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Abstract
In the present study, we employed multiple decision tree algorithms to categorize 
cases and reflect the most efficient policies constructed by a reinforcement learning 
algorithm. These approaches treated a complex production, maintenance, and quality 
control optimization problem within a degrading manufacturing and remanufactur-
ing system. The decision trees’ nodes represent the independent variables, while the 
trees’ leaves represent the set of function values. The reinforcement learning method 
revealed all optimization parameters and best policies, which were employed as the 
training sample for the tree algorithms. After constructing every decision tree, each 
resulting decision rule was used to solve the optimization problem, and its perfor-
mance was assessed. Additionally, we performed a sensitivity analysis to determine 
if the pruning level impacts the objective function value and, generally, the effec-
tiveness of the proposed approach.

Keywords  Decision trees · Reinforcement learning · Manufacturing/
remanufacturing systems · Data mining

1  Introduction

Modern manufacturing companies endeavor to achieve long-term sustainability, 
tackling challenges, e.g., customer retention (Galletta et al. 2018), imposed by the 
market itself. In this effort, they constantly introduce new merchandise in an attempt 
to sustain, or increase their market share (Palsodkar et al. 2023). For the merchan-
dise, they integrate supply chains that facilitate the material flow between integrated 
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facilities and machines. In this respect, the supply chain management integrates a 
diversity of operations, including raw material procurement, product storage and 
delivery to customers. These operations could be well-supported by the digitiza-
tion of the manufacturing operations and processes encouraged by current manu-
facturing concepts, such as Industry 4.0 (Dohale et al. 2023). However, despite this 
digitization, they are still ad-hoc controlled through operation strategies. By defini-
tion, these strategies, e.g., maintenance strategies (O’Donovan et al. 2015), intend to 
enrich the productivity and maintainability of manufacturing environments, yielding 
a better financial performance for them. They are formulated by strategists accord-
ing to datasets captured from the integrated processes and operations exploiting 
intelligent systems, including cyber-physical ones (Hofmann and Rüsch 2017). Due 
to their large size, their assessment and process is rather complex to be performed 
with typical data processing methods and tools (Zhong et  al. 2017). To this end, 
the aforementioned systems incorporate machine learning methodologies to extract 
manufacturing knowledge (Ahuett-Garza and Kurfess 2018).

In addition, machine learning approaches employed for scheduling operations 
in manufacturing systems. In the study of Tan et  al. (2019) introduced a multi-
agent model and a planning and scheduling algorithm, which enables manufactur-
ing robots to work in coordination. Chen et  al. (2019a, b) proposed a model that 
scales well for semi-supervised learning to forecast energy consumption with a few 
labelled data by modeling and compensating the unlabeled data. Recently, Agarwal 
et al. (2020) showed how deep learning can be used to find the input variables that 
maximize process profit or other non-linear process objectives such as quality.

Recent reviews can be found in Kang et al. (2020) that have grouped and analyzed 
the published research on the use of machine learning in production lines, and in the 
study of Dogan and Birant (2021) which provides a detailed review of literature in 
order to give an overview of how machine learning methods may be used to create 
intelligent manufacturing processes. Additionally, this study identifies many critical 
research issues that remain unresolved in the current literature on the same subject.

Machine learning based algorithms have been recognized as effective for knowl-
edge mining and making predictions while treating complex production manage-
ment problems and performing manufacturing systems optimization. In the recent 
study of Paraschos et  al. (2021), a novel two-agent reinforcement learning-based 
approach proposed that includes parametric production and maintenance operations 
to increase the efficiency of the system. Also, Paraschos et al. (2022) introduced a 
novel framework to obtain joint policies for the authorization of production, recy-
cling, maintenance and remanufacturing activities within deteriorating circular man-
ufacturing systems. This framework uses a reinforcement learning algorithm and ad-
hoc production control policies.

Algorithms based on machine learning, and specifically decision tree algorithms, 
proved to be efficient for knowledge mining and predictive modeling (Wu et  al. 
2008). In such kind of problems, a decision tree method uses parameters connected 
with the problem’s input variables to construct a model, and then, estimate the val-
ues of the dependent variable. A decision tree is created by breaking a dataset into 
structural components and describing the links between the features and the depend-
ent variable in a decision tree. Decision trees are a relatively prevalent classification 
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approach due to their potential to handle a huge range of parameters, both numeri-
cal and nominal, while generating a fairly clear result. Despite the potential merits, 
decision tree algorithms have been criticized as they are often found to be inefficient 
when providing predictions, owing to their nature.

