
Vol.:(0123456789)

Flexible Services and Manufacturing Journal
https://doi.org/10.1007/s10696-023-09511-z

1 3

Integrated maintenance and production scheduling
for unrelated parallel machines with setup times

Michael Geurtsen1,2 · Jelle Adan1,2 · Alp Akçay1

Accepted: 8 September 2023
© The Author(s) 2023

Abstract
This paper considers jointly scheduling the production and resource-constrained
maintenance activities in a manufacturing setting with unrelated parallel machines.
In particular, a single maintenance activity needs to be scheduled on each machine
in one of its available time windows, and the maintenance activities require a scarce
resource, thereby limiting the number of maintenance activities that can be sched-
uled simultaneously on different machines. In addition, machine- and sequence-
dependent setup times, machine eligibility constraints and job-specific release and
due dates are considered. A mixed-integer linear program is formulated with objec-
tives including the makespan and, motivated from practice, a weighted sum of total
production completion times at machines and total job tardiness. Additionally, a
hybrid genetic algorithm with a novel solution representation is proposed for solving
industry-scale large instances. A case study is performed with real-world data from
a semiconductor manufacturer, where production and maintenance are scheduled
separately. The benefit of simultaneously scheduling production and maintenance
is investigated. Tests with real-world data show that the proposed model results in
schedules that substantially improve the current factory practice.

Keywords Production scheduling · Parallel machines · Integrated planning · Setup
times · Mixed integer linear programming · Hybrid genetic algorithm

1 Introduction

The vast majority of research in production scheduling assumes that machines are
continuously available during a planning horizon (Allahverdi , 2015). However, in
real life, a machine can become unavailable due to maintenance within the planning

 * Jelle Adan
 jelle.adan@pm.me

1 School of Industrial Engineering, Eindhoven University of Technology, De Zaale,
5600 MB Eindhoven, The Netherlands

2 Nexperia, Jonkerbosplein 52, 6534 AB Nijmegen, The Netherlands

http://orcid.org/0000-0002-6431-5146
http://crossmark.crossref.org/dialog/?doi=10.1007/s10696-023-09511-z&domain=pdf

 M. Geurtsen et al.

1 3

horizon. Since production and maintenance activities both utilize the available time
of machines, it can be highly beneficial to coordinate these two tasks by scheduling
them in an integrated manner (Yoo and Lee , 2016; Seif et al. , 2020; Chen et al. ,
2021).

This study is motivated by the production of integrated circuits (ICs) at Nexpe-
ria, a global semiconductor manufacturer that produces more than 90 billion prod-
ucts annually. In particular, the back-end manufacturing (i.e., assembly or packaging
processes after all of the features have been created on a wafer) at Nexperia can
be considered as multiple machines in parallel. In industry, settings with multiple
parallel machines are frequently encountered, where each job needs to be processed
on exactly one machine. Due to the presence of machines of different generations
and with different technologies, process times may depend on the machine to which
a job is assigned. In the literature, this setting is referred to as unrelated parallel
machines (Kaabi and Harrath , 2014). Nexperia’s back-end production environment
encompasses some critical constraints, in part due to the large amount of different
types of products. First, not all jobs are eligible for all machines. Also, a machine
needs to be prepared before processing a job, and the duration of this preparation
can depend both on the current job, the job that was previously processed, and the
machine itself; i.e. sequence- and machine-dependent setup times.

In general, maintenance can be categorized as corrective maintenance (CM) and
preventive maintenance (PM). CM is a maintenance task performed after a machine
unexpectedly fails. In our paper, we assume that an effective PM strategy is already
in place to avoid any unexpected breakdowns, making the necessity of CM negli-
gible. In particular, we consider that the machines which require a PM activity in
a given scheduling horizon are already identified, but it is not yet known when a
specific PM activity will be executed. At Nexperia, the maintenance itself is car-
ried out by specialized personnel. Therefore, maintenance scheduling needs to take
into account the availability of this specialized personnel, which can be considered
as a limited resource for maintenance. Furthermore, this specialized personnel can
be available in multiple days but only within a specific time window in a day. The
current practice at Nexperia is to separately schedule maintenance and production
activities: for a given scheduling horizon, the machines that require PM are selected.
Then, taking into account the maintenance-resource constraint, a PM schedule is
constructed. From a production scheduling point of view, this affects the machine
availability. As the resulting schedules are often considered as suboptimal, it is of
practical interest to integrate the scheduling of production and maintenance activi-
ties to improve operational performance.

The real-life setting described above leads to a new integrated production and
maintenance scheduling problem in the context of unrelated parallel machines with
sequence- and machine-dependent setup times and eligibility constraints. To be spe-
cific, we aim to simultaneously decide the production schedule of jobs (i.e., assign-
ment of jobs to machines and the sequence of jobs on each machine) and the starting
time of the PM on each machine (which requires a PM activity) given that (i) there
are multiple time windows in which the PM activity for a machine can be scheduled
and the time windows are larger than the duration of the PM activity, leading to
flexibility in the planning of PM activities, and (ii) there is a limited maintenance

1 3

Integrated maintenance and production scheduling for unrelated…

resource that imposes a constraint on the times at which a PM activity can be con-
ducted. To the best of our knowledge, this setting has not been studied before. Only
recently, Avalos-Rosales et al. (2018) included PM activities in an unrelated parallel
machine environment with sequence- and machine-dependent setup times, however,
it was assumed that each PM activity has a predefined starting time. In our problem,
the starting times of PM activities are also optimized (within their predefined inter-
vals). Similar to Avalos-Rosales et al. (2018), we consider minimizing the makes-
pan (i.e., maximum job completion time) as it is an objective commonly used in the
scheduling literature. In addition, we consider the weighted sum of total production
completion times at machines and the total job tardiness as an objective to better
capture the objective of Nexperia in our case study, given that job-specific release
and due dates exist in real life and it is important to satisfy customer orders on time.

The main contributions of this article can be summarized as follows:

• A Mixed Integer Linear Programming (MILP) model is formulated to address
the problem described above on simultaneously scheduling maintenance and
production activities.

• A Hybrid Genetic Algorithm (HGA) is designed and implemented to efficiently
solve for large instances that are common in industry. The performance of the
proposed HGA is benchmarked against the MILP model.

• A case study from Nexperia is presented to quantify the benefit of simultaneously
scheduling production and maintenance activities in practice. The real-world test
instances are made publicly available.

The remainder of this paper is organized as follows: Sect. 2 provides an overview
of the relevant literature. The problem is described in Sect. 3, and the MILP model
is formulated in Sect. 4. The proposed HGA is explained in Sect. 5. Computational
results are then presented in Sect. 6. Finally, concluding remarks and recommenda-
tions are provided in Sect. 7.

2 Literature review

We set the scope of our review to a production setting with parallel machines and no
deterioration. The related work can be grouped into two main categories depending
on the existence of maintenance activities. Section 2.1 provides a brief overview of
the studies on unrelated parallel machine scheduling in the absence of maintenance
activities. Section 2.2 focuses on the studies where the maintenance activities are
explicitly considered in parallel machine scheduling.

2.1 Parallel machine scheduling without maintenance

If only the production activities are considered, the problem in our paper (without
the maintenance activities) is known as unrelated parallel machine scheduling with
sequence- and machine-dependent setups (UPMSP-SMDST); see, for example,

 M. Geurtsen et al.

1 3

Vallada and Ruiz (2011), Afzalirad and Rezaeian (2016), Santos et al. (2019), and
Arnaout (2020) with the makespan objective, and Fowler et al. (2003), Wang et al.
(2013), and Diana and de Souza (2020) with objectives based on job-specific due
dates (e.g., tardiness). Bitar et al. (2021) consider a UPMSP-SMDST problem with
eligibility constraints and extend it with auxiliary resources where each job requires
a specific resource of which at most one is available. For the UPMSP-SMDST prob-
lem with machine eligibility constraints, Eroglu and Ozmutlu (2017) propose a HGA
to minimize makespan. Adan (2022) addresses the same problem, and a new HGA
is proposed to solve large industry-size problem instances (with up to 60 machines
and 800 jobs) by introducing a new local-search procedure. Our solution algorithm
in this paper is built on the same algorithm by extending it with a new solution rep-
resentation and a mutation mechanism. Different from the papers mentioned so far,
our paper considers the maintenance activities in scheduling decisions.

2.2 Parallel machine scheduling with maintenance

We distinguish two groups of studies depending on whether the schedules (i.e., the
start and completion times) of maintenance activities are fixed or flexible.

