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Abstract
In this paper, we address the vehicle routing problem (VRP) with occasional drivers 
(ODs) and time windows (TWs). The problem (VRP-OD-TW) is an extension of the 
VRP-OD, where ODs serve customers within given TWs. Differently from the basic 
version of VRP-OD-TW, we assume that ODs not only accept single requests, but 
they can also serve bundles of requests. To deal with the bundle-to-driver assign-
ment problem, an auction-based system has been designed; a company offers a set 
of bundles to the ODs, who bid for all the bundles they consider attractive. There 
is no limit on the number of bids a driver can place, but at most one bid per OD 
can be assigned to avoid infeasible workloads. This system could yield a large cost 
reduction for the company, but its success is strongly related to the bundles offered. 
Hence, determining bundles which are attractive for ODs and profitable for the com-
pany, becomes a crucial issue. We propose two different bundling strategies, which 
make use of a spatial-temporal representation of customers in a three-dimensional 
(3D) space. The former is based on the generation of 3D corridors, while the lat-
ter relies on 3D clustering techniques. Through extensive computational results, 
we show that the former technique outperforms the latter in terms of both solution 
quality and computational times and that both the approaches strongly outperform 
bundle generation techniques that neglect the temporal dimension and rely only on 
spatial information.
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1 Introduction

The key to e-commerce’s success is that customers can compare hundreds of alter-
natives directly from their laptop, tablet, or phone without having to visit a physical 
shop, and they receive purchased items directly at home, in many cases, in less than 
24  h. The number of customers that systematically use e-commerce has continu-
ously risen in the past decade; the number further swell further in the wake of the 
COVID-19 pandemic when physical shops remained closed for several weeks if not 
months (eMarketer, 2022). Obviously, the number of items purchased on a single 
day experiences significant fluctuations across the year. The number of orders to 
fulfill during a peak period (such as during Christmas or Black Friday) is signifi-
cantly higher than in off-peak seasons. This may require companies to resize their 
fleet to fulfill such demand peaks, but hiring new drivers only for a limited period 
of time can be extremely costly and disadvantageous. During off-peak seasons, most 
of the drivers would be idle, generating inefficiencies. To overcome this issue and to 
reduce costs for the company, a viable solution is to onboard non-professional driv-
ers, taken from the crowd, to fulfill orders during peak periods. This phenomenon 
is known as crowdshipping. In a "crowdshipping" system, occasional drivers (ODs) 
are onboarded. Such drivers can be freelance semi-professional drivers or others 
such as unemployed persons, part-time workers, students, or retired persons, willing 
to do some deliveries to increase their income. Several practical examples of suc-
cessful crowdshipping exist all over the world. One of the main drawbacks of ODs 
is that they have not signed (and, therefore, are not bound by) any contract with the 
companies concerned, so they are free to accept or reject deliveries offered by the 
companies. This implies that, for a successful delivery system, it is crucial for these 
companies, to offer attractive tasks to ODs.

In Mancini and Gansterer (2022a) the authors show that by offering attractive 
bundles of customers to ODs, companies can achieve much higher cost reductions 
than if they only offer single requests or low attractive bundles. Hence, the bun-
dle generation problem is crucial to the success of the whole system. Such issues 
have been studied, to the best of our knowledge, only for problems without delivery 
TWs for customers. However, when operating in a TW context, the bundle genera-
tion problem is supposed to be more challenging, as they might render bundles unat-
tractive or even infeasible. Hence, new bundling strategies that take into account 
take customers’ spatial and temporal information are needed. We propose different 
innovative techniques based on a spatial-temporal customer representation to deal 
with problems including TWs. We show the benefit of harnessing this information, 
compared with the existing bundling strategies. Further, we show that having differ-
ent TWs does not always imply a lower compatibility among customers; on the con-
trary, a large TWs difference, combined with a different spatial location, may yield 
to very attractive bundles if they are generated in a smart way. This finding opens 
the door to bundling customers who at first sight may seem not closely related.

Through an extensive computational study, we show that the newly proposed 
bundling approach strongly outperforms the alternative approaches for all the 
investigated settings.
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The novelty of this paper is twofold. Firstly, we provide a new customer represen-
tation which takes into account not only the spatial location of customers but also 
their service TWs, representing them as points in a 3D-space, in which the third 
dimension represents the time component. We show the benefit of exploiting this 
representation by means of an extensive computational study. Secondly, we extend 
the corridors-based approach presented in Mancini and Gansterer (2022a) to the 
newly defined customers’ 3D-space. This adaptation is non-trivial, as explained in 
Sect.  5. Moreover, the proposed bundling approach and the spatial-temporal cus-
tomer representation technique are not only specifically suited for the addressed 
problem, but can be exploited and generalized to a broad class of auction-based 
transportation problems in which delivery TWs are considered.

The paper is organized as follows. Section  2 is devoted to related literature 
review. A formal problem description is included in Sect. 3, while the mathematical 
formulation is described in Sect. 4. In Sect. 5, we detail how to construct attractive 
bundles of customers, and we discuss the bidding process. Computational results are 
reported in Sect. 6. Finally, conclusions and future developments are discussed in 
Sect. 7.

2  Literature review

Crowdshipping is a relatively new concept; it has become an important tool to 
reduce last-mile delivery costs as pointed out in Archetti and Bertazzi (2020). It 
consists of onboarding non-professional drivers, i.e., ODs, to do the last leg of par-
cel distribution in e-commerce. This allows companies to efficiently cover peak peri-
ods, in which, given the huge volume of orders to fulfill, the standard owned fleet 
is not able to efficiently handle all requests. In other words, crowdshipping allows 
companies to increase transport capacity and consequently to offer high quality ser-
vice to their customers (e.g., same-day delivery) for very low or no extra fees. The 
term crowdshipping is quite general and is used to refer to the following: (i) private 
drivers willing to do deliveries in their free time in order to earn an extra income 
(e.g., students, unemployed persons, part-time workers, and retired persons) and (ii) 
in-store customers who are willing to do one or more deliveries on their departing 
trip. In this paper, we focus on the second type of ODs.

Although crowdshipping became popular only recently, several relevant studies 
on it can be found in related literature. Most of these works address the topic from a 
managerial point of view, analyzing the potential benefit of the concept.

Le and Ukkusuri (2019) identify the relevant factors which mostly push retail-
ers to adopt crowdshipping. An analysis of real crowdshipping systems adopted in 
the US is reported by Ermagun et al. (2020). The benefit of onboarding the in-store 
customers to deliver purchases to acquaintances and friends in their social network 
is discussed in Devari et al. (2017), whereas the environmental impact of crowdship-
ping is studied in Simoni et al. (2020). A systematic review of crowdshipping-based 
delivery systems can be found in Alnaggar et al. (2021).

Crowdshipping have been successfully applied as a stand-alone delivery sys-
tem in several settings. Ausseil et  al. (2022) analyze the case of a platform to 
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manage dynamic delivery requests by a fleet of ODs with stochastic behavior. 
Customer orders and drivers willing to do deliveries dynamically join the plat-
form. At fixed points in time, the platform collects all the unserved requests in the 
system and the currently available ODs. It proposes specifically suited menus of 
requests to each driver. The driver can select the preferred request or can refuse 
to serve all the proposed requests while they wait for better offers. After hav-
ing received all the drivers’ selections, the platform provides a match between 
requests and drivers. Those drivers who have not picked any request from the 
menu or who have not been selected by the system can decide whether to wait 
for the next auction round or to leave the system. A similar setting is studied in 
Horner et al. (2021), where drivers can select more than one preferred requests. 
In Chen et al. (2018) the authors propose a delivery system in which occasional 
drivers may transfer goods among each others during their path. This way, a cus-
tomer can be served by more occasional drivers, each one of which perform a leg 
of the distribution, in a multi-hop fashion. This system is particularly useful for 
companies operating on a large territory, or in context where occasional drivers 
has a limited flexibility. In Torres et al. (2022) the authors consider a stochastic 
problem in which the system generates potentially attractive open routes to offer 
to ODs. Each driver selects the most profitable route from among those available 
when entering the system. In Gatta et al. (2018), the authors propose a sustain-
able crowdshipping delivery system in which the ODs do deliveries by means 
of public transportation, reducing, therefore, even the number of vehicles in the 
network. A very similar system is addressed by Gatta et al. (2019); the difference, 
however, is that that ODs deliver to smart lockers instead of to private locations. 
Another sustainable crowdshipping system is proposed by Lin et  al. (2020) in 
which deliveries are done on bicycles.

