R2 ¼ ~x1ðf ðtÞÞ2 þ ~x2ðf ðtÞÞ2
and

rotation with angular velocity xR, so

~v1ðf ðtÞÞ2 þ ~v2ðf ðtÞÞ2 ¼ xR
2R2 ¼ GM=R: ð79Þ

Finally,

v ¼ ðv2X
1 � v2X

2 � v2X
3 Þð1=2ÞX ¼ f�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R

p
Þ

¼ f�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=f ðRXÞ

p
Þ ¼

�
ðGMÞXøRX

�ð1=2ÞX :
ð80Þ

With RX ! 1X (i.e. R ! 1) the dimensionless velocity tends to f�1ð0Þ ¼ 0X. The

asymptotic dimensional velocity is 0Xv. This is the general solution, valid for any pro-

jective non-Diophantine arithmetic.

Analogous calculations lead to the dimensionless acceleration

a ¼ ða2X
1 � a2X

2 � a2X
3 Þð1=2ÞX ¼ f�1ðGM=R2Þ ð81Þ

¼ f�1
�
GM=f ðRXÞ2

�
¼ v2XøRX: ð82Þ

The dimensional one is aa. It tends asymptotically to 0Xa.

The non-Newtonian formalism predicts that the limiting velocity and acceleration are

mass independent, unless mass influences the form of arithmetic, of course. In any case, the

rate of convergence toward 0X with growing R is mass dependent.

7 Comparison with MOND

Formula (81) can be compared with Milgrom’s MOND. Assume f�1ðxÞ � x for x  xf ,

f�1ðxÞ � ffiffiffiffiffiffiffi
a0x

p
for 0\�\x\xf , and anything else otherwise. It is not difficult to invent a

bijection f : R ! R with such properties. Then
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aðRÞ �
GM=R2 for GM=R2  xf ;ffiffiffiffiffiffiffiffiffiffiffiffi
GMa0

p
=R for �\GM=R2\xf ;

f�1ð0Þ for R ! 1:

8
><

>:
ð83Þ

For velocity we get

vðRÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R

p
for

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R

p
 xf ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R

pq
for �\

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R

p
\xf ;

f�1ð0Þ for R ! 1:

8
>><

>>:
ð84Þ

Denoting

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R

pq
¼ vMðM;RÞ we obtain a MOND-type prediction

vMðM;RÞ4

M
¼ vMðM0;RÞ4

M0
ð85Þ

for any M, M0, R.

A fundamental principle behind MOND is now reduced to the one that governs the form

of f�1. For the moment the principle is unknown.

8 Arithmetic Universe

Out of nothing I have created a strange new universe

János Bolyai, from a letter to his father (1823)

Immanuel Kant in his Critique of Pure Reason (1781) concluded that the concept of space

is unique and given a priori. At the moment of publishing the book Gauss was four years

old, while Bolyai, Lobachevski, Riemann, and Einstein were not yet born. One cannot

blame Kant for his unawareness of different geometries. After Riemann but before Einstein

mathematicians already knew that non-Euclidean geometries were possible. According to

some accounts, Gauss even made measurements testing if angles in sufficiently large

triangles indeed sum to p. Curvilinear systems of coordinates were applied to differential

equations in Euclidean space much earlier, but the principle of general covariance, implicit

in the works of Lamé (1818), had the status of a mathematical trick used to simplify

calculations. Neither did one know that non-Euclidean character of space is experienced

under the name of gravity, nor that different geometries are implied by different

distributions of matter.

Identical questions can be posed in the context of arithmetic. Are we still in the

arithmetic Kantian era, with arithmetic given a priori? Certainly not. After the works of

Burgin, Grossman and Katz we are already in a Riemannian era, with formalism at hand

but with no true applications in mind.