2.2.1 Fixed maintenance schedule

From a production scheduling point of view, the case where maintenance is fixed a
priori simply affects the machine availability. Hence, this setting is also referred to
as “scheduling with machine availability constraints” in the literature (Kaabi and
Harrath , 2014). The problem with a general number of jobs and identical paral-
lel machines is considered with a focus on exact solution methods (e.g., Mel-
louli et al. 2009), machine eligibility (e.g., Liao and Sheen 2008), resumable jobs
(e.g., Hashemian et al. 2014), nonresumable jobs (e.g., Beaton et al. 2016), and
periodic unavailability constraints (e.g., Li et al. 2017). Gedik et al. (2016) study
unrelated parallel machines with sequence-dependent setup times, and Kaabi and
Harrath (2019) study uniform parallel machines with periodic unavailability con-
straints. Hidri et al. (2021) consider identical parallel machines with machine-spe-
cific unavailability constraints and a single resource to perform the job setups on
the machines. Different from the studies in this category, we aim to simultaneously
schedule the production and maintenance activities, and focus on the most general
situation of unrelated parallel machines with eligibility constraints and machine- and
sequence-dependent setup times. Recently, Avalos-Rosales et al. (2018) also con-
sider the presence of maintenance in this most general situation, but only focused
on scheduling the jobs in machine-specific fixed time-blocks between maintenance
activities.

2.2.2 Flexible maintenance schedule

There is a rich literature on jointly determining the schedules of maintenance and
production activities by allowing the starting times of maintenance activities to be

1 3

Integrated maintenance and production scheduling for unrelated…

flexible, which we also refer to as flexible maintenance. To the best of our knowl-
edge, there are two different approaches through which scheduling flexibility for
maintenance activities is considered.

The first approach is the following: maintenance can be scheduled at any time,
but the time interval between subsequent maintenance activities is constrained by
a given upper bound. For example, Graves and Lee (1999) address the schedul-
ing of semiresumable jobs (i.e., if a job is not finished completely before mainte-
nance, an additional setup time is incurred before it can resume) on a single machine
together with at most two maintenance activities. Sun and Li (2010) apply a short-
est-processing-time-first algorithm to minimize the total completion time in a setting
with two identical parallel machines. Costa et al. (2016) consider uniform parallel
machines and proposed a metaheuristic procedure based on genetic algorithms and
local search to minimize total tardiness. Lee et al. (2018) consider identical parallel
machines for the objective of minimizing total tardiness, and introduce a branch-
and-bound algorithm with some problem-specific properties.

The second approach for flexible maintenance assumes predefined time windows
wherein maintenance activities must be scheduled, provided that the time window
is somewhat larger compared to the duration of the maintenance activity. For exam-
ple, Yang et al. (2002) consider a single machine scheduling problem where the
machine should be stopped for a maintenance activity of constant duration within a
predefined time window. As the size of the time window is larger compared to the
duration of the maintenance activity, some scheduling flexibility is provided. It is
demonstrated that the problem is NP-hard and a heuristic is proposed to solve the
problem with the objective to minimize the makespan. For the same problem, Yang
et al. (2011) propose a dynamic programming method, and Touat et al. (2017) also
consider human resource availability and competence constraints. Lee et al. (2015)
study an identical parallel-machine scheduling problem with one maintenance activ-
ity to be scheduled on each machine, and develop a branch-and-bound algorithm for
small-size problems and a HGA for large problems. Rebai et al. (2013) consider a
maintenance activity with optimistic and pessimistic deadlines. When the activity
is performed between these deadlines, the maintenance cost is minimal. Otherwise,
earliness and tardiness costs are imposed.

A special case of the second modeling approach is the case where the maintenance
activity on each machine must be scheduled any time before a certain time limit. Lee
and Chen (2000) consider parallel machines with nonresumable jobs and resource-con-
strained maintenance. Yoo and Lee (2016) propose a dynamic programming approach
for the same problem as in Lee and Chen (2000). Several objective measures includ-
ing makespan, (weighted) sum of completion times, maximum lateness and the sum
of lateness are studied. Chen et al. (2021) consider two identical parallel machines
with nonresumable jobs and the objective of minimizing the makespan. In our paper,
there are (multiple) time windows during which maintenance can be conducted at
a specific moment, and there is also a time limit such that the maintenance activity
on each machine cannot be postponed beyond that limit. That is, our paper belongs
to this second group within the flexible-maintenance literature described above. Fur-
thermore, we assume the amount of maintenance resources is limited (e.g., headcount
of the specialized maintenance personnel), which means that the number of machines

 M. Geurtsen et al.

1 3

that can be maintained simultaneously is constrained. As far as we know, this com-
bined setting has not been studied before. Furthermore, in many cases the production
environment appears oversimplified, as important practical aspects such as sequence-
dependent setup times and machine-dependent process times are neglected. Motivated
by the complexity of real-life problems encountered in a semi-conductor manufacturer,
our paper addresses this gap in the literature of integrated maintenance and production
scheduling.

3 Problem description

We consider an unrelated parallel-machine scheduling problem with sequence- and
machine-dependent setup times, eligibility constraints and release and due times for
production jobs. As common in the unrelated parallel-machine scheduling literature,
it is assumed that (i) jobs are non-preemptive, (ii) there are no precedence constraints
among jobs, (iii) the setup time prior to the first job in the sequence is zero and (iv) all
machines are available at time zero. Specialized maintenance workers are required to
perform PM on the machines.

The maintenance workers only operate in the daytime shift of a 24-hour production
day, and one worker executes one PM activity at a time. The machines which require
a PM activity are known at the beginning of the scheduling horizon (e.g., typically a
week), and only one PM activity is needed for each of these machines during the sched-
uling horizon. The duration of a PM activity is smaller than the duration of a shift. If
the shift is seen as a window, the PM activity can be scheduled flexibly within that
window, as long as the end time of the PM activity is before the end time of the win-
dow. Multiple maintenance workers operate on each day and there are multiple days
possible for the PM activity during the scheduling horizon (i.e., for example a mainte-
nance team can visit the factory on these days). Therefore, a multitude of windows is
formed, equal to the total number of available workers during the scheduling horizon.
The goal is to decide which maintenance activity to schedule in which window. Due to
the flexibility within the window, maintenance can be scheduled along with the produc-
tion jobs, thereby minimizing or even eliminating potential idle time between a main-
tenance activity and a job. The problem is challenging because this needs to be coor-
dinated with scheduling of production (i.e., assigning production jobs to each machine
and sequencing the jobs on machines), leading to an integrated planning problem for
production and maintenance activities.

In Sect. 4, we formulate the integrated planning problem as an MILP model with
the objective of minimizing the makespan. We further consider an alternative objective
(i.e., a weighted average of total machine completion time and the total tardiness of
production jobs) motivated by practice.

1 3

Integrated maintenance and production scheduling for unrelated…

4 MILP formulation

The notation for this formulation is summarized in (Table 1). Each production
activity (also referred to as a job) from the set J is to be scheduled on one of the
unrelated parallel machines from the set M. The subset of machines that require
PM is denoted by R ⊆ M . For each machine in R, one PM activity is scheduled.
PM activities can be scheduled on each day of the set D, where D is a set com-
prising the eligible days (e.g. Tuesday, Wednesday, Thursday). However, PM
requires a resource, and therefore, the maximum number of PM activities that can
be scheduled on day d ∈ D is constrained by the available maintenance resources
(i.e., maintenance workers) on that particular day, which is denoted by wd . Given
the sets R and D, the Cartesian product R × D contains all possible occasions of
PM activities. In the end, only a single PM activity is scheduled for a machine
requiring a PM activity, while the other possible PM activities for that particular
machine remain unscheduled. By using this formulation, at most one PM activ-
ity per machine can be scheduled. This matches a real-life scenario perfectly, as
maintenance on one machine is typically performed just once during a schedul-
ing horizon. The length of the scheduling horizon and therefore the interval of
maintenance is usually defined by the user. By adopting this concise formulation,
the constraints are kept at a minimum. Although we make the assumption for the

Table 1 Summary of notation

Sets
J Set of jobs.
M Set of machines.
R ⊆ M Set of machines that require maintenance.
D Set of days available for maintenance.
A = J ∪ (R × D) Set of all activities.
A
0
= {0} ∪ J ∪ (R × D) Set of all activities including dummy job 0.

Ma ⊆ M Set of non-eligible machines for activity a ∈ A

Parameters
pia Processing time of activity a on machine i.
siab Setup time for processing activity a just before activity b on machine i
ra Release time of activity a.
da Due time of activity a.
wd Available number of resources for maintenance on day d.
V A very large number.
Variables
Xiab Indicates if activity a is scheduled before activity b on machine i.
Yia Indicates whether activity a is assigned to machine i.
Ca Completion time of activity a.
C
max

Maximum completion time.
Sab Setup time for processing activity b if it is preceded by maintenance activity a.

 M. Geurtsen et al.

1 3

MILP model such that at most one maintenance activity can be performed per
machine, the proposed HGA in Sect. 5 can handle more general situations with-
out this assumption.