Such systems, which consider a set of drivers entirely composed of ODs, are 
specifically suited for very dynamic online environments, such as meal delivery, in 
which during peak hours the rejection of some orders is tolerated, as there are not 
enough resources to fulfill all of them. However, they are not viable for giant com-
panies, operating in a last-mile delivery context (e.g., Amazon), for they have to reli-
ably fulfill thousands of orders per day and are not supposed to reject any of them. 
In this context, the most viable option is to opt for a mixed fleet of owned vehicles 
and occasional drivers, as shown in Mancini and Gansterer (2022a).

In the following section, we focus on the literature on mixed-fleet crowdshipping 
problems, involving in-store customers. Archetti et al. (2016) are the first to intro-
duce the vehicle routing problem with ODs (VRP-ODs). The authors assume that at 
the most one customer can be assigned to an OD (i.e., bundling is not allowed) and 
that the compensation is fixed and does not depend on the detour that the OD con-
cerned must take. Hence, drivers differ among each other only by their location, but 
their behavior is not modeled, and they cannot reject assignments but are supposed 
to accept all requests which require a detour below a certain threshold. It is assumed 
that the threshold and compensation payment are equal for all ODs. More recently, 
an algorithm to solve this problem, based on the integration of Variable Neighbor-
hood Search and of Machine Learning has been presented in Di  Puglia  Pugliese 
et al. (2022a).
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Macrina et al. (2017) and Di Puglia Pugliese et al. (2022b) address an extension 
of the work by Archetti et al. (2016). The authors consider customers’ delivery time 
windows and allow ODs to serve multiple customers during their detour. However, 
as in Archetti et al. (2016) they do not consider an auction system but assume that 
drivers would accept all the assignments that require a detour shorter than a thresh-
old and consider fixed compensation. Therefore, they neglect features such as the 
ODs’ flexibility or their willingness to do deliveries. For this reason, our approach 
is not directly comparable to theirs. In fact, the previous works are based on the 
assumption that ODs would automatically accept the compensation proposed by the 
company. We contribute to existing studies by covering the fact that not all ODs are 
willing to perform a delivery for exactly the same price.

In Macrina et  al. (2020) the authors keep the same assumptions but consider 
transshipment nodes where ODs can collect parcels to be delivered from the com-
pany-owned fleet. Hence, a two-echelons distribution system is investigated. In Yu 
et al. (2021) the authors also consider a two-echelons system, but they allow cus-
tomers to be served either with home delivery or to shared delivery locations, called 
covering points. While the owned fleet can operate in both modes, ODs can only 
perform home deliveries. A very similar setting is addressed in Yu et al. (2022), in 
which customers can choose among the two options (home delivery or delivery to 
alternative delivery point) or can let the company choosing for them.

Arslan et  al. (2019) address a dynamic pickup-and-delivery system, involving 
both the company’s fleet and a set of ODs. They consider OD’s flexibility through a 
set of parameters such as maximum detour and maximum number of stops accepted. 
However, those parameters are taken into account only to evaluate customer-driver 
compatibility, and they do not influence the compensation. These are computed as a 
fixed fee for each delivery task plus a per-mile component which is multiplied with 
the detour. A pickup and delivery system with transshipment nodes has been pre-
sented in Voigt and Kuhn (2022), whereas in Yu et al. (2023) simultaneous pick up 
and deliveries are allowed.

Behrend and Meisel (2018) also consider the ODs’ flexibility. However, similar 
to Arslan et  al. (2019), this flexibility is assumed to determine the set of feasible 
customer tuples to be assigned to ODs, and no bidding system is imposed on them.

Dayarian and Savelsbergh (2020) address a stochastic and dynamic problem, 
involving in-store customers as ODs where their arrivals and their delivery capacity 
is taken as unknown. Compensations are considered fixed, but different compensa-
tion levels are tested, and their impact on the usage of ODs is analyzed.

In Kafle et al. (2017) a mixed delivery system is investigated, where cyclists and 
pedestrians are integrated with the owned fleet. Crowdshippers submit bids which 
can be either accepted or rejected by the company. Those that are selected for deliv-
ery meet the trucks at transshipment locations where they collect the parcels to be 
delivered.

Dahle et  al. (2019) are the first to consider the possibility of rejecting assign-
ments if the compensation offered is too low. This issue is, however, not addressed 
within a bidding system in which drivers submit acceptable prices but assumed to be 
a minimum compensation threshold for each OD. This threshold can differ among 
ODs, but compensations are defined a priori by the company. The ODs’ willingness 
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to work is not taken into account. Boysen et al. (2022), do not consider in-store cus-
tomers as ODs but propose to exploit distribution centers’ employees for crowdship-
ping online orders on their way back from work. These employees are supposed 
to communicate a minimum expected earning per time unit as well as a maxi-
mum acceptable driving time. The company decides which tasks to assign to each 
employee to maximize the number of tasks carried out by the employees. Compen-
sation is decided by the company. What emerges from their computational experi-
ments is that onboarding ODs to serve customers far from the distribution center 
would yield a clear advantage for the company; on the contrary, it would be cheaper 
to serve nearer customers with company-owned fleet. These results coincide with 
the findings of Mancini and Gansterer (2022a), showing the clear benefit of opting 
for a mixed delivery system (i.e., combining owned fleets with ODs). Mancini and 
Gansterer (2022a) analyze an auction-based system in which the company a priori 
generates attractive bundles of requests without having any information on available 
ODs. This study is the first to consider ODs’ flexibility as well as their willingness 
to accept bundles of requests. Both are assumed to be the parameters that influence 
the compensation requested by the driver to serve a specific bundle. Flexibility rep-
resents the maximum detour acceptable for a driver. This value is not related to the 
compensation received but only to the amount of time for which the driver is avail-
able. Willingness is a measure of how much the driver is willing to win the auction 
and get the job. The higher her willingness, the more competitive the price offered 
in her bid. Given the detour needed and the number of stops required, it is possible 
to derive a “neutral bid”, which corresponds to the correct price to offer for that bun-
dle to stay in the market. A neutral bidder is characterized by a willingness Φk = 1 , 
where Φk is a multiplier of the correct price. Values of Φk lower than 1 indicate a 
high willingness to work. In fact, in this case, the driver is willing to perform the 
delivery for a price more competitive with respect to the market in order to increase 
her chance to get the job. Conversely, values greater than 1 indicate a low willing-
ness to work. In fact, this means that the driver is willing to perform the delivery 
only if she receives a very good compensation, higher than the market price. These 
two features are not correlated among each other. There could be a driver willing to 
perform only small detours (low flexibility), but at a very competitive price (high 
willingness). Also, there could be a driver with a lot of spare time, who is willing to 
make even long detours (high flexibility), but only if the compensation paid is very 
high (low willingness).

Although offering bundles of requests has become a common practice in col-
laborative logistics, this aspect has received scant attention in the last-mile delivery 
context.

The advantage of offering bundles of orders, in an auction system, instead of sin-
gle requests, has been discussed in detail in Gansterer and Hartl (2018a). This is 
based on the concept of subadditivity of costs, i.e., the fact that serving a bundle 
of requests might require a lower total cost than the sum of the costs of serving all 
requests individually. The advantages of bundling requests have been discussed in 
different contexts, such as the cooperative liner shipping network design, (Buer and 
Haass 2018) and collaborative logistics in a dynamic environment (Wang and Kop-
fer 2015).
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To highlight the contribution of our work to the existing literature, we list in 
Table 1 the features discussed above. As can be seen in the table, our study clearly 
fills a gap in the existing literature. To the best of our knowledge, we are the first to 
consider an auction-based system, including a bundling and bidding phase, drivers’ 
flexibility, and their willingness to work for the VRP-OD-TW. It should be noted 
that even if delivery TWs have been already addressed in the crowdshipping-related 
literature, the problem of generating bundles of customers for addressing the prob-
lems with TWs is still a mostly unexplored area in the field.

