
Flexible Services and Manufacturing Journal
https://doi.org/10.1007/s10696-024-09541-1

Combinatorial optimization methods for yarn dyeing
planning

Ege Duran1 · Cemalettin Ozturk2 ·M. Arslan Ornek3

Accepted: 15 April 2024
© The Author(s) 2024

Abstract
Managing yarn dyeing processes is one of the most challenging problems in the textile
industry due to its computational complexity. This process combines characteristics of
multidimensional knapsack, bin packing, and unrelated parallel machine scheduling
problems. Multiple customer orders need to be combined as batches and assigned to
different shifts of a limited number of machines. However, several practical factors
such as physical attributes of customer orders, dyeing machine eligibility conditions
like flotte, color type, chemical recipe, and volume capacity of dye make this problem
significantly unique. Furthermore, alongside its economic aspects, minimizing the
waste of natural resources during the machine changeover and energy are sustainabil-
ity concerns of the problem. The contradictory nature of these two makes the planning
problem multi-objective, which adds another complexity for planners. Hence, in this
paper, we first propose a novel mathematical model for this scientifically highly chal-
lenging yet very practical problem from the textile industry. Thenwe proposeAdaptive
Large Neighbourhood Search (ALNS) algorithms to solve industrial-size instances of
the problem. Our computational results show that the proposed algorithm provides
near-optimal solutions in very short computational times. This paper provides sig-
nificant contributions to flexible manufacturing research, including a mixed-integer
programmingmodel for a novel industrial problem, providing an effective and efficient
adaptive large neighborhood search algorithm for delivering high-quality solutions
quickly, and addressing the inefficiencies of manual scheduling in textile companies;
reducing a time-consuming planning task from hours to minutes.

Keywords Batching scheduling · MIP · ALNS · Dyeing

Cemalettin Ozturk and M. Arslan Ornek have contributed equally to this work.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10696-024-09541-1&domain=pdf

E. Duran et al.

1 Introduction and problem description

The textile industry plays a crucial role in the global economy, providing essential
goods for daily life, such as clothing, blankets, and household items (Research 2020).
Textile production is a complex process that involves six primary stages as shown in
Fig. 1, including yarn spinning and dyeing, warpmaking, starching, weaving, finishing
and dyeing, and cutting and sewing (Karacapilidis and Pappis 1996).

The textile dye industry produces about 3600 different types of products (Kant
2012), which can make scheduling and planning easily intractable. Advanced algo-
rithms are needed to tackle this complexity.

In this paper, the first stage of the textile manufacturing process, yarn dyeing will
be considered. Yarn dyeing occurs after the fibres have been spun into yarn, where
the dye penetrates the strands to the centre of the yarn. This process aims to produce
coloured yarns, which can be used to make striped knit or woven textiles, solid-dyed
yarn fabrics, and sweaters. The study focuses on planning the spinning and dyeing
process, the first step of textile production. Yarn is coloured as packages, which are
small reels fixed on hollow spindles. Package dyeing, which involves dyeing yarn
coiled on perforated cores, is one of the most widely used yarn dyeing procedures.
The dye passes through to the yarn package with the aid of the tube package’s designed
perforations. Once the carrier of coloured yarn has been fully depleted, it is removed
from the vessel. Readers are referred to textiletutorials.com (2023) for more technical
details of the process with visual material.

Figure 2 provides a schematic representation of the Yarn Dyeing Planning (YDP)
described by the industry experts during the development of this manuscript and
validated with literature (Karacapilidis and Pappis 1996). Assume that there are 13
customer orders (jobs) to be assigned to one of the three shifts (P = 3) of K eligible
Dying Machines (DM) on each day of the planning period of G days. Each machine
can work at only one of the predefined levels which is chosen based on the attributes
of jobs (total weight, volume, etc.) assigned to it. Furthermore, to reduce DM clean-
ing times water and chemical usage between consecutive batches on a machine, the
color code in consecutive batches must be in ascending order while respecting the
weight and volume capacity of DMs in each batch. This way, not only the cost but
the environmental impact of the dyeing process is minimized. YDP has two objec-
tives lexicographically ordered based on their priority: maximizing the number of jobs
processed and minimizing the number of DMs used. These priorities are defined by
the industry experts during the consultancy. The industry employs over 8000 types
of chemicals in various textile manufacturing processes, including dyeing and print-
ing. Many of these chemicals harm human health, either directly or indirectly. Textile
processing, dyeing, and printing are water-intensive operations, with an average-sized
textile mill, consuming approximately 1.6 million liters of water, of which 16% is

Fig. 1 The textile manufacturing process (Karacapilidis and Pappis 1996)

123

Combinatorial optimization methods for yarn dyeing planning

used in dyeing processes. Specifically, yarn dyeing requires about 60 lt. of water per
kilogram of yarn, and the dyeing section contributes to 15–20% of the total wastewater
flow (Kant 2012). As a result, the optimization goal was set to reduce the amount of
dye machines used. The idea behind this method is that by lowering the total number
of dye machines in use, chemical and water usage will also drop.

Figure 2 shows the assignment of those 13 jobs into three shifts of machines
machine1 and machine3 in days 1 and g respectively. Selected levels of machine1
are 1, 3, and 2 while 1, 2 and 3 for machine3. As an example, the solution depicts that
jobs 2, 4, and 8 are assigned to the second batch of machine1 which works in level3
based on the total weight, volume, and flotte of the jobs assigned to this machine.

The problem demonstrated above has several similarities with multidimensional
knapsack (Kellerer et al. 2004), bin packing (Delorme et al. 2016), and unrelated
parallel machine scheduling problems (Fleszar and Hindi 2018) in the literature:

• As in the multidimensional knapsack problem, YDP has several capacities (weight,
volume, number) and flotte conditions that provide an upper bound for the number
of jobs assigned to each DM in each batch.

• The number of available machines is known as in knapsack problems; however, the
second objective of YDP is minimizing the number of DMs which converges the
problem to bin packing problems.

• The color code of the consecutive batches (shifts) of each DM each day must be in
non-decreasing order, bringing a sequencing dimension as in an unrelated parallel
machine scheduling problem.

Therefore, YDP can be reduced to these three well-known combinatorial optimization
problems; hence, it is an NP-hard problem.

Fig. 2 An illustration of Yarn Dying Planning problem

123

E. Duran et al.

However, the following conditions of YDP make it different from classical mul-
tidimensional knapsack, bin packing, and unrelated parallel machine scheduling
problems:

• Capacities of a DM (volume, weight, number, and flotte) are also decision variables
and selected from technologically predefined levels according to the assigned jobs
into that DM.

• There are nonlinear eligibility conditions between jobs assigned to the same batch
of the same DM.

• Sequencing colour code of consecutive batches requires time-bucket (Swamidass
2000) based formulation as in lot sizing problems (Oztürk and Ornek 2010) in
which each bucket corresponds to a batch in a DM on a given day. This property
makes YDP different from unrelated parallel machine scheduling where disjunctive
scheduling-based formulations are needed to sequence individual jobs.

Therefore, this paper will describe YDP using a mixed integer programming (MIP)
model. However, the industrial size of the YDP is intractable to solve by using exact
solution methods such as mathematical programming in terms of time and space com-
plexity. Hence, we propose an adaptive large neighbourhood search algorithm (ALNS)
(Pisinger and Ropke 2019). ALNS exploits both systematic search capability and scal-
ability of local search. This gives the power to deal with optimization problems with
extremely large instances with close to optimal solution quality. The basic principle of
ALNS is finding an initial solution, generating sub-problems, and solving them iter-
atively until a stopping condition is met. In the proposed ALNS we will demonstrate
two types of initial solution finding mechanisms; one relies on solving the proposed
MIP model until the first feasible solution is found and the other is a matheuristic (Fis-
chetti and Fischetti 2016) algorithm. The selection of the subproblems in ALNS has
a significant impact on the performance of the overall algorithm. Hence, we propose
three subproblem selection (destroy) methodologies; job group-based, DM based, and
ad-hoc (random). Dynamically changing subproblem sizes in each iteration provides
adaptability to the proposed large neighbourhood search algorithm.

In contrast to previous publications in this domain, this paper brings the following
contributions: (1) a novel mixed integer programming model formulation for a novel
problem from the textile industry (2) a very fast adaptive large neighborhood search
algorithm providing high-quality solutions in a very short computation time. (3) In
practice, the textile company, that we worked for during the development of this
study, often relies on manual scheduling and planning processes, which can be time-
consuming and inefficient, requiring half a day and several people to develop a feasible
plan. In contrast, the ALNS algorithm provides a highly efficient solution, reducing
this task to a matter of minutes requiring just a single planning staff. (4) extensive
experiments with publicly available realistic instances for further research.

The paper is structured into five sections, with Sect. 2 providing a literature review.
Section 3 explains the YDP formally with a mixed integer programming model and
a lexicographic solution scheme for the model. An adaptive large neighbourhood
algorithm to solve large instances of YPD is proposed in Sect. 4. The computational
results are presented in Sect. 5, and the paper concludes by elaborating on the results
and discussing future studies in Sect. 6.

123

Combinatorial optimization methods for yarn dyeing planning

2 Literature review

This study focuses on the initial step of textile production, which is the spinning and
dyeing process of yarn. Yarn is dyed as small packages fixed on hollow spindles,
using the widely used package dyeing method where the dye penetrates through the
perforations of the yarn package. Scheduling textile production is complex, involv-
ing planning multiple products and manufacturing phases using Dyeing Machines
with different capacities and levels. The varied nature of the textile production system
makes production management challenging, with different planning horizons and out-
put characteristics for each process. Scheduling problems have gained attention due to
their wide application in industry and computational complexity, and researchers have
focused on multi-stage and complex scheduling to find the most appropriate quantity
and timing of production orders based on customer demands and resource capacities
(Sáenz-Alanís et al. 2016; Öztürk and Ornek 2014).

Researchers have extensively studied scheduling problems involving multi-stage
and complex manufacturing processes. Various mathematical formulations, heuristic
algorithms, and decomposition methods have been proposed to solve these problems.

The problem of scheduling the yarn dyeing process involves parallel machines and
batch processing. Various studies have been conducted to address similar issues, such
as single-machine batch scheduling with job families and setup requirements (Ghosh
and Gupta 1997), parallel machine batch scheduling with sequence-dependent setup
times in a brewing company (Sáenz-Alanís et al. 2016), scheduling of parallel batching
machines with non-identical machine capacities and inclusive processing set con-
straints (Li 2017), and single batch-processing machine problem with non-identical
task sizes and release dates (Zhou et al. 2018). These studies have proposed differ-
ent mathematical formulations, heuristic algorithms, and optimisation techniques to
minimize maximum lateness or makespan, which are critical objectives in manufac-
turing companies. Overall, scheduling problems are complex and require different
approaches depending on the production system’s characteristics and requirements.