In our formulation, all jobs and all possible occasions for PM activities are
regarded as activities. The set A comprises all the activities, i.e. A = J ∪ (R × D) .
The release time and due time of activity a ∈ A are denoted by ra and da , respec-
tively. For a job, the release time indicates the earliest time at which the produc-
tion of that job can start (e.g. due to material availability) and the due time refers
to the delivery time agreed with a customer. For the PM activities, the release and
due times correspond to the availability of resources which can differ per day, e.g.
a maintenance worker is available on Tuesday from 9:00 to 18:00, whereas on
Wednesday this may be between 08:00 and 19:30. Consequently, all possible occa-
sions of PM activities on a particular day need to share the same release and due
times.

The setup time between the subsequent processing of activities a and b on
machine i is siab . When two consecutive jobs are interrupted by a PM activity, the
sequence-dependent setup time between the two jobs remains unaltered. To deal
with this, the variable Sab is introduced to denote the setup time for activity b if
preceded by PM activity a, where b ∈ J and a ∈ R × D ; i.e., Sab takes the value of
sib′b , where b′ is the activity preceding PM activity a. Furthermore, each activity
a is associated with a process time pia that depends on the machine i to which it
is assigned. If a ∈ J , then pia equals the processing time of the job. If a ∈ R × D ,
then pia is the duration of the corresponding PM activity. As not all activities can be
processed on every machine, the set of non-eligible machines for each activity a ∈ A
is denoted by Ma ⊆ M . Furthermore, the variables Ca and Ta denote the completion
time and the tardiness of each activity a ∈ A , respectively.

This formulation builds upon a foundation of existing formulations for the unre-
lated parallel machine scheduling problems with setup times, without the considera-
tion of maintenance (Vallada and Ruiz , 2011; Tran and Beck , 2012; Avalos-Rosales
and Angel-Bello , 2015). However, as mentioned in Sect. 1, the constraints associ-
ated with PM scheduling are new and different from standard production schedul-
ing. In particular, there are two main novelties: first, for each PM activity there is a
multitude of possible time windows in which it can be scheduled, while the maxi-
mum number of PM activities scheduled in the same time window is constrained
by a scarce resource. The second novelty is a set of constraints that guarantees the
sequence-dependency between two consecutive jobs in case they are interrupted by
a PM activity.

Finding a solution to the problem means to determine which activities are allo-
cated to which machines, and the sequence in which each machine will process the
assigned activities. To establish this, two binary decision variables are introduced.
First, the machine assignment is dictated by:

and secondly, the sequence of activities a and b at machine i is defined by:

Yia =

{

1 if activity a is assigned tomachine i

0 otherwise.

1 3

Integrated maintenance and production scheduling for unrelated…

In case activity a is a PM activity, it will be explicitly denoted by the index (i, d).
For instance, Yi(i,d) indicates the assignment of the PM activity of machine i ∈ R on
day d ∈ D , since R × D is the matrix corresponding to all possible occasions of the
PM activities.

As in Avalos-Rosales and Angel-Bello (2015), a dummy activity 0 is introduced.
The set A plus this dummy job is denoted A

0
 . The variables Xi0b and Xia0 are used

to specify which jobs a and b are processed first and at the end of each machine i,
respectively. The process and setup times associated with this dummy job are all 0,
i.e. pi0 = 0 , si0b = 0 and sia0 = 0.

Two objective functions are considered in this work: (i) minimization of the
maximum completion time and (ii) minimizing a weighted sum of the total machine
completion time and total tardiness. The former is commonly used in the literature
and is considered solely for benchmark purposes. However, minimization of the
maximum completion time is often not the desired objective for practical applica-
tions with sequence and machine dependent setup times. A higher completion time
is often accepted if it enables more efficient production overall, e.g. less time spent
on setups, as long as due dates remain largely satisfied. Hence, to comply with prac-
tice, a multi-objective optimization problem (e.g., Hoseinpour et al. 2020, 2021) is
proposed that attempts to balance between efficient production on one hand and cus-
tomer satisfaction on the other. In the remainder of this section, the problem formu-
lation for both objectives is presented. First, using the notation introduced previ-
ously, and with the objective to minimize the maximum completion time Cmax , the
problem is formulated as follows:

subject to

Xiab =

{

1 if activity a is scheduled directly before activity b onmachine i

0 otherwise.

(1)minimize Cmax

(2)Yia = 0 a ∈ J, i ∈ Ma

(3)Yi0 = 1 i ∈ M

(4)
∑

i∈M

Yia = 1 a ∈ J

(5)
∑

d∈D

Yi(i,d) = 1 i ∈ R

(6)
∑

a∈A
0
⧵{b}

Xiab = Yib b ∈ A, i ∈ M

 M. Geurtsen et al.

1 3

Constraints (2) to (7) are generalized from the work proposed by Tran and Beck
(2012) and constraints (9) and (10) are derived from the study by Vallada and Ruiz
(2011). All other constraints presented in the formulation are novel additions. Con-
straints (2), (3) and (4) ensure that each activity is assigned to exactly one eligible
machine. Constraints (5) indicate that a maintenance activity of a particular machine
may be performed on only one of the available days for the maintenance. Constraints
(6) establish that every activity has exactly one predecessor and both are assigned to
the same machine. Similarly, Constraints (7) guarantee that every activity has exactly
one successor and both are assigned to the same machine. Constraints (8) guarantee
that the number of maintenance activities performed per day does not exceed the
available resources at that day. Constraints (9) provide the right processing order,
i.e the completion time of an activity in a sequence on a machine is greater than or
equal to the completion time of the preceding activity, the sequence-dependent setup
time and the processing time of the current activity. V denotes a large constant. Con-
straints (10) provide the correct processing order in case the activity prior to the cur-
rent activity is a maintenance activity. The true sequence-dependent setup time must
be selected by determining the job before the maintenance activity, and recall that
the setup time remains unaltered in case of maintenance between two subsequent

(7)
∑

b∈A
0
⧵{a}

Xiab = Yia a ∈ A, i ∈ M

(8)
∑

i∈R

Yi(i,d) ≤ wd d ∈ D

(9)Cb + V(1 − Xiab) ≥ Ca + siab + pib i ∈ M, a ∈ J, b ∈ A ⧵ {a}

(10)Cb + V(1 − Xiab) ≥ Ca + Sab + pib i ∈ R, a ∈ R × D, b ∈ A ⧵ {a}

(11)Sab + V(1 − Xiab) ≥
∑

b�∈0∪{J}⧵b

Xib�asib�b i ∈ R, a ∈ R × D, b ∈ A ⧵ {a}

(12)C(i,d) − pi(i,d)Yi(i,d) ≥ r(i,d) i ∈ R, d ∈ D

(13)C(i,d) ≤ d(i,d) i ∈ R, d ∈ D

(14)Ca − piaYia ≥ ra i ∈ M, a ∈ J

(15)Xiab, Yia ∈ {0, 1} a ∈ A, b ∈ A, i ∈ M

(16)Sab ≥ 0 a ∈ R × D, b ∈ J

(17)0 ≤ Ca ≤ Cmax a ∈ A

1 3

Integrated maintenance and production scheduling for unrelated…

jobs. Constraints (11) define the sequence-dependent setup time when a mainte-
nance activity is scheduled between two jobs. Specifically, in case job b′ precedes
job b but maintenance activity a is processed between, the setup time between main-
tenance activity a and job b, Sab , is set equal to the setup time between jobs b′ and
b on machine i, i.e., sib′b . Constraints (12) specify the release time restrictions for
maintenance activities. Note that it is permitted to perform the setup time required
for a PM activity before its release time. Similarly, Constraints (13) specify the due
date restrictions for maintenance activities. Constraints (14) specify the release time
restrictions for production activities. Note that these strict time restrictions imply
that the resulting schedule may contain idle times between activities. Finally, Con-
straints (15) and (16) specify the domains of the variables Xiab , Yia and Sab , and Con-
straints (17) define the makespan.

