Skip to main content
Log in

Modeling of high-concentration gas-particle flow in a horizontal channel

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A model of the motion of an admixture of polydisperse solid particles in a horizontal plane channel with account for particle deposition on the bottom wall is presented. The dispersed phase, consisting of six particle fractions characterized by the particle size and the mass concentration, is modeled in Eulerian form. Interparticle collisions occur due to the difference in the velocities of average motion of the fractions and to particle velocity fluctuations. It is important to take interparticle collisions into account for flows with a high particle mass loading (in the model, up to 50 kg per kg of gas) and because of the gravity-induced particle accumulation on the bottom wall. To ensure a correct description of the particle-wall collisions, impinging and rebounding particle streams with the corresponding restitution coefficients for the normal and tangential particle velocities and friction are introduced. The calculations are compared with experiments [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tsuji and Y. Morikawa, “LDV measurements of an air-solid two-phase flow in a horizontal pipe,” J. Fluid Mech., 120, 385–409 (1982).

    Article  ADS  Google Scholar 

  2. J. T. Davies, “Calculation of critical velocities to maintain solids in suspension in horizontal pipes,” Chem. Engn. Sci., 42, No. 7, 1667–1670 (1987).

    Article  Google Scholar 

  3. F. J. Cabrejos and G. E. Klinzing, “Pickup and saltation mechanisms of solid particles in horizontal pneumatic transport,” Powder Technology, 79, No. 2, 173–186 (1994).

    Article  Google Scholar 

  4. M. Sommerfeld, “Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Pt 1. Particle transport”, Int. J. Multiphase Flow, 29, No. 4, 675–699 (2003).

    Article  Google Scholar 

  5. M. Sommerfeld, “Validation of a stochastic Lagrangian modelling approach for interparticle collisions in homogeneous isotropic turbulence”, Int. J. Multiphase Flow, 27, No. 10, 1829–1858 (2001).

    Article  Google Scholar 

  6. B. Oesterle and A. Petitjean, “Simulation of particle to particle interactions in gas-solid flows,” Int. J. Multiphase Flow, 19, No. 1, 199–211 (1993).

    Article  Google Scholar 

  7. T. Tanaka and Y. Tsuji, “Numerical simulation of gas-solid two-phase flow in vertical pipe: On the effect of interparticle collision”, in: Proc. 4th Int. Symp. Gas-Solid Flows, Portland, ASME, 1991, FED-V, 121, (1991), pp. 123–128.

  8. M. Y. Louge, E. Mastorakos, and J. T. Jenkins, “The role of particle collisions in pneumatic transport,” J. Fluid Mech., 231, 345–359 (1991).

    Article  ADS  Google Scholar 

  9. J. Cao and G. Ahmadi, “Gas-particle two-phase turbulent flow in vertical duct,” Int. J.Multiphase Flow, 21, No. 6, 1203–1228 (1995).

    Article  Google Scholar 

  10. D. Gidaspov, Multiphase Flow and Fluidization, Acad. Press, Boston etc. CA (1994).

    Google Scholar 

  11. A. Kartishinsky and E. E. Michaelides, “An analytical approach for the closure equations of gas-solid flows with interparticle collisions,” Int. J. Multiphase Flow, 30, No. 2, 159–180 (2004).

    Article  Google Scholar 

  12. C. T. Crowe and I. Gillandt, “Turbulence modulation of fluid-particle flows — a basic approach,” in: Proc. 3d Int. Conf. Multiphase Flow, Lyons, 1998 (1998).

  13. H. Danon, M. Wolfshtein, and G. Hetstroni, “Numerical calculations of two-phase turbulent round jet,” Int. J. Multiphase Flow, 3, No. 3, 223–234 (1997).

    Article  Google Scholar 

  14. S. Elghobashi and T. W. Abou-Arab, “A two-equation turbulence model for two-phase flows,” Phys. Fluids, 26, No. 4, 931–938 (1983).