Moreover, most of us is unaware that we in fact do experience non-Diophantine

arithmetic in our everyday life. In this respect we behave like those 19th century physicists

and mathematicians who experienced gravity but searched in vain for some observable

manifestations of non-Euclidean geometry of the Universe. A physical non-Diophantine

arithmetic is literally hiding just before our noses: human and animal sensory systems

perform a non-Diophantine subtraction,

npðxÞ � x ¼ f�1
�
f
�
npðxÞ

�
� f ðxÞ


¼ dp: ð86Þ
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The exact form of the ‘sensory scale’ f is unknown, but experiment shows that a gener-

alized subtraction is at work, making dp independent of x (the Weber law) (Falmagne

1985). The so-called sensitivity function npðxÞ is, roughly speaking, a perceived value of

the input signal x, obtained in p percent of measurements. If we know dp and f then

npðxÞ ¼ f�1
�
f ðxÞ þ f ðdpÞ

�
¼ x� dp: ð87Þ

The upper part of Fig. 2 shows typical Weber-law data for several sensory systems. The

lower part illustrates qualitative predictions for various types of non-Diophantine

Fig. 2 Indication of non-Diophantine arithmetic of human sensory system. Typical Weber-law data versus
sensation level of the stimulus (adapted from Luce et al. 1963). Dx=x is essentially npðxÞ=x� 1 for some p

(division and subtraction are here Diophantine). The traditional Weber law corresponds to the flat parts of
the curves. Below, the plots of npðxÞ=x for different f(x). Full curves: f ðxÞ ¼ x, f ðdpÞ ¼ 0:1 (leftmost),

f ðxÞ ¼ x2, f ðdpÞ ¼ 0:5 (middle), f ðxÞ ¼ x10, f ðdpÞ ¼ 10 (rightmost). The even powers are restrictions to

x� 0 of the general bijection f ðxÞ ¼ jxjqsgnðxÞ, q 2 R. Dashed curves: f ðxÞ ¼ tanh x with f ðdpÞ ¼ 0:01

(lowest), f ðdpÞ ¼ 0:15 (middle), f ðdpÞ ¼ 0:29 (upper). The bending-up occurring for the dashed lines is a

consequence of bounding f(x) from above
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arithmetics (Burgin and Czachor 2020). The plateaus are well modeled by

f ðxÞ ¼ a ln xþ b, a fact explaining why decibels correspond to a logarithmic scale. Non-

Diophantine arithmetic is employed by Nature.

Returning to the Universe, it is not easy to accept a scientific paradigm that fills it with

huge amounts of unobservable matter, or with pressure 10120 times smaller than its the-

oretical estimate. In the non-Newtonian formalism one does not have to change a single

scientific law to obtain this type of behavior. Putting it more modestly, even if the arith-

metic perspective will not entirely eliminate the need for dark matter or energy, it should at

least change theoretical estimates for their parameters. ‘Out of nothing’ we open new

theoretical possibilities.

The big question remains if there exists a natural law determining the form of arith-

metic. The problem was partially addressed by P. Benioff (2002, 2005a, 2005b) and, in an

explicitly non-Diophantine manner, by (Falmagne 2004; Falmagne and Doble 2015). One

should also mention the bit-string formalism of Pierre Noyes (Noyes and van der Berg

2001), and the universal computational rewrite paradigm of Rowlands (2007). All these

results, unfortunately, do not seem to bring us any closer to a universal form of fX, a

putative driving force behind our dark Universe.
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Appendix: Fractals as dark universes of zero Lebesgue measure

This section is somewhat orthogonal to the preceding ones, so I decided to shift it to the

‘‘Appendix’’. It shows that dark energy may be indeed a real energy that appears ‘out of

nowhere’. The common element of all these approaches is provided by the non-Newtonian

calculus. We will illustrate the idea on one of the simplest fractals: a Cantor dust.

The usual triadic middle-third Cantor set is constructed by the algorithm from Fig. 3a.

