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Abstract
The way of thinking of mathematicians and chemists in their respective disciplines seems to
have very different levels of abstractions. While the firsts are involved in the most abstract
of all sciences, the seconds are engaged in a practical, mainly experimental discipline.
Therefore, it is surprising that many luminaries of the mathematics universe have studied
chemistry as their main subject. Others have started studying chemistry before swapping to
mathematics or have declared some admiration and even love for this discipline. Here I
reveal some of these mathematicians who were involved in chemistry from a biographical
perspective. Then, I analyze what these remarkable mathematicians and statisticians could
have learned while studying chemical subjects. I found analogies between code-breaking
and molecular structure elucidation, inspiration for statistics in quantitative analytical
chemistry, and on the role of topology in the study of some organic molecules. I also
analyze some parallelisms between the way of thinking of organic chemists and mathe-
maticians in terms of the use of backward analysis, search for patterns, and use of pictures in
their respective researches.

Keywords Mathematicians · Statisticians · Chemistry · Molecular structure · Aesthetics
in sciences

Introduction

There is no doubt, as the philosopher C. S Peirce wrote, that (Peirce 1896): “Mathematics is
the most abstract of all the sciences”. Then, if we were able to watch in a film the lives of
famous mathematicians and statisticians like William T. Tutte (Younger 2012), John W.
Tukey (McCullagh 2003), William S. Gosset (Boland 1984), Frances Chick Wood (Cole
2017), Harald Cramér (Blom 1987), William J. Youden (Eisenhart and Rosenblatt 1972),
William R. M. H. Threlfall (O’Connor and Robertson 2000j), Floyd Burton Jones
(O’Connor and Robertson 2000b), Itsván Fenyő (Paganoni 1988), Elliot W. Montroll (Weiss
1994), and Gordon T. Whyburn (Floyd and Jones 1971), and see that they spent their youth
studying not mathematics, but chemistry, we possibly will cry: “What is a mathematician
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doing in a chemistry class?” All these remarkable mathematicians completed their B.Sc.,
and some their M.Sc. and even their Ph.D., in chemistry. But, also others like John Warner
Backus (Bjørner 2008), George Edward Pelham Box (O’Connor and Robertson 2000c),
Pao-Lu Hsu (Anderson et al. 1979), Kazimierz Kuratowski (Krasinkiewicz 1981), Gottfried
Köthe (Weidmann 1990), Einar Hille (Dunford 1981), Rzsa Péter (O’Connor and Robertson
20000i), Hermann Amandus Schwarz (O’Connor and Robertson 2000d) and John von
Neumann (Glimm et al. 2006; Bhattacharya 2021; Macrae 2019) started their university
studies in chemistry, and some of them spent up to two years, before swapping to mathe-
matics. Other great mathematicians have declared that they had fallen in love with chemistry
and named this subject as their first preference before deciding to study mathematics.

All the surprise mainly comes from the fact that chemistry has always being seen as a
practical science. Its own name derives from “alchemy”, which makes reference to a “set of
practices” to transform basic elements and metals into other substances. The philosopher
Immanuel Kant declared that (see McNulty 2014): “chemistry can be nothing more than a
systematic art or experimental doctrine, but never a proper science, because its principles
are merely empirical, and allow of no a priori presentation in intuition.” Nowadays, in spite
of the growing importance of theoretical chemistry—including all its subdisciplines, such as
quantum chemistry, mathematical chemistry, cheminformatics, chemometrics, etc.—chem-
istry is still a practical science. As remarked by the great theorist and Nobel Prize for
Chemistry Roald Hoffmann (Hoffmann 2008): “Theoreticians are a minority in chemistry,
which remains an experimental science.”

It seem at first sight that there could be nothing too antagonistic to each other than
chemistry and mathematics. But the reality is that some of these great minds have studied
chemistry and then have revolutionized fields like cryptography, statistics, topology, anal-
ysis, geometry, algebra, software development and others. Therefore, I argue here that there
should be some motivational concepts and examples, some way of thinking in chemistry,
which are relevant for the creativity of a mathematician. A chemistry student is confronted
with the problem of deciphering the molecular structure encoded by nature in their chem-
icals, not too different as a code-breaker deciphers the information contained in a coded
message. The repetitive analysis of the quantities of elements and compounds in samples of
very different nature inspire statistically-oriented minds in the classes of analytical chem-
istry. The many structural possibilities of molecules in the three-dimensional space where
they adopt so many topological shapes cannot escape the attention of geometers- and
topologists-to-be. More importantly, the retroanalytic way of thinking of chemists, in which
a molecular structure should be constructed from its building blocks, appeals more to the
way in which mathematicians prove theorems than to the way in which others, like
physicists, think. In this paper I describe some historic facts about the life of these math-
ematicians and statisticians. I speculate how they could be influenced in their further
mathematical developments by what they learned in their chemistry days. My hope is that,
mathematically-oriented minds, recognize that they can become professional mathemati-
cians and statisticians even if they are currently sat in a chemistry class.

Methodology

The methodology followed in this work is the following. I first searched for the words
“chemistry” and “chemist” at the MacTutor History of Mathematics Archive (O’Connor and
Robertson 2000g). A list of mathematicians who have had any connection with chemistry
was then collected. Every single mathematician in the list was checked for her implication
with this matter and classified as: (i) those who completed a degree in chemistry or have
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worked as a chemist, (ii) those who studied chemistry for more than one year and then
swapped to mathematics, and (iii) those who have stated some attraction by chemistry
before studying mathematics. Then, I investigated the historic details provided by MacTutor
about the claimed links and performed a bibliographic search for primary information
corroborating and/or widening such information. The most relevant documented connec-
tions are the ones presented here. Therefore the list analyzed in this paper is not exhaustive.

The code-breakers

The first two actors in this play are William Thomas Tutte (1917–2002) (Younger 2012) and
John Wilder Tukey (1915–2000) (McCullagh 2003). Apart from being contemporary, a
priori, both mathematicians appear to be very distant in their fields of research. While Bill
Tutte is well known for his many and important contributions in graph theory, Tukey is
better known for his important contributions in statistics. To be more precise, in the period
1940–1949 Tutte published one fifth of all papers published in graph theory (Hobbs and
Oxley 2004). His thesis published in 1948 with the title An Algebraic Theory of Graphs,
was devoted to graphs and contains the first major contributions in the study of matroids.
Accordingly, A. M. Hobbs and J. G. Oxley (Hobbs and Oxley 2004) state that Tutte
“advanced graph theory from a subject with one text (D. König’s) toward its present
extremely active state, and he developed Whitney’s definitions of a matroid into a substantial
theory.” All in all, Tutte published 160 papers and 6 books [see electronic information at
Younger (2012)] among which there are the famous Connectivity in Graphs (Tutte 1966a)
first published in 1966, Introduction to the Theory of Matroids (Tutte 1966b) and Graph
Theory as I have Known it (Tutte 1998) in 1998. Some of the mathematical concepts named
after him are: Hannai-Tutte theorem, Tutte 12-cage, Tutte embedding, Tutte graph, Tutte
homotopy theorem, Tutte matrix, Tutte polynomial, Tutte-Berge formula, Tutte-Coxeter
graph, Tutte-Gothendieck invariant, Tutte’s 1-factor theorem, Tutte’s fragment, Tutte linking
theorem, Tutte’s planarity criterion, Tutte’s triangle lemma, Tutte’s wheel theorem, all of
them in graph theory.

On the other side of the coin we find Tukey (McCullagh 2003), who published his thesis
in topology with the title On Denumerability in Topology. His further career was marked by
his many contributions to exploratory data analysis, projection pursuit, and the invention of
the Fast Fourier Transform (FFT) as well as of the box plot. His name is associated to:
Tukey’s range test, Tukey k distribution, Tuckey-Duckworth test, Siegel-Tuckey test,
Tuckey’s trimean, Tuckey’s lemma, Tuckey median, and several others in statistics. A
complete list of his papers is found at (Beebe 2020).