3  Problem description

In this section, we describe the VRP-ODs-TWs approach. A company has to serve a 
set of customers (I); for each of these locations, the demand qi expressed in volume 
units, and the delivery TW, [ei, li] , is known. We suppose that all deliveries start from 
a single depot (0). Hence, the set of nodes involved in the network can be expressed 
as the union of the customers and depot 0, as I0 = I ∪ 0 . For each pair of nodes (i and 
j) in I0 , the travel distance dij and travel cost cij are known. Further, for each customer, 
the company can choose between three options: (i) serving the customer with its own 
fleet, (ii) assigning it to an OD who will perform the delivery, or (iii) organizing a direct 
shipment, using a taxi service for a very high price. The third option is not profitable 
for the company and is chosen only when it is not possible to fulfill all the requests with 

Table 1  Overview of features addressed in the literature

Mult. cust Compens Flexibility Willingn Bundl Bids Mixed fleet TWs

 Archetti et al. (2016) No No No No No No Yes No
 Kafle et al. (2017) Yes Yes Yes Yes No Yes Yes No
 Macrina et al. (2017) Yes Yes No No No No Yes Yes
 Behrend and Meisel 

(2018)
Yes Yes Yes Yes No No No No

 Arslan et al. (2019) Yes Yes Yes No No No No Yes
 Dahle et al. (2019) Yes Yes Yes Yes No No Yes Yes
 Dayarian and Savels-

bergh (2020)
Yes Yes Yes No No No No Yes

 Macrina et al. (2020) Yes Yes No No No No Yes Yes
 Ausseil et al. (2022) No Yes Yes Yes No No No Yes
 Boysen et al. (2022) Yes Yes Yes Yes No No No No
 Mancini and Gansterer 

(2022a)
Yes Yes Yes Yes Yes Yes Yes No

 Torres et al. (2022) Yes Yes Yes Yes Yes No Yes No
 Voigt and Kuhn 

(2022)
Yes Yes Yes No No No No No

 Yu et al. (2023) No Yes Yes No No No Yes No
Our paper Yes Yes Yes Yes Yes Yes Yes Yes
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the the first two options. This third option is introduced to ensure feasibility of all the 
instances.

The owned fleet is constituted by a set of M identical vehicles with a loading capac-
ity of Qmax . Each vehicle in the owned fleet starts from the depot after e0 and must 
return to it before l0 , where [e0, l0] is the TW for the depot. A set of ODs ( Ω ) is avail-
able. We assume that the ODs start from the depot and do a set of deliveries on their 
way back home (or more generally, on the way to their final destinations). The capacity 
of an OD’s vehicle, indicated by QOD

max
 , is considered homogeneous among all ODs and 

is computed by considering the loading capacity of a medium-sized car. Therefore, we 
assume QOD

max
< Qmax.

The company receives a set K of bids from the ODs. For each bid, the bundle of 
customers with which it is associated ( �k ), the bid bk , and the driver who placed the 
bid, ok are known. We assume that each OD can submit bids for an unlimited number 
of bundles, and at most, one bid per OD can be accepted by the company. This allows 
to avoid the problem of overexposure of bidders by preventing situations in which the 
same OD wins several bundles but does not have the capacity to serve all them, which 
is a relevant issue in the auction theory (e.g., Englmaier et al. 2009). This assumption is 
very common in the literature and it is present in several studies, such as Gansterer and 
Hartl (2018a) and Gansterer et al. (2019), dealing with auction-based mechanisms in 
collaborative transportation.

If a bid is accepted, all customers associated with it are assigned to the correspond-
ing OD. As stated above, a customer can be assigned to at the most one driver. This 
implies that all the bundles selected to be assigned to ODs are disjoint. The goal of 
the problem is to minimize the total cost given by the sum of the routing costs for the 
owned fleet, the costs associated with the accepted bids and the cost for fulfilling, by a 
taxi service, the unserved orders.

To summarize, the whole framework consists of the following three steps: 

1. The company generates potentially attractive bundles without having any informa-
tion about the ODs who are willing to join the system.

2. ODs place bids on the bundles they find attractive. The bids are based on ODs’ 
location, their time availability, their willingness to work, their flexibility in 
accepting detours, and their tolerance regarding extra waiting time for meeting 
TWs.

3. After the company has received all the bids, it decides which bids to accept, 
which customers to serve with the owned fleet, and which to serve by a costly 
direct shipment, using a taxi service. Finally, the routing plan for the owned fleet 
is generated.

The overall optimization problem faced by the company is presented in the section that 
follows.
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4  Mathematical model

For the mathematical model, the following input data as well as decision variables are 
used: 

Input data

I Set of customers
I0 Set of nodes involved in the network (customers plus depot)
Ω Set of ODs
K Set of bids
M Number of available vehicles
� Cost of serving a customer by a direct shipment with a taxi service
cij Travel cost between node i and node j
qi Demand of customer i
[ei, li] Delivery TW for customer i (depot TW if i = 0)
si Service time for node i (customer or depot nodes)
Qmax Capacity of owned-fleet vehicles
QOD

max
Capacity of ODs’ vehicles

bk Price of bid k offered by an OD
�k Bundle related to bid k
ok OD who submitted bid k
Ck Set of customers belonging to bundle �k

Decision variables

Zi Binary variable taking value 1 if customer i is visited by a company owned vehicle and 0 otherwise
Xij Binary variable taking value 1 if node j is visited by a company owned vehicle just after node i and 

0 otherwise
Yk Binary variable taking value 1 if bid k is accepted and 0 otherwise
Ui Binary variable taking value 1 if customer i is served with a direct shipment by a taxi service
Qi Non-negative variables representing the cumulative load at node i, expressed as the total quantity of 

demand delivered by a vehicle along its route, when leaving node i
Ti Non-negative variables representing the arrival time at node i
Lij Load carried on arc (i,j)

The VRP-OD-TW can be modeled as follows:

(1)min
∑

i∈I0

∑

j∈I0

cijXij +
∑

k∈K

bkYk + �
∑

i∈I

Ui

(2)
∑

j∈I

X0j ≤ M
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(3)Zj + Uj +
∑

k∈K|j∈Ck

Yk = 1 ∀j ∈ I

(4)
∑

k∈K|ok=�
Yk ≤ 1 ∀� ∈ Ω

(5)
∑

i∈I0

Xij = Zj ∀j ∈ I

(6)
∑

i∈I0

Xij =
∑

i∈I0

Xji ∀j ∈ I

(7)Qj ≥ Qi + qj − 2Qmax(1 − Xij) ∀i ∈ I ∀j ∈ I

(8)0 ≤ Qj ≤ Qmax ∀j ∈ I

(9)
∑

j∈I0

Lji −
∑

j∈I0

Lij = qiZi ∀i ∈ I

(10)
∑

j∈I0

Lj0 −
∑

j∈I0

L0j = −
∑

j∈I

qjZj

(11)Lij ≤ QmaxXij ∀i ∈ I0 ∀j ∈ I0

(12)Li0 = 0 ∀i ∈ I0

(13)Tj ≥ Ti + tij + si − l0(1 − Xij) ∀j ∈ I ∀i ∈ I0

(14)Tj ≤ l0 − sj − tj0 ∀j ∈ I

(15)ej ≤ Tj ≤ lj ∀j ∈ I

(16)T0 ≥ e0 ∀j ∈ I

(17)Xij ∈ {0, 1} ∀i ∈ I0 ∀j ∈ I0

(18)Yk ∈ {0, 1} ∀k ∈ K

(19)Zi ∈ {0, 1} ∀i ∈ I
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The objective function is reported in (1). It minimizes the total costs for the com-
pany, which are composed of the following: (i) owned fleet routing costs, (ii) com-
pensation paid for the accepted OD bid, and (iii) costs related to direct shipments 
by taxi service. The company cannot use more vehicles than those available in the 
owned fleet, as imposed by Constraints (2). Constraints (3) ensure that each cus-
tomer is served by the company, a direct shipment by taxi service, or assigned to 
one of the ODs. At most one bid for each OD can be accepted, which is ensured by 
Constraints (4). If a customer is served by the owned fleet, it must be visited only 
once, as stated in Constraints (5). Constraints (6) guarantee route continuity. Con-
straints (7) play a double role: tracking cumulative load at nodes and ensuring sub-
tour elimination, while Constraints (8) guarantee that vehicle capacity is respected. 
Constraints (9)–(12) are not explicitly needed by the model, but act as valid inequal-
ities and help to strongly reduce computational times, as pointed out in Mancini and 
Gansterer (2022a), where the authors show that computational times can be reduced 
by more than 700 times.

Constraints (9) impose that the quantity delivered to each customer must be equal 
to its demand. Constraints (10) ensure that the total delivered quantity is equal to 
the sum of the demands of the customers served by the company’s fleet. Constraints 
(11) limit, for all the arcs, the load carried by a vehicle to its capacity Qmax . Con-
straints (12) force the vehicles to return empty to the depot. Arrival time at nodes 
is tracked by Constraints (13), while Constraints (14) force the vehicles to return to 
the depot before the end of the depot TW. Constraints (15) guarantee that customer 
delivery TWs are respected, while Constraints (15) forbid the vehicle to leave the 
depot before its opening TW started. Finally, Constraints (17)–(20) specify variable 
domains.