    Article  ADS  Google Scholar 

  15. C. P. Chen and P. E. Wood, “Turbulence closure modeling of two-phase flows,” Chem. Engng. Communs., 29, 291–310 (1984).

    Google Scholar 

  16. F. Pourahmadi and J.A.C. Humphrey, “Modeling solid-fluid turbulent flows with application to predicting erosive wear,” Phys. Chem. Hydrodyn., 4, No. 3, 191–219 (1983).

    ADS  Google Scholar 

  17. A. A. Shraiber, L. B. Gavin, V. A. Naumov, and V. P. Yatsenko, Turbulent Gas-Solid Flows [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  18. A. I. Kartushinskii, E. E. Michaelides, and Yu. A. Rudi, “Numerical modeling of gas-particle flows in vertical pipes and the particle collision effect,” Fluid Dynamics, 39, No. 5, 748–755 (2004).

    Article  Google Scholar 

  19. M. Hussainov, A. Kartushinsky, A. Mulgi, Ü. Rudi, and S. Tisler, “Gas-solid flow with the slip velocity of particles in a horizontal channel,” J. Aerosol Sci., 27, No. 1, 41–59 (1996).

    Article  Google Scholar 

  20. G. N. Abramovich, T. A. Girshovich, S. Yu. Krasheninnikov, et al., Turbulent Jet Theory [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  21. L. Schiller and A. Naumann, “Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung,” Z. Ver. Deut. Ing., 77, 318–320 (1933).

    Google Scholar 

  22. S. Matsumoto and S. J. Saito, “Monte carlo simulation of horizontal pneumatic conveying based on the rough-wall model,” Chem. Engng. Japan, 3, No. 2, 223–230 (1970).

    Google Scholar 

  23. S. I. Rubinow and J. B. Keller, “The transverse force on a spinning sphere moving in a viscous fluid,” J. Fluid Mech., 11, Pt 3, 447–459 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  24. R. Mei, “An approximate expression for the shear lift force on a spherical particle at finite Reynolds number,” Int. J. Multiphase Flow, 18, No. 1, 145–147 (1992).

    Article  Google Scholar 

  25. Y. Yamomoto, M. Potthoff, T. Tanaka, T. Kajishima, and Y. Tsiji, “Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering interparticle collisions,” J. Fluid Mech., 442, 303–334 (2001).

    Article  ADS  Google Scholar 

  26. J. Ding, R.W. Lyczkowski, W.T. Sha, S.A. Altobelli, and E. Fukushima, “Numerical analysis of liquid-solids suspension velocities and concentrations obtained by NMR imaging,” Powder Technology, 77, 301–312 (1993).

    Article  Google Scholar 

  27. S. Chapman and T.G. Cowling, The Mathematical Theory of Nonuniform Gases, Cambridge Univ. Press, Cambridge (1952).

    Google Scholar 

  28. C. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles, CRC Press, Boca Raton, Florida (1998).

    Google Scholar 

  29. F. Frishman, M. Hussainov, A. Kartushinsky, and A. Mulgi, “Numerical simulation of a two-phase turbulent pipe-jet flow loaded with polyfractional solid admixture,” Int. J. Multiphase Flow, 23, No. 4, 765–796 (1997).

    Article  Google Scholar 

  30. F. E. Marble, “Mechanism of particle collision in one-dimensional dynamics of gas-particle admixture,” 7, No. 8, 1270–1282 (1964).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

__________

Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2006, pp. 76–87.

Original Russian Text Copyright © 2006 by Kartushinskii, Michaelides, and Rudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartushinskii, A.I., Michaelides, E.E. & Rudi, Y.A. Modeling of high-concentration gas-particle flow in a horizontal channel. Fluid Dyn 41, 237–248 (2006). https://doi.org/10.1007/s10697-006-0037-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10697-006-0037-8

Keywords

Navigation