The first mathematical paper published by Bill Tutte was entitled The dissection of
rectangles into squares (Brooks et al. 1940), which appeared in 1940 together with R. L.
Brooks, C. A. B. Smith and A. H. Stone. The paper deals with the problem of dividing a
rectangle into a finite number of non-overlapping squares, no two of which are equal. It uses
some graph theoretic concepts in the form of directed networks and connects with the
electrical theory of networks and Kirchhoff’s law, which are nowadays active field of
research in algebraic graph theory. Curiously, one of the authors of this paper, Arthur Harold
Stone, published the paper Generalized “sandwich” theorems (Stone and Tukey 1942) with
John Tukey in 1942. Therefore, Tutte and Tukey are separated only by one coauthor in the
collaboration network of mathematicians. However, this is not the most interesting of their
points of coincidence as they both: (i) studied Chemistry, and (ii) worked as code-breakers
during the II World War (IIWW).
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Tutte obtained his undergraduate degree in Chemistry with first-class honors in Cam-
bridge University in 1938 (Younger 2012; Hobbs and Oxley 2004). Tuckey obtained a B.Sc.
in Chemistry in 1936 at Brown, followed by a M. Sc. in Chemistry in 1937 at the same
University (McCullagh 2003). It is well-known that Tutte was chosen to work at Bletchley
Park (Younger 2012; Hobbs and Oxley 2004), where he arrived in May 1941 as a member
of the Research Section. This section has been widely known through the legendary work
made by Alan Turing with the German coding machine Enigma. However, the Germans also
had the Lorenz cipher, codenamed “FISH” by the British (Tutte 2000). “Working from
scratch, Tutte performed, with colleagues, a similar feat against Lorenz by deducing from
signal traffic how it worked and how it was built–without ever having seen the machine
itself, still less got his hands on a plan or drawing of it ” (van der Vat 2002). His work has
been described as “the greatest intellectual feat of the whole war” (cited by Younger
(2012)). Although the wartime information about the activities of Tukey is scarce, there are
suggestions that he was also a code-breaker during and after WWII. For instance, W. O.
Baker (cited by Brillinger (2002)) has affirmed that: “John was indeed active in the analysis
of the Enigma system and then of course was part of our force in the fifties which did the
really historic work on the Soviet codes as well. So he was very effective in that whole
operation.”

There is a third point of coincidence in the careers of Tutte and Tukey which I would like
to remark. It is their relation with a physical chemistry technique known as “spectroscopy”
(Pavia et al. 2014). Spectroscopy, as any student of chemistry learns, refers to the study of
the quantized interaction of electromagnetic radiations with matter. The techniques are then
classified according to the region of the electromagnetic spectrum which is used for this
interaction with atoms or molecules, e.g., visible, ultraviolet, infrared, X-rays, microwaves,
etc. Bill Tutte started to do research in physical chemistry with Gordon Brims Black McIvor
Sutherland (1907–1980), FRS 1949 (Sheppard 1982), on infrared spectroscopy. Gordon
Sutherland is well-known for his major contributions to the “transformation of infrared
spectroscopy from a research technique practiced in few laboratories into a powerful and
widely used method for analysis and for the determination of molecular structure”
(Sheppard 1982). This is one of the most powerful uses of spectroscopy in chemistry. It is a
“machine” to decode information coded in the form of molecular structures. Tutte and
Sutherland published a short letter in Nature entitled Absorption of polymolecular films in
the infra-red (Sutherland and Tutte 1939). A year later, Bill Tutte collaborated with another
spectroscopist at Cambridge, William Charles Price (1909–1993) (Dixon et al. 1997),
elected FRS in 1959, this time on ultraviolet spectroscopy. This second collaboration was
published in the article The absorption spectra of ethylene, deutero-ethylene and some alkyl-
substituted ethylenes in the vacuum ultraviolet (Price and Tutte 1940). Bill Price was “a
superb experimentalist, a formidable theorist and an extraordinary innovator” (Dixon et al.
1997) who was capable of building his own instruments, making his own measurements and
developing his own theories to explain his results.

The many contributions of John Tukey to the analysis of spectra were reviewed by
Brillinger in (2002). According to Brillinger the contributions of Tukey to spectroscopy
cover the areas of methods, their properties, terminology, popularization, philosophy,
applications and education. It seems that most of Tukey’s work on spectrum analysis
remained unpublished until 1959 when he made his approach accessible to a wide audience.
The impact of the Fast Fourier Transform developed by Cooley and Tukey in (1965) on
spectroscopy can be categorized as a revolution, which nowadays is known as “Fourier-
transform spectroscopy” (Griffiths and de Haseth 2008). In his collected works published in
1984 Tukey recognizes the importance of spectral analysis in his work by saying that (Jones
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1986): “It is now clear to me that spectrum analysis, with its challenging combination of
amplified difficulties and forcible attention to reality, has done more than any other area to
develop my overall views of data analysis.”

How the knowledge of Tutte and Tukey on spectroscopy which they have learned during
their studies could have influenced their work as code breakers? We possibly will never
know, but I would like to speculate about it on the basis of the similarities of breaking
information codes and the way in which spectroscopy is used in organic chemistry to
“decipher” molecular structures.

On coding and decoding

An encrypted message is written by an encoder with the goal that it is interpreted by an
appropriate receiver but not by possible interceptors. The discipline of encoding and
decoding secret messages is cryptography, from kryptos, meaning hidden or secret in Greek,
and graphia meaning writing in the same language. The forward process consists of
encrypting a plaintext into a ciphertext or encrypted message to be sent to a receiver. The
backward process, called decrypting or decoding the message, consists in turning the
ciphertext into a readable plaintext, for which the receiver needs a code or key which allow
her to decode the encrypted information. More formally, a cryptosystem is a five-tuple
ðP;C;K;E;DÞ fulfilling the following conditions (Stinson 20005):

1. P is a finite set of possible plaintexts;
2. C is a finite set of possible ciphertexts;
3. K is a finite set of possible keys;
4. For each K 2 K there is an encryption rule eK 2 E and a corresponding decryption rule

dK 2 D. Each eK : P ! C and dK : C ! P are functions such that dK eK xð Þð Þ ¼ x for
every plaintext x 2 P.

An interceptor of that message, who does not have the code or key to decipher it, needs to
find a way to crack or break the code in order to know the content of the original message.

An example of encryption system is the famous Enigma machine used by the Germans
during WWII to transmit coded messages [see Chapter 3 in Singh (1999)]. It uses a form of
substitution encryption, but to make the codes more secure, the Enigma machine gives a
mechanized way of performing one alphabetic substitution cipher after another. The
machines used by German army also have a plugboard allowing for even more configu-
ration possibilities, up to a total of 158,962,555,217,826,360,000 ones. Then, such codes are
in principle unbreakable. However, as it used to be with most of systems of any kind, the
structure of the system determines its function. As the molecular biologist Francis Crick
once put it (Crick 1991): “If you want to know function, study structure”. One of these
structural features, which can be seen as a weak point, is the fact that in the Enigma code a
letter could never be encoded as itself. That is, an “A” will never appear as an “A” in the
codes. Then, the codebreakers could guess a word or phrase that would probably appear in
the message, such as a weather report, or the “Heil Hitler” at the end of the messages. By
comparing a given phrase to the letters in the code, having in mind the impossibility that a
letter could be encoded as itself, they could begin cracking the code with a process of
elimination approach. The process can be made automatically, as Alan Turing and Gordon
Welchman did with a machine called the Bombe. It was able to crack Enigma messages in
less than 20 min by determining the settings of the rotors and the plugboard of the German
machine. What is most important here, from my point of view, is this intuition based on the
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hidden principles of structure-function relations, that allowed code-breakers to start disen-
tangling the information encoded in German messages.