Li et al. (2009) developed anAntColonyOptimization (ACO) algorithm to solve the
parallel batch processing machines problem with incompatible job families, dynamic
job arrivals, and sequence-dependent setup time constraints.

Crauwels et al. (2006) addressed abatch schedulingproblemwith parallelmachines,
job families, and family-dependent setup times. They partitioned jobs into families
and required a family-specific setup time at the beginning of each period and batch.
They developed an integer program tominimize the number of overloaded periods and
total overtime, and the program provided benchmark results for the heuristic method.

Although there has been extensive research on scheduling problems in various
industries, there has been limited research on scheduling problems specific to the
textile production process. This is partly due to the complex nature of the textile
industry and the difficulty in developing software systems that can handle all aspects
of textile production (Öztürk and Ornek 2014). However, some studies have been
conducted on the programming of textile production.

According to Periyasamy and Militky (2020) and Kant (2012), the textile industry
is a major contributor to environmental sustainability issues, with the dyeing process
having a significant impact on pollution, water usage, and energy consumption. Hynes

123

E. Duran et al.

et al. (2020) note that Industry 4.0 technologies can be used to implement multi-
objective optimization techniques for dyeing processes, enabling the minimization
of water consumption, treatment costs, and environmental pollution by optimizing
manufacturing resources.

Zhang et al. (2017) investigate a multi-objective ABC algorithm that focuses on
solving the production scheduling problem in fabric dyeing processes. They view the
problem as a model for parallel batch machine scheduling. In a separate study, Hsu
et al. (2009) examine the scheduling strategy for producing yarn-dyed textiles, which
includes multi-stage production, hierarchical product structure, sequence-dependent
setup times, and group delivery requirements. The aim is to minimize the total tardi-
ness of customer orders. Li et al. (2021) tackle a parallel machine scheduling problem
with several color families, sequence-dependent setup times, and machine eligibility
constraints. They create an integer programming model to minimize the overall delay.
Huynh and Chien (2018) researched related to Industry 4.0 migration and developed a
multi-subpopulation genetic algorithm with embedded heuristics (MSGA-H) to opti-
mize the textile batch dyeing scheduling process. The goal of the studywas tominimize
the makespan, which is the time required to complete a batch, and improve the effi-
ciency of the dyeing process, which is a bottleneck in textile production. For a more
detailed study on setups in the dyeing process, see (Gomes et al. 2021). Demir and
Kemal (2022) have created an integer linear model and iterative greedy-based heuris-
tics for bobbin boiler planning in the textile industry. EROĞLU et al. (2014) have
developed a genetic algorithm to address loom scheduling with sequence-dependent
setup times. A data-driven, simulation-based method to optimize the scheduling of
operations to increase the manufacturing process’ sustainability is provided by Pirola
et al. (2021). In another research, Zhou et al. (2020), authors presented an optimiza-
tion model for scheduling dyeing processes in knitting companies. It utilizes a hybrid
genetic algorithmwith variable neighborhood search to improve production schedules,
andminimize delay and switching costs. Finally, Karacizmeli andOgulata (2017) have
formulated amixed-integer programmingmodel for scheduling textile finishing plants.

3 Problem formulation and lexicographic solution scheme

This section presents a mixed integer programming (MIP) formulation to model and
solve the multi-period multi-objective yarn dying planning problem (YDP) described
in the previous section. The formulation structure is shown conceptually in Fig. 3,
in which input parameters and variables related to DMs and jobs, constraints, and
objectives are included.

3.1 Multi-objective mixed integer programmingmodel for YDP

This section formally defines the multiobjective YDP using a MIP formulation.
Sets and Indices
I: set of job orders, i ∈ I = {1, 2.., |I |}
P: set of batches, p ∈ P = {1, 2.., |P|}

123

Combinatorial optimization methods for yarn dyeing planning

Fig. 3 Structure of the MIP model

G: set of days, g ∈ G = {1, 2.., |G|}
K: set of dye machines, k ∈ K = {1, 2.., |K | + 1}, dye machine |K | + 1 is dummy

DM in which any job that can not be assigned to any real DM is assigned
Sk : set of levels in dye machine k, m ∈ Sk = {1,2..,|levelSk |}
F: set of flotte intervals, f ∈ F = {1, 2.., |F |}
R: set of chemical recipe code, r ∈ R = {1, 2.., |R|}
C: set of colour percentage, c ∈ C = {1, 2.., |C |}
machinei : eligible dye machines for job order i
machinei= K − { k ∈ K | ((reactivei=1) ∨(lyci=1)) ∧(specialk=1)}
Parameters
Job-related parameters
ordernoi : number of the job order
kgi : weight of the job order
orderrecipei : chemical recipe of the customer order
ordercolouri : colour percentage of the job order
duedatei : due date of the job order
latesti : latest possible time for finishing the job order

order f lottei, f =
{
1 if flotte interval of job iis f
0 otherwise

reactivei =

{
1 if jobiis reactive
0 otherwise

lyci =

{
1 if jobiis spandex
0 otherwise

spool: weight of a spool
Dye machine-related parameters
machinenok : index of dye machine

specialk=

{
1 i f machinekiseligible f orreactiveorspandex joborders
0 otherwise

Levelsk : total number of possible levels of dye machine k

123

E. Duran et al.

volumecapacitym : volume capacity of machine k at level m where m ∈ Sk

maxquanti t ym : number of spools capacity of machine k at level m where m ∈ Sk

minkgm : minimum processing weight of machine k at level m where m ∈ Sk

maxkgm : maximum processing weight of machine k at level m where m ∈ Sk

ini tialcolourk : initial colour percentage of dye machine k at the beginning of the
planning period

max f lotte f : maximum allowed flotte value for flotte interval f
min f lotte f : minimum allowed flotte value for flotte interval f
Note that flotte intervals are defined for both jobs and batches and the flotte value

of a dye machine is defined as the ratio of volume to the weight of dyestuff
In the following, we define big-M values used to linearise several constraints. We

define different values to ensure the tightest possible right-hand side values for each
constraint where a big M is needed.

M: a big number
M2: a big number for colour constraints (max

∀i {ordercolouri })
M3: a big number for receipt constraints (max

∀i {orderrecipei })
M4: a big number for machine kg constraints (max∀m {maxkgm})
M5: a big number for a number of spool constraints (max∀m {maxquanti t ym})
Variables
Variables related to dye machines
weightg,p,k : total weight of batch p at dye machine k on day g, weightg,p,k ∈ R

+
volumeg,p,k : total volume of batch p at dye machine k on day g, volumeg,p,k ∈ R

+
quanti t yg,p,k : total number of spools of batch p at dye machine k on day g,

quanti t yg,p,k ∈ Z
+

colourg,p,k : colour percentage of batch p at dye machine k on day g, colourg,p,k ∈
R

+
recipeg,p,k : colour code of batch p at dye machine k on day g recipeg,p,k ∈ R

+

f lotteg,p,k, f =

{
1 if batch p at dye machine k on day g is in flotte interval f
0 otherwise

levelg,p,m=

{
1 if level of batch p at dye machine k on day g is level m
0 otherwise

usageg,p,k=

{
1 if a job order is assigned to batch p at dye machine k on day g
0 otherwise

machineusagek=

{
1 if dye machine k is used
0 otherwise

Variables related to job orders

assignmentg,p,k,i =

{
1 if job i is assigned to batch p of dye machine k at day g
0 otherwise

α: the number of jobs that are not assigned to any DMs
β: the number of DMs used

123

Combinatorial optimization methods for yarn dyeing planning

Now, we propose the complete mixed integer programming model:

Minimize α =
∑
g∈G

∑
p∈P

∑
i∈I

assignmentg,p,|K |+1,i

Minimize β =
∑

k∈K |k≤|K |
machineusagek

(1)

where α � β

The lexicographic objective function 1firstmaximizes the number of jobs processed
by minimizing the number of jobs assigned to the dummy machine |K | + 1. Then it
minimizes the number of DMs used.

Subject to
Constraints for assigning jobs to different batches of dye machines

∑
∀g∈G,p∈P,k∈|K |+1

assignmentg,p,k,i = 1, ∀i ∈ I (2)

Constraint (2) ensures that each job order (∀i ∈ I) has to be assigned to exactly one
of the batches (∀p ∈ P) of a DM (∀k ∈ machinei) in a day (∀g ∈ G).

Constraints for selecting a level for each batch

∑
∀m∈Sk

levelg,p,m ≤ 1 ∀g ∈ G, ∀p ∈ P, ∀k ∈ K |k ≤ |K | (3)

∑
∀i∈I |k∈machinei

assignmentg,p,k,i ≤ M ∗ usageg,p,k

∀g ∈ G, ∀p ∈ P, ∀k ∈ K |k ≤ |K | (4)

usageg,p+1,k ≤ usageg,p,k ∀g ∈ G, ∀p ∈ P, ∀k ∈ K (p < |P|) ∧ (k < |K |) (5)

usageg,p,k =
∑

m∈Sk

levelg,p,m ∀g ∈ G, ∀p ∈ P, ∀k ∈ K |k < |K |) (6)

Constraint (3) guarantees that each DM (∀k ∈ K) can be used at one of its levels
(∀m ∈ sk) in each batch (∀p ∈ P) on any day (∀g ∈ G).

Constraint (4) is the linear formulation of logical proposition∑
∀i∈I |k∈machinei

assignmentg,p,k,i ≥ 1 	⇒ usageg,p,k = 1 and mean that
If at least one job order is assigned to a batch (∀p ∈ P) of a DM (∀k ∈ K) on any day
(∀g ∈ G), that dye machine is marked as used. Constraint (5) guarantees that batches
(∀p ∈ P) assigned to a machine (∀k ∈ K) are used consecutively. In other words, a
job can be assigned to a successor batch p+1 if and only if the batch p is used. Since
the cost of producing in any batch of a given day is indistinguishable, constraint (5)
is formulated as valid inequalities and used to break symmetries. Constraint (6) is the
linear formulation of logical proposition usageg,p,k ⇔ ∑

m∈Sk
levelg,p,m and ensure

that if a dye machine (∀k ∈ K) is used in a batch (∀p ∈ P) of any day (∀g ∈ G), it

123

E. Duran et al.

can be used in one of its predefined levels (m ∈ Sk). In addition to constraints (3) and
(4), if any job is not assigned to a batch of a dye machine on a particular day, there
is no need to make a level decision for the same machine in that batch of the day.
However, if at least one job is assigned to a level has to be selected by the model. We
diversify usageg,p,k and levelg,p, j variables to allow for the easier formulation of
logical propositions (a) minimum weight condition is not compulsory if none of the
job orders is assigned to that batch and (b) flotte selection for each batch which is
explained in detail in constraints below.