5  Bundle generation and bidding

Attractive bundles generation has already been investigated in the field of col-
laborative logistics, where two or more carriers establish a coalition, according 
to which, they exchange customers with their partners to maximize the profits of 
all the participants in the coalition (Gansterer and Hartl, 2018b). Those collabo-
rations are typically assumed to be managed by a central platform that receives 
information about the requests to offer to the coalition and runs an auction to 
assign them most profitably. The literature refers to centralized collaborations if 
the platform has perfect information about the carriers’ situations including exist-
ing customers and relevant costs. In Decentralized collaborations it is assumed 
that carriers share only partial information and trade only a subset of the requests 
on the platform. Bundles of requests can be generated either by the platform (e.g., 
Gansterer and Hartl, 2016) or by the carriers who are bidding to obtain some 
additional customers (e.g., Berger and Bierwirth, 2010). Offering all the com-
binations of requests as bundles is not a viable approach, since the number of 
generated bundles increases exponentially with the number of requests, making 

(20)Ui ∈ {0, 1} ∀i ∈ I
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the problem intractable even for a limited number of requests. Therefore, the plat-
form can typically generate only a limited subset of the bundles (Gansterer and 
Hartl, 2018a). It is of crucial importance to generate potentially attractive bun-
dles, as a poor selection of the offered bundles would probably yield a low gained 
profit for the participants. In Mancini and Gansterer (2022a) the authors present 
innovative strategies for generating profitable bundles in an auctions-based sys-
tem if no TWs have to be taken into account.

In these settings, bundles can be generated by making use of only spatial infor-
mation. However, if TW requirements do exist, neglecting the temporal aspects 
might yield very poor or even infeasible, solutions. Customers with short dis-
tances among them but being associated with rather different TWs can be con-
sidered a profitable bundle by classical spatial bundling methods, but they are 
actually very unattractive, as serving them in a row could imply very long waiting 
times and/or very long detours.

In Fig.  1, we depict a bundle which seems very attractive for a driver if the 
temporal component is ignored, while it becomes very unattractive if we consider 
TWs. This is so because of the long detour required. The depot is represented as 
a red square, customers as blue circles, and the OD’s final destination as a light-
blue triangle.

Fig. 1  Representation of a 
bundle which is very attractive 
if no TWs are considered (a), 
but becomes very unattractive if 
we consider TWs (b)
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5.1  Customer representation

To locate each customer in a 3D space, we use the following representation: Each 
customer i is identified by a triplet composed of the spatial coordinates of the loca-
tion and the middle point of the delivery TW (x̂i, ŷi,mi) , where mi = ei + (li − ei)∕2 . 
By making use of this structure, each customer can be represented as a 3D-point, 
where x and y coordinates correspond to the actual spatial coordinates, while the 
third dimension corresponds to mi . The distance between customers is then com-
puted as the euclidean 3D distance between the corresponding points. This metric 
allows us to consider not only the similarity of locations but also the similarity of 
TWs. Two customers who are very close in space but have completely different 
TWs would be seen as very distant according to this metric. In Fig. 2, we depict a 
set of customers to be served as well as their 3D representation. Further, we show 
the optimal solution if they are split into three clusters (bundles) per their spatial 
location (2D representation) and 3D representation, considering TWs. It can be seen 
that the 2D representation generates unprofitable clustering, for a driver willing to 
serve the green or red bundle has to serve some customers in the bundle and then 
wait several hours to serve the remaining ones. Such bundles would be time–costly 
and therefore unattractive for drivers. Also, the yellow bundle contains two custom-
ers who are very near in space but very far in time. Conversely, all the bundles, gen-
erated by considering a 3D representation, are considerably more attractive, as the 
customers belonging to the same bundle are similar both in the spatial and temporal 
dimensions.

As discussed above, to create attractive bundles, the temporal component cannot 
be neglected. In this study we propose and compare two different 3D bundle genera-
tion strategies, both benefiting from the information about customers’ TWs. The first 
one, named Clustering-3D, aims to find clusters of customers maximizing the intra-
cluster similarity. The second one, denoted as Corridors-3D approach, explores 3D 
corridors in a combined spatial-temporal space. It bundles customers belonging to 
the same corridor.

5.2  The clustering‑3D approach

The idea behind this approach is to create spatial and temporal clusters of custom-
ers. More precisely, in the 3D virtual environment, we add time as a third dimension 
in addition to spatial coordinates. The bundles of customers obtained in this way 
are potentially more profitable and more attractive for ODs, as they group together 
similar customers, i.e., customers who are relatively near each other in both spatial 
and temporal dimensions. Such bundles are assumed to be profitable because a sin-
gle driver can serve all the customers in the bundle with relatively small detours and 
low waiting time. Customers who are very near in space but with very different TWs 
may require both long detours given the zig-zag paths to meet TWs and longer wait-
ing times because of which the driver has to wait for the opening of the delivery TW 
of the next customer. These two aspects clearly have a very negative impact on the 
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attractiveness of the bundles, and even assuming that there are some drivers willing 
to serve them, the compensation price, i.e., the bid, demanded by the OD would be 
rather high and, hence, not profitable for the company.

Different metrics can be used to create clusters of 3D items (and generally in 
clusters of items with k features), which can be represented in a k-dimensional space 
(Assent, 2012). However, one of the most prominent techniques for 3D data with 
numerical features is to represent these features in a 3D space, calculate distances 
among items by using the 3D Euclidean distance formula, and generate clusters that 
minimize the intra-cluster average distance. We follow this approach, but instead of 
using classical clustering techniques such as the k − means algorithm, we propose 
a MIP formulation, which creates Nn clusters, minimizing the average intra-cluster 

[8-9]

[8-9]

[8-9]
[15-16]

[15-16]

[11-12]

[11-12]

[11-12]
[15-16]

[15-16]

[11-12][8-9]

(a)

(b) (c) (d)

Fig. 2  An example of bundle generation with and without considering the temporal dimension. Subfig-
ure (a) reports customers’ locations and TWs, (b) depicts customers’ 3D representation, (c) shows the 
bundles of customers generated neglecting TWs, and in (d) bundles obtained considering the temporal 
aspect can be seen. The requests belonging to the same bundle are depicted in the same color
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distances, assuming that the sum of the demands associated with each cluster does 
not exceed the ODs’ trunk capacity. The distance between two customers, A and 
B, is computed as the 3D Euclidean distance in the spatial-temporal 3D space, 
dAB =

√
(xA − xB)

2 + (yA − yB)
2 + (mA − mB)

2 . The intra-cluster distance is identi-
fied, for each cluster, as the largest distance between the two customers belonging to 
the cluster.

The MIP model involves the following additional sets and decision variables: 

N = {1..Nn} Set of clusters
win Binary variable having 

value 1 if customer i is 
assigned to cluster n and 
0 otherwise

Rn Non-negative variable rep-
resenting the intra-cluster 
distance for cluster n

The problem can be formulated as follows:

s.t.

The objective of the problem is to minimize the average intra-cluster distance as 
indicated in (21). The constraints (22) ensure that each cluster contains at least one 
customer, and, consequently, that exactly Nn clusters are created. These constraints 
(23) force each customer to be assigned to exactly one cluster. The intra-cluster dis-
tance for each cluster is computed by means of constraints (24). Finally, the con-
straints (25) ensure that the total demand of customers within a cluster does not 
exceed the maximum allowed number.

A lower bound on the minimum number of clusters Nmin is necessary to create a 
feasible partition of customers without exceeding capacity constraints, and this can 
be computed as Nmin = ⌈∑i∈I qi∕Q

OD
max

⌉.
To generate potentially attractive bundles, we run the above described mathemat-

ical model for different values of Nn varying in the range [Nmin, |I|] . Considering 

(21)min
∑

n∈N

Rn∕Nn

(22)
∑

i∈I

win ≥ 1 ∀n ∈ N

(23)
∑

n∈N

win = 1 ∀i ∈ I

(24)Rn ≥ dij(win + wjn − 1) ∀i ∈ I ∀j ∈ I ∀n ∈ N

(25)
∑

i∈I

qiwin ≤ QOD
max

∀n ∈ N
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Nn = |I| corresponds to force the model to generate exactly |I| bundles, each one of 
which contains a single customer. The set of bundles offered in the auction includes 
all the clusters generated with the different values of Nn , excluding duplicates.

It is worth mentioning that even if we choose the 3D-Euclidean distance in the 
spatial-temporal space, different metrics can be easily adopted simply by modifying 
the rule based on which we compute dAB.