The difficulties that Bill Tutte had to confront in deciphering the messages encoded by
the Lorenz machine were even greater (Tutte 2000). This machine was used to encrypt
communications between Hitler and his generals. It operates under the same principles than
the Enigma machine but it was far more complicated. The process for code-breaking of
Lorenz also started when John Tiltman and Bill Tutte discovered a weakness in the way in
which this cipher was used. Thus, here again the intuition based on structure-function
principles plays an important role. As it has been put forward by Singh (1999): “breaking
the Lorenz cipher required a mixture of searching, matching, statistical analysis and careful
judgment.”

Breaking molecular codes

Let us suppose that an organic chemistry teacher motivates her students by telling them the
following story. We have received a mysterious parcel containing a white to very pale
yellow crystalline powder, which is almost odorless. Our task is to decipher what is the
molecular structure of this chemical substance, she said. In full analogy with cryptoanalysis
we can consider that this problem consists on deciphering a cryptosystem ðP;C;K;E;DÞ,
where P is the finite set of all molecular structures that can be formed with the chemical
elements of the periodic table, C is a finite set of possible physical and chemical properties
that of this substance can display as a consequence of its molecular structure. There is at
least one key K 2 K which is the one Nature has used to encrypt the chemical structure in
the form of physical and chemical properties: eK 2 E, such that eK : P ! C. Then, our task
is to interpret those physical and chemical properties to decipher the molecular structure:
dK : C ! P in a unique way.

The first task in deciphering the molecular structure of a given substance is analogous to
the frequency analysis for deciphering a monoalphabetic cipher. It is the determination of
the chemical elements composing the substance, both qualitatively and quantitatively. In this
case, Albert Szent-Gyorgyi (Grzybowski and Pietrzak 2013)—who was awarded the Nobel
Prize for Medicine in 1937–determined experimentally in 1928 that the same substance
contained in our parcel is formed only by three chemical elements, i.e., P ¼ C,H,Of g. He
also determined the “frequency” with which these elements appeared in the corresponding
substance: C(40.7%), H(4.7%) and O(54.6) (Szent-Györgyi 1928). Using the molecular
weight, also determined by Szent-Gyorgyi, for this substance, 178� 2 g/mol, he arrives at
the global molecular formula: C6H8O6. This information is equivalent to knowing the letters
and their frequency in the corresponding ciphertext, but of course, the arrangement of these
letters is what determines all the information in the message. With this global molecular
formula and molecular weight (176.12 g/mol) we can build many different isomers, i.e.,
molecules with the same global formula but different molecular structures, such as the ones
illustrated in Fig. 1. In this small sample of isomers we have acyclic structures (a and d),
monocyclic ones (b, e and f), bicyclic (c), structures with a pentagon (b) and with an
hexagon (e and f), acidic groups (a, e and f), alcohol groups (b, c, d, e), etc.

Using a brute force strategy for determining which of all possible structures correspond
to the one in question is in general a bad strategy. The reason is the same as for not using
such strategy for deciphering substitution cipher codes: the combinatorial explosion of
possible structures. Thus, chemists follow a rational strategy principled in the structure-
function relations between a molecule and its properties. It combines the analysis of
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physical properties and chemical reactions to decipher the molecular structural code. We can
said here that chemists follows a strategy or an algorithm for deciphering the code, in an
exact analogy of what code breakers should do to decipher their codes. As put forward by
chemist Henry Eyring (1901–1981): “The ingenuity and effective logic that enable chemists
to determine complex molecular structures from the number of isomers, the reactivity of the
molecule and of its fragments, the freezing point, the empirical formula, the molecular
weight, etc., is one of the outstanding triumphs of the human mind” (Eyring 1963).

The students in the class of organic chemistry will then learn such “effective logic” to
decode chemical structures (Hoffmann 2017). At this point the student can record the IR
spectrum of the powder, obtaining the plot illustrated in Fig. 2. Her knowledge of IR
spectroscopy allows her to determine that the strong bands at 3526, 3410, 3315, and 3216
correspond to stretching vibrations of OH groups typical of alcohols. Therefore, the
structures (a) and (f) are immediately discarded because they contain acidic but not alco-
holic OH. The strong band at 1764 corresponds to the stretching of C=O, particularly when
it appears in a lactone structure like in (b) and (c). The very strong band at 1675 corresponds
to C=C stretching when this group is in a ring (Panicker et al. 2006), which left only the
structure (b) as the candidate to be the structure corresponding to the white powder. This
structure is the one of Ascorbic Acid or vitamin C.

Fig. 1 Examples of isomers with the global molecular formula C6H8O6 and molecular weight 176.12 g/mol

Fig. 2 Infrared (IR) spectrum of a white powder under investigation in a chemistry lab. according to
(Panicker et al. 2006)
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In a similar way as a code breaker who has cracked a code can infer the structure of the
machine that has coded it, the chemistry student can ask fundamental questions about the
coding-decoding process of this molecule. How and why Nature encoded the molecular
structure of ascorbic acid in this way? Who is the receiver of this message? This certainly
will introduce her into deeper knowledge in the frontiers of chemistry, biochemistry and
molecular biology (Davies et al. 2007). What I think is undoubtful is the fact that a
mathematician-to-be studying chemistry will find the determination of molecular structures
as a challenging code breaking game. At the end of the day, the code breaker here is playing
the decoding game not against an enemy of the same intellectual capacity as herself, but
against the powerful Nature.

It could be thought that the process of decoding Nature’s encoded structures by a chemist
is a relatively easy task. Nothing could be farther from the reality. To illustrate the com-
plexities arising by the many (chemically meaningful) combinatorial possibilities in which a
set of atoms can be grouped in a molecule, let me give the example of strychnine (for
historic facts described here see Seeman and Tantillo (2020). Strychnine is an alkaloid
known since XIX century. It has been known as a potent lethal weapon against small
vertebrates such as birds and rodents, but which can also produce death through asphyxia in
humans. The efforts for decoding the structure of strychnine started at the end of the XIX
century with the works of the Swiss-born organic chemist Julius Tafel and ended up in 1947
with the structure determined by Robert Robinson. Although it was not until 1954 that the
structure was obtained synthetically in a lab by R. B. Woodward, definitively confirming its
molecular structure. More than 50 years of efforts and angry battles between different
schools of chemistry. Up to 1950 the determination of the structure of strychnine saw the
publication of 245 scientific papers, and involved luminaries like Herman Leuchs, father of
the Leuchs reaction and the Leuchs anhydride, Vladimir Prelog, who was Nobel Prize in
Chemistry in 1975, Robert Robinson, Nobel Prize in Chemistry in 1947, Heinrich Wieland,
Nobel Prize in Chemistry in 1927, and R.B. Woodward, Nobel Prize in Chemistry in 1965.
In Fig. 3 I illustrate some of the structures proposed between 1910 and 1947 by two of the
main players in this career, Robinson and Woodward. The reader is left free to compare the

Fig. 3 Several of the proposals of Robinson and Woodward for the structure of strychnine in chronological
order

123

E. Estrada



efforts and time consumed to decipher the code of strychnine to those employed to decipher
the codes of human encrypted messages.

The statisticians

The statisticians William Sealy Gosset (1876–1937) (Boland 1984), Frances Chick Wood
(1883–1919) (Cole 2017), Harald Cramèr (1893–1985) (Blom 1987) and William John
Youden (1900–1971) (Eisenhart and Rosenblatt 1972) studied Chemistry as their major
field. Additionally, George Edward Pelham Box (1919–2013) (O’Connor and Robertson
2000c) and Pao Lu Hsu (1910–1970) (Anderson et al. 1979) studied two years for a degree
in Chemistry and then swapped to mathematical statistics. Box made his change as a
consequence of the lack of reproducibility of his experiments with poison gas on animals at
the British Army Engineers, and Hsu who has started his studies of chemistry at Yangjing
University decided to change subject as well as university, and so he went to Tsing Hua
University to read for a degree in mathematics. Box is mainly known for his results in
quality control, time-series analysis, design of experiments and Bayesian inference. His
name is associated with the Box-Jenkins method, Box-Cox transformation, Box-Cox dis-
tribution, Box-Pierce test, Box-Behnken design and the Liung-Box test. Hsu is known for
his work in probability theory and statistics, where his name is for instance related to the
Hsu–Robbins–Erdős theorem.