Weight and volume constraints for each batch

weightg,p,k =
∑

i∈I |k∈machinei

(kgi ∗ assignmentg,p,k,i)

∀g ∈ G, ∀p ∈ P, ∀k ∈ K (7)

weightg,p,k ≤ maxkgm + M4 ∗ (1 − levelg,p,m)

∀g ∈ G, ∀p ∈ P, ∀k ∈ K , ∀m ∈ Sk |k ≤ |K | (8)

weightg,p,k ≤ minkgm − M4 ∗ (1 − levelg,p,m)

∀g ∈ G, ∀p ∈ P, ∀k ∈ K , ∀m ∈ Sk |k ≤ |K | (9)

volumeg,p,k =
∑

m∈Sk

(volumecapacitym ∗ levelg,p,m)

∀g ∈ G, ∀p ∈ P, ∀m ∈ Sk |k ≤ |K | (10)

Constraint (7) returns the total weight of each batch (∀p ∈ P) of every dye machine
(∀k ∈ K) for each day (∀g ∈ G) as the sum of the weights of assigned job orders
which must be in between the minimum and maximum weight interval of the selected
level of that batch with the help of constraints (8) and (9). Similarly, constraint (10)
ensures that the volume of a batch equals the volume of the selected level of that batch.
Note that if the total volume of assigned jobs is not enough to fill the volume of the
chosen level, scrap yarns are used.

Number of spools-related constraints for each batch

quanti t yg,p,k ≥weightg,p,k

spool
, ∀g ∈ G, ∀p ∈ P, ∀k ∈ K |k ≤ |K | (11)

quanti t yg,p,k ≤weightg,p,k

spool
+ 1, ∀g ∈ G, ∀p ∈ P, ∀k ∈ K |k ≤ |K | (12)

quanti t yg,p,m ≤maxquanti t ym ∗ levelg,p,m + M5 ∗ (1 − levelg,p,m)

∀g ∈ G, ∀p ∈ P, ∀m ∈ Sk ∀k ∈ K |k ≤ |K | (13)

quanti t yg,p,m ≥maxquanti t ym ∗ levelg,p,m + M5 ∗ (1 − levelg,p,m)

123

Combinatorial optimization methods for yarn dyeing planning

∀g ∈ G, ∀p ∈ P, ∀m ∈ Sk ∀k ∈ K |k ≤ |K | (14)

The total number of spools in a batch of a dye machine in a day is equal to
quanti tiyg,p,k = �weightg,p,k

bobin which is linearized (making it integer) by constraints
(11) and (12). The integer quanti t yg,p,k variable is greater than or equal to the float
weightg,p,k

bobin (11) and less than or equal to float
weightg,p,k

bobin + 1 (12). For example, if
weightg,p,k

bobin = 2.3, the number of spools in that batch will be three because it is the only
integer value between 2.3 ≤ amountg,p,k ≤ 3.3. Constraints (13) and (14) ensure that
the number of spools in a batch is within the predefined minimum and the maximum
number of spools of the assigned level. In this formulation, we assume that different
levels of a dyemachine are sorted in ascending order of themaximumnumber of spools
allowed. For example, if there are two levels with spool capacity maxamountm=20
and maxamountm−1=15, the number of spools assigned to a batch with level j must
be greater than 15 (constraint 13) and less than 20 (constraint 14).

Colour carryover constraints for each batch

colour1,1,k ≥ini tialcolourk, ∀k ∈ K |k ≤ |K | (15)

colourg,1,k ≥colourg−1,|P|,k, ∀g ∈ G, ∀k ∈ K |(g > 1) ∧ (k ≤ |K |) (16)

colourg,p+1,k ≥colourg,p,k, ∀g ∈ G, ∀k ∈ K |(p > |P|) ∧ (k ≤ |K |) (17)

colourg,p,k ≤M2 ∗ (ini tialcolourk +
∑

l∈P|l≤p

usageg,l,k)

∀g ∈ G, ∀k ∈ K |(p > |P|) ∧ (k ≤ |K |) (18)

Because of the high cost and time for changeovers, a setup carryover restriction
enforces that from shift to shift, the colours must be processed in the increasing degree
of darkness, i.e., in technical terms, the colour percentage of the batch increases.Hence,
while constraint (15) guarantees that the colour percentage of a dye machine at the
beginning of the planning period is greater than or equal to the initial colour percentage
of that machine, constraint (16) ensures that the colour percentage of the first batch
of a successor day is greater than or equal to the colour percentage of the same dye
machine in the last batch of the previous day. Similarly, constraint (17) sorts colour
percentages of successive batches in a dye machine in ascending order for each dye
machine. Constraint (18) is used as a valid inequality such that the color percentage
variable is set to 0 if a machine batch is not used.

Flotte selection for each batch

usageg,p,k =
∑
f ∈F

f lotteg,p,k, f , ∀g ∈ G, ∀p ∈ P, ∀k ∈ K |(k ≤ |K |) (19)

volumeg,p,k ≥weightg,p,k ∗ min f lotte f − M ∗ (1 − f lotteg,p,k, f),

∀g ∈ G,∀p ∈ P,∀ f ∈ F, ∀k ∈ K |k ≤ |K | (20)

123

E. Duran et al.

volumeg,p,k ≤weightg,p,k ∗ max f lotte f + M ∗ (1 − f lotteg,p,k, f),

∀g ∈ G,∀p ∈ P,∀ f ∈ F, ∀k ∈ K |k ≤ |K | (21)

The flotte value of a batch is calculated by the nonlinear equation
volumeg,p,k
weightg,p,k

and
must be in between predefined technologically possible intervals. Hence, first, we
assign a flotte interval to each batch if it is used as in constraint (19) which is a linear
formulation of a logical proposition usageg,p,k = 1 ⇔ ∑

f ∈F f lotteg,p,k, f .Since

min f lotte f ≤ volumeg,p,k
weightg,p,k

≤ max f lotte f is a non-linear constraint, it is converted
into linear constraints in (20) and (21).

Constraints for ensuring consistency between technological requirements of jobs
and batches of dye machines

order f lottei, f ≤ f lotteg,p,k, f + M ∗ (1 − assignmentg,p,k,i),

∀g ∈ G, ∀p ∈ P, ∀ f ∈ F, ∀k ∈ K |(order f lottei, f = 1) ∧ (k ≤ |K |)
(22)

order f lottei, f ≥ f lotteg,p,k, f − M ∗ (1 − assignmentg,p,k,i),

∀g ∈ G, ∀p ∈ P, ∀ f ∈ F, ∀k ∈ K |(order f lottei, f = 1) ∧ (k ≤ |K |)
(23)

ordercolouri ≤colourg,p,k + M2 ∗ (1 − assignmentg,p,k,i),

∀g ∈ G,∀p ∈ P,∀i ∈ I , ∀k ∈ K |k ≤ |K | (24)

ordercolouri ≥colourg,p,k − M2 ∗ (1 − assignmentg,p,k,i),

∀g ∈ G,∀p ∈ P,∀i ∈ I , ∀k ∈ K |k ≤ |K | (25)

orderrecipei ≤recipeg,p,k + M3 ∗ (1 − assignmentg,p,k,i),

∀g ∈ G,∀p ∈ P,∀i ∈ I , ∀k ∈ K |k ≤ |K | (26)

orderrecipei ≥recipeg,p,k − M3 ∗ (1 − assignmentg,p,k,i),

∀g ∈ G,∀p ∈ P,∀i ∈ I , ∀k ∈ K |k ≤ |K | (27)

recipeg,p,k ≤M3 ∗ usageg,p,k ∀g ∈ G,∀p ∈ P, ∀k ∈ K |k ≤ |K | (28)

Constraint (22) and (23) ensure that the flotte interval of a job order is the same with
the selected flotte interval of the assigned batch and consequently with other jobs
assigned to the same batch of the same dye machine on the same day. Similarly,
constraints between (24)–(27) guarantee the consistency of colour percentage and
recipe of individual job orders with assigned batches and other job orders assigned to
the same batch of the same dye machine. Constraint (28) is used as a valid inequality
such that if a batch of a machine is not used on a particular day, the recipe variable is
set to 0.

123

Combinatorial optimization methods for yarn dyeing planning

Domains of variables

usageg,p,|K |+1 = 0, ∀g ∈ G,∀p ∈ P (29)

recipeg,p,|K |+1 ≤ 0, ∀g ∈ G,∀p ∈ P (30)

colourg,p,|K |+1 ≤ 0, ∀g ∈ G,∀p ∈ P (31)

levelg,p,m = 0, ∀g ∈ G, ∀p ∈ P ∀m ∈ Sk |k = |K | + 1 (32)

weightg,p,m ≤ 0, ∀g ∈ G, ∀p ∈ P ∀m ∈ Sk |k = |K | + 1 (33)

volumeg,p,m ≤ 0, ∀g ∈ G, ∀p ∈ P ∀m ∈ Sk |k = |K | + 1 (34)

amountg,p,|K |+1 = 0, ∀g ∈ G, ∀p ∈ P (35)

f lotteg,p,|K |+1, f = 0, ∀g ∈ G, ∀p ∈ P, ∀ f ∈ F (36)

weightg,p,k, volumeg,p,k, colourg,p,k, recipeg,p,k ≥ 0

usageg,p,k ∈ {0, 1}, quanti tiyg,p,k ≤ and integer

∀g ∈ G, ∀p ∈ P, ∀ f ∈ F (37)

f lotteg,p,k, f ∈ {0, 1}, ∀g ∈ G, ∀p ∈ P, ∀k ∈ K ∀ f ∈ F (38)

levelg,p,m ∈ {0, 1}, ∀g ∈ G, ∀p ∈ P, ∀m ∈ Sk (39)

assignmentg,p,k,i ∈ {0, 1}, ∀g ∈ G, ∀p ∈ P, ∀k ∈ K , ∀i ∈ I (40)

∑
g∈G

∑
p∈P

∑
i∈I

assignmentg,p,k,i ≤ M ∗ machineusagek, ∀k ∈ K |k ≤ |K | (41)

machineusagek ∈ {0, 1} ∀k ∈ K |k ≤ |K | (42)

All variables on the dummy dye machine are set to 0 with constraints (30)–(37) where
the domains are given in (38)–(40). Constraint (41) indicates if there is any assignment
to any of the DMs in any shift (batch) of any day, that machine is marked as being
used, machineusagek = 1. And finally constraint (42) gives the domain of machine
usage variables.