In addition, based on the makespan linearization of Avalos-Rosales and Angel-Bello
(2015), Constraints (18) and (19) are added to accelerate a solver:

Although Eq. (1) attempts to minimize the maximum completion time, it does
not focus on the due dates of individual production activities. As mentioned, this
is often not desirable in practice. Hence, as an alternative, the following objective
function is proposed:

where � and � represent the weights of the Total Machine Completion Time (TMCT)
and the Total Tardiness (TT) of the jobs, respectively. The machine completion time
at a particular machine is the time at which the last activity assigned to that machine
is completed, i.e., the activity for which Xia0 equals 1 for machine i (recall that Xia0
was introduced to specify the last job processed at machine i). The TMCT refers to
the sum of the machine completion times over all machines. We refer to adopting the
objective in (20) as the multi-objective optimization approach, as it includes both
the total machine completion time and job tardiness as objectives. Note that the first
term (i.e., TMCT) in (20) can be much greater than the second (i.e., TT), depending
on factors such as the number of jobs and their due date. To determine the weights
that best reflect the objective of the planner, a wide range of weight-combinations
should be examined; see Sect. 6.1 for details. The following constraints are required
to define the tardiness for production activities:

(18)
∑

d∈D

S(i,d)b + pibYib ≤ Cmax i ∈ R, b ∈ A

(19)
∑

a∈J⧵{b}

Xiabsiab + pibYib ≤ Cmax i ∈ M ⧵ R, b ∈ A

(20)minimize �
∑

i∈M

∑

a∈A

Xia0Ca + �

∑

a∈J

Ta

(21)Ta ≥ Ca − da a ∈ J

(22)Ta ≥ 0 a ∈ J

 M. Geurtsen et al.

1 3

Besides Constraints (21)–(22), the formulation to optimize Eq. (20) requires Con-
straints (2)–(16), whereas Constraints (17)–(19) become redundant. Note that (20) is
non-linear. However, it is rather straightforward to linearize this equation using the
big-M method (Dantzig , 1948). For this purpose, the maximum completion time of
a machine i is represented by Fi , which is defined as follows:

Then, Fi is incorporated in Eq. (20) to obtain the following linear objective function:

5 Hybrid genetic algorithm

It is well-known that an MILP may not be capable of solving large-sized problem
instances in a reasonable amount of time within the context of unrelated parallel
machines with setup times (e.g. > 10 machines and > 100 jobs) even when there
are no maintenance activities (Avalos-Rosales and Angel-Bello , 2015). Therefore,
metaheuristics are often used as an alternative to MILP formulations. A commonly
used metaheuristic is genetic algorithms. A Hybrid Genetic Algorithm (HGA) is an
extension of the traditional genetic algorithm (GA), in which the GA is equipped
with a local search technique to reduce the likelihood of premature convergence.
HGAs have been successfully applied to production scheduling in parallel machine
environments with the additional complexities of sequence and machine dependent
setup times, machine dependent process times and eligibility constraints (Vallada
and Ruiz , 2011; Adan , 2022). Since our study focuses on a similar production envi-
ronment, we also propose an HGA to solve the integrated planning problem with the
additional decisions on scheduling PM activities. Compared to a standard genetic
algorithm, our proposed HGA has several advantages. The HGA employs a minimal
number of parameters, which allows easy calibration. For the production scheduling
problem in the same context, an extensive comparison of HGAs is made not only
with respect to standard genetic algorithms but also simulated annealing (Adan ,
2022). It is important to note that an existing HGA developed only for scheduling
the production jobs would not be suitable for our problem on hand due to its ineffi-
ciency in checking the availability of maintenance resources. Therefore, we develop
a novel HGA that is capable of exploiting the characteristics of our problem. This
exploitation ability is especially useful when the solution representation size is
extended, which is the case with the presence of PM activities and resources.

5.1 Solution representation

The main novelty of the proposed HGA is its solution representation. As local search
is recognized as a crucial component for the performance of a HGA, it is important
to allow fast evaluation of changes made to the solution. The solution representation

(23)Fi ≥ Ca − V(1 − Xia0) a ∈ A, i ∈ M

(24)minimize �
∑

i∈M

Fi + �

∑

a∈J

Ta

1 3

Integrated maintenance and production scheduling for unrelated…

in the proposed HGA aims to facilitate this. In classical parallel machine scheduling,
solutions are typically represented by an array of jobs for each machine that reflects
the processing sequence of the jobs assigned to that machine. When the processing
sequence of a certain machine is translated into a schedule, process and setup times
are added consecutively. In this work, PM activities are considered as well. The PM
activities require resources (i.e., maintenance workers), the availability of which is
limited. Thus, when the processing sequence of a machine is translated into a sched-
ule, the availability of resources needs to be taken into account. As a resource can be
claimed by any other machine, in principle, it demands evaluating the schedules of
all the machines. Although additional computational effort is inevitable, this can be
minimized through an extended solution representation.

More specifically, analogous to the MILP formulation, jobs and PM activi-
ties are both regarded as activities in our HGA. Each solution is composed of two
components: (i) |M| arrays of activities and (ii) a list that specifies which machines
claim a resource at which times. A schematic example of this solution representa-
tion is shown in Fig. 1. When a change is made to the processing sequence of a
machine, the objective function is evaluated by iterating through this sequence once,
querying this additional list along the way. This eliminates the need to evaluate all
other machines and thereby minimizes the computational effort. When a change in
the processing sequence of machine assignment is implemented, this is not only
reflected in a change in the arrays of activity sequences, but also the list of resource
claims is updated accordingly.

To illustrate this, we provide the example in Fig. 2: four activities {a
1
, a

2
, a

3
, a

4
}

are to be scheduled on two machines {m
1
,m

2
} . Activities a

1
 and a

2
 are PM activities,

requiring a resource. There are two intervals of equal length (indicated by the verti-
cal dotted lines) during which one resource is available. Suppose that the arrays of
activities state that activity a

2
 is processed after activity a

4
 on machine m

1
 , and activ-

ity a
1
 is processed after activity a

3
 on machine m

2
 . When the schedule at machine

m
1
 is evaluated, activity a

4
 is scheduled first. As this activity does not require a

resource, the resource list is not queried. On the contrary, activity a
2
 does require a

resource. Thus, before activity a
2
 follows activity a

4
 , the resource list is queried to

check whether the required resource is available. If it is available, activity a
2
 directly

m1 a4a3

a7a2

a8a5

m2

m3

a9a6

a1

m1 Day 2 08:00-14:00

m3 Day 6 12:00-18:00

Fig. 1 A schematic example of the solution representation. Here, there are 3 machines and 9 activities.
The array of arrays on the left dictates the machine allocation and the sequence of the activities on each
machine. Two of the nine activities, a

1
 and a

3
 , are maintenance activities and demand a resource. This

resource claim is registered in the list that is shown on the right

 M. Geurtsen et al.

1 3

follows activity a
4
 , as is shown in Fig. 2a. However, if no resource is available at

that time (since it is claimed by activity a
1
 on machine m

2
), it is postponed to the

earliest time that a resource becomes available, as is shown in Fig. 2b. If the solu-
tion representation had not kept track of the claimed resources, this would require
the entire schedule to be evaluated and a heuristic to decide whether the resource is
allocated to m

1
 or m

2
 ; all in all demanding significantly more computational effort

compared to a single query to the aforementioned list. Moreover, by adopting this
solution representation, the HGA is capable of scheduling multiple PM activities per
machine, since release and due times are associated with each PM activity individu-
ally. Therefore, correct sequencing of PM activities is ensured due to the mechanism
of the resource list to check the availability together with the multiple PM inter-
vals defined by the release and due times per individual PM activity. Even in more
complex scenarios with multiple PM activities per machine, correct sequencing is
ensured by this mechanism.

5.2 Description of the proposed HGA

In an HGA, a population of candidate solutions within the search space, so-called
individuals, evolves toward better solutions through an iterative evolutionary pro-
cess. In Fig. 3, a schematic overview of the algorithm is shown. After initializa-
tion, an evolutionary cycle begins with selection of two individuals: the parents. A
crossover mechanism is applied to the parents that generates two new solutions: the
offspring. Then, to maintain a diverse population, each of the offspring is subjected
to several mutations. At last, a local search operator is applied to the offspring. This
operator is repeatedly applied until it fails to improve the offspring, i.e. until a local
minimum is reached. The offspring is accepted into the population if (i) there are
no identical individuals already in the population, i.e. they are unique, and (ii) they
are fitter than the weakest individual in the population. If they are accepted, the
offspring replaces the weakest individuals, otherwise they are discarded. Hereby,
the population size, denoted with P, remains constant. These evolutionary cycles
are repeated as long as a certain termination criterion remains unsatisfied. In the
remainder of this section, a description of the components of our HGA is provided.

ss time

m2

m1 a4

a3

a2

a1

time

m2

m1 a4

a3

a2

a1

)b()a(

Fig. 2 An example of a resource allocation conflict. There are two time intervals during which one
resource is available, as indicated by the vertical dotted lines. Activities a

1
 and a

2
 require an additional

resource. Hence, either a
2
 claims the resource in the earliest interval and a

1
 is moved to the later interval

a or vice versa b. Dashed blocks indicate setup times

1 3

Integrated maintenance and production scheduling for unrelated…

Fitness Function Following the common terminology of GAs, the objective func-
tion of the optimization problem is referred to as the fitness function. For our prob-
lem, two fitness functions are considered: (i) the makespan, and (ii) a weighted sum
of the Total Machine Completion Time (TMCT) and Total Tardiness (TT), see Eqs.s
(1) and (20).