5.3  The corridors‑3D approach

While in clustering algorithms the basic common idea is to minimize the intra-clus-
ter distance, notwithstanding the metric used to compute such a distance, in the Cor-
ridors-3D approach, we use another kind of similarity, aiming at grouping together 
customers who are not necessarily close to each other but can be conveniently cov-
ered by an OD. Let us assume two customers, A and B, who are two hours of travel 
apart and have identical TWs [8–9]. There are two other customers C and D, also 
two hours of travel apart from each other, but they have TWs [8–9] and [10–11], 
respectively. Whatever metric we use to compute the distance, the bundle AB would 
always be the preferred one. This would cause the creation of very poor bundles, 
for AB are incompatible, as their TWs do not allow them to be served by the same 
driver. Conversely, the different TWs between C and D have a positive benefit, i.e., 
they can be served by the same driver without requiring any additional waiting time. 
Hence, C and D are very good candidates to become, or to be part of, an attrac-
tive bundle. The large travel time required to reach D from C allows to arrive at 
D exactly on time for the TW opening, erasing the negative effect of the temporal 
distance. With the Corridors-3D approach, we are the first to take into account the 
possible positive effect of temporal distance among customers.

The method is based on the same general concept of corridors proposed by Man-
cini and Gansterer (2022a) in which the customers are split in equally isized circu-
lar corridors, starting from a depot and representing potential paths to reach ODs’ 
final destinations. In Mancini and Gansterer (2022a), as customers are not associ-
ated with delivery TWs, only the spatial component is considered to generate these 
corridors, which results in planar (2D) corridors falling in the customers area. Given 
that, in our case, the customers are associated with TWs, using the bundles gener-
ated by the method proposed in Mancini and Gansterer (2022a) could yield to very 
poor bundles, for TWs may impose a zig-zag path. This might result in long detours 
even for the the shortest path as depicted in Fig. 1. To overcome this issue, we gen-
erate 3D corridors in the spatial-temporal space, taking into account that the vehicle 
is moving at a given speed v. The corridors are not located anymore on the hori-
zontal plane but on a plane named P. The inclination of P depends on the vehicle 
speed. The faster the vehicle, the steeper the plane (i.e., the larger the angle formed 
with the horizontal plane). If we ideally draw a circle of radius r around the depot, 
lying on plane P, all the points included in this circle are reachable within a time r 
by a vehicle starting at time t0 from the depot with t0 being the height of the inter-
section point between the P and the vertical line passing the depot. We identify this 
intersection point as the origin of the associated plane. If we consider two parallel 
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planes, associated with two different origins, i.e., t0 and t1, then the cylinder gen-
erated by connecting these two planes represents all the points reachable, within a 
time r, starting between t0 and t1 from the depot.

The method can be analytically described as follows:
The Corridors-3D method requires to identify a circular sector centered at the 

depot, defined by the smallest angle � for which all the customers lie in this sector. 
The identified circular sector is then split in ns homogeneous sectors, each one asso-
ciated with an angle of � nS , (see Fig. 4).

The sector is then projected on a plane P0, having as origin t0 and on a plane P1, 
having as origin t1 such that t1 − t0 = T  . T is an input parameter for the algorithm. 
The sector is split into ns identical sectors and named corridors and defined by an 
angle of size �∕ns . Each corridor on plane P0 is then connected to the corresponding 
corridor on plane P1, creating a set of 3D slices. A graphical representation of one 
of these slices is given in Fig. 3. All the slices are sequentially explored, and all the 
customers, belonging to the same slice are grouped together in a bundle. From a 
more operational point of view, given a circular sector ns and two time instants, 
namely t0 and t1 , the following procedure is exploited to generate bundles. We con-
nect with a segment every customer to the depot and calculate the angular coeffi-
cient of this segment, named ai . We then identify all the customers for which 
� + (ns − 1)alpha ≤ ai ≤ � + (ns)alpha . We call this set Sns . We then construct the 
slice related to t0 and t1 , drawing the two planes, P0 and P1 , intersecting the z axis on 
t0 and t1 , respectively. We then consider the 3D-circular sector, named slice, identi-
fied by these two planes, (see Fig. 1). Then, we examine all the points associated 
with the customers in Sns , i.e., all the points having the same x and y coordinate of 
the customer and the z coordinate corresponding to the starting of the TW associ-
ated with the customer, and we create a subset of Sns , named S′

ns
 , in which we insert 

Fig. 3  A 3D-corridor in a 3D 
spatial-temporal space

t1

t0

T

DEPOT

α
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only customers for which the correspondent point belongs to the slice. If the sum of 
the demands of customers in S′

ns
 is lower than the capacity of an OD vehicle, QOD

max
 , 

we generate a bundle containing all of them. In cases where the total demand of 
these customers exceeds the vehicle capacity ( QOD

max
 ), the clustering-based approach 

is run on this subset of customers to generate feasible bundles.
Notet that the 2D corridors approach proposed in Mancini and Gansterer (2022a) 

only rely on customers’ locations and not on their TWs. Corridors are circular sec-
tors lying on the horizontal plane, as depicted in Fig. 4. In this case, all the custom-
ers belonging to the same sector, identified as the set Sns , are considered as a single 
bundle (if the vehicle capacity allows for it) despite their TWs. In Fig. 5 we depict 
an example in which four customers are considered (A,B,C,D). All of them belong 
to the same 2D corridor, but they have completely different TWs. In fact, B and D 
must be served in the early morning ([8–9]), while A and C in the late afternoon 
([16–17]). Following a 2D corridors approach, all the customers would be bundled 
together, but the resulting bundle would not result attractive. In fact, a driver should 
serve D and B in the early morning and then come back to C and wait more than six 
hours to serve C and D. This bundle would require a long detour in terms of distance 
and a very long temporal detour, which make it very unattractive. Conversely, the 
3D corridors approach would split in two attractive bundles, (B,D) and (A,C), which 
would result very attractive, requiring a short detour both in terms of distance and 
time. In fact, an OD operating in the early morning, can serve the first bundle (B,D) 
while (A,C) can be easily served by a driver operating in the afternoon.

Fig. 4  2D corridors representa-
tion
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Resuming the method requires the following five parameters as input: the vehicle 
speed v, the origin of the first plane (t0), the thickness of the slice, T (from which 
the origin of the second plane t1 can be derived), and the number of slices to be cre-
ated ( ns ). The larger the value of T, the larger the time flexibility of the driver and 
the number of feasible bundles that can be created. But, on the other side, larger 
values of T can lead to feasible bundles with long waiting times required to meet 
all the TWs. Such bundles can be of limited attractiveness for the ODs. Moreover, 
more flexibility implies a larger number of feasible bundles, which may increase the 
complexity of the problem to be solved. Conversely, small values of T could allow a 
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Fig. 5  An example of bundle generation with 3D corridors and 2D corridors. Subfigure (a) reports cus-
tomers’ locations and TWs, (b) depicts customers’ 3D representation, (c) shows the bundles of customers 
generated by exploiting a 2D corridors approach, and in (d) bundles obtained by exploiting a 2D cor-
ridors approach, can be seen. The requests belonging to the same bundle are depicted in the same color 
(Color figure online)
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limited number of bundles to be generated and potential loss of some profitable bun-
dles, resulting in a poor global solution.

As for the number of slices ( ns ), the smaller this value, the larger the allowed 
detour and number of feasible bundles created. It is important to analyze different 
values of ns , as smaller values can identify large bundles of customers, who require 
a relatively long detour, but might be very attractive because of the large compensa-
tion received for serving several customers. Conversely, larger values, allow to cre-
ate bundles that contain only a few customers (or even single-customer bundles), 
which can be attractive also for drivers with a low flexibility. Both types of bundles 
are needed for a successful auction and effective global delivery plan. All bundles 
generated with different combinations of parameters (see Sect. 6) are inserted in the 
auction pool, excluding duplicates. It is worth noting that since given a fixed com-
bination of values of ( nS,t0 , and t1 ), the slices created are disjoint among each other, 
also the bundles generated so far are disjoint. But, since we run the algorithm for dif-
ferent combination of those parameters, we might have a set of partial overlapping 
bundles. This holds also for bundles generated with the Clustering 3D approach, in 
which, given a fixed number of clusters Nn , the bundles generated are disjoint, but 
bundles generated with different value of Nn , can be partially overlapping.

5.4  Bidding system

The bundles that are offered and the underlying OD bidding system is a complex 
and critical issue for the whole system. In the seminal paper on the VRP with ODs, 
Archetti et al. (2016), the authors do not contemplate a bidding phase but assign a 
fixed compensation for each delivery, regardless of the detour for the OD. This com-
pensation scheme, despite being simple to implement in practice, could be consid-
ered unfair from the drivers’ perspective. Although two ODs may incur completely 
different extra mileages to serve the same bundles, they would receive exactly the 
same compensation. The authors stick to their assumption by arguing that to pay a 
compensation proportional to the actual detour required, it would be necessary to 
know the home locations of all the ODs. This could expose the system to strategic 
behavior and cheating, as ODs could declare that they live very far away from the 
customers’ area to receive a higher compensation. Moreover, the authors do not con-
template the possibility that ODs may reject a task if it does not match their prefer-
ences or if the compensation offered for the required detour is too low.