William S. Gosset, who is better known by his pseudonym “student”, “will be remem-
bered primarily for his contributions to the development of modern statistics” (Boland
1984) [see also McMullen (1939) and Pearson (1939)]. He is better known for his invention
of the so called (Student’s) t-distribution proposed in his paper The probable error of a mean
(Student 1908). This paper has been qualified as (Zabell 2008): “truly remarkable for its
richness. It simultaneously heralded the advent of small-sample distributional studies in
statistics, used simulation in a serious way to investigate such distributions, and investi-
gated the robustness of its results against modest departures from normality.” In total
Gosset published 22 papers, 14 of them in Biometrika (Boland 1984). Wood, nee Chick,
made important contributions to medical statistics, including topics such as “Real Wages in
London”, “Index correlations”, “Mortality from Cancer”, “Cancer and Diabetes Death-
rates”, among others which included the analysis of the cost of food during the outbreak of
the First World War or a paper about the fertility of English middle classes (Cole 2017). She
published in Journal of the Royal Statistical Society; Proceedings of the Royal Society of
Medicine; Journal of Hygiene, among others. Cramèr was mathematician, statistician and
actuary, specializing in mathematical statistics and probabilistic number theory. He has been
called “one of the giants of statistical theory” (Zabell 1986). Cramér is well-known for the
Cramér-Rao inequality, the Cramér-Wood theorem, the Cramér’s theorem on large devia-
tions as well as for his books Mathematical Methods of Statistics (Cramér 1999) and
Random Variables and Probability Distributions (Cramér 2004). He is also well known for
his contributions to Insurance Mathematics. Finally, Youden (Eisenhart and Rosenblatt
1972) was a statistician known for his formulation of new techniques in statistical analysis
and in design of experiments. Some examples of his works are the development of the
“Youden square” which is an incomplete block design, introduced the concept of restricted
randomization, and “Youden’s J statistic” devised as a simple measure summarizing the
performance of a binary diagnostic test. He published in journals like Biometrics; Tech-
nometrics, among others (Hamada 2022).
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When “student” published his remarkable 1908 paper he was not a statistician but a
chemist. He had obtained a First-Class Degree in Chemistry in 1899 at Winchester College
and New College, Oxford, U.K. (Boland 1984; Pearson 1939). At the time of his seminal
paper he was employee of Arthur Guinness, Son & Co., Ltd. in Dublin, Ireland. For this
reason it has been considered that publishing such paper was “a singular accomplishment,
especially so given the limited formal background in mathematics and statistics that Student
had” (Zabell 2008). On the other hand, “Chick”Wood started her academic life with a B.Sc.
with Honours in Chemistry from the University College London in 1904 (Cole 2017). She
then spent three years to research work in chemistry, first with Sir William Ramsay, a
Scottish chemist who received the Nobel Prize in Chemistry in 1904 for his discovery of the
noble gases, and then with Sir Arthur Harden, an English chemist who won the Nobel Prize
in Chemistry in 1929 together with Hans von Euler-Chelpin for their investigations into the
fermentation of sugar and fermentative enzymes. In this period “Chick” Wood published
papers on experimental chemistry signing as Frances Chick (Chick and Wilsmore
1908, 1910; Chick 1912), before dedicating entirely to medical statistics. When Cramér
started his career in 1912 at Stockholms Högskola, his main interests were both chemistry
and mathematics (Blom 1987). However, he started his contributions on experimental
biochemistry. In the years 1913–1914 Cramér was a research assistant under the famous
chemist Hans von Euler-Chelpin (Nobel Prize for Chemistry in 1929) and they published
five papers on experimental biochemistry: 2 in Zeitschrift für physiologische Chemie (now
Biological Chemistry) and 3 in Biochemische Zeitschrift (now European Journal of Bio-
chemistry) (see Blom (1987) for references). Then, in 1917 he complete his Ph. D. dis-
sertation in mathematics (Cramér 1917), and continues his career as a mathematician.
Youden entered Columbia University in September 1922 where he obtained first his Mas-
ter’s Degree in 1923 and then his doctorate in 1924, both in chemistry (Eisenhart and
Rosenblatt 1972; Hamada 2022). His Ph.D. thesis has the title: A new method for the
gravimetric determination of zirconium, which covers an important and classical area of
analytical chemistry.

Quantitative analysis: a matter of doses

Analytical chemistry is a branch of chemistry which deals with the separation, identification
and quantification of matter (Skoog et al. 2013). The example illustrated in the previous
section about the identification of the chemical structure of vitamin C corresponds to the
area of qualitative research. However, the thesis of Youden (portrayed in the previous
subsection) belongs to the area of quantitative analysis, which determines the numerical
amount or concentration of a given chemical previously identified. The importance of
quantification in analytical chemistry can be resumed in the quote of Paracelsus, a Swiss
physician, alchemist, theologian and philosopher who lived between 1493–1494 and 1541,
who is credited as the “father of toxicology” (Borzelleca 2000), when he said that “All
things are poisons, for there is nothing without poisonous qualities. It is only the dose which
makes a thing poison.”

Drinking a beverage containing methanol–known to produce decreased level of con-
sciousness, poor or no coordination, vomiting, abdominal pain, and may produce blindness,
kidney failure and death–, arsenic, hydrogen sulfide, furfural, 2,3-pentanedione, dimethyl
sulfide, and many other chemicals known for their toxicity, seems to be a very bad idea.
However, if we know that the beverage is formed by Buiatti (2009): 90–94% of water,
followed by ethanol (ethylic alcohol) in about 3–5% v/v, that the concentration of methanol
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is only 0.5�3.0 mg/l, that all sulfur compounds are present in concentrations below 10 mg/l,
and that arsenic is present at tiny concentrations below 0.05 mg/l, we can decide to drink it.
Indeed, this beverage is beer, which reveals the importance of concentrations of chemicals
in a given product to be healthy or not as it was remarked by Paracelsus.

Chemicals present in beer are derived from raw materials used in its fabrication, either
passing unchanged through the brewing process or produced during the own process
(Buiatti 2009). Beer is fabricated by using water, malts and its adjuncts, hops and yeast.
Malt and hops are responsible for characteristic acidic, bitter, astringent, winey, malty,
peppery, fruity, grainy, spicy, vinous, mouldy, woody, metallic flavors that can be detected in
a beer, among many others that only experts can detect (Hough et al. 1982). However, hops
and barley are agricultural products, which are subjects to many variables, some of them
controllable, like the species of hops and barley used, or the region where they are grown,
and others uncontrollable like the meteorological conditions of a particular season.

It is evident then that the quality control of these raw materials represents a major
challenge for brewery industry. This was the major challenge encountered by Guinness
company at the end of the XIX century when they expanded their production having to
spend millions of imperial pounds in hops. At this point the traditional method of choosing
hops by directly looking and smelling at it was unpractical and need to be replaced by the
analysis of small samples of every lot. Thomas B. Case, Guinness’s first scientific brewer,
started experiments to check the quality of hops from USA and from Kent in England [see
Ziliak (2008) for historic events described in this paragraph]. The procedure consisted in
analyzing the percentages of soft and hard resin in samples of 50 grams from the different
lots. Case and his team found that the average of soft resin in 11 samples of Kent hops was
8.1%. Another team analyzed 14 samples from the same lot detecting 8.4%, which indicates
a difference of 0.3 percentage points. The same analysis for the American hops produced
differences of 0.7% for soft resin and 1.0% for the hard one. The question arising was: Are
these differences “significant”? At the time of these experiments the answer was: “We could
not... support the conclusion that there are no differences between pockets of the same lot.”
This was due to the fact that there was not a statistical theory to make inferences from small
samples like the ones analyzed at Guinness. In 1899 Guinness has hired a recently graduated
chemist who has being also awarded a First in the Mathematical Moderations examination
in 1897. The name of this fellow is William Sealy Gosset, who revolutionized the statistical
analysis of small samples and other areas of statistics. Nowadays, a branch of analytical
chemistry known as “chemometrics”, which deals with “the application of principles of
measurement science and multivariate mathematics and statistics to efficiently extract
maximum useful information from data” is used for the analysis of beers (Siebert 2001). No
doubts that “student” is its father.