It is important to note how activities are penalized when the release or due dates
cannot be satisfied. As mentioned, the solution representation specifies the process-
ing sequence of the activities at each machine. To calculate the corresponding fitness
value, each of these sequences need to be translated into a schedule. Hereby, process
and setup times, but also release and due times are taken into account. For example,
consider the sequence {a

3
, a

2
, a

4
, a

1
} . The corresponding schedule is schematically

shown in Fig. 4. The size of the white blocks corresponds to the process time and
the dashed blocks indicate setup time. The dotted vertical lines in Fig. 4 indicate the
release and due time of activity a

1
 . Regardless of whether a

1
 is a production activ-

ity or a maintenance activity, the release time is strict. Note that as a consequence
of the strict release time constraint, there is an idle time between activities a

4
 and

a
1
 . If this activity is a production activity, the release time is strict, but the due date

Fig. 3 Hybrid Genetic Algo-
rithm (HGA) flow chart. The
diamonds represent conditional
decisions

Initialization

Selection

Crossover

Local search

Termination

Mutation

time

m1 a4a3 a2 a1

idle

Fig. 4 The schedule corresponding to the sequence {a
3
, a

2
, a

4
, a

1
} . The vertical dotted lines indicate the

earliest start and latest completion time for activity a
1
 . The dashed blocks indicate setup time

 M. Geurtsen et al.

1 3

can be violated. With the objective in (1), due date violations are neglected, whereas
the objective in (24) penalizes these violations through the tardiness. In case a

1
 is a

maintenance activity, both the release and due times are strict, as these times cor-
respond to the availability of additional resources. Solutions where the due dates for
the maintenance activities cannot be satisfied can be generated by the algorithm. If
such a case occurs, a penalty is added to the fitness of the individual. In essence, the
penalty pushes the maintenance activity far away to the end of the schedule, thereby
creating a large gap between the maintenance activity and the last job activity on the
machine. The value of the penalty is chosen such that a sufficiently large gap is cre-
ated which results in a guaranteed ‘correction’ in the next iteration. This correction
ensures that the maintenance activity will be scheduled within the strict release and
due times.

Initialization A simple heuristic is applied to generate an initial population. First,
a random permutation of all activities is generated by means of the Fisher-Yates
shuffle mechanism (Fisher and Yates , 1963). Following this sequence, all activities
are subsequently scheduled. This is done as follows: for each activity, all possible
insertion positions are evaluated, thereby respecting machine eligibility constraints.
To be specific, the insertion mechanism assigns the activity to a particular possible
position in the schedule, and the effect on the fitness is evaluated. This procedure is
repeated for each possible position in every eligible machine. Finally, the position
that is most favorable in terms of the fitness function is selected and implemented.
This yields an initial population that is both strong and diverse.

Selection Although various selection mechanisms are often applied in HGAs, e.g.
random, roulette-wheel and tournament selection, several experiments with different
operators showed that none proved significantly more effective over another. For this
reason, random selection is applied in our HGA as this is the simplest and computa-
tionally most efficient method.

Crossover Once parents are selected, the crossover mechanism is applied. Many
crossover operators are reported in literature, one of the most common being the
one-point crossover technique. Here, a local search enhanced one-point crossover
operator is applied, see Vallada and Ruiz (2011). In principle, the applied operator
acts through the same mechanism, however, in our case, it is necessary to implement
the checks to account for the resource constraints.

Mutation The purpose of a mutation operator is to maintain the diversity within
the population, to prevent premature convergence to a local optimum, and to explore
the solution space further. As for crossover operators, several mutation operators
are proposed in the literature, see Soni and Kumar (2014). The mutation operator
used within our HGA proceeds as follows: first, the worst machine of the individual
in terms of the fitness function is selected. Then, all activities of this machine are
removed, leaving the machine with an empty sequence. Each of these activities is
then assigned to another randomly chosen machine. To be specific, these activities
are allocated to the other machines in the following procedure: for each activity, a
random eligible machine is chosen, and for that randomly chosen eligible machine,
the activity is inserted in the sequence at the best possible position in terms of fit-
ness. This procedure is repeated r times, where r is a design parameter of our HGA,
representing the number of mutations.

1 3

Integrated maintenance and production scheduling for unrelated…

Local Search To speed up the search towards a local optimum, we use a local
search operator that evaluates three local search neighborhood structures consecu-
tively: the insertion neighborhood, swap neighborhood, and nearest neighbor search.
Each of these neighborhood structures is divided into smaller sub-neighborhoods.
Specifically, a sub-neighborhood exists for each machine. The sub-neighborhoods
are evaluated starting with the worst-fit machine, then the second worse, and so on.

The total number of sub-neighborhoods that are evaluated in each neighborhood
structure is constrained by a set of parameters that specify a certain fraction of the
machines: dins for the insertion neighborhood, dswap for the swap neighborhood,
and dnn for the nearest neighbor search. These parameters can be tuned to specify
the degree of exploitation in each neighborhood structure for the integrated plan-
ning problem on hand, as will be discussed in Sect. 6.3. After all the neighbors in
a sub-neighborhood are evaluated, it needs to be decided which neighbor is imple-
mented. With the objective to minimize Cmax , the change in maximum completion
time is checked first: if it increases, the neighbor is immediately discarded. From the
remaining neighbors, if any, the neighbor that results in the largest decrease of the
total completion time is selected and implemented. Concerning the weighted multi-
objective fitness function, it is first checked whether a neighbor decreases the fitness.
If there are any neighbors remaining, the one that results in the largest decrease of
the fitness is selected and implemented.

Termination In parallel machine scheduling without PM activities, termination
criteria that scale with both the number of jobs |J| and the number of machines
|M| are commonly applied, usually in the form C ⋅ |J| ⋅ |M| , where C is some con-
stant (Vallada and Ruiz , 2011; Avalos-Rosales and Angel-Bello , 2015; Santos et al.
, 2019; Adan , 2022). As the presence of PM activities influences the difficulty of the
scheduling problem, we incorporate the number of maintenance activities |R| in the
termination criterion, i.e., the termination criterion is extended to C ⋅ |J| ⋅ |M| ⋅ |R| .
The constant C can be set based on side experiments that show how much time is
typically sufficient for the algorithm to converge.

Eligibility Each activity has a unique list of eligible machines. Before a move
(crossover, mutation, local search) for an activity is performed, the list of eligible
machines is examined. A move to another machine may only occur in case that
machine is present in the eligibility list of the activity. This eligibility mechanism
ensures that feasibility is always guaranteed.

6 Case study

Section 6.1 presents how the problem instances are obtained as part of our case study
at Nexperia. Section 6.2 describes how the weights needed for the multi-criteria
objective function are obtained in practice. In Sect. 6.3, we describe how the param-
eters of the proposed HGA are calibrated to improve its performance. In Sect. 6.4,
we focus on the instances where the MILP formulation can be solved (close) to opti-
mality, and compare the performance of the calibrated HGA to the performance of
the MILP solution. In Sect. 6.5, we apply the calibrated HGA to large-size instances,
and quantify the benefit of integrating the scheduling of production and maintenance

 M. Geurtsen et al.

1 3

activities. Finally, we perform additional experiments in Sect. 6.6 to gain managerial
insights on how the constraints imposed on PM activities affect the objective value.
The HGA is coded in C# 6.0 and all experiments are run on a computer with an Intel
Core i5-540 M (2.53 GHz) processor and 4 GB of memory.

6.1 Real‑world problem instances

As part of the case study, production schedules of various product types at Nexperia
are gathered over a period of three months. The complete set comprises 25 produc-
tion schedules, each of which contains various numbers of machines, jobs and main-
tenance activities; and it is publicly available at https:// git. io/ J8ny2. An overview of
the schedules and the key characteristics is shown in Table 2, where “Maintenance”
indicates the number of machines requiring maintenance, and “Horizon” denotes
the maximum number of time windows available for maintenance. For each job, the
machine dependent process time, the due date, and the sequence-dependent setup

Table 2 Overview of the real-
world problem instances

The instances used for parameter calibration are in italic

Instance Machines Jobs Maintenance Horizon

1 55 134 4 6
2 33 124 4 7
3 33 101 4 5
4 33 87 4 6
5 56 171 3 8
6 32 102 3 6
7 33 101 3 8
8 33 102 3 6
9 33 92 3 6
10 32 88 3 8
11 56 171 2 7
12 33 165 2 7
13 33 109 2 4
14 32 100 2 7
15 33 98 2 7
16 33 98 2 6
17 32 92 2 6
18 33 94 2 4
19 33 83 2 6
20 33 80 2 5
21 33 97 1 5
22 33 90 1 7
23 10 65 1 6
24 12 62 1 4
25 10 57 1 6

https://git.io/J8ny2

1 3

Integrated maintenance and production scheduling for unrelated…

times are provided. Although the duration of maintenance activities varies between
7 and 12 h, maintenance is always scheduled between 6:00 in the morning and 20:00
in the evening. Only one resource (i.e., maintenance worker) is available during
these time intervals. That is, at most one maintenance activity can be scheduled at a
time. The setup time required for a maintenance activity is constant, independent of
the job sequence. It’s worth mentioning that the instances we’ve gathered originate
from real production data, ensuring that the dataset remains realistic. For all these
instances, the number of maintenance tasks to be scheduled is always kept lower
than the total available options for maintenance. These options, in turn, depend on
how many maintenance resources are available each day and the total number of
days in the scheduling horizon. When dealing with new instances, it’s crucial to
double-check feasibility to make sure not to try fit in more maintenance tasks than
there have available spots for.