Differently from Archetti et al. (2016), in Dahle et al. (2019) the authors consider 
that the ODs may reject an offer proposed by the company if the compensation paid 
is too low. The authors do not explicitly model the possibility of ODs refusing tasks, 
but they overcome this issue by imposing a minimum compensation threshold for 
each OD.

In Ausseil et al. (2022), the authors do not implement an auction-based system 
but consider a centralized platform that provides personalized request menus for 
each driver, which depends on the drivers’ final destination. The drivers can select 
one of the proposed requests or can decline all the offers if they do not match their 
interest. Even if the authors do not consider an actual bidding system, they take into 
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account driver preferences by considering the possibility of less attractive offers 
being rejected.

Hammami et al. (2022) and Triki et al. (2014) investigate a bidding system for 
combinatorial auctions in transportation, but in both papers, no bundles are gener-
ated by the company. Instead, an authority offers all the single requests for which 
drivers can make combined bids or for subsets of multiple requests. Hence, both the 
problems are very different from ours.

A bundling and bidding system is used in Mancini and Gansterer (2022a), where 
the company offers a set of bundles in the auction pool, and drivers submit their 
bids. This is the first attempt to actually give freedom to the drivers to implement 
their own bidding strategy, based on their flexibility and willingness to work. The 
company receives the bids from the drivers without knowing how prices are com-
puted. However, to model realistic behavior on the part of drivers, an automatic bid-
ding system that simulates rational OD behavior (based on locations, flexibility, and 
willingness to work) is considered.

In our study, We adopt the same auction-based system used by Mancini and 
Gansterer (2022a), but we implement a different automatic bidding system where 
drivers’ availability period during the day and their tolerance into accepting waiting 
times at customers are also taken into account. Both of these features are because of 
the TWs being demanded by customers.

Each OD � is fully characterized by the following parameters: (i) an availability 
period; (ii) flexibility, which represents the maximum acceptable detour, computed 
as the difference between the shortest path from the depot to the OD’s final destina-
tion, visiting all the customers in the bundle without violating their TWs and the 
direct path from the depot to the OD’s final destination; (iii) willingness to work 
( �� ), where �� = 1 describes a truthful behavior, i.e., the ODs’ bids reflect exactly 
the actual detour implied. In case of a lower willingness (i.e., 𝜙𝜔 > 1 ), the bid prices 
are increased, as the ODs agree to do a delivery only if they find it very conveni-
ent. Values smaller than 1 ( 𝜙𝜔 < 1 ) indicate that the driver is really willing to work 
and, therefore, reduces the bid price to become more competitive in the market, and 
by doing so, have a greater chance of winning the bundle. It should be noted that a 
value of �� = 1 does not reflect a zero-profit bid (i.e., it does not merely cover the 
expenses of the driver) but one that generates a profit being considered standard in 
this type of job. Therefore, even for values of 𝜙𝜔 < 1 , it is still possible to achieve a 
significant profit.

The value of a bid k is calculated as the detour length, �k , expressed as the detour 
needed by OD, ok , to serve customers belonging to bundle �k , multiplied by a unitary 
distance cost, cu , with a fixed service cost, cf  added to it for each customer belong-
ing to the bundle and a waiting cost, wk , representing the waiting time that ODs may 
face when serving all the customers in the bundle, multiplied by an individual-will-
ingness-to-wait-factor for each driver ( �ok

 ). We consider a proxy value for wk , which 
is determined as follows: wk = emax − lmin , where emax is the latest TW-starting time 
among all the customers in the bundle �k , while lmin is the earliest TW-ending time 
in this bundle. The sum of these three costs (distance, service, and waiting cost) is 
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then multiplied by the willingness to work parameter ( �ok
 ). Hence, the bid price bk is 

formulated as follows:

The detour �k is obtained by solving a modified version of the Open Travelling 
Salesman Problem with Time Windows (OTSP-TW), considering the depot as the 
starting node, the customers belonging to the bundle as the further required nodes, 
and the OD’s final destination as the final node. Additionally, it is assumed that the 
starting time from the depot and the arrival time at the final destination lie within 
the ODs’ availability period. If this problem does not admit a feasible solution, we 
consider the bundle incompatible with the driver, who therefore, does not submit 
any bid for this bundle.

The flexibility level does not influence the bidding price but indirectly impacts 
the bidding process, for we assume that an OD places a bid for a bundle only if the 
required detour �k is lower than the maximum value accepted ( �MAX

ok
).

Summing up, we consider a compensation scheme based on the detour required, 
without forcing ODs to reveal their home locations to the company. It must be noted 
that our auction system receives bids as input data, so it works independently from 
the bidding strategy considered. Hence, every strategy, rational or irrational, can be 
used in the system.

However, to have realistic bids and draw managerial insights, we use a mecha-
nism simulating ODs’ real behavior.

6  Computational study

The aim of our computational experiments is threefold and as follows: (i) For the 
newly proposed Corridors-3D approach, we analyze the impact of the thickness of 
3D slices on the quality of the generated bundles; (ii) We compare the Corridors-3D 
approach with the more straightforward and classical Clustering-3D approach; (iii) 
We analyze the improvement achievable by opting for a spatial-temporal approach to 
generate bundles, using only spatial information.

6.1  Experimental setting

We construct 6 sets of instances, in turn composed of 10 sub-instances each. All the 
sets are adapted from those provided by Mancini and Gansterer (2022a). The first 3 
of them, namely 20STW, 20MTW, and 20LTW, include 10 ODs and 20 customers 
and are characterized by small, medium, and large TWs, respectively. The other 3 
sets (40STW, 40MTW, 40LTW) have 20 ODs and 40 customers with small, medium, 
and large TWs. In all STW instances, we consider 1-hour-wide, non-overlapping 
TWs. Medium-sized TWs have a width of 2 h and are partially overlapping (e.g., 
[8–10], [9–11], and [10–12]). In all the LTW instances, we consider only 3 TWs 
([8–12], [12–16], and [16–20]), each with a 4 h-width. As mentioned in the previous 

(26)bk = (cu�k + cf |�k| + �ok
wk)�ok
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sections, ODs are characterized by flexibility and willingness, where flexibility indi-
cates the accepted deviation from the shortest path, and willingness is reflected in an 
OD’s bidding behavior. Since onboarding ODs in a TWs-based delivery planning is 
more complex because of lower compatibility of customers and the possible extra 
detour and extra waiting times imposed by TWs, we believe that only very moti-
vated and flexible drivers can be helpful in this context. Therefore, we set the value 
of flexibility and willingness to 3 and 0.6, respectively, which represents a high 
value for both of the features. As we are interested in showing the maximum poten-
tial benefit achievable by onboarding ODs, we consider that all of them are available 
for the whole day. This does not mean that an in-store customer has to wait to meet 
customer TWs but that ODs can flexibly plan the time of their visit at the store and 
to adapt to the deliveries they are offered on that day. An analysis of the impact of 
different combinations of flexibility and willingness to work have been carried out in 
Mancini and Gansterer (2022a). The authors state that there is no significant impact 
of these two parameters on the performances of the bundles generation approaches 
(clustering and corridors). For this reason we do not report a similar analysis but we 
focus our attention to ODs with high levels of flexibility and willingness, which are 
the ones that can provide a higher benefit for the company.

Fixed and mileage costs, cu and cf  , are set to 2 and 1.5, respectively, as in Mancini 
and Gansterer (2022a), whereas the waiting cost, Ψok

 , is considered homogeneous 
for all the drivers and is set at 2. The number of available owned fleet vehicles is 5 
for all the instances. The cost of doing a delivery, using a taxi service is considered 
as 100.

For the Corridors-3D approach, we assume t1 to be constant, but we perform sev-
eral runs of the algorithm, letting t0 vary in the range [e0;e1 − 1] , T in [1 and 4] and 
ns in [10, 20, 30, and 40]. Different values of t0 represent different time slots of a 
day when the driver can start.

The instances are publicly available in Mancini and Gansterer (2022b). For all 
experiments, a machine equipped with a 11th Gen Intel Core i7–1185G7 with 32 
GB of RAM is used. The mathematical model is run under Xpress 8.13 with stand-
ard settings and a time limit of 3600 s. The optimality gap tolerance was set to  10−5, 
which is the common default value.