Recently, decision trees used by academics for treating a wide range of problems 
in supply chains and manufacturing. More specifically, in the study of Soeprapto 
Putri et al. (2018) proposed and implemented a decision tree model for defect clas-
sification, which provides a logical basis for the classifications, can be used for 
root cause analysis of defects, and supports finding similar defects. In Antosz et al. 
(2020), rough sets theory and decision trees were employed to decrease supply chain 
service level failures during the implementation of the lean maintenance concept to 
increase operational efficiency. Additionally, Lyu et al. (2020) used a decision tree to 
model a process resulting in defective items and extract rules for recognizing defec-
tive batches and their corresponding production process features, while (Mahato 
and Narayan 2020) were employed a gradient-boosted decision trees to model and 
train supply chains to prevent service level failures. Also, Zangaro et  al. (2020), 
used a Classification and Regression Tree (CART)-based decision tree to decide 
which manufacturing line to use for the delivery of components for assembly to help 
humans optimize their costs. In the recent study of Koulinas et al. (2021), decision 
trees algorithms used to illustrate efficient policies depicted from a hybrid reinforce-
ment learning algorithm while optimizing a degrading manufacturing/remanufactur-
ing system.

The present paper extends the work of Koulinas et  al. (2020), by investigating 
a two-stage production system and applying tree methods for rule extraction. The 
study aims to improve the system’s performance and validate the usefulness of the 
suggested algorithmic technique. Given that explainability in machine learning algo-
rithms refers to the ability to understand and interpret the output or decision made 
by the algorithm (Linardatos et al. 2021), we performed additional research to assess 
the influence of tree algorithmic factors on their efficacy, and make the model more 
transparent and trustworthy. Studying production systems is vital in a world where 
digitization and automation are quickly altering conventional industrial processes. 
Researchers may get significant insights into these systems’ decision-making pro-
cesses and suggest areas for improvement by using tree algorithms for rule extrac-
tion. The current study stresses the importance of production optimization, specifi-
cally emphasizing a two-stage production system. The study intends to enhance the 
system’s performance, improve its efficiency, and maximize profitability by employ-
ing tree algorithms. The research examines tree algorithms’ performance and char-
acteristics to choose the most efficient strategy. This analysis offers a more thorough 
knowledge of the optimization process and might offer suggestions for further study. 
Overall, the suggested method demonstrates the value of algorithmic innovation in 
the manufacturing industry and offers a potential prospect for improving the perfor-
mance of production systems.

The rest of the paper is organized as follows: Sect. 2 provides a literature review 
of the research area addressed, Sect. 3 describes the proposed framework, consisting 
of the input dataset and the decision trees algorithms descriptions, Sect. 4 contains 
the experimental analysis, and in the Sect. 5 the conclusions are illustrated.
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2 � Literature review

The academic literature on manufacturing systems has explored a range of 
approaches, with certain systems specializing in single-stage production 
(Rajasekharan and Peters 2000) and others including multiple stages to com-
plete and store goods (Kim and Sarkar 2017). Some systems are even equipped 
to remanufacture used or returned items (Khakbaz and Tirkolaee 2022). Periodic 
(Rivera-Gómez et  al. 2013) or aperiodic (Chen et  al. 2019a, b) inspections are 
often conducted to monitor degradation in manufacturing systems, which can also 
impact product quality. Methods such as control charts (Salmasnia et al. 2022) or 
sampling plans (Duffuaa et al. 2009) are used to detect any such degradation in 
product quality.

In the context of manufacturing/remanufacturing systems, relevant research 
has focused on developing control policies that enhance the profitability of sys-
tems that are experiencing degradation. Assid et  al. (2021) developed optimal 
control policies for long-term total cost minimization with a hybrid manufactur-
ing-remanufacturing system, considering three production decisions.

In a similar way, Koulinas et al. (2021) used decision trees to define the most 
efficient policies, derived by a reinforcement learning algorithm, for a complex 
manufacturing problem of a multi-stage manufacturing/remanufacturing system. 
Assid et al. (2023) provided an optimal control theory-based solution of the pro-
duction planning and control problem within a hybrid manufacturing-remanufac-
turing system. Also, Rasay et al. (2022) defined an integrated problem of optimal 
maintenance planning and statistical process control of two stages of a two-stage 
dependent manufacturing system where, due to machinery deterioration and/
or equipment failure, either stage can fall into the out of control state. Also, a 
genetic algorithm (GA) applied to find the optimal values of the decision vari-
ables minimizing the long-run expected average cost per unit time.

In the study of Liu and Papier (2022) proposed a framework for product substi-
tution as part of repair and refurbishment using Bayesian estimation for optimal 
two-way substitution between new and remanufactured products. Additionally, 
Zhang et al. (2021) developed a joint production-maintenance decision model to 
determine the amount of system component deterioration and component main-
tenance to reduce component idleness and shorten the time required to complete 
production. In the study of Dehayem Nodem et  al. (2011) presented a method 
to find the optimal control policy for a manufacturing system subject to random 
machine failure and repair.

