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Abstract
A simple treatment of chemical equilibrium is given, based on Boltzmann’s distribution 
law. The results are compared with those obtained by using thermodynamics.
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Introduction

Chemical equilibria are usually treated by using thermodynamics or statistical mechanics. 
An alternative is to use Boltzmann’s distribution law (Guggenheim 1963; Nelson 1986, 
1995). This has the advantage of being very much simpler, and making the treatment of 
chemical equilibrium consistent with that of other topics where Boltzmann’s law is used 
(reaction kinetics, spectroscopy, magnetochemistry, etc.). Here I apply the law to a range of 
chemical equilibria, and compare the results with those obtained by thermodynamics.

This approach takes Boltzmann’s law as a law of nature. The law can be demonstrated 
by measuring the distribution of colloidal particles in a gravitational field, as described by 
Slabaugh (1965).1

Reactions in gases

Consider a pure gas, contained in a closed vessel, in thermal equilibrium with its surround-
ings. Suppose that, between collisions, each molecule moves independently of the others, 
and has a discrete set of motions. Then, according to Boltzmann’s law, the average number 
of molecules with a particular motion, i, over time is given by

(1)Ni=(N∕q)e
−(εi−ε0)∕kT
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1 What Slabaugh calls ‘Perrin’s law’ is based on Boltzmann’s. His experiment needs to be carried out on a 
hot stage to determine the temperature-dependence.
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where N is the total number of molecules, εi is the energy of a molecule with motion i, ε0 is 
the lowest energy a molecule can have, k is the Boltzmann constant, T is the absolute tem-
perature, and q is the partition function

This function ensures that 
∑

i Ni = N . Equation (1) holds as long as the values of Ni are 
sufficiently low for the distribution not to be affected by molecules with the same motion 
(as in Bose–Einstein statistics) or by molecules resisting this (Fermi–Dirac statistics). This 
condition is usually met (Guggenheim 1963: Chap. 13).

Isomerizations

These are the simplest reactions to treat, since isomers can be regarded as different states of 
the same molecule. Consider the equilibrium

with the states available to A or B as shown schematically in Fig. 1a. From Eq.  (1) the 
number of molecules of type A at equilibrium is given by

where ‘a’ labels states corresponding to form A. Similarly,

where Δ�0 = �0,B − �0,A . The equilibrium constant of reaction (3) is therefore given by

The value of K is thus determined by two factors: the difference in energy, Δε0 , and the 
ratio of the partition functions, qB/qA . Figure 1b shows how NB can be greater than NA even 
though ε0,A is lower than ε0,B (Davies 1972: Chap. 4).

Dissociations

These are representative of more complicated reactions. Consider the equilibrium

Now, instead of having a molecule existing in two different states, as in the previous 
section, we have a pair of radicals existing in two different states, PQ and P + Q. Equa-
tion (1) gives

(2)q =
∑

i

e−(εi−ε0)∕kT

(3)A(g) = B(g)

(4)NA =
∑

a

Na = (N∕q)
∑

a

e−(εa−ε0,A)∕kT = (N∕q)qA

(5)NB =
∑

b

Nb = (N∕q)
∑

b

e−(εb−ε0,B+Δε0)∕kT = (N∕q)qBe
−Δε0∕kT

(6)K = NB∕NA =
(

qB∕qA
)

e−Δε0∕kT

(7)PQ(g) = P(g) + Q(g)

(8)K = NP + Q

/

NPQ =
(

qP + Q

/

qPQ
)

e−Δε0∕kT
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Here NP + Q represents the number of pairs of radicals in P + Q states and qP + Q the parti-
tion function over such states. These are given respectively by NPNQ and (since ex+y = exey ) 
qPqQ . Hence

Fig. 1  a States available to two isomers A and B (schematic). The sequences continue indefinitely upwards. 
b Boltzmann distribution of molecules over the states shown in a at T = 2 Δε

0
 /k (open bars, A; solid bars, 

B). The proportion of molecules in form A is 26% and in form B, 74%
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Equilibrium constants in the gas phase are usually expressed in terms of partial pres-
sures, defined by

where n represents chemical amount and p total pressure. Thus for reaction (7) at low 
pressures