123

E. Duran et al.

3.2 Lexicographic solution scheme for themulti-objective YDPMIPmodel

MIP formulation in Sect. 3.1 has two objectives lexicographically ordered;minimizing
the number of jobs assigned to dummy DM (α) with a minimum number of DMs,
β. Based on the industry experts’ feedback, there is a clear distinction between the
priority of these two objectives, and hence a lexicographic solution method fits best
for the resolution which also does not require normalizing goals as in the weighted
sum method. The methodology relies on decomposing the multi-objective problem
into many single objective problems and solving sequentially in which the solution
(i.e., objective function value) of the upstream problem(s) is added as an upper bound
(for minimization problems) or lower bound (for maximization problems) into the
downstream problem(s). The optimal solution for all objectives is found when the
last instance is solved, which also guarantees a Pareto optimal solution. Readers are
referred to Zykina (2004) and Arora (2012) for details of the lexicographic method.

The samemethodology is used forYDP problem formulation in Sect. 3.1: presented
model is first solved by minimizing only the number of jobs assigned to the dummy
machine, we call this model as M I P α and then the objective function value α∗
is fed into the second MIP model, which we call as M I P β, as an upper bound
for unassigned jobs while minimizing the number of DMs used, β. When optimal
solutions are found for both models, the minimum number of unprocessed jobs, α∗
and the minimum number of machines used β∗ are ensured.

Figure 4 shows the lexicographic solution scheme. The formulation of M I P α and
M I P β are detailed in the following subsections.

3.2.1 MIP ˛

Minimize α =
∑
g∈G

∑
p∈P

∑
i∈I

assignmentg,p,|K |+1,i (43)

subject to
Constraints (2–42)
The solution of M I P α, is stored as α∗ to be used as an upper bound for the number

of unassigned jobs in the downstream model M I P β.

3.2.2 MIP ˇ

Additional input parameters

Fig. 4 Lexicographical solution
scheme

123

Combinatorial optimization methods for yarn dyeing planning

α∗: the number of jobs that are not assigned to any DMs based on the solution of
M I P α

Minimize β =
∑
k∈K

machineusagek (44)

subject to
(2–42) and

∑
a∈A|a.machine=|K |+1

assignmentg,p,k,i ≤ α∗ (45)

Constraint (44) ensures that any solution to M I P β can not yield a worse solution for
M I P α than α∗.

Optimal solutions of first the M I P α and then M I P β models result from the
minimum number of jobs that are not processed, α∗ and β∗ [α∗,β∗]

In addition to the NP-hard computational complexity of the proposed MIP models,
the size complexity of the model is bounded withO(|G|×|P|×|K |×|I |) both for the
number of variables and constraints due to assignmentg,p,k,i variables and equation
(27).

Nonlinear relations between variables make developing good-quality lower bounds
for objective functions difficult. However, a practical lower bound can be formulated
for β as in the following.

Recall that the colour percentage of a batch is one and only one and equal to the
colour percentage of all jobs assigned to (15–18 and 24, 25). Assume five different
colour percentages (groups of jobs) exist in the set of jobs to be processed, and only
three batches are available. They need to be assigned tominimum (� 5

3 = 2)machines.
Therefore,

∑
k machineusagek ≥ � n

b where n and b represent the number of groups
and the total number of batches in a day, respectively is a valid lower bound for β.

As presented in Sect. 5 in detail, the lexicographic solution scheme proposed above
is intractable due to its size and computational complexity. Hence, in the next section,
an Adaptive Large Neighborhood Search (ALNS) heuristic will be proposed to get
good-quality solutions in a reasonable time for large instances. The ALNS heuristic
differs from the conventional large neighbourhood search (LNS) heuristic by employ-
ing multiple destroy and repair methods in dynamically changing size during the
search.

4 Adaptive large neighbourhood search algorithm for YDP

Divide-and-Conquer is the most practical method to attack sizeable combinatorial
optimization problems, dividing the problem into computationally tractable but inde-
pendent sub-problems and iteratively solving till a stopping criterion is met. Large
neighbourhood search (LNS) proposed in Shaw (1998) is the primarily used divide-
and-conquer method for combinatorial optimization problems from many domains.
The basic working principle of a typical LNS is finding an initial solution, selecting

123

E. Duran et al.

a subproblem, and iteratively destroying and repairing the current solution. As an
example, for a mixed integer programming model-based initial solution, these phases
would be selecting a set of variables to be destroyed (subproblem selection) at random
or with a heuristic selection method, relaxing values of these variables (destruction)
while fixing values of other variables, then solving (repair) the mixed integer program-
ming model only for those whose values are relaxed. Since a combinatorial problem is
solved in every repair phase, the method is called “large” compared to “local” search
methods, where polynomial repair methods are used. If the size of the subproblems
changes dynamically during the search, the overall process is called an adaptive large
neighbourhood search (ALNS), Ropke and Pisinger (2006). Readers are referred to
Taillard (2023) for a detailed explanation of generic LNS and ALNS procedures.

In this paper, we implemented the ALNS method into the Yarn Dyeing Planning
(YDP) problem, demonstrating the hierarchy of steps in Fig. 5. Having a structural
formulation of the problem through a mixed integer programming model provides a
background for employing ALNS as it can be used for having a good quality initial
solution and as a repair operator and promises quickly converging solutions compared
to other metaheuistic methods. DevelopedALNS uses two approaches to find an initial
solution; a matheuristic method based on the YDP MIP model presented in Sect. 3.1
and the other based on executing the lexicographic scheme presented in Sect. 3.2
only until the first feasible solution is found. Once an initial solution is found, three
alternative subproblem generation heuristics are executed; job and machine-based
or random. A subproblem is selected based on descending or ascending ordering
heuristics. The following subsectionwill explain thedesignof these steps demonstrated
in Fig. 5.

4.1 Design of the ALNS algorithm

The ALNS metaheuristic uses a neighborhood defined implicitly by a destroy method
and a repair method. The destroy method breaks down a part of the current solution,

Fig. 5 Hierarchy and ALNS steps for Yarn Dyeing Problem

123

Combinatorial optimization methods for yarn dyeing planning

while the repair method rebuilds the destroyed part with the hope of a better objective.
For avoiding to stuck in a local optima, the destroy method usually incorporates a
degree of randomness so that a different part of the current solution is destroyed in
each iteration. The function d(·) represents the destroy method, while r(·) represents
the repair method. In more detail, when the function d(x) is applied to a solution x, it
returns a partially destroyed copy of x. On the other hand, using the function r(·) to
a partially destroyed solution results in a repaired, feasible solution constructed from
the destroyed one (Pisinger and Ropke 2019). Algorithm 1 shows the framework of
ALNS.

Algorithm 1 ALNS (machines,jobs,Reverse)

Algorithm 1 provides the adaptive large neighbourhood search algorithm’s pseudo-
code. ALNS starts with finding an initial solution (Line 2) with α which refers to
the number of unassigned jobs, lexicographically the first objective function. Suppose
there exists at least one unassigned job (line 5). In that case, ALNS applies r(d1(S,RT))
(lines 6–9) that first destroys the current solution based on the job-based destroy
operator and then repairs the solution,which updates the current best solution if the new
solution is lexicographically better. If not, ALNS invokes r(d2(S,RT)) (lines 10–13)
and destroys the current solution based on the machine based destroy operator and
repair with the hope of finding a better solution with fewer machines (β) used. If
all jobs are assigned (line 14), the algorithm invokes r(d2(S,RT)) (Lines 15–19) to

123

E. Duran et al.

minimize β. Once all job and machine-based destroy operators are tried, if there is
still time remaining, ALNS calls a random destroy operator and repairs the destroyed
solution r(d3(S,RT)) (lines 20–23). Once the time limit is reached, ALNS stops (line
23) returning the current best solution (line 25). Details of Algorithm 1 are explained
in the following subsections.

4.1.1 Finding an initial solution

Two methods have been employed to find an initial solution as shown in Algorithm 2.
The first method uses the lexicographic solution scheme presented in Sect. 3.2 with
limited time. And the second one is using the matheuristic method to search for larger
solution space in a given limited time. These initial solution algorithms are selected
with binary “Heuristic” parameters in line 2 of Algorithm 1.

Algorithm 2 InitialSol(machines,jobs,Heuristic)

Algorithm 3 is used to find the first feasible solution using the lexicographic scheme
in Sec 3.1 which is denoted as solve method. Since the problem is NP-Hard, time
restriction is used to find the first feasible solution in a reasonable time.

Algorithm 3 Lex(machines,jobs,RT)

In Algorithm 4, a matheuristic is applied to find an initial solution. First, jobs are
divided into Job_groups using StaticJobGroup algorithm, Algorithm 5. For each group
in Job_groups, g is a subproblem for matheuristic and solved by the lexicographic

123

Combinatorial optimization methods for yarn dyeing planning

method presented in Sect. 3.1 with resulting objective function values αg and βg .
Overall objective function values α and β are updated with values from those groups.
And finally, the assignments in matheuristic are returned to Algorithm 1.

Algorithm 4 Matheuristic(machines,jobs)

Algorithm5, groups jobs according to their features such as flotte, recipe, and colour
percentage. Each group is appended to job_groups as a set for use in Algorithm 4. Note
that Algorithm 5 is called static because jobs are grouped based on physical attributes
and also to distinguish it from a dynamic grouping scheme during the search to be
explained in the following subsection.

Algorithm 5 StaticJobGroups(machines,jobs)

4.1.2 Destroy and repair operators

In this subsection, we explain the details of the job (Algorithm 6 and machine-based
(Algorithm 8) and random (Algorithm 10) destroy and repair methods mentioned in
Fig. 5.