When the HGA is deployed in practice, it is important to decide how much com-
putational time the algorithm is granted. Based on manual experimentation, the con-
stant C of the termination criterion for our HGA is set to 125 milliseconds, as this
proved to provide sufficient time for the algorithm to converge in all the instances.

In case the load of the schedule would be high enough such that it is impossible
to schedule everything within the targeted planning horizon, some activities might
overflow to the next planning horizon. Although this situation is not observed in our
case study, we note that our HGA would still be capable of dealing with these sce-
narios by blocking the corresponding first parts in the schedule of machines.

6.2 Setting the multi‑objective weights

In practice, planners make a trade-off between minimization of the total machine
completion time and the total tardiness of jobs. To gain insight in this trade-off, the
weights in Eq. (20) are set to values in {1, 3, 8, 10, 20} . For all possible weight com-
binations, the HGA is applied to a subset of the problem instances from Table 2 (i.e.,
10 instances from the 25 available instances, as shown in italic). These instances
are chosen such that this subset contains a diversity of problem sizes. For each
weight setting, the average of both terms in the objective function over the selected
instances is determined. The resulting Pareto chart is shown in Fig. 5.

The conflict between the two terms, total tardiness and total machine completion
time, is clearly visible. The total machine completion time can be improved signifi-
cantly at the cost of total tardiness. Clearly, it is not possible to achieve zero tardi-
ness. The total tardiness cannot be brought below roughly 1600 h, regardless of the
weight setting, which results in a relatively dense cluster in the lower right area of
the Pareto chart. In consultation with the planners, it was chosen to opt for a setting
where the total tardiness is close to its minimum, and the total machine completion
time is as low as possible. Hence, the combination of weights (1, 1) is chosen as this
combination shows a negligible increase in total tardiness, compared to a relatively
high decrease in total machine completion time. This combination of weights is used
in the remainder of the paper.

 M. Geurtsen et al.

1 3

6.3 Calibration of the proposed HGA

As for any metaheuristic algorithm, the performance of the HGA depends largely
on the setting of its parameters. Calibration of these parameters is itself a very tough
optimization problem (Yang , 2014). In this work, the parameters are calibrated by
means of Design of Experiments (DOE), as in Chang and Chen (2011), Vallada and
Ruiz (2011) and Adan (2022). For a given instance, the performance of the HGA is
evaluated by means of the Relative Proportional Deviation (RPD), which is com-
puted according to:

where A is the objective value found for a certain problem instance with a specific
method and B is the best solution known for this problem instance. The population
size, the mutation rate, the depth of the nearest neighbor search, and the depth of
the insertion and swap neighborhoods are identified as tuneable parameters in the
proposed algorithm. The calibration of these parameters is done as follows: first,
two levels (low and high) are identified for each of the parameters, as is shown
in Table 3. A full factorial design is generated for the same 10 instances used in
Sect. 6.2 (i.e., the italic instances from Table 2). To be specific, 10 independent
runs are performed for each one of these 10 instances at each possible parameter
configuration.

For each parameter configuration, the average RPD over all instances is cal-
culated. The results are analysed by means of analysis of variance (ANOVA). In
Fig. 6, a Pareto chart is provided to show the standardized effects in decreasing
order of statistical significance. For a more in-depth explanation on Pareto charts
in ANOVA and the calculation of standardized effects, the reader is referred to
Montgomery and Runger (2010). The length of each bar in Fig. 6 is proportional
to the value of a t-statistic calculated for the corresponding effect. The higher the

(25)RPD =
A − B

B
⋅ 100%

5,700 5,750 5,800 5,850 5,900 5,950

1,600

1,800

2,000

2,200

2,400

2,600

Total machine completion time (hours)

T
ot
al

ta
rd
in
es
s
(h
ou

rs
)

5,920 5,930 5,940 5,950 5,960 5,970

1,615

1,620

1,625

1,630

1,635
(1,1)

(1,3)

(1,8)
(1,10)

(1,20)

(3,8)
(3,10)

(3,20)

(8,10)

(8,20)

(10,20)

Total machine completion time (hours)

(α, β)

)b()a(

Fig. 5 The average of both terms in the objective function over the selected instances for various weight
settings (a). A magnification of the lower right area in a is shown in (b)

1 3

Integrated maintenance and production scheduling for unrelated…

standardized effect, the larger the relative impact of a parameter change on the
average RPD. Any bars beyond the vertical dashed line are statistically signifi-
cant at the selected significance level � , which is set at 5%. In this case, of the 5
main effects, only the mutation rate r and the depth of the swap neighbourhood
dswap are significant. Besides main effects, interaction effects are also estimated.
The interaction between two effects is indicated by a ‘ × ’ sign in Fig. 6. Here, the
interaction effect between the mutation rate r and the depth of the swap neighbor-
hood dswap as well the interaction effect between the mutation rate r and the popu-
lation size P appear to be significant.

Figure 7 shows how each of the 5 parameters affects the average RPD. The lines
indicate the estimated change in average RPD as each parameter is moved from its
low (left) to its high level (right), with all other parameters held constant at a value
midway between their lows and their highs. Note that the parameters with a higher
significance (Fig. 6) have a larger impact on the average RPD than the others.

Table 3 Tuneable parameters in the proposed algorithm and tested values for the calibration

The best parameter combination is shown in bold face

Parameter Low level Manual High level

Population size (P) 10 15 20
Mutation rate (r) 1 3 5
Depth nearest neighbor (dnn) 0.8 0.9 1.0
Depth insertion neighborhood (dins) 0.8 0.9 1.0
Depth swap neighborhood (dswap) 0.5 0.75 1.0

0 10 20 30 40

dnn × dswap

dins
P × dnn
P × dins

P × dswap

r × dnn
dnn

dins × dswap

dins × dnn
r × dins

P
r × P

r × dswap

r
dswap

Standardized effect

Fig. 6 Pareto chart that displays the standardized effects in decreasing order of significance. The verti-
cal dashed line indicates the significance level � , after standardization. Effects above � are statistically
significant

 M. Geurtsen et al.

1 3

In Fig. 8, the estimated interaction effect of the mutation rate r and the depth of
the swap neighborhood dswap is shown. The impact of increasing the mutation rate is
much more pronounced when the depth of the swap neighborhood is low. Clearly,
a low mutation rate and a high dswap is expected to result in the lowest RPD value.
This configuration is in line with the observations in Fig. 7. For each parameter, the
level that yields the lowest RPD is selected. In Table 3, these values are indicated in
bold face.

Finally, to validate the calibration, the algorithm is applied to the remaining 15
problem instances that were not used for the calibration experiments, using the ini-
tial as well as the optimized values. Notice that the use of the same 10 instances to
test the calibrated algorithm would result in a biased estimate of the performance.
This is why we consider the remaining instances in validating the calibration. Again,
10 independent runs are performed for each parameter configuration and instance.
The results are shown in Table 4. A comparison between the RPD before and after
calibration shows an improvement for all instances except for instances 14 and 18.
Nevertheless, on average the RPD is decreased by a factor of two. Now that the per-
formance with the calibrated parameter configuration is validated, this configuration
will be used throughout the remainder of this study.

6.4 Benchmarking the proposed HGA against the MILP formulation

The objective of this section is to evaluate the performance of the proposed HGA
by making a comparison with the MILP formulation. We focus on instances that
can be considered as small size (relative to industry-scale applications), because
this allows us to efficiently obtain (close to) optimal solutions of the MILP for-
mulation to benchmark against the proposed HGA. The following combinations

Fig. 7 The estimated effect of
each of the 5 tuneable param-
eters on the average RPD

P r dnn dins dswap

4.00

6.00

8.00

·10−2

R
P
D

Fig. 8 The estimated interaction
between the mutation rate r and
the depth of the swap neighbor-
hood dswap

1.0 5.0

0.04

0.06

0.08

0.10

r

R
P
D

dswap = 1.0
dswap = 0.8

1 3

Integrated maintenance and production scheduling for unrelated…

of number of jobs j, number of machines m, and number of available resources
ar are considered: j ∈ {8, 12, 16, 20} , m ∈ {1, 2, 3} and ar ∈ {1, 2, 3} . Production
activities can be scheduled 24 h per day. Maintenance resources are available on
the first 7 days between 6:00 and 20:00. Every machine is subject to one main-
tenance activity and requires one resource during maintenance. One instance is
generated for every possible combination of jobs, machines, and maintenance
resources. This results in a total of 24 problem instances (i.e., it is redundant to
have more maintenance resources than the number of machines, so these cases
are not considered).