From Eq. (9) this is given by

Since the molecules are moving independently of each other, this can be written

where rX is the partition function per molecule

and r∗
X
 is the value of this for pure X at the pressure p.2 If Eq. (13) is evaluated at standard 

pressure, pΘ , this gives the standard equilibrium constant:

Relation to thermodynamic treatment

By taking logarithms and multiplying through by the Avogadro constant (L), Eq. (15) can 
be written

where R is the gas constant (Lk), ΔUΘ
m
(0) the standard molar internal energy of reaction at 

T = 0, and Xm = R ln r. Comparing this equation with the corresponding thermodynamic 
equation

(H = enthalpy, S = entropy) identifies X as

where G is the Gibbs function (H ‒ TS).

(9)K = NPNQ

/

NPQ =
(

qPqQ
/

qPQ
)

e−Δε0∕kT

(10)pX =
(

nX∕ntotal
)

p =
(

NX∕Ntotal

)

p

(11)Kp =
(

pPpQ
/

pPQ
)

=
(

NPNQ

/

NPQ

)(

p∕Ntotal

)

(12)Kp =
(

qPqQ
/

qPQ
)(

p∕Ntotal

)

e−Δε0∕kT

(13)Kp =
(

r∗
P
r∗
Q

/

r∗
PQ

)

pe−Δε
∗
0
∕kT

(14)rX = qX∕NX

(15)KΘ = Kp

/

pΘ =
(

rΘ
P
rΘ
Q

/

rΘ
PQ

)

e−Δε
Θ
0
∕kT

(16)−RTln KΘ = LΔεΘ
0
− TΔ

(

RlnrΘ
)

= ΔUΘ
m
(0) − TΔXΘ

m

(17)−RTln KΘ = ΔHΘ
m
− TΔSΘ

m

(18)X = S − [H − U(0)]∕T = −[G − U(0)]∕T

2 For pure X to have a pressure p in the reaction vessel, there would need to be Ntotal molecules of it pre-
sent. Hence r∗

X
= q

X
∕N

total
 . Substitution of this into Eq. (12) gives Eq. (13).
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For an ideal gas, U(0) = H(0). In this case,

where Φ(T, 0) is the Giauque function. Values of ΦΘ
m

(T, 0) are tabulated by Lewis et al. 
(1961: Tables A7-7 to A7-10).

Reactions involving liquids or solids

Equilibria involving liquids or solids cannot be treated rigorously by the above method 
because molecules are no longer independent. We can, however, treat them approximately by 
using simple models.

Model for liquids

Liquids are complicated. However, at temperatures well below the critical temperature, the 
essential features of equilibria involving liquids can be derived by supposing that a liquid has 
a lattice-like structure, with each molecule undergoing vibrational motion around a fixed posi-
tion, and from time to time exchanging positions with an adjacent molecule (Guggenheim 
1952: Sect. 2.05). On this model, the partition function for a molecule X in a liquid may be 
written

where Nσ is the number of sites, qX@�
 is the partition function of X in the average environ-

ment experienced by X at a site, and Ntotal is the total number of molecules of all kinds in 
the liquid. For a pure liquid, Eqs. (14) and (20) give

Liquid–gas equilibria

Consider the equilibrium between a liquid and its vapour:

This can be treated as an isomerization, with the states available to a molecule as shown 
schematically in Fig. 2. Application of Boltzmann’s law to this system gives, from Eq. (20),

Hence, from Eq. (21),

Now Eq. (13) indicates that, for a pure ideal gas, r is inversely proportional to p (otherwise 
Kp would vary with p). This means that

(19)X = −[G − H(0)]∕T = Φ(T , 0)

(20)qX = NσqX@�
= NtotalqX@�

(21)q∗
X@�

= q∗
X

/

Ntotal = r∗
X

(22)X(liq) = X(g)