Similar situations can be confronted by any practitioner of quantitative methods of
chemical analysis. Youden, according to Hamada (Hamada 2022), becomes frustrated for
the impossibility of making comparisons with the existing “analyses” of the highly variable
biological experimental data while working at the Boyce Thompson Institute for Plant
Research (BTI) in Yonkers, NY. The seed of an applied statistician in Youden was already in
his PhD thesis where, in 1924, he showed his knowledge about measurement and how to
develop precise measurement methods. After his thesis he started to prepare himself as a
statistician, first by studying Student’s 1908 paper, then by studying Fisher’s (1925) Sta-
tistical Methods for Research Workers and later attending in 1931, Hotelling’s mathematical
statistics course taught at Columbia University in Manhattan, NY. In his 1931 paper with I.
D. Dobroscky he already uses an experimental plan “that eliminates a source of error and
further eliminates another source by differentiating the measurements” (Youden and
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Dobroscky 1931). As (Hamada 2022) has put it forward “Youden was an applied statisti-
cian. He was not a mathematical (theoretical) statistician. He invented a number of designs,
but was not a combinatorial designer.” Among the scientists he had a reputation of “a
statistician we can talk to” (Zelen 1971).

The topologists

One of the mathematicians which I have presented before, John Wilder Tukey (McCullagh
2003), also contributed to topology across his career and his name is associated to many
terms in this field: Galois-Tuckey connections, Tuckey equivalence, Tuckey reducibility,
the Tuckey theory of analytic ideals, Tuckey ordering and the Tuckey lemma, which
already appeared in his Ph.D. thesis. He has said about topology that it “exists to provide
methodology for large chunks of the rest of mathematics.” We have seen before that Tukey
obtained his B.Sc. and M.Sc. in Chemistry. Similarly, the renowned topologists William
Richard Maximilian Hugo Threlfall (1888–1949) (O’Connor and Robertson 2000j), Floyd
Burton Jones (1910–1999) (O’Connor and Robertson 2000b), and Gordon Thomas
Whyburn (1904–1969) (Floyd and Jones 1971) obtained their degrees in Chemistry. An
interesting case was that of Kazimierz Kuratowski (1896–1980) (Krasinkiewicz 1981;
O’Connor and Robertson 2000f), who is well-known for his contributions to the char-
acterization of planar graphs (Kuratowski’s theorem), Kuratowski’s closure axioms,
Knaster-Kuratowski fan, the development of homotopy in continuous functions, among
other contributions in set theory and topology. Kuratowski studied engineering for a year
at the University of Glasgow where he studied chemistry at the Technical College during
the summer (O’Connor and Robertson 2000f). After the I World War he could not return
to Scotland from his holidays in Poland, and then he swapped his studies to mathematics.
In a similar vein I include here Gottfied Maria Hugo Köthe (1905–1989) (Weidmann
1990) who made important contributions to the study of topological vectors spaces,
abstract algebra and functional analysis. He published the book: Topological vector spaces
(Köthe and Köthe 1983). He studied Chemistry during two years at the University of Graz
and then started studies in mathematics and philosophy due mainly to his fascination with
epistemology.

Threlfall was well known for his contributions in algebraic topology. He is famous for his
books Gruppenbilder published in 1932 and reviewed by Coxeter in (1934), Lehrbuch der
Topologiewritten with his former student Herbert Seifert and published in 1934, reviewed
by Whitehead (1934) and Variationsrechnung im grossen (Morsesche Theorie) also with
Seifert, published in 1938 and also reviewed by Whitehead (1939). On the other hand,
Floyd Burton Jones (O’Connor and Robertson 2000b) is known for his contributions to
metrization of Moore space (after Robert Lee Moore, an American mathematician spe-
cialized in general topology) published in (Jones 1937), as well as for the concept of
aposyndesis and its development as a theory published in (Jones 1941). Jones published in
total 67 papers mainly in Proc. Amer. Math. Soc.; Bull. Amer. Math. Soc.; and Amer. J.
Math. Whyburn’s work was mainly in the area of topology showing a great unity in the
topics of his researches (Floyd and Jones 1971). He published a total of 149 scientific
papers, mainly on the areas of: (i) Cyclic elements and the structure of continua; (ii) Regular
convergence and monotone maps; (iii) Open maps; and (iv) Compact maps and quotient
maps. His results were mainly published in Bull. Amer. Math. Soc.; Fund. Math; Trans.
Amer. Math. Soc.; Amer. J. Math.
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As advanced before these three topologists obtained their degrees in Chemistry. Threlfall
graduated with a degree in chemistry in 1910 and then went to the University of Gottingen
to study mathematics in the year 1911–12 (O’Connor and Robertson 2000j). Jones obtained
his B. A. in Chemistry at the University of Texas, Austin, (O’Connor and Robertson 2000b)
and Whyburn started his scientific career with an A. B. in chemistry in 1925 and then with a
M.Sc. in Chemistry in 1926. This last, in spite of the insistence of Moore for him to move
from chemistry to mathematics (Floyd and Jones 1971). This move finally took place
naturally after his Master, as he was already doing high quality research in mathematics. A
very curious fact is that after publishing 19 papers in pure mathematics, Jones published,
together with J. R. Bailey, the paper The behavior of 2-phenyl semicarbazones upon oxi-
dation, in the top chemistry journal Journal of the American Chemical Society (Whyburn
and Bailey 1928). This paper is entirely dedicated to experimental organic chemistry, which
is apparently very far from topology. Bailey was an organic chemist who studied under such
eminent German chemists as Friedrich Thiele, developer of many laboratory techniques to
isolate organic compounds, Adolf von Baeyer, Nobel Prize in Chemistry of 1905 for his
contributions to the synthesis of organic dyes and hydroaromatic compounds, and Wilhelm
Ostwald, Nobel Prize in Chemistry in 1909 for his work on catalysis, chemical equilibrium
and reaction velocities, and in London under William Ramsay, which has been already
mentioned here.

Organic molecules topologies

From the very initial courses of organic chemistry a student learns about the non-flat
structures of many organic molecules, whose structures are projected in stereochemical
forms in the three-dimensional space (Robinson 2000). But, until relatively recently, most of
the organic molecules with which a chemist was confronted could be “deformed” into a
plane (see Flapan 2000). This is the case of a tetrahedron, which although it is a three-
dimensional figure, can easily draw in the plane without the intersection of any line. It is
easy to associate a graph G ¼ V ;Eð Þ to every molecule, such that every atom is represented
by a node v 2 V of the graph and every covalent bond corresponds with an edge v;wf g 2 E
of the graph. This representation possibly starts with the pioneering works of mathemati-
cians Arthur Cayley (1821–1895) and James Sylvester (1814–1897) (Rouvray 1989;
Griffith 1964). In a short note published in Nature (Sylvester 1878a), Sylvester describes his
1878’s paper in the American Journal of Mathematics (Sylvester 1878b), by expressing that
“Every invariant and covariant thus becomes expressible by a graph precisely identical with
the Kekuléan diagram or chemicograph”. Hermann Weyl (1885–1955) recognized the
importance of Sylvester work in the Appendix D of his essay Philosphy of Mathematics and
Natural Science (Weyl 1949) when he stated that “We can see today that only such radical
departure as that of quantum mechanics could reveal the significance of the picture that
Sylvester had stumbled upon as a purely formal, though very appealing, mathematical
analogy”. Although Weyl advices us not to “take too literally such preliminary combina-
torial schemes”, we should recognize that it is only this graph-molecule correspondence
what allow us to say that a molecule is planar if its graph can be drawn in the plane in such
a way that pairs of edges intersect only at vertices, if at all. If the molecule has no such
representation, it is called nonplanar. It was Kazimierz Kuratowski who proved in 1930 in
the paper Sur le problème des courbes gauches en topologie (Kuratowski 1930), the
mathematical conditions for a graph to be planar. The theorem basically states that a graph is
planar if and only if it contains no subdivision of K5 (complete graph of 5 nodes) or K3;3
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(complete bipartite graph with 3 nodes in each partition). A subdivision of an edge in a
graph is a substitution of the edge by a path. A graph H is a subdivision of G if H can be
obtained from G by a finite sequence of subdivisions.