Furthermore, various studies have attempted to integrate mechanisms and tech-
niques for the planning and scheduling of activities like production and remanu-
facturing, to enhance the quality of remanufactured products. Gan et  al. (2022) 
formulated an optimal model to solve production scheduling and maintenance 
planning problems of a multi-component system with economic dependence. He 
et al. (2020) proposed a framework for remanufacturing-ontology and knowledge 
management, along with a reuse methodology that leverages Case Based Reason-
ing to reuse the most similar past solution. Liu et al. (2021) considered a novel 
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mixed-integer linear programming model to solve process planning problems 
effectively using commonly available mathematical programming solvers, such as 
CPLEX and Gurobi. Wang et al. (2023) formalizes the remanufacturing process 
as a real job shop problem and studies it in terms of scheduling with simultane-
ous energy consumption minimization and makespan minimization. In the recent 
study of Paraschos et  al. (2021) tried to approve frequent minimal maintenance 
activities by using parametric control policies and reinforcement learning tech-
niques, to decrease the downtime of manufacturing systems. Wang and Fei (2020) 
suggested a novel study to deal with integrated approach in financial decision 
making of remanufacturing production system from manufacturing and service 
firms point of view. In addition, Scheller et al. (2021) developed a comprehensive 
modelling framework for the optimal coordination of master production and recy-
cling scheduling in order to achieve positive contribution margins, while (Arab-
sheybani and Arshadi Khasmeh 2021) proposed a multi-objective mathematical 
model considering simultaneous optimization of resiliency and uncertainty in 
multi-period and multi-product supply chain.

Existing studies on optimization of manufacturing systems tend to focus largely 
on the use of ad hoc policies or control charts for scheduling activities and quality 
inspections, with little consideration for the current state of the products and sys-
tems being manufactured. These methodologies are out of sync with the principles 
of smart circular manufacturing that aims to eliminate waste and enhance product 
quality through material reuse.

In response to this challenge, our research proposes an integrated design and 
operation management process that incorporates continuous quality inspections and 
maintenance, recycling, and remanufacturing activities. By employing reinforce-
ment learning alongside ad hoc policies, such as Kanban, we develop joint policies 
for production, maintenance, recycling, and remanufacturing. The objective of this 
unique approach is to boost the adaptability and robustness of circular manufactur-
ing systems while at the same time maintaining cost-effectiveness.

3 � The proposed framework

This research focuses on applying and performing analysis of popular and verified 
efficient decision tree algorithms to construct tree structures that show the best-dis-
covered rules using a reinforcement learning algorithm. It is worth noting that the 
leaves of the trees represent groupings of independent variables, while the nodes 
represent parameters. The suggested framework is shown in Fig. 1 below.

Initially, the original dataset was generated by a reinforcement learning/Base 
Stock-based algorithm. Then, we performed four different decision tree algorithms 
to construct decision models, trying to generalize the findings from the dataset. The 
trees algorithms used were the REPTree, the HoeffdingTree, the J48 (C4.5), and the 
RandomTree algorithms. Next, we extracted the results from each algorithm and 
decision rule to define decision policies. The accuracy of each of the trees is moni-
tored using standard output metrics. The result from every tree, the decision rule, 
is used to define control policies that could be customizable to numerous different 
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production system configurations. The efficiency of each rule regarding the total 
system profitability is documented by applying each proposed policy and comparing 
the resulting average profits. In addition, we performed a sensitivity analysis of the 
J48 algorithm to test if the size of the tree impacts the algorithm’s accuracy and if it 
has an impact on the total system profitability.

The J48 (C4.5) is a classic decision tree construction method introduced by Quin-
lan (1992). The ID3 (Iterative Dichotomizer 3) algorithm (Quinlan 1986) underlies 
its functionality since it constructs a decision tree from training data collection using 
information entropy. The attribute with the most significant information gain, the 
most remarkable change in information entropy, is used as the choice criterion. The 
above is because the attribute with the most significant information gain can distin-
guish the set’s instances more clearly. The tree nodes represent the set’s different 
characteristics. At each tree node, the algorithm chooses the data characteristic that 
most effectively divides the collection into subgroups. The tree branches represent 
the various attribute values, while the final nodes represent the dependent variable’s 
categorization. The WEKA program uses the J48 classifier to build a C4.5 pruned or 
unpruned tree.

The REPTree is a rapid decision tree method based on C4.5 that builds several 
trees and then chooses the best one to be the representative. Each decision tree is 
constructed using gain/variance information and pruned using reduced-error prun-
ing with back fitting. As with C4.5, missing values are handled by fragmenting the 
relevant instances.

The Random Tree method generates a tree using randomly selected characteris-
tics and does not conduct pruning. Additionally, it enables the estimation of class 
probabilities (Frank et al. 2016).

Start

R-smart

Create input 
dataset

Apply decision 
trees algorithms

REPTree

Hoeffding tree 

J48

Random tree

Define rules and 
policies

Rules and trees 
assessments

Finish

Define problem

Fig. 1   The flowchart of the proposed approach
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The Hoeffding Tree algorithm implements the Hoeffding tree technique (Hulten 
and Spencer 2001) and is capable of learning from large amounts of data. This method 
uses the fact that a limited amount of data allows for the selection of highly excellent 
characteristics to divide. To be more exact, the Hoeffding bound quantifies the amount 
of information needed to calculate fitness measurements for a characteristic. Since this 
method makes use of the Hoeffding constraint, it has the benefit of guaranteeing high 
efficiency (Hulten and Spencer 2001).