(23)Ng

/

Nliq =
(

qg
/

qliq
)

e−Δε0∕kT =
(

qg
/

Nliqqσ
)

e−Δε0∕kT

(24)Ng =
(

qg
/

qσ
)

e−Δε0∕kT =
(

qg
/

rliq
)

e−Δε0∕kT
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From this and Eqs. (14) and (24), the vapour pressure of the liquid is therefore given by

(25)p
/

pΘ = rΘ
/

r

Fig. 2  States available to a molecule when a liquid is in equilibrium with its vapour (schematic). The liquid 
is assumed to have a lattice-like structure. The degeneracy of the levels for the liquid is equal to the number 
of molecules in this state. A similar diagram holds for a solid in equilibrium with its vapour
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The second equality can be written because the energy levels of condensed phases are 
relatively insensitive to changes in pressure. Equation (26) can be cast in the same form as 
Eq. (16). Note that p is independent of the quantity of liquid, as is observed.

Equilibria in solution

Consider the equilibrium

in solvent S. Application of Boltzmann’s law to this gives Eq. (9). Substitution of Eq. (20) 
into this givess

where x represents mole fraction ( nX/ntotal = NX/Ntotal ) and Kx = K/Ntotal.
In general, the average environment of X, and thus the values of �0,X and qX@�

 , will 
depend on the composition of the solution. The only circumstances in which this will not 
be so are: (i) in ‘ideal’ solutions, where the different molecules making up the solution are 
sufficiently similar as to produce the same environment whatever their proportions; and (ii) 
in very dilute solutions, where the immediate environment of a solute molecule consists 
exclusively of solvent molecules.

Ideal solutions

In this case, �0,X and qX@�
 can be set at their values for pure X, when

At p = pΘ , this is equal to KΘ and gives Eq. (16).

Dilute solutions

Equilibrium constants for reactions in dilute solution are usually expressed in terms of 
molality, defined by3

where mS is the mass, and MS the molar mass, of solvent S. Thus for reaction (27) in dilute 
solution

(26)p
/

pΘ =
(

rΘ
g

/

rliq

)

e−Δε0∕kT =
(

rΘ
g

/

rΘ
liq

)

e−Δε0∕kT

(27)PQ(soln) = P(soln) + Q(soln)

(28)Kx = xPxQ
/

xPQ =
(

qP@�
qQ@�

/

qPQ@�

)

e−Δε0∕kT

(29)Kideal
x

=
(

r∗
P
r∗
Q

/

r∗
PQ

)

e−Δε
∗
0
∕kT

(30)bX = nX
/

mS = nX
/(

nSMS

)

= xX
/

MS

(31)Kdilute
b

= bPbQ
/

bPQ = xPxQ
/(

xPQMS

)

= Kx

/

MS

3 I have used the symbol b instead of the usual m to avoid confusion with the symbol for mass.
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From Eqs. (14), (20), (28), and (30), this is given by4

where r◦
X
 is the value of rX at bX = b◦ = 1 mol   kg‒1 (or better, the value rX would have at 

bX = b◦ if X had the same environment at this concentration as it has in dilute solution). At 
p = pΘ , this again gives Eq. (16).

Reactions involving solids

These can be treated by assuming that the molecules in a crystal vibrate independently of 
each other. This corresponds to the Einstein model of a crystal (see, e.g., McGlashan 1979: 
Sect. 14.13). While this is inferior to the Debye model at low temperatures, it is almost as 
good at higher temperatures, at which most reactions involving solids occur.

The prototype of solid‒gas equilibria is the equilibrium between a crystalline solid and 
its vapour:

This can be treated in the same way as equilibrium (22). This is because the molecules 
in the crystal are continually changing places with molecules in the gas, so that each mol-
ecule can occupy any of the sites on the crystal. Application of Boltzmann’s law accord-
ingly gives

where qσ is the partition function for a molecule at a site in the crystal. This can be devel-
oped in the same way as Eq. (23).

Other equilibria involving solids can be treated by the same methods, leading again to 
Eq. (16).
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(32)Kdilute
b

/

b◦ =
(

r◦
P
r◦
Q

/

r◦
PQ

)

e−Δε
◦

0
∕kT

(33)X(c) = X(g)

(34)Ng

/

Nc =
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qc
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