I can imagine that many chemistry students with a topology-oriented way of thinking
could have had in mind molecules that escape from planar-land. But is was not until 1981
when the groups of H. Simons (Simmons and Maggio 1981) and L. A. Paquette (Paquette
and Vazeux 1981) synthesized independently the molecule illustrated in Fig. 4 which is
homeomorphic to K5. To see it I have drawn the molecule in the right panel of Fig. 4 by
coloring the 5 nodes of K5 in red. Then, the reader can see that there is a subdivided edge
connecting every pair of red nodes, where each subdivision contains two gray nodes.
Therefore, the Simmons-Paquette molecule is topologically nonplanar according to the
Kuratowski theorem as it is homeomorphic to K5.

What about K3;3? It took more time, but in 1995 Chao-Tsen Chen et al. synthesized the
“Kuratowski Cyclophane” (Chen et al. 1996) which is illustrated in Fig. 5a.

To see it as K3;3 just think about every blue hexagon as one of the three vertices in one of
the two partitions, and the three red ones in the other partition. Then, notice that every blue
is connected to every red, and vice versa. Now, chemists and topologists can be equally
happy to say that there are nonplanar molecules out there waiting for interesting applications
(see Fig. 5b).

Once chemists have identified the structure of a molecule they need to describe it. This
description includes information about the order in which given numbers of specific atoms
are joined, the type of bonds which connect these atoms and some information about the
spatial arrangement formed by groups of atoms. But, in 1961 the chemists H. L. Frisch and
E. Wasserman (Frisch and Wasserman 1961) called the attention of the chemical community
about the fact that such information may not be enough for describing molecular structures.
In some cases, “topology” also plays a role. This is, according to their own example, the
case of cycloalkanes (also known as cycloparaffins), which every chemistry student finds in
the first course of organic chemistry. In this case the typical cyclic chain of CnH2n atoms in
the form of a circle can alternate with a “knotted” one, when n� 50. Then, the two
compounds are “topological isomers” or “topoisomers”. By the end of 1970s and beginning
of 1980s, trefoil knots were discovered in both single- and double-stranded DNA [see
Forgan et al. (2011) and references therein]. By mid 1980s highly complex knotted DNA
architectures, including composite knots, had been reported, enriching the field coined as
“Biochemical Topology”.

In 1989 Christiane O. Dietrich-Buchecker and Jean-Pierre Sauvage (Dietrich-Buchecker
and Sauvage 1989) synthesized in the lab a trefoil knot whose structure is illustrated in

Fig. 4 Structure of the Simmons-Paquette molecule (left), a graph-theoretic representation (center) and its
representation as a subdivision of the graph K5
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Fig. 6. Further synthetic procedures allowed to obtain other symmetric knotted systems like
“Solomon Link” and “Borromean Rings” (Forgan et al. 2011). In 2020, a Nature paper
announced the synthesis of three topoisomers of the same molecular framework. They
correspond to the unknotted macrocycle (01), a trefoil (31) knot, and a three-twist (52) knot
(Leigh et al. 2020). What else a topology-oriented mind needs to trigger its interest? Maybe
some carbon “fuel”.

The many “shapes” of carbon

In any introductory course of Inorganic Chemistry, a chemistry student learns about the
concept of allotrope, which are the different structural modifications of a chemical element.
In old courses and textbooks of inorganic chemistry it is mentioned that carbon has two

Fig. 5 a “Kuratowski Cyclophane” obtained by Chao-Tsen Chen et al. in (1996). b Graph representation of
the “Kuratowski Cyclophane” as a subdivision of the K3;3 graph. The nodes marked in red and blue
correspond to the benzene rings with the same colors in panel (a)

Fig. 6 a The molecular trefoil knot synthesized by Dietrich-Buchecker and Sauvage (Dietrich-Buchecker and
Sauvage 1989) and b its representation. Representation of the 52 knot, a topoisomer synthesized by Leigh
et al. in (2020)
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allotropes: diamond and graphite (see Tiwari et al. 2016). The main structural difference
between diamond and graphite is that the first forms a three dimensional structure in which
every carbon has four nearest neighbors, while graphite is formed by a system of hexagonal
layers one on top of the other. In the first, carbon is bonded through single C-C bonds, and
in the second through alternate single and double C=C bonds.

A student with a topology-oriented mind could imagine other topological arrangements
of carbon atoms which would be potential allotropes of this element. This was what Eiji
Osawa did in 1970, when he published (in Japanese) the work: “Superaromaticity” in
Kagaku (Kyoto) 1970, 25, 854–863. There, he imagined a truncated icosahedron of 60
atoms of carbons. The structure is formed by twenty hexagons and twelve pentagons with
symmetry Ih, exactly as the form of a soccer ball. This molecule existed only in Osawa’s
imagination until 1985 when Harry Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R.
E. Smalley, published the paper C60: buckminsterfullerene (Kroto et al. 1985) announcing
the discovery of the exact molecule that Osawa had imagined 15 years before. Unfortu-
nately, the authors of the Nature paper were unaware of Osawa’s paper until 1986 (Boyd
and Slanina 2001; Curl et al. 2001). A less imaginative approach was to consider the
individual layers of graphite as simple molecules, which was theorized for decades, but
prepared only in 2004 and coined “graphene” (Geim 2009). It was observed by the first time
supported on metal surfaces in 1962, and finally isolated and characterized in 2004 by
Andre Geim, Novoselov et al. (2004) (see central figure in Fig. 7).

Continuing with the topologically-oriented minds I would like to mention that in 1991 A.
L. Mackay and H. Terrones (Mackay and Terrones 1991) proposed the structures of triply
periodic minimal surfaces (TPMS) as possible carbon allotropes. The proposal of Mackay
and Terrones consisted in taking the TPMS studied by Karl Herman Amandus Schwarz
(1843–1921) in 1890 and “decorate” them with graphite mesh in which some hexagons are
strategically replaced by octagons to avoid tensions in the structure. They considered two
structures proposed by Schwarz and denoted them as P- and D-surfaces. In 1992 Thomas
Lenosky et al. (1992) studied the hypothetical carbon allotropes with TPMS structures and
proposed that these structures were named “schwarzite” “partly in anticipation of their
likely color but mainly to honor the mathematician H. A. Schwarz”. The letter of Mackay
and Terrones in Nature ends with the sentence (Mackay and Terrones 1991): “we find that a
variety of ordered graphite foams look quite possible. The question is how to synthesize
them.” The synthesis of schwarzites was a very elusive task. In several experiments it was
observed that there were local regions with negative Gaussian curvature in amorphous
carbon, but not the long-range ordering required to assign them the periodic nets that
describe TPMSs. We had to wait until 2018 in which Braun et al. (2018) were able to obtain
in the lab carbon materials with nonpositive Gaussian curvature that resemble TPMSs (see

Fig. 7 Examples of carbon allotropes with positive (fullerene), zero (graphene) and negative (schwarzites)
curvature
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right figure in Fig. 7). We now have carbon allotropes of positive (fullerene), zero (gra-
phene) and negative (swartzite) curvature.