6.2  Impact of slice thickness in 3D corridors

To evaluate the impact of the 3D slice thickness, we compare 4 different values (1, 
2, 3, and 4 h) for all the 6 sets of instances. As mentioned above, the thickness of a 
slice might strongly influence the bundle generation, as, for instance, very thin slices 
may find only a limited number of feasible bundles. It could even happen that only 
single-customer bundles are generated, basically due to incompatible TWs, with 
a potential loss of the profit achievable by onboarding ODs. On the contrary, very 
thick slices would include bundles, involving a very large number of customers, and 
potentially, long waiting times and detours may be required to serve all them, which 
make these bundles unattractive for ODs. This could yield to a situation in which 



 S. Mancini, M. Gansterer 

1 3

the number of bundles offered is large but the number of bids submitted is very limited, 
and this would reduce the benefit of onboarding ODs as well. Even if bids are submit-
ted, these might be very high, which makes it more convenient for the company to use 
the owned fleet. If ODs are limited in use or not profitable, this could yield to situations 
in which it is not possible to serve all the customers and/or taxi services may need to 
be booked for some of the deliveries, which would entail relatively high costs for the 
company.

What emerges from this analysis is that the slice thickness does not have a strong 
impact on the costs. The number of bundles generated is quite limited in all the cases, 
but their attractiveness and profitability is very high. This can be evinced by the follow-
ing two facts: first, despite a small number of bundles, the number of bids received is 
quite high (3–4 bids per bundle in the small instances, 7 in the large ones), as reported in 
Table 2; second, the percentage of customers served by ODs is quite high (50–55% for 
the small instances and 45–50% for the large ones), which means that the bids are prof-
itable for the company. Moreover, it is worth noting that when dealing with small and 
medium TWs, the number of bundles generated slightly increase with the thickness of 
the slice. Conversely, when TWs are large, the number of bundles decreases. This could 
seem counterintuitive, but can be explained by observing the average size of the bundles 
(i.e., the number of customers included in a bundle), which is larger. In fact, larger slices 
can contain several customers, yielding to the creation of fewer bundles but with a 

Table 2  Number of bundles (#Bu) and of bids (#Bi) generated by the 3D corridors approach with differ-
ent values of thickness

1 h 2 h 3 h 4 h

#Bu #Bi #Bu #Bi #Bu #Bi #Bu #Bi

20STW 44.2 163.4 47 172.9 50.3 179.6 54.6 190.6
20MTW 45.4 170.5 50 180.8 51.1 183.1 54.3 190.7
20LTW 37.5 135.8 37.5 135.8 37.5 135.8 36 131.8
40STW 110.8 709.5 124.2 779.3 128.8 810.2 133.8 836
40MTW 112.8 717.4 124.7 777.8 133.6 828 135.3 841.3
40LTW 85.1 572.9 85.1 571.8 86.1 577.6 77.5 523.1

Fig. 6  Best found solutions’ objective function for different slice thickness values, for small (a) and large 
(b) instances
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larger average size. This effect only applies when the TWs are large enough to guar-
antee a high compatibility among customers. Instead, when TWs are smaller, it is 
difficult to obtain bundles with a large number of customers due to the impossibility 
to respect customers TWs.

Globally, the thickness of three hours seems to yield the best results, as 
reported in Fig. 6. Hence, we keep this value for the benchmarking against other 
bundle generation approaches. Further, observing Tables  3, 4, 5, 6, 7, 8 in the 
Appendix, we can note that computational times rapidly increase with the growth 
of instance size. Note that this increment is devoted to the higher difficulty in 
solving the optimization model (1)–(20), as both the bundling and the bidding 
phase still require very short times. Conversely, the length of TWs does not sig-
nificantly impact the computational times.

6.3  Corridors‑3D versus clustering‑3D

In this subsection, we compare the performance of the two 3D-bundling 
approaches, namely Corridors-3D (with a thickness of three hours) against the 
3D-Clustering one. We provide data related to (i) applying only the Corridors-
3D approach, (ii) applying only the Clustering-3D approach, and (iii) applying a 
combination of both of them.

As can be observed from Fig. 7, Corridors-3D outperforms Clustering-3D in 
all the instances in solution quality and particularly in regards to computational 
times. Nevertheless, mixing up the two approaches and considering all the bun-
dles generated so far (excluding duplicated ones) would improve solution quality 
slightly (while computational times are still high). This is so because some of 
the cluster-generated bundles are profitable. It can be seen that this holds par-
ticularly for the instances with large TWs, and it can be explained by the fact 
that since only 3 TWs with high probability are available, namely ([8–12], 
[12–16], and [16–20]), clustered customers are also near in time. However, the 
results show that solution quality decreases if these bundles are not combined 
with bundles generated by Corridors-3D. Nevertheless, given the very high 
computational times required for running the clustering-3D method, we believe 

Fig. 7  Comparison between the Corridors-3D and Corridors-2D approach on the small (a) and large (b) 
instances
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that the advantage of including Cluster-3D bundles is negligible. Moreover, clustering 
approaches are not suitable to handle the large instances, as computational times grow 
quickly, and it would take several hours to generate the bundles, as already pointed out 
by Mancini and Gansterer (2022a). For all the above explained reasons, the Corridors-
3D approach is strongly preferable over the Clustering-3D method.

6.4  Corridors‑3D versus corridors‑2D

The scope of this analysis is to compare the Corridors-3D approach, which takes 
into account the spatial-temporal customer representation, with a Corridors-
2D approach, which only considers the spatial location of customers. The latter 
approach is also used in Mancini and Gansterer (2022a). In this case, the corridors 
lay on a 2D plane and are, therefore, defined by circular sectors instead of by 3D 
slices. Average results are reported in Fig. 8, while detailed results can be found in 
Tables 12 and 13 in the Appendix.

On the small instances, the 3D approach outperforms the 2D approach, generat-
ing more attractive bundles in considerably shorter amount of time. The number of 
ODs involved decreases if the 2D approach is applied, as well as the percentage of 
customers served by ODs, which goes from 55% (with the 3D approach) to less than 
40%.

On large instances, the superiority of the 3D approach is even more evident. The 
costs almost double when the 2D approach is used. This can be explained by the fact 
that the bundles generated are of less attractiveness for ODs, so several customers 
have to be served either by owned fleet or by hiring a taxi service.

Resuming, we can conclude that the Corridors-3D approach significantly outperforms 
the other approaches both in terms of solution quality and computational times.

7  Conclusions and future developments

In this paper we introduced the vehicle routing problem with occasional drivers 
and time windows (VRP-OD-TW), where customer orders can be fulfilled by 
ODs, by the fleet owned by a company, or by means of direct shipment, using a 

Fig. 8  Comparison between the Corridors-3D and Corridors-2D approach on the small (a) and large (b) 
instances
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taxi service. The latter option is costly and inconvenient for the company, but it 
ensures that all the orders can be fulfilled on time. To address the cost problem, 
we proposed an auction-based system, in which the company generates poten-
tially attractive bundles for the ODs. The latter place bids for the bundles they 
are interested to serve. Once the company receives all the bids, it determines, 
based on an optimization model, which bids to accept. Finally, a routing plan for 
the owned fleet and the assignment to the taxi service is generated.

To generate bundles, we proposed an innovative customer representation in a 3D 
space, wherein the first two dimensions deal with the spatial location of customers, 
while the third represents their delivery TWs. The bundles are generated based on 
the creation of 3D corridors, named slices. We analyzed the impact of the thickness 
of the slices on the performance of the approach. We also compare this approach 
with a more classical one, in which we applied a clustering technique, aiming at 
minimizing intra-cluster distance in the 3D spatial-temporal environment. Finally, 
we compared the Corridors-3D approach with the Corridors-2D approach (in which 
the temporal aspect of the problem is neglected). The results showed a clear domi-
nance of the newly proposed Corridors-3D approach on the other two methods in 
terms of both solution quality and computational times.

Future research can address the adoption of the spatial-temporal representation to 
create attractive bundles of customers for other problems arising in logistics such as, 
for instance, pickup and delivery problems with ODs or auction-based collaborative 
routing problems.