3.1 � The multi‑stage system description

The manufacturing system involves two stages to process one type of product. Each 
stage contains a manufacturing facility and a storage facility. The first stage manufac-
turing facility manufactures work-in-progress parts, which are later stored in the first 
storage facility and remain there until they are transferred into the second stage of the 
production process. In the second stage, the manufacturing facility completes the final 
goods, stockpiled in the second storage facility. The maximum capacity of the first and 
second inventories can be defined as Qmax

WIP
 and Qmax

P
 , respectively.

The behavior of the multi-stage system is formulated by a variety of random and 
dynamic events defined by a discrete event simulation technique (Xanthopoulos et al. 
2016). In this respect, a series of degradation failures can affect the system’s operabil-
ity. Let n stages describe the system condition. With each failure, the two-stage system 
moves from stage n to stage n+1. These failures degrade the system’s condition and 
the completed items’ quality. In addition, maintenance activities are initiated to prevent 
significant deterioration. These activities restore the system to its previous condition 
before deterioration. If the system significantly deteriorates, it is considered that the 
system is malfunctioning and cannot continue to operate normally. Hence, the system 
must be repaired. The repair activities restore the system to stage 0, which is in very 
good condition.

Given the degradation in product quality, the system can produce high-quality, low-
quality, and defective items. Regarding available sellable products, the customers can 
acquire only high-quality and low-quality items. On the other hand, defective items can 
be either remanufactured or recycled to generate revenues. The remanufacturing activi-
ties generate ready-to-be-sold products utilizing the stored faulty items. Conversely, 
recycling removes faulty items and creates ample space for storing high-quality and 
low-quality products.

Furthermore, with a probability Pr , the dissatisfied customers can return their 
acquired products to the system. The returned products are stockpiled in the second 
storage facility and can be refurbished. The refurbishing activities turn the returned 
items into sellable products, which are considerably cheap and of low quality. Custom-
ers acquire these items when the inventory does not contain high-quality, low-quality, 
and remanufactured products.
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3.2 � Description of the dataset

A reinforcement learning/Base Stock-based control mechanism is implemented. 
It assumes a similar functionality to the reinforcement learning framework intro-
duced in the works of Paraschos et al. (2022), Xanthopoulos et al. (2017). In this 
regard, it exploits an interacting agent observing the manufacturing environment 
and searching for an optimal operation strategy that yields improved competence, 
reliability, and output. Analytically, the decision-making process followed by 
the mechanism is described as follows. Let de denote the timepoints at which the 
mechanism makes decision. At de , it receives information regarding the state of 
the studied system. The current state of the system is:

where f  stands for system degradation, mst represents the status of the multi-stage 
system, �� and �e denote the high-quality and faulty items, respectively.

Given the observed state of system, the mechanism decides upon an action. 
Specifically, the mechanism can initiate a maintenance activity, refurbish returned 
items, recycle defective items, or manufacture good under the Base Stock policy. 
Formally, the permitted set of action Δ is:

Following the above expressions, the mechanism behaves as follows. In case 
of system downtime 

(

mst = 0
)

 , the mechanism remains idle as the system does 
not operate. When the condition of the system is relatively good (0 ≤ f < 2) , the 
mechanism can authorize a Base Stock-based production activity or opt to remain 
idle. Under the Base-Stock policy, the system starts to produce new parts when 
it receives a new order. In this regard, the information regarding the customer 
demand is transmitted to the integrated manufacturing facilities to initiate the 
manufacturing process. This approach facilitates the production of high quality 
and ready-to-be-sold products. However, in the case of considerable degradation 
(f ≥ 2) , the mechanism can opt for system maintenance to improve the condition 
of the multi-stage production system and the quality of manufactured items. In 
addition, the system can recycle faulty products, or refurbish returned products to 
make ample space for the storage of sellable products, and hence fulfill pending 
customer orders.

After selecting an action at de , a relative reward is received by the mechanism 
in the subsequent de + 1 . The goal of the mechanism is to find the optimum policy 

(1)St ←
{

f ,mst,�� ,��
}

(2)Δ
{

f ,mst,�� ,��
}

← (do nothing,Base Stock), f ∈ [0, 2]

(3)Δ
{

f ,mst,�� ,��
}

← (do nothing), mst = 0

(4)Δ
{

f ,mst,�� ,��
}

← (do nothing,maintain), f ≥ 2 and �� = Qmax
P

(5)Δ
{

f ,mst,�� ,��
}

← (do nothing, refurbish, recycle), f ≥ 2 and �� = Qmax
P
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pop that maximizes the attained average reward Ar . Formally, the attained average 
reward is:

w h e r e 
A = Ktp + Klp + Krec + Kref + Xr − Xmn

− Xp − Xstor − Xlos − Xrem − Xref − Fret.
In the above expression, Ktp , Klp , Krec , and Kref  refer to the high-quality, low-qual-

ity, recycled and refurbished items, Xr and Xmn
 represent costs associated to repair 

and maintenance at n , Xp and Xstor denote the production and storage costs, Xlos and 
Xrem refer to lost sales and remanufacturing costs, respectively. Finally, Xref  and Fret 
denote the refurbishing cost and returned product fee.