But carbon is a box of surprises! Apart from diamond, graphite, fullerene, single and
multi-layer graphene and schwarzites, it can also appears in many different topological

Fig. 8 Topological characteristics of a few carbon allotropes. Gently provided by Gupta and Saxena (2014)
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structures, such as single-walled carbon nanotubes, toroidal forms or nanorings, nanocorns,
nanohorns, peapods, nanoribbons, among others. We can characterize these structures by
some of their topological invariants, such as the genus and the Euler characteristic (after
mathematician Leonhard Euler, 1707–1783), as it is shown in Fig. 8, resumed by (Gupta
and Saxena 2014).

Carbon can also form triple bonds, C�C. Thus, E. Estrada and Y. Simón-Manso (Estrada
and Simón-Manso 2012) theorized about belt-shaped carbon allotropes alternating single,
double and triple bonds, which form Möbius bands. They were coined “Escherines” in
honor to the artist M. C. Escher (see Fig. 9). These structures remain constrained to the
world of human imagination yet, but they can jump to the real-world at any time. Thus,
carbon allotropes offer a fascinating world for introducing topological and geometric
concepts not only in chemistry but also in mathematics.

In search of beauty

The search for beauty has been in the own essence of doing mathematics. Godfrey Harold
Hardy wrote that (Hardy 1992) “The mathematician’s patterns, like those of the painter’s or
the poet’s, must be beautiful”. In a more general context Henri Poincaré (Poincaré 1890)
claimed that “Le savant digne de ce nom, le géomètre surtout, éprouve en face de son
oeuvre la même impression que l’artiste; sa jouissance est aussi grande et de même nature”,
which is frequently translated as (Johnson and Steinerberger 2019) “A scientist worthy of the
name, above all a mathematician, experiences in his work the same impression as an artist;
his pleasure is as great and of the same nature”. In the same lines Bertrand Russell (Russell
2013) emphasized that “The pure mathematician, like the musician, is a free creator of his
world of ordered beauty.” A chemistry student also confronts beauty in many different
ways. As Nobel prize winner Roald Hoffmann has affirmed (Hoffmann 2003): “The human
beings who are drawn to chemistry, in both its analytical and synthetic parts, construct
compounds and meaning. And imbue the substances, and the little pictograms we draw of
them, with intimations of beauty. Why? Because building a pleasurable rationale for hard
labor is a psychological necessity. And because we naturally seek beauty, as we seek good.
At least that matches Kant.”

Then, I would like to speculate that many of the following great mathematicians of all
times, who were also captivated by chemistry at some point of their lives, were searchers of
the “world of ordered beauty”. At the end of the day, as Samuel G. B. Johnson and Stefan
Steinerberger (Johnson and Steinerberger 2019) pointed out, “It is not a surprising claim
that the search for beauty, both in theorems and in proofs, is one of the great pleasures of
engaging with mathematics.” I will present a brief list of these mathematicians who have

Fig. 9 Map of the electrostatic
potential surface on C60 Möbius
Escheryne (Estrada and Simón-
Manso 2012)

123

E. Estrada



loved chemistry at some point of their careers in an alphabetic order. The list is not
exhaustive, but it serves to give an empirical proof of the role that chemistry may have
played in their mathematical careers.

Emil Artin (1898–1962) was an Austrian mathematician considered as one of the
leading mathematicians of the twentieth century. He significantly contributed to algebraic
number theory, in particular to class field theory and the construction of L-functions. He was
the recipient of the Ackermann–Teubner Memorial Award in 1932. Chemistry was also the
subject which Artin did show more talent for, and which attracted him the most (Brauer
1967). He studied mathematics and chemistry at the University of Leipzig (Zassenhaus
1964). He continued to have love for chemistry along his life. Sir Michael Atiyah (1929–
2019) a British-Lebanese mathematician specializing in geometry and known, among other
things, for the Atiyah-Singer index and the Atiyah-Segal completion theorem. He was
awarded the Fields Medal in 1966 and the Abel Prize in 2004. Atiyah has said that when he
was 15, he was very much interested in chemistry and took a whole year course in this field
(Minio 1984). He was disappointed by the amount of facts needed to memorize in inorganic
chemistry, but reckon that organic chemistry was more interesting as it has more structure
(cited in O’Connor and Robertson (2000h)). John Warner Backus (1924–2007) is
renowned for the development of FORTRAN. He started to study chemistry at the
University of Virginia but changed to mathematics due to the fact that he enjoyed the theory
of chemistry but disliked the lab work (Bjørner 2008). Itsván Fenyő (1917–1987) (Paga-
noni 1988) was an Hungarian mathematician making significant contributions to diverse
areas of mathematics, such as analysis, algebra and integral equations. He was Editor of
prestigious mathematics journals like Aequationes Mathematicae and of Zeitschrift für
Analysis und ihre Anwendungen and was the author of several books. In 1942 he obtained
the Diploma in Chemistry. Three years later he changed his field to mathematics with his
thesis On the theory of mean values (in Hungarian). In 1951 he wrote the bookMathematics
for chemists (in Hungarian) with György Alexits (a Hungarian mathematician), then
translated to German as Mathematik für Chemiker in 1962, and to French as Les méthodes
mathématiques en chimie in 1969. Alfréd Haar (1885–1933) (Szökefalvi-Nagy 1985;
O’Connor and Robertson 2000a), was a Hungarian mathematician whose thesis was
supervised by David Hilbert and that contributed to orthogonal systems of functions, sin-
gular integrals, analytic functions, differential equations, set theory, function approximation
and calculus of variations. His name is attached to the Haar measure, Haar wavelet, and
Haar transform. Haar also felt that it was chemistry his preferred subject at the Gymnasium,
although he also did outstanding work in mathematics. Paul Richard Halmos (1916–2006)
was a Hungarian-Jewish-born American mathematician. He is well-known for his funda-
mental contributions to mathematical logic, probability theory, statistics, operator theory,
ergodic theory, and functional analysis (in particular, Hilbert spaces). At the age of fifteen he
entered the University of Illinois to study chemical engineering (Albers 1982). However,
after the first year he became disappointed due to the experimental work in chemistry, so he
changed to mathematics and philosophy. Carl Einar Hille (1894–1980) (Dunford 1981)
was an American mathematician who made important contributions to functional analysis,
semigroup theory and the study of ordinary differential equations. He authored or co-
authored 12 books on semigroup theory, functional analysis, differential equations and
analytic function theory. He studied chemistry for 2 years where he was taught by von
Euler-Chelpin, who has been mentioned before in this paper. They published Uber die
Primare Umwandlumg der Hexosen bei der alkoholischen Garung, Z. Gârungsphysiologie
3 (1913), 235–240. Hille then swapped to mathematics, graduating in 1913 with his first
degree in mathematics in 1913 and the equivalent of a Master’s degree in the following year.
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Elliot Waters Montroll (1916–1983) (Weiss 1994) was an American mathematician known
for his contributions to continuous-time random walk analysis and traffic flow analysis. He
published papers on a variety of topics which cover apart from several areas of statistical
mechanics, crystalline solids, Bessel functions, traffic dynamics, social dynamics, and
sociotechnical systems to mention just a few. Montroll received a B.S. degree in Chemistry
in 1937. In 1939–1940 he carried out research in the Chemistry Department of Columbia
University. He obtained his Ph.D. in Mathematics in 1939 from the University of Pittsburgh.
However, after completing his Ph.D. Montroll spent three years of postdoctoral studies with
three chemistry luminaries: Joseph Edward Mayer who developed the cluster expansion
method and Mayer-McMillan solution theory, Lars Onsager (Nobel Prize in Chemistry,
1968) and John Gamble Kirkwood (American Chemical Society Award in Pure Chemistry
and Langmuir Award both in 1936). John Forbes Nash Jr. (1928–2015) (O’Connor and
Robertson 2000e), an American mathematician who contributed significantly to game
theory, differential geometry, and the study of partial differential equations. He was awarded
the John von Neumann Theory Prize in 1978, the Nobel Prize in Economic Sciences in 1994
and the Abel Prize in 2015. Chemistry was the favorite topic of Nash when he entered at
Bluefield College in 1941 where he took mathematics and sciences courses. He liked so
much chemistry that he conducted his own chemistry experiments. Rózsa Péter (1905–
1977) (O’Connor and Robertson 20000i) was a Hungarian mathematician and logician, who
is known as the ”founding mother of recursion theory”. She was the author of the books
Playing with Infinity: Mathematical Explorations and Excursions, Dover Publications,
1971, which has been translated into at least 14 languages, and Recursive Functions in
Computer Theory, Halsted Press New York, NY, USA, 1982. Péter started to study
chemistry at the Pázmány Péter University (renamed Loránd Eötvös University in 1950) in
Budapest. Then she changed to mathematics under the influence of the lectures of Lipót
Fejér. Jean-Pierre Serre (1926–), a French mathematician who has made contributions to
algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the
Fields Medal in 1954 and the Abel Prize in 2003. Serre enjoyed very much chemistry
although he never took interest in physics. At 15–16 he was engulfed into chemistry books
that his father, a pharmacist, had (Chong and Leong 1986). Karl Hermann Amandus
Schwarz (1843–1921) (O’Connor and Robertson 2000) was a German mathematician,
known for his contributions in complex analysis. His name appears in the additive Schwarz
method, Schwarzian derivative, Schwarz minimal surface, Schwarz integral formula, Sch-
warz alternating method, Schwarz-Christoffel mapping, Schwarz triangle, and the Cauchy-
Schwarz inequality. Schwarz started his studies at the Gewerbeinstitut, later called the
Technical University of Berlin, not in mathematics but in chemistry. Then, after the influ-
ence of Ernst Eduard Kummer (January 29, 1810–May 14, 1893) and Karl Theodor Wil-
helm Weierstrass (October 31, 1815–February 19, 1897) he swapped to mathematics and
obtained his Ph.D. under the supervision of Weierstrass in1864. John von Neumann
(Glimm et al. 2006; Bhattacharya 2021; Macrae 2019)(1903–1957) was a Hungarian-
American mathematician, known for his many contributions in a wide variety of areas.
These include, for instance, contributions to mathematical logic, measure theory, functional
analysis, ergodic theory, group theory, operator algebras, matrix theory, geometry, and
numerical analysis, but he is also known for his contributions to physics, particularly to
quantum mechanics, quantum statistical mechanics, nuclear physics among others. The
polymath character of von Neumann is very much manifested by the fact that he also made
important contributions to computer sciences, statistics and economics. von Neumann
studied chemistry for two years at the University of Berlin, from 1921 to 1923. Then, he
moved to Zürich where he received his diploma in chemical engineering from the
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Technische Hochschule in 1926. An anecdote described in (Bhattacharya 2021) tells that
when people asked him if he had come to Berlin to study math, he answered: “No, I already
know mathematics. I’ve come here to learn chemistry.”