123

E. Duran et al.

Job-based destroy and repair operator presented in Algorithm 6 starts with initial-
izing parameters in lines 1–3. DynamicJobGroup algorithm is called (Algorithm 7)
in line 4 to create two lists of job groups: assigned and unassigned. While assigned
groups indicate a group of jobs assigned to a machine, unassigned jobs groups refer
to job groups where at least one job is not assigned to any machine. Then algorithm 6
goes through each assigned group in descending order of weight and chooses the one,
lines 5–6, and creates two sets of assignment variables, V r and V f , ones to be relaxed
and fixed respectively, line 7. To escape from local optima, all assignment variables in
group a and the first unassignedgroups are relaxed, line 8, while the rest of the variables
are kept as they are, line 9. Then, the lexicographic method presented in Sect. 3.1 is
executed with the current solution S, and a set of relaxed and fixed variables to find a
new temporary solution St , line 10. As discussed in the numerical experiments section,
the subproblem optimized in this stage is small enough to find optimal solutions in all
instances. Suppose the temporary solution is better than the current best solution (line
11), the best solution is updated (line 12), a set of assigned and unassigned groups of
jobs are re-created based on the new best solution (line 13), and the algorithm starts
from scratch (line 14). If not, the algorithm continues by switching to the next group of
jobs in the unassigned group (line 18). When all unassigned groups are traversed with-
out further improvement, the algorithm returns the current best solution and remaining
time parameter to Algorithm 1. The worst-case number of calls for Algorithm 6 will
be O(|I |) if each individual job indicates an unassigned group itself.

Algorithm 6 r(d1(machines,jobs,S,RT)

123

Combinatorial optimization methods for yarn dyeing planning

Since DynamicJobGroups referred to in lines 4 and 13 of Algorithm 6 are also
being initialized in other destroy and repair operators, we provide its details below.
Algorithm 7 starts with initializing two lists of groups of jobs, for unassigned and
assigned groups in lines 1 and 2, and then invokes Algorithm 5 to group jobs according
to their physical attributes in line 3. Then, each job group is checked (lines 4 and 5)
and added to the list of unassigned (line 6) groups if there exists at least one job not
assigned to any machine or assigned list of groups otherwise (line 8).

Algorithm 7 DynamicJobGroups(machines,jobs,job_groups,S)

The second destroy and repair operator is machine based and explained in Algo-
rithm 8, prioritizing the second objective, minimizing the number of machines used.
The Algorithm starts with initializing input parameters in lines 1 and 2. In line 3,
Algorithm 9 is invoked to create the list of used machines in the current based solution
which is ordered in ascending (Reverse=1) or descending (Reverse=0) order based on
the weight of jobs assigned to each. Starting from line 4, the algorithm traverses each
machine in the used machine list. It initializes the list of variables to be relaxed and
fixed, line 6, and the group of jobs assigned to the selected machine, line 7. Then,
the algorithm checks all job groups, line 8, and add all of them to the list of Machine
group if at least one job is assigned to the selected machine, lines 9 and 10. Job groups
in assigned_groups are in descending order based on their weight and Job groups in
unassigned_groups are sorted in descending order in terms of the number of unas-
signed jobs. All assignment variables related to the machine group are added to the
list of variables to be relaxed and the rest are kept as fixed, lines 13 and 14. Then,
the algorithm invokes the lexicographic solution scheme in Sect. 3.2 by considering
the relaxed and fixed variables in line 15. If the current solution is better than the best
solution in line 16, the best solution is updated in line 17, the list of used machines is
initialized in line 18, and the algorithm starts from the beginning, line 19. Otherwise,
the algorithm continues with the following machine in the list of used machines, line
21. Algorithm 8 terminates by returning the best solution and the remaining runtime,
line 26.

123

E. Duran et al.

Algorithm 8 r(d2(S,RT,Reverse))

In the following, Algorithm 9, we demonstrate how machine groups are created,
which are used in Algorithm 8. Algorithm 9 traverses each machine, line 2, and if
at least one job is assigned, the total weight of jobs is computed, and the machine is
added to the list of used machines, lines 3–5. The list of used machines is sorted in
descending (Reverse =0) or ascending (Reverse = 1) order based on the total weight
of assigned jobs before it is returned to Algorithm 8, lines 8 and 9.

Algorithm 9 CreateMachineGroup(S,Reverse)

Finally, after job based and machine-based destroy and repair operators explained
above, if there is still available time, Algorithm 1 uses a completely random destroy

123

Combinatorial optimization methods for yarn dyeing planning

and repair operator, Algorithm 10 as explained below. After initializing the set of
relaxed and fixed variables, in line 1, randomly selected b % of assignment variables
(chosen as 30%) are fixed, and (1-b) % are relaxed, lines 2 and 3. The lexicographic
solution scheme is invoked with the given fixed and relaxed variables, line 4 and if the
new solution is better than the current best, the incumbent solution is updated, lines
5–7.

Algorithm 10 r(d3((S,b,RT))

In the following subsection, we provide a numerical example to demonstrate the
execution of Algorithm 1.

4.2 A numerical example

This paper proposes an ALNS with three different destroy and repair operators to
tackle multi-objective YDP. Three variants of ALNS are proposed. This subsection
presents a minimal example of how these operators are executed. We generate an
instance with three dyeing machines (DM) and 17 jobs, as shown in Tables 1 and 2.

Table 1 DM data for the minimal example

Dye
machine
(machinei)

Level
(levelsk)

Volume (Lt.)
(volumacapacitym)

Max spool
(maxquanti t ym)

Min Kg.
(minkgm)

Max Kg.
(maxkgm)

DMS01 1 250 20 0 17

DMS01 2 300 25 0 20

DMS01 3 350 30 0 25

KRN03 1 320 30 0 25

KRN03 2 400 48 30 40

THS01 1 1600 180 123 149

THS01 2 1800 210 150 174

THS01 3 2100 270 175 224

THS01 4 2400 300 225 249

123

E. Duran et al.

Ta
bl
e
2
Jo
b
da
ta
fo
r
th
e
m
in
im

al
ex
am

pl
e

Jo
b
(o

rd
en

rn
o i
)

W
ei
gh

t(
kg

i)
R
ec
ip
e

(o
rd

er
re

ci
pe

i)
C
ol
ou

r
(%

)
(o

rd
er

co
lo

ur
i)

R
ea
ct
iv
e

(r
ea

ct
iv

e i
)

Ly
c
(l

yc
i)

M
in

flo
te

(m
in

fl
ot

te
i)

M
ax

flo
te

(m
a

x
fl

ot
te

i)

1
10

30
,6
09

,6
30

0.
19

7
0

0
15

16

2
8

30
,6
09

,6
30

0.
19

7
0

0
15

16

3
5

30
,6
09

,6
30

0.
19

7
0

0
15

16

4
26

50
,6
12

,5
62

0.
48

83
0

0
9

11

5
24

50
,6
12

,5
62

0.
48

83
0

0
9

11

6
16

50
,6
12

,5
62

0.
48

83
0

0
9

11

7
15

50
,6
12

,5
62

0.
48

83
0

0
9

11

8
12

50
,6
12

,5
62

0.
48

83
0

0
9

11

9
10

50
,6
12

,5
62

0.
48

83
0

0
9

11

10
13

50
,5
13

,4
11

0.
72

0
0

9
11

11
7

50
,5
13

,4
11

0.
72

0
0

9
11

12
5

50
,5
13

,4
11

0.
72

0
0

9
11

13
15

50
,5
13

,4
11

0.
72

0
0

9
11

14
70

30
,5
13

,4
96

1.
22

0
0

9
11

15
50

30
,5
13

,4
96

1.
22

0
0

9
11

16
15

30
,5
13

,4
96

1.
22

0
0

9
11

17
30

30
,5
13

,4
96

1.
22

0
0

9
11

123

Combinatorial optimization methods for yarn dyeing planning

Fig. 6 Initial solution for the minimal data

Overall ALNS algorithm, Algorithm 1 starts with an initial solution, in which, one
of the variants of finding an initial solution, Algorithm 4 requires the classification of
jobs first. Algorithm 5, jobs are classified into four groups: group 1={1,2,3}, group
2={4,5,6,7,8,9},group 3={10,11,12,13}, group 4={14,15,16,17}. An initial solution
is shown in Fig. 6

In the initial solution, there are four unassigned jobs: jobs 4,5,6, and 14. Then
ALNS invokes Algorithm 6 which first creates two groups of jobs based on the
current solution. Suppose all jobs in a group previously created in Algorithm 5 are
assigned to amachine. In that case, that group is put into the assigned_group set, other-
wise into the unassigned_group set(see. Algorithm 7). For this demonstrated example,
assigned_group:{[10, 11, 12, 13], [1, 2, 3]} which is ranked in descending order based
on their total weight; and unassigned_group: {[4, 5, 6, 7, 8, 9], [14, 15, 16, 17]} which
is sorted in descending order based on the number of unassigned jobs in each group.
Next, Algorithm 6 relaxes all variables in the first elements of both sets and invokes
the lexicographic solver by fixing the assignment variables for the rest as fixed. The
new solution found is illustrated in Fig. 7.

Then, in the next iteration of Algorithm 6, two more jobs are assigned; jobs
5 and 6. However, since job 4 from group 2 and 14 from group 4 are still not
assigned to any machine, the assigned and unassigned set of groups of jobs stays the
same::unassigned_group: {[4, 5, 6, 7, 8, 9], [14, 15, 16, 17]}; assigned_group:{[10,
11, 12, 13], [1, 2, 3]}. However, since the total number of unassigned jobs is reduced
by two with the new solution, the best solution is updated and Algorithm 6 starts from
the beginning. The next step will be the same as the previous one: all variables of the
first element of both sets are relaxed: {[4, 5, 6, 7, 8, 9], [10, 11, 12, 13]} which results

Fig. 7 Demonstration of the improved solution by Algorithm 6 after the first iteration

123

E. Duran et al.

Fig. 8 Final result of Algorithm 6

in no improvement. Then the next component of the assigned_group and the first ele-
ment in the unassigned_group. ({[4, 5, 6, 7, 8, 9], [1, 2, 3]} are chosen without no
improvement as well. At this point, because all possible pairs of unassigned/assigned
groups of jobs are tried with the first element in the unassigned_group has been tried,
Algorithm 6 proceeds with pairing the next element in the unassigned_group which is
[14, 15, 16, 17] and the first element in the assigned_group [10, 11, 12, 13] to create
a set of variables to relax (create a subproblem). The solution of this new subproblem
results in an improvement by assigning onemore job, job 14, as demonstrated in Fig. 8.