For the purposes of this study, a reinforcement learning algorithm, named 
R-smart (Gosavi 2004), is implemented to seek out optimal control policies for the 
subsequent decision-tree constructions. It falls into the category of the average cost 
reinforcement learning algorithms, which endeavor to maximize the defined aver-
age reward at every de . To achieve that goal, it calculates two discrete values, that 
is, action value ( qa(S, �) ) and average action reward ( Aop ). The action values, also 
called q-values, are stored in a table, and are calculated at each de using (7). On 
the other hand, the average action reward is estimated with (8) at the next decision 
making timepoint ( de + 1 ), when the action with the highest value is selected. Math-
ematically, R-smart is defined as follows:

Regarding the mathematical notation in expressions (7) and (8), A′ and S′ refer 
to the reward and the system state attained by the mechanism at de + 1 , � and �′ 
denote the actions selected by the mechanism at de and de + 1 , respectively, � is a 
real-valued contant. Finally, the action-state space is efficiently investigated using 
the e-greedy algorithm. The algorithm is characterized by a variable �� , receiving 
values between 0 and 1. Let us consider a probability �r for opting an action. The 
algorithm can select either a random action ( �r = �� ), or the one with the highest 
value ( �r = 1 − ��).

4 � Experimental analysis

4.1 � Configuration

This section describes the experimental evaluation carried out for evaluating the 
decision tree-based decision-making framework. First, we generated the training 
dataset employing the reinforcement learning/Base Stock-based control mechanism 

(6)Ar ← liml→∞

1

l
E

(

l
∑

n=1

Ade+1

)

(7)qa(S, �) ← qa(S, �) + �

[

A� − Ar + qa
(

S�, ��
)

− qa(S, �)

]

(8)Aop ← (1 − �)A + �A
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presented in Sect.  2. The dataset contained optimal control policies for optimiz-
ing manufacturing, restoring and quality control activities. The generation of deci-
sion rules was performed with the utilization of decision trees trained based on the 
resulted dataset. For this purpose, the Waikato Environment for Information Analy-
sis (WEKATM) software was used for classification methods application, and con-
struct decision trees in this research. WEKATM is an open-source predictive analysis 
platform comprised of a collection of machine learning algorithms and data process-
ing techniques. Data mining activities such as data pre-processing, clustering, sort-
ing, feature collecting, regression, and visualization may be accomplished with the 
WEKATM tool suite (Frank et al. 2016).

The performance of the constructed decision trees was evaluated in the context 
of the two-stage manufacturing system, presented in Sect. 2. To this end, 25 simu-
lation experiments were carried out. Each experiment was replicated 15 times and 
lasted up to the point where the examined two-stage manufacturing system com-
pleted 5.5 million items. During the experiments, the operation of the manufacturing 
system was simulated under real world-like fluctuating conditions pertaining to the 
customer demand, production, failures, repairs, maintenance, and remanufacturing.

Table  1 presents the first 10 simulation experiments. In the table, �� refers 
to the average rate of orders arrivals, �m denotes the average rate of manufactur-
ing activities, ��n

 and �en
 represent the average rates of failure activities and sys-

tem maintenance at stage n , �� refers to the average rate of repair activities, �r 
denotes the average rate of remanufacturing activities. It is worth noting that the 
mentioned average rates are exponentially distributed. Moreover, it is sensible that 
𝜇𝛼0

> 𝜇𝛼1
> ⋯ > 𝜇𝛼n

 , and 𝜇e0
< 𝜇e1

< ⋯ < 𝜇en
.

4.2 � Tree performance indices

Numerous output indicators may be utilized to evaluate the tree algorithms’ trust-
worthiness. Initially, the TP (True Positive) index is calculated by counting the 
sum of positive instances identified correctly as positive classes. In contrast, the 
FP (False Positive) index is calculated by adding the number of negative classes 
classified incorrectly as positive. Additionally, the TPR (True Positive Rate) may 
be calculated by dividing the TP by the total of positive classes and the FPR (False 
Positive Rate) by the number of negative classes. Additionally, since the F-measure 
is the harmonic mean of precision and recall, it is a combined precision and accu-
racy indicator. Precision is calculated by dividing TP by the sum of TP and FP. In 
contrast, accuracy is calculated by multiplying TP by the TN (True Negative—the 
sum of correctly predicted negative occurrences) and dividing by the total number 
of cases categorized.

4.3 � Results

The current study has a total of 326432 cases processed using each decision tree 
method. Additionally, the effect of pruning on the accuracy of the best algorithm is 
examined. The comparison findings for the eight instances are shown in Table 2 (4 
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algorithms). Notably, the C4.5 (J48) was applied with confidence factors of 0.35, 
0.25, 0.2, 0.1, and 0.05, while lower values result in greater pruning. Initially, the 
correctly categorized cases and those erroneously classified are shown, with the 
J48 (0.2) being the most effective, accurately classifying 326,325 occurrences. The 
pruned J48 (0.25) method was more accurate than the HoeffdingTree, RERTree, 
and RandomTree algorithms, which wrongly categorized 216, 121, and 127 cases, 
respectively.