Conclusions

“The complexities of modern science and modern society have created a need for scientific
generalists, for men trained in many fields of science.” This is a paradigm of science in the
XXI century, where the advent of such fields like the study of complex systems requires
multidisciplinary approaches. But the previous phrase was not written in the XXI century. It
is the starting sentence in The education of a scientific generalist” published in Science in
1949 (Bode et al. 1949). The authors of this paper include John Wiley Tukey, who has been
portrayed in this paper, as well as the eminent statistician Frederick Mosteller (1916–2006),
the engineer, inventor and scientist Hendrik Bode (1905–1982) and engineer, physiologist
and biostatistician Charles Winsor (1895–1951). What is extraordinary of the proposals in
this paper is that of proposing to use “the methods of description and model-construction
which, in the individual sciences, have made the partial syntheses we call organic chem-
istry, sensory psychology, and cultural anthropology” as a remedy for these complexities in
education and in science. They claimed that using such approaches “eventually, one can
learn science, and not sciences.”

The specific mention of organic chemistry as a necessary training for a scientific gen-
eralist is not only well ahead of its time, but even ahead of modern times. The authors ask
“What is the logical framework of organic chemistry? Or equivalently, what are the
characteristic ways in which a good organic chemist thinks and works?” I want to briefly
explore an answer to this question in the context of the current work. Particularly, I would
like to explore: What should be in common in the ways of thinking of an organic chemist
and of a mathematician? To start with, I would remark that an organic chemist hardly starts
her work by mixing up chemicals to see what they can produce. Namely, she has “in mind”
a molecule that she wants to synthesize, a “synthetic target”. Then, she retrosynthetically
thinks on how to obtain such a molecule from some known or imagined precursors. This
process could give rise to a sequence of molecules, some of which exist and some need to be
prepared by the chemist. In other words, as put forward by Evan Hepler-Smith, organic
chemist “thinks backwards” (Hepler-Smith 2018). In his Nobel prize speech Elias James
Corey defined retrosynthetic analysis as (Corey 1991) “a problem-solving technique for
transforming the structure of a synthetic target molecule to a sequence of progressively
simpler structures along a pathway which ultimately leads to simple or commercially
available starting materials for a chemical synthesis.” The process of analyzing retrosyn-
thetically the possible routes for synthesizing a molecule involves the gedankenexperiments
(thought experiments), known by chemists as “paper chemistry”, where they discuss pos-
sibilities or ideas or hypotheses used for the preparation of the synthesis of a given target. As
Seeman (2018) has pointed out, chemists are involved in such paper chemistry “perhaps on
a chalk board or white board and on the back of an envelope or dinner placemat or
autograph book”, so much that “apparently is not recognized by historians and philoso-
phers of science for its ubiquity.” Mathematicians work in a similar way. They start from a
hypothesis that they want to prove and try “retroanalytically” to connect it with other
mathematical facts, some of which are known and others that they need to prove. Here we
have considered the analogies between code-breaking in cryptography and structure
determination in chemistry. A chemist cannot be completely sure that the structure she has
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proposed for a given molecule is the correct one until such a molecule has been synthesized
(with the corresponding rethrosynthetic analysis performed) and the two structures coincide.
This is the equivalent in mathematics of the verification process to check for the correctness
of the proof of a given theorem.

Another coincident way of thinking between an organic chemist and a mathematician is
about the importance that patterns play in their research. Chemist searches for patterns in the
physical properties of the molecule under study, in its chemical reactivity, in the way that
groups and motifs can be glued together, etc. Mathematics has been defined as the science of
patterns. Thus, mathematicians search for “numerical patterns, patterns of shape, patterns
of motion, patterns of behavior, voting patterns in a population, patterns of repeating
chance events, and so on” (Byers 2010). Once a pattern is identified either in chemistry or in
mathematics, the researcher can proceed to the clarification of the systematic rule which is
behind that pattern. This is evident in the analogy used here between code-breaking and
structure elucidation. This attachment to patterns makes both chemists and mathematicians
very prone to the use of pictures. An organic chemist hardly can say anything about the
chemical reactivity (or any physical or chemical property) of a molecule from its exact
quantum-mechanical Hamiltonian. However, she will construct a complete narrative about
the physical and chemical properties of a molecular structure drawn in a piece of paper, even
if such a molecule is completely imagined. The power of pictures in mathematics is dis-
cussed in the bookMathematics and the Unexpected by Ivar Ekeland (1990) where its value
is recognized as fundamental in the early stages of the development of mathematical ideas.
This also introduces a very important analogy among chemists and mathematicians.
Namely, that they use a proper language in their respective fields. While physicists use the
mathematical language in their investigations, chemists use the sophisticated language of
chemical formulas and specific symbols to represent charges, rearrangements, partial
equilibria, etc. These “invented” languages mainly appear only in Chemistry and in
Mathematics, making them unique intellectual activities.

There are a few other important connections between the way of thinking of (organic)
chemists and mathematicians which could have played a role in the development of the
mathematical way of thinking of some of the remarkable mathematicians portrayed here. I
will leave it to others for exploring more deeply such connections with the mind not only in
the past but also on the education of future generations as it was the preoccupation in: The
education of a scientific generalist (Bode et al. 1949).
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