In the first step one removes the interior of the middle one-third of the segment C0 ¼ ½0; 1
.
The result is C1 ¼ ½0; 1=3
 [ ½2=3; 1
. In the second step one performs the same operation

on [0, 1/3] and [2/3, 1], arriving at C2 ¼ ½0; 1=9
 [ ½2=9; 3=9
 [ ½6=9; 7=9
 [ ½8=9; 1
. And

so on, ad infinitum. The sets are embeded in one another: C0 � C1 � C2 � . . .. The Cantor

set is the limit C ¼ \1
n¼0Cn. The Lebesgue measure l of Cn satisfies

lðCnþ1Þ ¼ 2
3
lðCnÞ ¼ 2

3

� �nþ1
lðC0Þ, which implies lðCÞ ¼ limn!1

2
3

� �n
lðC0Þ ¼ 0.

One can perform an analogous construction for C0þ ¼ ½0; 1Þ (Fig. 3b), but in each step

removing a left-closed interval, so that C1þ ¼ ½0; 1=3Þ [ ½2=3; 1Þ, etc. The resulting set

Cþ ¼ \1
n¼0Cnþ is self-similar with similarity dimension d ¼ log3 2. ‘Cantor dusts’ C and

Cþ have the same similarity dimensions. The sets are uncountable.

Figure 3b shows why Cþ and [0, 1) are in a one-to-one relation. Repeating the pro-

cedure in any interval ½k; k þ 1Þ, k ¼ 0;�1;�2. . ., we obtain a subset CR � R, which is a

123

90 M. Czachor

http://creativecommons.org/licenses/by/4.0/


periodic repetition of Cþ � ½0; 1Þ. CR and R are related by a one-to-one map

fCR
: CR ! R. The Lebesgue measure of a countable union of zero-measure sets is zero, so

lðCRÞ ¼ 0. Readers interested in more explicit details should consult (Czachor 2016; Aerts

et al. 2016a, b)

The next step is to consider a Schrödinger equation for a wave function wðxÞ,
R
R
jwðxÞj2dx\1. wðxÞ is a representative of the equivalence class jwi2 . It can be modified

on any zero-Lebesgue-measure set, for example CR, and yet quantum mechanical mea-

surements will not notice the difference. The fact that the resulting modified wave function

may not be differentiable is not a problem. Simply, one defines a derivative jw0i of the state

jwi as the derivative dwðxÞ=dx of this representative of the equivalence class which is

differentiable, and then treats it as a representative of the entire equivalence class jw0i.
Once dwðxÞ=dx is computed one can arbitrarily modify it at x 2 CR.

Assume the modification is such that wðxÞ and all its derivatives are set to 0 for x 2 CR.

Now we can take an arbitrary /ðxÞ which is defined only on CR. We will treat / as a

completely independent entity, unrelated to w. For simplicity assume that /ðxÞ 2 R, while

R is equipped with the ordinary Diophanthine arithmetic. The diagram (22) then reads

Fig. 3 Two ways of constructing ternary middle-third Cantor-type fractals. (A) One starts with a closed
interval C0. In each step one divides intervals into three segments of equal lengths, and removes interiors of

the middle ones. Cn is the set obtained in the n-th step. After n steps the number of endpoints equals 2nþ1.
The Cantor set is C ¼ \1

n¼0Cn. (B) One starts with a right-open interval C0þ. Each interval is cut in the

middle and split, forming two right-open intervals, three times shorter than the split one. Cnþ is the set
obtained in the n-th step. After n steps the number of endpoints equals 2n.The Cantor set is Cþ ¼ \1

n¼0Cnþ.

Both Cantor sets are self-similar, with the same similarity dimension log3 2. Clearly, the second procedure is
one-to-one so it defines a bijection fþ : Cþ ! C0þ

2 hf jgi is a scalar product if hf jf i ¼ 0 implies that jf i is a zero vector. However, if hf jf i ¼
R
jf ðxÞj2dx then it

is easy to give examples of nonzero functions f which nevertheless imply
R
jf ðxÞj2dx ¼ 0 if dx is the