In the literature, synthetic instances are frequently used, where the process times
of jobs and setup times between two jobs are randomly generated according to a
chosen probability distribution. In our paper, we use real-world problem instances
from Nexperia (see Sect. 6.1 for a detailed description) to generate a set of small-
size (i.e., up to 3 machines and 20 jobs) instances by first pooling all jobs from the
real-life instances together and then randomly sampling a certain number of jobs
from this pool. As the process and setup times correspond to the actual values, the
realistic relation between the jobs is sustained. The maintenance activities are gener-
ated similarly. The resulting set of instances are publicly available at https:// git. io/
J8ny2. An advantage of using real-life instances is to retain realistic relationships
between the setup times of various job types. Consider an example with three jobs
on the same machine. In practice, there is often a clear explainable relation between
s
1,1,2

 , s
1,2,3

 and s
1,1,3

 , and in particular the setup times will obey the triangular ine-
quality s

1,1,3
≤ s

1,1,2
+ s

1,2,3
 (Kim et al. , 2002). This is also what we observe in the

real-life instances from Nexperia. By using real-life instances in our computational
experiments, we avoid setup times that are unlikely to occur in practice, as illus-
trated in Fig. 9.

Table 4 Average relative
proportional deviation (RPD)
for the HGA with manual
(HGA

man
) and calibrated

parameter settings (HGA
cal

)

Instance HGA
man

HGA
cal

2 0.288 0.093
5 0.009 0.005
7 0.100 0.026
9 0.008 0.0007
11 0.064 0.036
14 0.032 0.032
15 0.020 0.010
17 0.147 0.075
18 0.016 0.024
19 0.038 0.028
21 0.014 0.003
22 0.058 0.043
23 0.106 0.064
24 0.014 0.0003
25 0.482 0.223
Average 0.061 0.032

https://git.io/J8ny2
https://git.io/J8ny2

 M. Geurtsen et al.

1 3

The MILP formulation is implemented in Gurobi Optimizer (version 9.0.2).
All parameters are set to default values, as recommended in Gurobi Optimization
(2020), except for the integer feasibility tolerance, which is set to 1e-8. The solver is
terminated when either a proven optimal solution is found, or when 1 h of computa-
tional time has elapsed.

In this subsection, for the objective function, we focus on both the minimization
of the makespan and the minimization of the weighted average of total completion
time and tardiness. In the following section (Sect. 6.5), where we focus on solving
large industry-scale instances with the HGA, we will solely focus on the minimiza-
tion of the weighted sum of TMCT and TT.

In Table 5, the instances are grouped by the number of available resources, num-
ber of machines, and number of jobs. For each instance, the objective value of the
best found solution (the incumbent) and a lower bound is reported. The percentage
difference between the incumbent and the lower bound, the so-called optimality gap,
is also shown. In cases where the optimality gap is 0%, optimality is proven. In the
subsequent columns, the time at which the incumbent solution is found by Gurobi,
and the time at which Gurobi is terminated are reported. The latter is smaller than
3600 s when optimality is proven before the time limit is reached, and equal to
3600 s otherwise. The HGA is also applied to the same instances and terminated
after 20 s of computational time. The best found solution after 20 s, the incumbent,
as well as the time at which this solution is discovered are reported in Table 5.

Additionally, the percentage difference Δ% in the objective function between
the incumbent found by Gurobi Optimizer and the HGA is shown in the rightmost
column.

For the makespan objective, Gurobi Optimizer is able to prove optimality well
within the computational time limit for all instances that contain up to 12 jobs.
For instances with 16 jobs, optimality is only proven for the cases with 1 and 3
machines, whereas optimality is not proven for any of the instances with 20 jobs.
It can be seen that the time required to prove optimality increases steeply with the
number of jobs. On the contrary, the number of machines and resources appears
to be of minor influence. For all instances, the HGA is able to find a solution with
either the same or a better objective value. In cases where a solution with the same
objective value is found, the HGA outperforms Gurobi Optimizer in terms of com-
putational time. Interestingly, for the weighted average of total completion time and
tardiness objective, Gurobi Optimizer performs worse compared to the makespan
objective, as it requires substantial computation time to reduce the gap. Already for
the smallest instances, it is unable to find optimal solutions. The HGA takes a couple

j1m1 j2 j3

s1,1,2 s1,2,3

time

j1 j3

s1,1,3

m1

time

Fig. 9 Illustration of the setup-time realizations that violate the triangular inequality

1 3

Integrated maintenance and production scheduling for unrelated…

Ta
bl

e
5

 P
er

fo
rm

an
ce

 o
f G

ur
ob

i O
pt

im
iz

er
 a

nd
 th

e
H

G
A

 fo
r s

m
al

l-s
iz

e
pr

ob
le

m
 in

st
an

ce
s;

 a
r i

s t
he

 n
um

be
r o

f m
ai

nt
en

an
ce

 re
so

ur
ce

s a
va

ila
bl

e
pe

r d
ay

, m
 e

qu
al

s t
he

 n
um

-
be

r o
f m

ac
hi

ne
s,

an
d

j e
qu

al
s t

he
 n

um
be

r o
f j

ob
s

ar
m

j
G

ur
ob

i
H

G
A

In
cu

m
be

nt
Lo

w
er

 b
ou

nd
G

ap
 (%

)
Ti

m
e

In
c.

 (s
)

Ti
m

e
(s

)
In

cu
m

be
nt

Ti
m

e
(s

)
G

ur
ob

i Δ
 (%

)

M
ak

es
pa

n
1

1
8

13
7.

47
9

13
7.

47
9

0
0.

09
1

2.
60

5
13

7.
47

9
0.

00
9

0
12

26
3.

23
5

26
3.

23
5

0
2.

18
0

41
6.

28
1

26
3.

23
5

0.
01

3
0

16
37

2.
38

0
37

2.
38

0
0

5.
30

1
27

48
.6

41
37

2.
38

0
0.

02
7

0
20

43
4.

01
1

43
1.

21
1

0.
64

5
24

49
.8

14
36

00
43

4.
01

1
0.

06
7

0
2

8
83

.5
40

83
.5

40
0

1.
06

2
2.

15
0

83
.5

40
0.

00
7

0
12

13
6.

71
8

13
6.

71
8

0
3.

27
9

18
2.

03
3

13
6.

71
8

0.
01

2
0

16
19

2.
12

2
19

0.
57

3
0.

80
6

22
51

.1
14

36
00

19
2.

10
5

4.
92

7
+

 0
.0

09
20

24
1.

89
7

23
7.

62
7

1.
76

5
25

61
.7

27
36

00
24

1.
72

4
0.

04
2

+
 0

.0
71

3
8

67
.1

49
67

.1
49

0
1.

27
3

3.
07

9
67

.1
49

0.
00

7
0

12
90

.7
24

90
.7

24
0

26
1.

79
8

35
4.

65
0

90
.7

24
0.

11
5

0
16

12
1.

72
1

12
1.

72
1

0
25

7.
26

5
14

94
.4

23
12

1.
72

1
0.

24
1

0
20

18
8.

19
3

18
4.

77
2

1.
81

7
30

94
.9

47
36

00
18

7.
98

0
0.

85
3

+
 0

.1
13

2
2

8
83

.5
40

83
.5

40
0

1.
23

6
1.

96
5

83
.5

40
0.

00
9

0
12

13
6.

71
8

13
6.

71
8

0
7.

41
7

31
6.

96
8

13
6.

71
8

0.
01

4
0

16
19

2.
10

5
18

9.
32

7
1.

44
6

27
75

.7
02

36
00

19
2.

10
5

1.
22

9
0

20
24

1.
78

7
23

7.
28

9
1.

89
5

33
12

.4
89

36
00

24
1.

72
4

0.
29

7
+

 0
.0

26
3

8
67

.1
49

67
.1

49
0

1.
38

2
3.

49
5

67
.1

49
0.

02
1

0
12

90
.7

24
90

.7
24

0
7.

54
4

39
8.

79
8

90
.7

24
0.

86
3

0
16

12
1.

72
1

12
1.

72
1

0
21

43
.9

57
22

28
.1

54
12

1.
72

1
1.

88
2

0
20

18
7.

98
0

18
4.

62
0

1.
78

7
29

47
.1

00
36

00
18

7.
98

0
8.

44
4

0
3

3
8

67
.1

49
67

.1
49

0
1.