As the algorithm achieves a better solution, a set of assigned and unassigned jobs
are updated, unassigned_job: {[4, 5, 6, 7, 8, 9]}, assigned_job: {[14, 15, 16, 17], [10,
11, 12, 13], [1, 2, 3]} Algorithm 1 continues with Algorithm 6 till trying all pair of
assigned/unassigned groups of jobs as long as the time limit is not exceeded. In this
small example, we do not see further improvement with the Algorithm 6 operator
and as there is still time to search, ALNS continues with Algorithm 8. Algorithm 8
first creates used machine sets. In this illustrative example, three machines are used
which are DMS01, KRN03, and THS01. As an input parameter, the algorithm sorts
them based on their weight in descending or ascending order(see. Alg. 1). In this
example, descending order is used which orders machines as THS01, KRN03, and
DMS01, respectively. If at least one job exists in any job group assigned to THS01,
then all variables of jobs in that group are relaxed. In that case, the assignment of jobs
in group 4, job 14–17, is relaxed. However, there will be no improvement since all
jobs in this group are already assigned. Next, machine KRNO3 is selected to which
Group 2 and Group 3 are assigned. Hence, all variables of all jobs in groups 2 and 3
are to be relaxed the resulting subproblem is solved again. If there will be no more
improvement after Algorithm 8 and there is still solution time available, ALNS will
continue with Algorithm 10 which randomly chooses the set of jobs to be fixed and
relaxed. In this study, 30% of the randomly selected job assignments are kept fixed in
every iteration. Algorithm 10 continues until the stopping criteria are met. In the next
section, computational experiments to test the proposed ALNS algorithm over a vast
number of realistically generated instances are presented.

123

Combinatorial optimization methods for yarn dyeing planning

5 Computational result

In this section, we test the performance of developed ALNS and compare it with the
best results obtained from the solution of the lexicographicMIP scheme over extensive
instances generated based on a real industrial case.

The industrial dyeing system consists of 33 dyes (DM) (|K | =33) where 26 of them
are eligible for reactive and lycra job orders Specialk = 1 and none of them is ready
for any of the colour percentages (ini tialcolourk = 0). Each DM has at least one,
at most, four different dyeing levels based on its features. Volume capacity, minimum
and maximum weights, and the number of spools allowed for a DM in a defined level
vary between the lower and upper bounds as shown in Table 3. Similarly, there are
four different and predefined flotte intervals as given in Table 4. The Spool weight,
spool is assumed as 0.850 kg.

For numerical experiments, 45 instances are generated by varying the number of
jobs from 15 to 100 and the number of machines is fixed to 33 in each as in the real
industrial case. For each number of jobs (5 different numbers of jobs: 15, 40, 60, 80,
and 100), nine instances are generated by changing flotte values and colors which
in total results 5 × 9 = 45 instances. Instances can be accessed from corresponding
author’s GitHub repository (Duran). The instances utilized in this study were derived
from actual data obtained from a textile company. Due to privacy concerns and confi-
dentiality agreements, the specific real data and company identity cannot be disclosed.
Table 5 shows the number of different flotte values and colors for each five groups.

The ALNS algorithm and the lexicographic MIP scheme in Sect. 3.2 are imple-
mented in Python 3.7 (Foundation 2023) and executed on an ASUS ZenBook 13
computer with Intel core i7 8th gen processor, 16 GB RAM running on Windows 10
operating system. IBM ILOG CPLEX (IBM 2023) is used as a solver for MIP models
in Sect. 3.2 and to repair the destroyed subproblems in the ALNS algorithm.

Table 3 Lower and upper bounds
of dye machine parameters Parameter Lower bound Upper bound

volumcapacity j (litres) 14 4800

maxnumber j (spools) 2 600

minkg j (kg) 0 450

maxkg j (kg) 1.7 500

Table 4 Predefined flotte intervals of batches and jobs

Flotte f ∈ F = {1, .., |F |} 1 2 3 4

min f lotte f 9 11 15 17

max f lotte f 11 12 16 20

123

E. Duran et al.

Fig. 9 Runtime of instances with lexicographic scheme in Sect. 3.2

Table 5 Number of different
flotte and colour percentage for
each group

of different flotte # of different colour

1 3

2 3

3 3

1 7

2 7

3 7

1 10

2 10

3 10

First, we present the performance of the lexicographic solution scheme in Sect. 3.2
on the generated instances that are limited to 10 h of runtime. Figure 9 shows what
percentage of the overall solution time is used for solving MIP α and MIP β respec-
tively. Results show that MIP α consumes less time in larger instances. This behaviour
is because, in larger instances, the set of feasible assignments is limited and hence.
In contrast, the assignment problem (MIP α) is solved in less time and the remaining
time is used to find a solution with less machine usage (MIP β).). The individual
runtime of each instance will be provided in the following results table. Among the
factors that affect the runtime, the number of jobs is prominent. However, increasing
the number of colors and flotte has not been found to establish a strong correlation
with the runtime.

123

Combinatorial optimization methods for yarn dyeing planning

Table 6 Results for small instances

J*F*C Instances Reverse Initial solution methods Best lower
bound

Lex Matheuristic

α β Time α β Time α β Time

15*1*3 1 0 0 3 1, 92 0 3 2, 83 0 3 17

1 0 3 1, 92 0 3 2, 83

15*2*3 2 0 1 4 1, 83 1 4 2, 76 1 4 27

1 1 4 1, 83 1 4 2, 76

15*3*3 3 0 2 4 1, 69 2 4 2, 71 2 4 20

1 2 4 1, 69 2 4 2, 71

15*1*7 4 0 8 4 1, 39 8 4 5, 40 8 4 17

1 8 4 1, 39 8 4 5, 40

15*2*7 5 0 5 5 1, 33 5 5 5, 38 5 5 18

1 5 5 1, 33 5 5 5, 38

15*3*7 6 0 7 3 1, 37 7 3 7, 04 7 3 17

1 7 3 1, 37 7 3 7, 04

15*1*10 7 0 5 4 1, 35 5 4 7, 84 5 4 19

1 5 4 1, 35 5 4 7, 84

15*2*10 8 0 7 3 1, 32 7 3 8, 78 7 3 20

1 7 3 1, 32 7 3 8, 78

15*3*10 9 0 11 1 1, 34 11 1 7, 88 11 1 18

1 11 1 1, 34 11 1 7, 88

45 instances mentioned earlier are divided into small (15 jobs), medium (40 and 60
jobs,) and large (80 to 100 jobs) to analyze the behaviour of ALNS and lexicographic
solution method better which are presented in In Tables 6, 7, and 8.

The first column in each table J*F*C refers to (Job size)*(number of different
Flotte)*(number of different Colour) of each instance respectively. The next column,
“Instance” refers to the instance number which is followed by the “Reverse” column
“0” indicates machines are sorted in Descending (Reverse =0) order or not, “1” in
Algorithm 8 based on the total weight of jobs assigned to them. The following column
demonstrates the result of the ALNS algorithm, Algorithm 1, based on two initial
solution methods described in Sect. 4.1.1 with respective objective function values α,
the number of unassigned jobs, β, the number of machines used with the time those
solutions found within the 1800 s of runtime. Finally, the “Best lower bound” column
represents the solution obtained from executing the lexicographic scheme in Sect. 3.2.
For each instance, the lexicographic scheme is run for 11 h of a time limit, and the
best solution obtained is reported. Please note that the results discussed in Fig. 9 use
the runtime performance of the lexicographic scheme presented in this column. If
the solution obtained from the lexicographic scheme is reported as optimal, they are
shown as bold and italic. If not, the best resulting solution (ALNS or lexicographic

123

E. Duran et al.

Table 7 Results for medium instances

J*F*C Instances Reverse Initial solution methods Best lower
bound

Lex Matheuristic

α β Time α β Time α β Time

40*1*3 10 0 0 3 56,
46

0 3 5, 74 0 3 62

1 0 3 59,
30

0 3 5, 74

40*2*3 11 0 0 3 15,
61

0 3 6, 16 0 3 101

1 0 3 15,
61

0 3 6, 16

40*3*3 12 0 7 3 34,
72

7 5 6, 53 7 3 31

1 7 3 25,
97

7 5 6, 53

40*1*7 13 0 0 4 7, 71 0 4 7, 83 0 4 31

1 0 4 7, 71 0 4 7, 83

40*2*7 14 0 1 4 21,
54

1 4 7, 69 1 3 81

1 1 4 22,
73

1 4 7, 69

40*3*7 15 0 6 4 5, 55 6 4 50,
70

6 4 26

1 6 4 5, 55 6 4 50,
90

40*1*10 16 0 4 6 42,
06

4 7 10,
13

4 6 202

1 4 6 44,
39

4 7 10,
13

40*2*10 17 0 1 6 28,
07

1 6 10,
14

1 6 29

1 1 6 10,
96

1 6 10,
14

40*3*10 18 0 8 8 3, 73 8 9 9, 99 8 8 19

1 8 8 3, 73 8 9 9, 99

60*1*3 19 0 0 3 20,
38

0 3 8, 42 0 3 241

1 0 3 20,
38

0 3 8, 42

60*2*3 20 0 0 12 31,
81

0 3 10,
70

0 3 174

1 0 9 31,
65

0 3 10,
70

123

Combinatorial optimization methods for yarn dyeing planning

Table 7 (continued)

J*F*C Instances Reverse Initial solution methods Best lower
bound

Lex Matheuristic

α β Time α β Time α β Time

60*3*3 21 0 0 5 84,
10

0 5 8, 16 0 5 2008

1 0 5 79,
24

0 5 8, 16

60*1*7 22 0 0 7 43,
47

0 7 10,
23

0 5 1692

1 0 7 43,
47

0 7 10,
23

60*2*7 23 0 0 9 81,
19

0 5 10,
35

0 5 36105

1 0 8 85,
20

0 5 10,
35

60*3*7 24 0 10 7 27,
90

10 6 9, 73 10 6 5101

1 10 7 28,
15

10 6 9, 73

60*1*10 25 0 0 6 68,
20

0 5 24,
48

0 5 1159

1 0 6 54,
92

0 5 53,
12

60*2*10 26 0 0 8 31,
01

0 8 18,
06

0 6 36089

1 0 8 39,
12

0 8 64,
18

60*3*10 27 0 6 7 133,
80

6 7 12,
12

6 6 10113

1 6 7 137,
04

6 7 12,
12

scheme) is shown as bold for each instance. The criteria for ranking a solution as the
best is first, lexicographically α and β values, and if they are the same then the time
that solution is reached. Note that, if lexicographically scheme is reported optimal, it
is shown as italic.