Lebesgue measure on R. So, although f ðxÞ 6¼ 0 for some x 2 R, the corresponding state-vector jf i must be
regarded as the zero vector. In order to make it formal, we introduce the equivalence relation: f � g if and
only if f ðxÞ � gðxÞ is nonzero on at most a set of Lebesgue measure zero. The ket jf i is the equivalence class
of functions defined by the relation. In consequence, if we modify the values f(x) on a set of zero Lebesgue
measure, the state jf i remains unchanged, and thus no quantum measurement can detect the modification.
Sets of zero Lebesgue measure can have the same cardinality as the continuum R.
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CR �!/ R

fCR

??y
??yidR

R �!
~/

R

ð88Þ

here idRðxÞ ¼ x is the identity map. CR is equipped with its intrinsic arithmetic,

x�CR
x0 ¼ f�1

CR

�
fCR

ðxÞ þ fCR
ðx0Þ
�
; ð89Þ

etc. The derivative is just

D/ðxÞ
Dx

¼
d ~/
�
fCR

ðxÞ
�

dfCR
ðxÞ : ð90Þ

An energy eigenvalue for a quantum system defined on CR is given by the Schrödinger

equation for / : CR ! R,

�D2/ðxÞ
Dx2

þ UðxÞ/ðxÞ ¼ E/ðxÞ; ð91Þ

or equivalently

�
d2 ~/

�
fCR

ðxÞ
�

dfCR
ðxÞ2

þ ~U
�
fCR

ðxÞ
�
~/
�
fCR

ðxÞ
�
¼ E ~/

�
fCR

ðxÞ
�
: ð92Þ

The potential ~U is defined by the diagram

CR �!U R

fCR

??y
??yidR

R �!
~U

R

ð93Þ

As we can see, we have to solve the ordinary Schrödinger equation with the potential ~U. If

spectrum is discrete the solution is normalized by

h/j/i ¼
Z

CR

j/ðxÞj2Dx ¼
Z 1

�1
j ~/ðrÞj2dr ¼ 1: ð94Þ

The eigenvalue E comes from the zero-measure set CR. The presence of /ðxÞ cannot be

discovered by standard quantum measurements performed for wðxÞ. Still, the energy

E contributes to the overall energy of the system. We can say that (91) plays a role of a

dark energy eigenvalue problem.

The fact that (92) is effectively the standard Schrödinger equation raises the question if

a non-Newtonian modification of quantum mechanics can have less trivial observable

consequences. The answer is yes, in principle. In order to understand why, let us consider

the harmonic oscillator potential ~UðrÞ ¼ r2, and the non-Diophantine arithmetic in R

defined by f ðxÞ ¼ x3,

x� x0 ¼ f�1
�
f ðxÞ þ f ðx0Þ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 þ x03

3
p

; ð95Þ
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x� x0 ¼ f�1
�
f ðxÞ � f ðx0Þ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 � x03

3
p

; ð96Þ

x� x0 ¼ f�1
�
f ðxÞ � f ðx0Þ

�
¼ x � x0; ð97Þ

xøx0 ¼ f�1
�
f ðxÞ=f ðx0Þ

�
¼ x=x0: ð98Þ

Multiplication, division, and the neutral elements are unchanged: f�1ð0Þ ¼
ffiffiffi
03

p
¼ 0,

f�1ð1Þ ¼
ffiffiffi
13

p
¼ 1. The equation to solve is

� d2 ~wðrÞ
dr2

þ r2 ~wðrÞ ¼ E ~wðrÞ: ð99Þ

If E is the minimal energy then ~wðrÞ is the Gaussian normalized by
R1
�1 j ~wðrÞj2dr ¼ 1.

However, even if we assume that wðxÞ is Diophantine-arithmetic-valued, the probability of

finding the particle in [a, b] is given by the non-Newtonian integral

Z b

a

jwðxÞj2Dx ¼
Z f ðbÞ

f ðaÞ
j ~wðrÞj2dr ¼

Z b3

a3

j ~wðrÞj2dr; ð100Þ

since the domain of w is equipped with the non-Diophantine arithmetic. Probability of

finding a particle in [a, b] is thus given by the integral of the Gaussian over ½a3; b3
, and not

over [a, b]. Such differences in principle can be measured. Of course, the argument is valid

in all non-Newtonian probabilistic theories, not only in quantum mechanics.
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