As for the processing time needed for each algorithm to build the model, it took 
5.35 s for the J48 (0.35), 3.73 s for the J48 (0.35), 3.81 s for the J48 (0.2), 4.44 s 
for the J48 (0.1), and 4.32 s for the J48 (0.05). As for the rest of the algorithms, the 
HoeffdingTree needed 4.83 s to build the model, while the REPTree consumed 3.04 
s and the RandomTree about 2.67 s. As expected, a larger size of trees (namely less 
pruned) need more processing time, but generally, the time needed for model con-
struction was reasonable.

Regarding the effect of pruning on the J48 algorithm’s accuracy, it was noted that 
having more trimmed trees, i.e., trees with a smaller diameter, does not ensure that 
the algorithm would be more accurate. More precisely, the J48 (0.2) tree is errone-
ously categorized in just 107 occurrences, while the more pruned J48 (0.05) tree is 
incorrectly classified in 118 occasions, and the less pruned J48 (0.35) tree is incor-
rectly classified in 111 instances.

Additionally, Table  3 includes information on the performance of each tree 
method in terms of TP rate, FP rate, and F-measure. More precisely, the J48 method 
obtains the highest TP rate for all classes except "refurbish," for which the Ran-
domTree approach beats the other techniques. Regarding the J48 method variations, 
it should be noted that less pruned trees are more likely to result in higher TP rate 
values. There are many equalities, presumably due to the high number of instances 
and the decimal precision chosen. Regarding the FP rate, the HoeffdingTree algo-
rithm has the highest value (for the class "recycle"). In contrast, the other values 
are equivalent to zero due to the minimal number of incorrectly classified instances 
compared to the total number of examples used. Regarding the F-Measure index, the 
J48 algorithm outperforms all other algorithms for all classes except "refurbish," for 
which the REPTree algorithm outperforms all others, with the J48 coming second 
and the RandomTree and HoeffdingTree following.

In this research, each rule extracted by every decision tree algorithm was 
employed to address the optimization problem that the R-smart algorithm was ini-
tially confronted with, validating its efficacy in managing the production system 
and optimizing its profitability. Each rule was applied to the optimization problem, 
resulting in the profitability shown in Table 4. It is worth noting that the average 
profit values for the processed cases are shown. These results demonstrate that the 
J48 algorithm outperforms the other methods regarding average profit.

In addition, regarding the J48 algorithm, it is found that less pruning assists in 
producing a better-performing decision rule since the J48 (0.35) rule achieved better 
average profitability instead of the J48 (0.05), J48 (0.1), J48 (0.2), and the J48 (0.25). 
Moreover, it is worth noting that the J48 (0.35) algorithm achieved the best profit-
ability for 10 of the 25 scenarios, the J48 (0.25) for 3 of 25, the J48 (0.2) for 5 of 25, 
the J48 (0.1) for 6 of 25, and the J48 (0.05) for 6 of 25. As for the rest algorithms, 
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Table 3   Results for the 
algorithms of the present 
analysis

Class TP Rate FP Rate F-Measure Algorithm

Do nothing 1 0 1 J48 (0.35)
1 0 1 J48 (0.25)
1 0 1 J48 (0.2)
1 0 1 J48 (0.1)
1 0 1 J48 (0.05)
0.999 0 0.999 HoeffdingTree
1 0 1 REPTree
1 0 1 RandomTree

Produce 1 0 1 J48 (0.35)
1 0 1 J48 (0.25)
1 0 1 J48 (0.2)
1 0 1 J48 (0.1)
1 0 1 J48 (0.05)
0.999 0 0.999 HoeffdingTree
1 0 1 REPTree
1 0 1 RandomTree

Refubrish 0.966 0 0.975 J48 (0.35)
0.966 0 0.978 J48 (0.25)
0.966 0 0.979 J48 (0.2)
0.963 0 0.977 J48 (0.1)
0.963 0 0.979 J48 (0.05)
0.905 0 0.949 HoeffdingTree
0.966 0 0.983 REPTree
0.968 0 0.963 RandomTree

Maintain 0.994 0 0.991 J48 (0.35)
0.994 0 0.991 J48 (0.25)
0.994 0 0.991 J48 (0.2)
0.994 0 0.991 J48 (0.1)
0.995 0 0.990 J48 (0.05)
0.974 0 0.987 HoeffdingTree
0.994 0 0.988 REPTree
0.989 0 0.989 RandomTree

Recycle 1 0 1 J48 (0.35)
1 0 1 J48 (0.25)
1 0 1 J48 (0.2)
1 0 1 J48 (0.1)
1 0 1 J48 (0.05)
1 0.001 1 HoeffdingTree
1 0 1 REPTree
1 0 1 RandomTree
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the HoeffdingTree did not find the highest profits for any of the scenarios, the REP-
Tree found 4 of 25, and the RandomTree found 3 of 25. Note that when applying the 
R-learning algorithm (without any decision tree constructed and no decision rule), 
the average profitability is 4.10E+08 k€. The best profitability is found for 10 of the 
25 scenarios. This finding illustrates the value of the current innovative approach 
since the rule extracted by the data generated with R-smart achieves better results 
than the R-smart algorithm alone.