At first sight, Table 6 shows that the ALNS algorithm with an initial lexicographic
solution is the most efficient method to solve small instances regardless of the ordering
heuristic used in the “Reverse” column. However, starting from the medium size
instances, Table 7 and Table 8 indicate better performance for the ALNS algorithm
with aMatheuristic based initial solution regardless of the ordering heuristic. However,
when all instances are analyzed, the ALNS algorithm with a matheuristic based initial
solution found the best lower bound in 27 instances out of 45. It is also concluded that

123

E. Duran et al.

Ta
bl
e
8
R
es
ul
ts
fo
r
la
rg
e
in
st
an
ce
s

J*
F*

C
In
st
an
ce
s

R
ev
er
se

In
iti
al
so
lu
tio

n
m
et
ho
ds

B
es
tl
ow

er
bo
un
d

L
ex

M
at
he
ur
is
tic

α
β

T
im

e
α

β
T
im

e
α

β
T
im

e

80
*1

*3
28

0
0

2
96

,4
0

0
3

12
,5

9
0

2
25

7

1
0

2
51

,2
6

0
3

12
,5

9

80
*2

*3
29

0
0

5
10

0,
83

0
3

13
,4

7
0

2
65

6

1
0

8
87

,7
5

0
3

13
,4

7

80
*3

*3
30

0
11

4
14

8,
83

11
4

12
,4

2
11

4
61

31

1
11

5
89

,6
5

11
4

12
,4

2

80
*1

*7
31

0
0

6
15

8,
17

9
0

5
12

,6
8

0
4

34
51

9

1
0

5
13

4,
53

0
5

12
,6

8

80
*2

*7
32

0
2

6
71

6,
75

2
6

13
,3

0
2

6
36

15
9

1
2

6
72

1,
65

2
6

13
,3

0

80
*3

*7
33

0
6

7
58

2,
25

7
6

11
,9

6
6

6
36

31
8

1
6

7
64

1,
13

7
6

11
,9

6

80
*1

*1
0

34
0

0
9

17
11

,9
7

0
6

14
,8

6
0

6
36

08
6

1
0

9
16

99
,3
4

0
6

14
,8

6

80
*2

*1
0

35
0

2
6

57
1,
27

0
7

48
,2

2
0

5
36

30
0

1
2

6
56

2,
37

0
7

31
,8

4

80
*3

*1
0

36
0

7
9

12
31

,8
7

8
10

14
,4

7
7

8
36

25
6

1
7

9
12

89
,4
6

8
10

14
,4

7

10
0*

1*
3

37
0

3
6

12
5,
35

0
5

12
8,
62

0
4

82
4

123

Combinatorial optimization methods for yarn dyeing planning

Ta
bl
e
8
(c
on

tin
ue
d)

J*
F*

C
In
st
an
ce
s

R
ev
er
se

In
iti
al
so
lu
tio

n
m
et
ho
ds

B
es
tl
ow

er
bo
un
d

L
ex

M
at
he
ur
is
tic

α
β

T
im

e
α

β
T
im

e
α

β
T
im

e

1
7

4
12

4,
70

0
5

89
,6

6

10
0*

2*
3

38
0

0
5

23
1,
19

0
5

19
2,
65

0
5

10
08

2

1
0

5
25

3,
20

0
5

10
6,
59

10
0*

3*
3

39
0

17
7

29
1,
61

17
7

14
,3

0
17

7
36

13
3

1
17

7
31

0,
46

17
7

14
,3

0

10
0*

1*
7

40
0

0
6

17
3,
16

0
6

91
,3

6
0

5
36

75
7

1
0

6
15

1,
07

0
6

28
,9

5

10
0*

2*
7

41
0

0
12

17
4,
94

0
8

17
,0

2
0

6
36

67
7

1
0

12
16

5,
67

0
8

17
,0

2

10
0*

3*
7

42
0

19
6

44
9,
21

19
6

14
,8

9
19

6
36

78
2

1
19

6
44

4,
47

19
6

14
,8

9

10
0*

1*
10

43
0

2
15

15
2,
63

0
8

17
,9

2
0

6
36

56
1

1
2

16
15

0,
38

0
8

17
,9

2

10
0*

2*
10

44
0

1
10

30
5,
21

1
10

17
,0

2
1

7
36

45
5

1
1

10
34

0,
26

1
10

17
,0

2

10
0*

3*
10

45
0

30
7

40
5,
87

20
8

17
,4

5
18

6
36

52
9

1
21

6
56

1,
92

20
8

17
,4

5

123

E. Duran et al.

Fig. 10 ALNS search process for
Instance 45 with 100 jobs, 3
different flotte, and 10 colours

ALNS, after matheuristic, found the best lower bound in 42 instances for objective
function 1, indicating the success ofAlgorithm6.Overall, experiments show theALNS
algorithm’s superiority in finding near-optimal solutions quickly.

Finally in Fig. 10, we demonstrate the ALNS search process for instance 45 with
100 jobs, three different flottes, and ten different colors. Figure 10 shows that during
the search for the first objective function, the number of unassigned jobs, α, went
down from 61 to 21 with the expense of increasing the second objective function, β,
from 3 to 6 within 8 iterations.

6 Conclusions

This study is motivated by an industrial problem; multi-objective yarn dying planning.
The dyeing process is vital for the overall effectiveness of an integrated textile man-
ufacturing system because of the high setup and changeover costs/times as well the
environmental impact of the process. The amount of chemicals needed to wash the
DMs is reduced by using fewer of them and ordering the colors from light to dark,
reducing environmental pollution. Additionally, several technological limitations and
competing goals require the attention and time of production planners. To the best of
the authors’ knowledge, no similar research exists in the literature on formulating and
solving this very practical yet computationally challenging problem.

First, this paper formulates the problem as a multi-objective mixed integer pro-
gramming model. And second, an adaptive large neighbourhood search method with
various initial solution methods along with alternative destroy and repair algorithms
developed for large instances of the problem.

Developed mathematical formulation and ALNS method are tested with an exten-
sive number of instances adapted from industrial data. Experimental results show that
the runtime of the mathematical model grows exponentially as the instance size grows.

123

Combinatorial optimization methods for yarn dyeing planning

However, numerical computations reveal that the developed ALNSmethod finds opti-
mal and near-optimal solutions for all sizes of instances in a very short computational
time of fewer than 3 min at most. This is particularly important for manufacturing
engineers who spend several hours finding a reasonably efficient production plan.

This work can be extended further in terms of problem definition and solution
methods. The developed ALNS algorithm uses mathematical modeling-based initial
solutionmethods that require employing a commercial or open-source solver.Develop-
ing a solver-free method for an initial solution is undoubtedly a significant extension
of the ALNS method proposed in this paper. As part of another future work, the
proposed model can be compared to other promising metaheuristics and matheuris-
tics methods such as Adaptive Polyploid Memetic Algorithm (APMA) (Dulebenets
2021) and customized multi-objective hybrid metaheuristic solution algorithm (Pasha
et al. 2022). Ant Colony Optimization (ACO) based methods can be considered as
well (Singh and Pillay 2022) which utilizing hyper-heuristic ant colony optimisation
(HACO) could be promising. Apart from applying differentmetaheuristics, in this arti-
cle, the lexicographic method has been employed as the solution approach; however,
other multi-objective methods such as the Pareto frontier (Elahi et al. 2022; Yıldırım
et al. 2019) or weighted sum (Ozturk et al. 2016) can also be utilized depending on the
problem definition. Exploiting machine learning methods in textile process planning
showed good initial results (He et al. 2020) and can be a promising future research
direction for the problem studied in this paper, especially the stochastic extension.
The learning automaton (LA) (Zhao and Zhang 2020) customizes the search strategy
and can be used to improve the performance of ALNS in this paper. Furthermore,
stochastic batch processing times and preventive maintenance activities can be added
as a problem extension as in Gholizadeh et al. (2021). Machine breakdowns, order
cancellation are some other industrial extensions of the problem studied as in He et al.
(2022) and Zhang et al. (2021). Adding due date constraints, limiting the earliness
and tardiness to avoid inventory holding and lateness costs as a third objective func-
tion, and considering sequence-dependent setup times from one color to another in
machines might give more practical use of the methods developed in this paper.

Funding Open Access funding provided by the IReL Consortium. This work was conducted with the
financial support of the Science Foundation Ireland Centre for Research Training in Artificial Intelligence
under Grant No. 18/CRT/6223 and Grant number 22/NCF/DR/11264, National Challenge Fund, Digital for
Resilience Challenge.

Data availability The data that support the findings of this study is publicly available at Duran (2023).

Declarations

Conflict of interest The authors report there are no conflict of interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

123

E. Duran et al.

directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

Arora JS (2012) Chapter 17 - multi-objective optimum design concepts and methods. In: Arora JS (ed)
Introduction to Optimum Design, 3rd edn. Academic Press, Boston, pp 657–679

Crauwels H, Beullens P, Van Oudheusden D (2006) Parallel machine scheduling by family batching with
sequence-independent set-up times. Int J Op Res 3(2):144–154

Delorme M, Iori M, Martello S (2016) Bin packing and cutting stock problems: Mathematical models and
exact algorithms. Eur J Op Res 255(1):1–20

Demir Y, Kemal İ (2022) A novel approach for optimum planning of bobbin boilers in textile industry. Text
Appar 32(1):24–36

Dulebenets MA (2021) An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking
terminal. Inf Sci 565:390–421

Duran E Yarn Dyeing Planning Instances. https://github.com/egedurann/batching-problem
Elahi I, Ali H, Asif M, Iqbal K, Ghadi Y, Alabdulkreem E (2022) An evolutionary algorithm for multi-

objective optimization of freshwater consumption in textile dyeing industry. PeerJ Comput Sci 8:932
Eroğlu DY, Özmutlu HC, Köksal SA (2014) A genetic algorithm for the unrelated parallel machine schedul-

ing problem with job splitting and sequence-dependent setup times-loom scheduling. Text Appar
24(1):66–73

Mart, R., Pardalos, P. M., & Resende, M. G. (2018). Handbook of heuristics. Springer Publishing Company,
Incorporated.