Appendix

We report detailed results from all the analyses conducted in this study. In Tables 3, 
4, and 5, we show the averaged results obtained by adopting different slice thick-
nesses (1–4 h) on the small instances with short, medium, and long TWs, respec-
tively. We report the average values for the objective function (OF), lower bounds 

Table 3  Comparison of results 
of the small instances with 
short TWs for different slice 
thicknesses

1 h 2 h 3 h 4 h

OF 45.98 45.84 45.79 45.30
LB 45.97 45.84 45.79 45.30
TIME_BUND 0.05 0.08 0.13 0.17
TIME_BID 0.20 0.31 0.41 0.52
TIME_SOL 2.53 2.51 3.07 2.40
TIME_TOT 2.78 2.90 3.62 3.09
# BUNDLES 44.2 47.00 50.30 54.60
# BIDS 163.40 172.90 179.60 190.60
# OD 7.30 7.20 7.00 7.00
# SERVED by ODs 11.40 11.30 11.30 11.90
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Table 4  Comparison of results 
of the small instances with 
medium TWs for different slice 
thicknesses

1 h 2 h 3 h 4 h

OF 45.34 44.95 44.89 44.65
LB 45.34 44.95 44.89 44.65
TIME_BUND 0.09 0.15 0.23 0.30
TIME_BID 0.23 0.37 0.41 0.49
TIME_SOL 2.15 1.72 1.69 1.62
TIME_TOT 2.46 2.24 2.33 2.41
# BUNDLES 45.40 50.00 51.10 54.30
# BIDS 170.50 180.80 183.10 190.70
# OD 6.20 6.10 6.40 6.60
# SERVED by ODs 10.30 10.40 10.80 11.30

Table 5  Comparison of results 
of the small instances with 
long TWs for different slice 
thicknesses

1 h 2 h 3 h 4 h

OF 46.67 46.67 46.67 46.90
LB 46.67 46.67 46.67 46.90
TIME_BUND 0.04 0.06 0.08 0.11
TIME_BID 0.08 0.08 0.08 0.08
TIME_SOL 1.29 1.27 1.25 1.65
TIME_TOT 1.41 1.41 1.41 1.86
# BUNDLES 37.50 37.50 37.50 36.00
# BIDS 135.80 135.80 135.80 131.80
# OD 6.40 6.40 6.40 6.60
# SERVED by ODs 10.70 10.70 10.70 10.70

Table 6  Comparison of results 
of the large instances with 
short TWs for different slice 
thicknesses

1 h 2 h 3 h 4 h

OF 86.31 85.68 85.67 85.64
LB 86.02 85.49 85.25 85.37
TIME_BUND 0.30 0.56 0.93 1.82
TIME_BID 1.21 2.12 4.21 15.07
TIME_SOL 1,301.82 1,249.33 1,402.40 1,321.72
TIME_TOT 1,303.33 1,252.01 1,407.54 1,338.61
# BUNDLES 110.80 124.20 128.80 133.80
# BIDS 709.50 779.30 810.20 836.00
# OD 12.40 11.70 12.60 12.00
# SERVED by ODs 21.30 20.80 22.10 21.50
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Table 7  Comparison of results 
of the large instances with 
medium TWs for different slice 
thicknesses

1 h 2 h 3 h 4 h

OF 87.43 86.59 86.52 87.37
LB 86.21 85.78 85.65 86.53
TIME_BUND 0.59 0.61 1.05 1.56
TIME_BID 4.79 1.84 2.65 3.18
TIME_SOL 2320.86 1822.75 2095.16 2642.16
TIME_TOT 2326.24 1825.20 2098.86 2646.90
# BUNDLES 112.80 124.70 133.60 135.30
# BIDS 717.40 777.80 828.00 841.30
# OD 10.90 11.40 11.90 11.20
# SERVED by ODs 19.20 19.90 20.60 19.40

Table 8  Comparison of results 
of the large instances with 
long TWs for different slice 
thicknesses

1 h 2 h 3 h 4 h

OF 91.01 90.20 89.94 90.82
LB 87.94 89.03 89.32 90.07
TIME_BUND 10.38 3.26 1.14 1.50
TIME_BID 18.42 5.19 1.01 0.98
TIME_SOL 3385.40 1800.18 1973.19 1966.32
TIME_TOT 3414.20 1808.63 1975.33 1968.80
# BUNDLES 85.10 85.10 86.10 77.50
# BIDS 572.90 571.80 577.60 523.10
# OD 11.10 11.20 11.10 11.40
# SERVED by ODs 18.00 17.80 18.00 17.90

Table 9  Comparison of 
Corridors-3D (three-hour slices) 
against Clustering-3D and 
against a combination of both 
the approaches on the small 
instances with short TWs

Corridors-3D Clustering-3D Both

OF 45.79 49.02 45.23
LB 45.79 49.02 45.23
TIME_BUND 0.13 60.49 59.42
TIME_BID 0.41 0.95 18.21
TIME_SOL 3.07 7.11 3.35
TIME_TOT 3.62 68.55 80.98
# BUNDLES 50.30 40.30 72.80
# BIDS 179.6 154.60 249.10
# OD 7.00 6.90 7.00
# SERVED by ODs 11.30 8.50 11.90



 S. Mancini, M. Gansterer 

1 3

Table 10  Comparison of 
Corridors-3D (three-hour slices) 
against Clustering-3D and 
against a combination of both 
the approaches on the small 
instances with medium TWs

Corridors-3D Clustering-3D Both

OF 44.89 48.07 44.45
LB 44.89 48.07 44.45
TIME_BUND 0.23 65.94 70.86
TIME_BID 0.41 14.29 19.19
TIME_SOL 1.69 4.84 2.35
TIME_TOT 2.33 85.07 92.39
# BUNDLES 51.10 42.80 76.60
# BIDS 183.10 161.30 261.50
# OD 6.40 7.00 6.70
# SERVED by ODs 10.80 8.90 11.80

Table 11  Comparison of 
Corridors-3D (three-hour slices) 
against Clustering-3D and 
against a combination of both 
the approaches on the small 
instances with long TWs

Corridors-3D Clustering-3D Both

OF 46.67 48.48 44.87
LB 46.67 48.48 44.87
TIME_BUND 0.08 62.75 63.75
TIME_BID 0.08 0.87 1.47
TIME_SOL 1.25 1.80 1.24
TIME_TOT 1.41 65.42 66.45
# BUNDLES 37.50 40.50 59.10
# BIDS 135.80 152.80 204.80
# OD 6.40 6.70 7.20
# SERVED by ODs 10.70 9.10 12.10

Table 12  Comparison of the Corridors-3D against the Corridors-2D approach on small instances

Short TW Medium TW Long TW

3D 2D 3D 2D 3D 2D

OF 45.79 49.25 44.89 48.94 46.67 49.90
LB 45.79 49.25 44.89 48.94 46.67 49.90
TIME_BUND 0.13 0.94 0.23 1.12 0.08 0.99
TIME_BID 0.41 0.11 0.41 0.28 0.08 0.11
TIME_SOL 3.07 3.17 1.69 6.30 1.25 1.35
TIME_TOT 3.62 4.21 2.33 7.70 1.41 2.45
# BUNDLES 50.30 23.70 51.10 22.70 37.50 23.10
# BIDS 179.60 81.10 183.10 81.40 135.80 80.90
# OD 7.00 5.00 6.40 4.40 6.40 5.00
# SERVED by ODS 11.30 7.90 10.80 7.60 10.70 8.30
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(LBs), run times in seconds for bundling (TIME_BUND), bidding (TIME_BID), 
model solved (TIME_SOL), and total run time (TIME_TOT). The last four rows 
give the average numbers of bundles, bids, ODs, and customers served by ODs.

The same information is reported in Tables 6, 7, 8 for the large instances with 
short, medium, and long TWs.

The comparison of the Corridors-3D with the Clustering-3D on the small 
instances, with short, medium, and long TWs is reported in Tables 9, 10, and 11, 
respectively. We report the average values for the objective function (OF), lower 
bounds (LBs), run times (in seconds) for bundling, bidding, model solved, and total 
run time. The last four rows give the average numbers of bundles, bids, ODs, and 
customers served by ODs.

Finally, in Tables  12 and 13 we provide a detailed comparison between the Cor-
ridors 3D and the Corridors 2D approach on small and large instances, respectively. 
We report the average values for the objective function (OF), lower bounds (LBs), run 
times (in seconds) for bundling, bidding, model solved, and total run time. The last four 
rows give the average numbers of bundles, bids, ODs, and customers served by ODs.
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Table 13  Comparison of the Corridors-3D against the Corridors-2D approach on large instances

Short TW Medium TW Long TW

3D 2D 3D 2D 3D 2D

OF 85.67 151.03 86.52 150.76 89.94 143.42
LB 85.25 150.21 85.65 149.28 89.32 143.39
TIME_BUND 0.93 0.62 1.05 13.57 1.14 13.86
TIME_BID 4.21 0.66 2.65 1.90 1.00 3.21
TIME_SOL 1402.40 2352.65 2095.16 2985.83 1973.19 576.72
TIME_TOT 1407.54 2353.93 2098.85 3001.30 1975.33 593.78
# BUNDLES 128.80 40.70 133.60 42.70 86.10 42.70
# BIDS 810.2 284.50 828.00 294.60 577.60 293.60
# OD 12.60 8.30 11.90 8.40 11.10 8.70
# SERVED by ODS 22.10 15.30 20.60 15.20 18.00 15.30
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