The rule derived using the most efficient method (in terms of profitability), the 
J48 (0.35), is described in Table 5. This rule states that if the system’s "machine" 
level is equal to or less than zero, the action executed is "do nothing." Addition-
ally, suppose the "machine" parameter is positive, and the "prod a" value is equal 
to or less than 99. In that case, the "def prod" value is equal to or less than 99, the 
"def prod" value is equal to or less than 6, the "prod a" value is equal to or less than 
9, and the "machine" parameter is equal to or less than 1, the action performed is 
"produce". Similarly, the rule contains "instructions" for carrying out actions in each 
instance, which may result in a higher objective function value for the issue.

5 � Conclusions

In this study, we used a variety of decision tree algorithms to classify instances and 
represent the highest performance policies generated by a reinforcement learning 
algorithm while optimizing a complex production, maintenance, and quality con-
trol problem within a degrading manufacturing and remanufacturing system. More 
specifically, we applied decision tree algorithms for the first time to mine knowledge 
that can optimize production, quality, and maintenance in the context of flexible 
manufacturing systems. The results we achieved were highly encouraging. Addition-
ally, we conducted further research to exposit the influence of algorithmic factors 
on the decision tree’s efficacy, ensuring that decision-makers could understand the 
procedures involved and trust the model utilized.

Table 3   (continued) Class TP Rate FP Rate F-Measure Algorithm

Weighted Avg 1 0 1 J48 (0.35)

1 0 1 J48 (0.25)

1 0 1 J48 (0.2)

1 0 1 J48 (0.1)

1 0 1 J48 (0.05)