Fleszar K, Hindi KS (2018) Algorithms for the unrelated parallel machine scheduling problem with a
resource constraint. Eur J Op Res 271(3):839–848

Foundation PS Python.org. https://www.python.org/ Accessed on June 3rd, 2023
Gholizadeh, H., Fazlollahtabar, H., Fathollahi-Fard, A. M., & Dulebenets, M. A. (2021). Preventive mainte-

nance for the flexible flowshop scheduling under uncertainty: awaste-to-energy system.Environmental
science and pollution research international. Advance online publication. https://doi.org/10.1007/
s11356-021-16234-x

Ghosh JB, Gupta JN (1997) Batch scheduling to minimize maximum lateness. Op Res Lett 21(2):77–80
Gomes UT, Pinheiro PR, Saraiva RD (2021) Dye schedule optimization: A case study in a textile industry.

Appl Sci 11(14):6467
He Z, Tran KP, Thomassey S, Zeng X, Xu J, Yi C (2022) Multi-objective optimization of the textile

manufacturing process using deep-q-network based multi-agent reinforcement learning. J Manuf Syst
62:939–949

He Z, Tran KP, Thomassey S, Zeng X, Xu J, Yi C (2020) Multi-Objective Optimization of the Textile
Manufacturing Process UsingDeep-Q-Network BasedMulti-Agent Reinforcement Learning. JManuf
Syst 62:939–949

Hsu H-M, Hsiung Y, Chen Y-Z, Wu M-C (2009) A ga methodology for the scheduling of yarn-dyed textile
production. Expert Syst Appl 36(10):12095–12103

Huynh N-T, Chien C-F (2018) A hybrid multi-subpopulation genetic algorithm for textile batch dyeing
scheduling and an empirical study. Comput & Ind Eng 125:615–627

Hynes NRJ, Kumar JS, Kamyab H, Sujana JAJ, Al-Khashman OA, Kuslu Y, Ene A, Kumar BS (2020)
Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile
industrial sector-a comprehensive review. J Clean Prod 272:122636

IBM: IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/products/ilog-cplex-optimization-
studio Accessed Accessed on June 3rd, 2023

Kant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 4(1):22–26
Karacapilidis NI, Pappis CP (1996) Production planning and control in textile industry: A case study.

Comput Ind 30(2):127–144
Karacizmeli IH, Ogulata SN (2017) Energy consumption management in textile finishing plants: A cost

effective and sequence dependent scheduling model. Text Appar 27(2):145–152
Kellerer H, Pferschy U, Pisinger D (2004) Multidimensional Knapsack Problems. Springer, Berlin

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/egedurann/batching-problem
https://www.python.org/
https://doi.org/10.1007/s11356-021-16234-x
https://www.ibm.com/products/ilog-cplex-optimization-studio

Combinatorial optimization methods for yarn dyeing planning

Li S (2017) Parallel batch scheduling with inclusive processing set restrictions and non-identical capacities
to minimize makespan. Eur J Op Res 260(1):12–20

Li L, Qiao F, Wu Q (2009) Aco-based multi-objective scheduling of parallel batch processing machines
with advanced process control constraints. The Int J Adv Manuf Technol 44(9):985–994

Li D, Wang J, Qiang R, Chiong R (2021) A hybrid differential evolution algorithm for parallel machine
scheduling of lace dyeing considering colour families, sequence-dependent setup and machine eligi-
bility. Int J Prod Res 59(9):2722–2738

Oztürk C, Ornek AM (2010) Capacitated lot sizing with linked lots for general product structures in job
shops. Comput & Ind Eng 58(1):151–164

Öztürk C, Ornek AM (2014) Operational extended model formulations for advanced planning and schedul-
ing systems. Appl Math Modelling 38(1):181–195

Ozturk E, Koseoglu H, Karaboyaci M, Yigit NO, Yetis U, Kitis M (2016) Sustainable textile production:
cleaner production assessment/eco-efficiency analysis study in a textilemill. JCleanProd 138:248–263

Pasha J, Nwodu AL, Fathollahi-Fard AM, Tian G, Li Z, Wang H, Dulebenets MA (2022) Exact and
metaheuristic algorithms for the vehicle routing problem with a factory-in-a-box in multi-objective
settings. Adv Eng Inf 52:101623

Periyasamy, A. P., & Militky, J. (2020). Sustainability in textile dyeing: recent developments.Sustainability
in the textile and apparel industries: Production Process Sustainability, 37–79.

Pirola F, Zambetti M, Cimini C (2021) Applying simulation for sustainable production scheduling: a case
study in the textile industry. IFAC-PapersOnLine 54(1):373–378

Pisinger, D., & Ropke, S. (2019). Large neighborhood search. Handbook of metaheuristics, 99–127.
Research GV (2020) Textile Market Size, Share & Trends Analysis Report By RawMaterial (Cotton,Wool,

Silk, Chemical), By Product (Natural Fibers, Nylon), ByApplication (Technical, Fashion), By Region,
And Segment Forecasts, 2022–2030. Accessed on 01/11/2023. https://www.grandviewresearch.com/
industry-analysis/textile-market

Ropke S, Pisinger D (2006) An adaptive large neighborhood search heuristic for the pickup and delivery
problem with time windows. Trans Sci 40(4):455–472

Sáenz-Alanís CA, Salazar-Aguilar MA, Boyer V (2016) A parallel machine batch scheduling problem in a
brewing company. The Int J Adv Manuf Technol 87(1):65–75

Shaw P (1998) Using constraint programming and local search methods to solve vehicle routing problems.
In: Maher M, Puget J-F (eds) Principles and Practice of Constraint Programming – CP98. Springer,
Berlin, Heidelberg, pp 417–431

Singh E, Pillay N (2022) A study of ant-based pheromone spaces for generation constructive hyper-
heuristics. Swarm Evolut Comput 72:101095

Swamidass PM (ed) (2000) Time buckets. Springer, Berlin
Taillard ÉD (2023) Decomposition Methods. Springer, Cham. https://doi.org/10.1007/978-3-031-

13714-3_6
textiletutorials.com: Yarn Dyeing in Textile. Accessed on 01/11/2023. https://textiletutorials.com/yarn-

dyeing-in-textile-hank-dyeing-package-dyeing/
Yıldırım, F. F., Hasçelik, B., Yumru, Ş., & Palamutcu, S. (2019). Analysis of Water consumption and

potential savings in a Cotton textile dye House in Denizli, Turkey. In Water in Textiles and Fashion
(pp. 115–134). Woodhead Publishing.

Zhang R, Chang P-C, Song S, Wu C (2017) A multi-objective artificial bee colony algorithm for parallel
batch-processing machine scheduling in fabric dyeing processes. Knowl-Based Syst 116:114–129

Zhang Z, Guo C, Wei Q, Guo Z, Gao L (2021) A bi-objective stochastic order planning problem in make-
to-order multi-site textile manufacturing. Comput & Ind Eng 158:107367

ZhaoH, ZhangC (2020)An online-learning-based evolutionarymany-objective algorithm. Inf Sci 509:1–21
Zhou H, Pang J, Chen P-K, Chou F-D (2018) A modified particle swarm optimization algorithm for a

batch-processingmachine scheduling problemwith arbitrary release times and non-identical job sizes.
Comput & Ind Eng 123:67–81

Zhou Y, Wang J, Zhang P, Wang P, Lu Y, Zhang J (2020) Research on dyeing workshop scheduling
methods for knitted fabric production based on a multi-objective hybrid genetic algorithm. Meas
Control 53(7–8):1529–1539

Zykina AV (2004) A lexicographic optimization algorithm. Autom Remote Control 65(3):363–368

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.grandviewresearch.com/industry-analysis/textile-market
https://doi.org/10.1007/978-3-031-13714-3_6
https://textiletutorials.com/yarn-dyeing-in-textile-hank-dyeing-package-dyeing/

E. Duran et al.

Ege Duran earned her BSc and MSc degrees from the Industrial Engineering Department at Yasar Uni-
versity in Izmir, Turkey. She is currently a second-year PhD student at the School of Computer Science
& IT at University College Cork in Ireland and funded by Science Foundation Ireland (SFI). Her research
is centered on improving algorithms and exact methods, such as mixed integer programming, constraint
programming, and heuristics.

Cemalettin Ozturk is a Lecturer in Logistics and Supply Chain Management at Munster Technology
University and a Principal Investigator funded by Science Foundation Ireland (SFI). He has two decades
of experience in various industrial, research, and academic organizations, serving as an engineer, techni-
cal contributor, and project coordinator in the fields of smart manufacturing, supply chain management,
logistics, aviation, and telecommunication. His work focuses on the development and implementation of
mathematical and artificial intelligence methods, including mixed integer programming, constraint pro-
gramming, heuristics, digital twins, and data analytics across diverse domains.

M. Arslan Ornek received BSc and MSc degrees from Industrial Engineering Dept., Middle East Tech-
nical University, Ankara, Turkiye, and a PhD degree from the Dept of Production Engineering, University
of Wales Institute of Science and Technology (UWIST), Cardiff, Wales, UK. After working for various
industries and universities, Dr Ornek is now a faculty member at Yasar University, Department of Indus-
trial Engineering and worked as Vice Rector responsible for Academic Affairs between the years 2017
and 2023. He lectures courses on manufacturing planning and control, and Operational Research, and
is actively involved in managing technology development projects with industry. His research interests
include Advance Planning and Scheduling Systems, Manufacturing Execution Systems, Manufacturing
Systems Dynamics and Mathematical Modelling. He has published several articles in renowned journals
and presented papers at national and international meetings.

Authors and Affiliations

Ege Duran1 · Cemalettin Ozturk2 ·M. Arslan Ornek3

B Ege Duran
e.duran@cs.ucc.ie

Cemalettin Ozturk
cemalettin.ozturk@mtu.ie

M. Arslan Ornek
arslan.ornek@yasar.edu.tr

1 SFI Centre for Research Training in AI, School of Computer Science & IT, University College
Cork, Cork, Ireland

2 Department of Process, Energy & Transport Engineering, Munster Technological University,
Cork, Ireland

3 Department of Industrial Engineering, Yasar University, Izmir, Turkey

123

	Combinatorial optimization methods for yarn dyeing planning
	Abstract
	1 Introduction and problem description
	2 Literature review
	3 Problem formulation and lexicographic solution scheme
	3.1 Multi-objective mixed integer programming model for YDP
	3.2 Lexicographic solution scheme for the multi-objective YDP MIP model
	3.2.1 MIP α
	3.2.2 MIP β

	4 Adaptive large neighbourhood search algorithm for YDP
	4.1 Design of the ALNS algorithm
	4.1.1 Finding an initial solution
	4.1.2 Destroy and repair operators

	4.2 A numerical example

	5 Computational result
	6 Conclusions
	References