0.999 0 0.999 HoeffdingTree

1 0 1 REPTree

1 0 1 RandomTree
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Table 5   The rule extracted by the J48 (0.35) algorithm
J48 pruned tree
------------------
machine <= 0: do nothing (81608.0)
machine > 0
|   deteriora�on <= 1
|   |    prod_a <= 99
|   |   |    def_prod <= 99
|   |   |   |    def_prod <= 6
|   |   |   |   |    prod_a <= 9
|   |  |   |   |   |    machine <= 1: produce (140.0)
|   |   |   |   |   |    machine > 1
|   |   |   |   |   |   |    machine <= 2
|   |   |   |   |   |   |   |    def_prod <= 2
|   |   |   |   |   |   |   |   |   deteriora�on <= 0: produce (30.0/13.0)
|   | |   |   |   |   |   |   |   deteriora�on > 0
|   |   |   |   |   |   |   |   |   |    prod_a <= 5: do nothing (18.0/1.0)
|   |   |   |   |   |   |   |   |   |    prod_a > 5
|   |   |   |   |   |   |   |   |   |   |    def_prod <= 1: do nothing (8.0/1.0)
|   |   |   |   |   |   |   |   |   |   |    def_prod > 1: produce (4.0)
|   |   |   |   |   |   |   |    def_prod > 2
|   |   |   |   |   |   |   |   |    prod_a <= 2
|   |   |   |   |   |   |   |   |   |    def_prod <= 4
|   |   |   |   |   |   |   |   |   |   |    prod_a <= 1
|   |   |   |   |   |   |   |   |   |   |   |   deteriora�on <= 0: produce (4.0/1.0)
|   |   |   |   |   |   |   |   |   |   |   |   deteriora�on > 0: do nothing (4.0/1.0)
|   |   |   |   |   |   |   |   |   |   |    prod_a > 1: do nothing (4.0)
|   |   |   |   |   |   |   |   |   |    def_prod > 4
|   |   |   |   |   |   |   |   |   |   |    prod_a <= 0: do nothing (4.0/1.0)
|   |   |   |   |   |   |   |   |   |   |    prod_a > 0: produce (8.0)
|   |   |   |   |   |   |   |   |  prod_a > 2: produce (56.0/6.0)
|   |   |   |   |   |   |    machine > 2: produce (140.0)
|   |   |   |   |    prod_a > 9: produce (3780.0)
|   |   |   |    def_prod > 6: produce (55800.0)
|   |   |    def_prod > 99: refubrish (600.0)
|   |    prod_a > 99: maintain (606.0)
|   deteriora�on > 1
|   |    prod_a <= 99
|   |   |    def_prod <= 4
|   |   |   |    prod_a <= 8
|   |   |   |   |    machine <= 1: recycle (270.0)
|   |   |   |   |    machine > 1
|   |   |   |   |   |    machine <= 2
|   |   |   |  |   |   |   deteriora�on <= 5
|   |   |   |   |   |   |   |    def_prod <= 1
|   |   |   |   |   |   |   |   |    prod_a <= 3: maintain (32.0/8.0)
|   |   |   |   |   |   |   |   |    prod_a > 3
|   |   |   |   |   |   |   |   |   |   deteriora�on <= 4
|   |   |   |   |   |   |   |   |   |   |    def_prod <= 0: maintain (15.0/6.0)
|   |   |   |   |   |   |   |   |   |   |    def_prod > 0
|   |   |   |   |   |   |   |   |   |   |   |    prod_a <= 5: maintain (6.0/2.0)
|   |   |   |   |   |   |   |   |   | |   |    prod_a > 5
|   |   |   |   |   |   |   |   |   |   |   |   |   deteriora�on <= 3: refubrish 
(6.0/3.0)
|   |   |   |   |   |   |   |   |   |   |   |   |   deteriora�on > 3: recycle (3.0/1.0)
|   |   |   |   |   |   |   |   |   |   deteriora�on > 4: recycle (10.0/1.0)
|   |   |   |   |   |   |   |    def_prod > 1
|   |   |   |   |   |   |   |   |    prod_a <= 2
|   |   |   |   |   |   |   |   |   |    prod_a <= 0: maintain (12.0/2.0)
|   |   |   |   |   |   |   |   |   |    prod_a > 0
|   |   | |   |   |   |   |   |   |   |    def_prod <= 3
|   |   |   |   |   |   |   |   |   |   |   |    def_prod <= 2: refubrish (8.0/4.0)
|   |   |   |   |   |   |   |   |   |   |   |    def_prod > 2
|   |   |   |   |   |   |   |   |   |   |   |   |   deteriora�on <= 2: maintain (2.0)
|   |   |   |   |   |   |   |   |   |   |   |   |   deteriora�on > 2: recycle (6.0/2.0)
|   |   |   |   |   |   |   |   |   |   |    def_prod > 3: recycle (8.0/3.0)
|   |   |   |   |   |   |   |   |    prod_a > 2: recycle (72.0/7.0)
|   |   |   |   |   |   |   deteriora�on > 5
|   |   |   |   |   |   |   |    prod_a <= 0
|   |   |   |   |   |   |   |   |    def_prod <= 2: produce (6.0/2.0)
|   |   |   |   |   |   |   |   |    def_prod > 2: recycle (4.0)
|   |   |   |   |   |   | |    prod_a > 0: recycle (80.0/2.0)
|   |   |   |   |   |    machine > 2: recycle (270.0)
|   |   |   |    prod_a > 8: recycle (8190.0/1.0)
|   |   |    def_prod > 4: recycle (172800.0/2.0)
|   |    prod_a > 99
|   |   |    def_prod <= 98: maintain (1782.0)
|   |   |    def_prod > 98
|   |   |   |    def_prod <= 99: maintain (18.0)
|   |   |   |    def_prod > 99: recycle (18.0)
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Among the performed algorithms, the C4.5 (J48) was found to be the most 
accurate, especially its highly pruned version (J48 (0.01)), with the Hoeffding 
Tree, Random Tree, and REPTree, following. Additionally, the extracted rules 
were employed to address the initial optimization problem that the reinforcement 
learning algorithm addressed to demonstrate their effectiveness at controlling 
the production system and maximizing its profitability. Again, the J48 algorithm 
proved the most efficient compared to the other three decision tree algorithms. 
As for the J48 algorithm, we performed a sensitivity analysis to determine if the 
pruning level impacts the objective function value. Regarding profitability, we 
discovered that utilizing the J48 algorithm to build more extensive and complex 
trees can generate rules that result in higher profits. However, it is worth noting 
that this approach may compromise accuracy. Note that this finding is only for the 
J48 algorithm and cannot be generalized since the more giant trees created with 
the RandomTree algorithm have lower profitability.

Additionally, we retrieved the decision rule from each associated tree and put 
it in the optimization issue to validate its effectiveness. The verification findings 
established that the J48 method is the most efficient. At the same time, the prun-
ing level affects the rule’s efficiency, as extremely large or small tree sizes result 
in poor rule performance regarding system profitability.

In terms of management implications, the comparison of findings has a sig-
nificant impact on real-world industries and the ever-evolving challenges they 
face. By thoroughly analyzing and categorizing the control policies generated by 
the production mechanism, we have developed a framework that produces effec-
tive decision rules for the manufacturing and quality control of items. Owing to 
the universal nature of these principles, they can be implemented in new manu-
facturing challenges and systems without incurring significant costs. This arti-
cle reveals how our framework can be applied to real-world situations, thereby 
enabling organizations to improve their manufacturing processes and yield better 
quality items.

The retrieved information has significant implications for decision-making pro-
cesses in complex and dynamic real-world industrial environments. Specifically, 
managers can leverage the suggested technology to analyze vast quantities of data 
collected from production systems and identify broad patterns, requirements, and 
trends dictated by customers and the manufacturing sector. This information can be 
utilized to adapt the integrated production process and supply chains while minimiz-
ing emergent operational expenses like missed sales. The proposed method is an 
intelligent and robust tool for decision-making in the Industry 4.0 era, which has 
been transformed by technologies such as the Internet of Things (IoT). Future work 
could include the application of additional machine learning principles such as neu-
ral networks to compare algorithmic accuracy and system profitability. Additionally, 
more complex production systems could be explored.
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