39
0

3.
66

2
67

.1
49

0.
01

7
0

 M. Geurtsen et al.

1 3

Ta
bl

e
5

 (c
on

tin
ue

d)

ar
m

j
G

ur
ob

i
H

G
A

In
cu

m
be

nt
Lo

w
er

 b
ou

nd
G

ap
 (%

)
Ti

m
e

In
c.

 (s
)

Ti
m

e
(s

)
In

cu
m

be
nt

Ti
m

e
(s

)
G

ur
ob

i Δ
 (%

)

12
90

.7
24

90
.7

24
0

34
.1

28
33

4.
71

0
90

.7
24

0.
47

5
0

16
12

1.
72

1
12

1.
72

1
0

78
9.

15
7

17
91

.1
45

12
1.

72
1

1.
16

9
0

20
18

8.
19

3
18

4.
69

4
1.

85
9

33
84

.1
59

36
00

18
7.

98
0

11
.1

34
+

 0
.1

13
M

ul
ti-

ob
je

ct
iv

e
1

1
8

13
7.

47
9

13
7.

47
9

0
2.

54
1

23
.6

05
13

7.
47

9
0.

01
0

0
12

44
2.

88
9

63
.7

67
85

.6
98

34
0.

87
6

36
00

44
0.

10
6

0.
11

2
+

 0
.6

28
2

8
16

4.
78

2
94

.7
95

42
.5

14
23

00
.8

76
36

00
16

2.
94

9
0.

02
9

+
 1

.1
12

12
27

9.
73

8
44

.2
92

84
.2

81
80

.9
80

36
00

27
0.

68
2

0.
12

8
+

 3
.3

46
3

8
18

7.
31

4
11

9.
46

7
36

.2
21

28
70

.7
81

36
00

18
4.

64
8

0.
03

7
+

 1
.4

23
12

27
6.

76
8

22
9.

41
6

17
.1

92
0.

81
6

36
00

26
7.

55
8

0.
06

0
+

 3
.3

28

1 3

Integrated maintenance and production scheduling for unrelated…

of milliseconds to find solutions that are better than the incumbents found by Gurobi
after 1 h of computation. As Gurobi is unable to find any solutions that are close to
the solutions found by the HGA and since the gap between the Incubent and Lower
bound is very high for the instances with 12 jobs, only the results for the instances
with up to 12 jobs are shown in Table 5.

6.5 Flexible versus fixed maintenance scheduling

In this section, an attempt is made to quantify the benefit of integrated production
and maintenance scheduling. Currently, within Nexperia, the maintenance schedule
is determined beforehand. This schedule is then communicated to the production
planners who consider the maintenance activities as immutable unavailability peri-
ods and are required to schedule production along these intervals. For each of the
historic problem instances from Table 2, it is known when the maintenance activ-
ity was scheduled. To mimic the current scenario, these activities are fixed and the
proposed HGA is only used to schedule jobs along these intervals. This is referred
to as fixed maintenance scheduling. Alternatively, all the constraints concern-
ing maintenance scheduling outlined in Sect. 6.1 can be included in the HGA to
schedule production and maintenance activities simultaneously, referred to as flex-
ible maintenance scheduling. For both scenarios, the calibrated HGA is applied to
solve all the available problem instances. The length of the daily time interval for
maintenance activities is 14 h, and there is 1 resource available, i.e. only a single
maintenance activity can be scheduled at a time (except for instances 2, 3, 4 and
6 where 2 resources are available). For each instance, 10 independent executions
are performed with different random seeds (this appeared to be enough as the vari-
ability of the objective value over the runs proved to be sufficiently low). For each
instance, the RPD with respect to the best known solution, the total machine com-
pletion time and the total tardiness are determined. The best known solutions are the
results obtained after running the HGA for a duration of 72 h, which is the number
at which full convergence was reached for most instances and improvements were
observed to be extremely small. The results are averaged over the executions and
reported in Table 6.

For all the instances, the solution with the lowest objective value is always found
with flexible maintenance scheduling. This is clearly reflected in the RPD, as flex-
ible maintenance scheduling always results in a lower RPD than its fixed mainte-
nance counterpart. For the vast majority of the instances, flexible maintenance
scheduling enables an improvement in terms of the total machine completion time as
well as the total tardiness, when compared to fixed maintenance scheduling. In some
cases, one of the constituents is improved at the cost of the other. Nevertheless, the
sum of both terms decreases with respect to fixed maintenance scheduling.

The instances contain a variable number of maintenance activities. It can be
hypothesized that the potential benefit of flexible maintenance scheduling increases
with the number of maintenance activities. From Table 6 it is difficult to establish
to what extent the potential benefit is related to the number of maintenance activi-
ties. Therefore, without performing any additional experiments, the instances are

 M. Geurtsen et al.

1 3

grouped according to the number of maintenance activities, which varies between 1
and 4. For each group, the average RPD is calculated in the case of fixed and flexible
maintenance scheduling. Then, for each group, the average difference between these
values is determined, as is shown in Fig. 10.

Clearly, an increasing trend is observed, i.e. the more maintenance activities, the
larger the potential improvement.

6.6 The effect of maintenance‑related constraints on performance measures

The previous experiment demonstrated the potential benefit of integrated
maintenance and production scheduling. This was done in accordance with

Table 6 Average relative proportional deviation (RPD) of the objective value and the average total
machine completion time (TMCT) and total tardiness (TT) constituents, for both fixed and flexible main-
tenance scheduling

Instance Fixed Flexible Improvement (%)

RPD TMCT TT RPD TMCT TT Δ TMCT Δ TT

1 0.186 6950.404 19.671 0.029 6941.370 17.759 0.130 9.720
2 0.205 8022.060 266.429 0.007 8013.614 258.503 0.105 2.974
3 0.732 5502.116 173.932 0.040 5492.669 144.383 0.172 16.989
4 1.377 4898.571 2419.180 0.0007 4902.117 2316.300 −0.072 4.253
5 0.232 2986.727 0.429 0.075 2979.631 2.857 0.237 −565.967
6 0.677 7679.730 2798.669 0.010 7654.057 2754.890 0.334 1.564
7 0.113 5194.831 141.586 0.040 5224.029 108.497 −0.562 23.370
8 0.278 5170.487 1648.219 0.025 5167.389 1634.149 0.060 0.854
9 0.483 4810.745 2391.869 0.001 4820.277 2347.796 −0.198 1.843
10 0.276 6199.026 277.204 0.041 6201.221 259.849 −0.035 6.261
11 0.046 6520.648 0.470 0.029 6519.978 0.014 0.010 97.021
12 0.324 7679.364 4155.068 0.035 7679.276 4121.096 0.001 0.818
13 0.578 6710.781 4264.405 0.031 6697.617 4217.836 0.196 1.092
14 0.281 7256.333 2626.895 0.044 7261.430 2598.462 −0.070 1.082
15 0.082 6135.500 743.208 0.023 6132.624 741.972 0.047 0.166
16 0.647 6024.432 884.720 0.008 6005.255 860.011 0.318 2.793
17 0.191 6978.413 1852.926 0.078 6976.237 1845.167 0.031 0.419
18 0.209 5637.955 4762.196 0.021 5632.485 4748.123 0.097 0.296
19 0.391 5882.236 707.174 0.037 5861.711 704.461 0.349 0.384
20 0.199 5311.549 112.502 0.058 5301.360 115.061 0.192 −2.275
21 0.006 6775.688 4740.624 0.002 6775.371 4740.510 0.005 0.002
22 0.094 6221.749 13.485 0.038 6221.069 10.674 0.011 20.845
23 0.090 1983.686 0.000 0.053 1982.966 0.000 0.036 0
24 0.374 2251.714 2799.280 0.0004 2250.606 2781.606 0.049 0.631
25 0.802 2026.039 383.552 0.247 2025.189 371.141 0.042 3.236
Average 0.355 5632.431 1527.348 0.039 5628.782 1508.045 0.065 1.264

1 3

Integrated maintenance and production scheduling for unrelated…

maintenance-related constraints currently in place at Nexperia. From a managerial
point of view, it is valuable to know whether the relaxation of these constraints ena-
bles further improvement in terms of the objectives. In our case study, this relaxa-
tion is possible in two ways: (i) extending the working hours of the maintenance
personnel and (ii) increasing the head count of the maintenance personnel.

In our analysis, the intervals are increased from 14 to 24 h with steps of 2 h. Note
that in the ultimate case of 24 h, maintenance personnel is always available, i.e. there
are no intervals and maintenance can be scheduled at any time during the schedule
horizon. The number of resources is varied from 1 to 4.

For each combination of constraints, as for the previous experiments, 10 inde-
pendent runs of the HGA are performed at each instance. The average TT and
TMCT over all instances and executions are shown in Fig. 11 for each combina-
tion of constraints. It is important to note that increasing the number of available
resources beyond the number of maintenance activities in an instance will not have
any effect. Hence, each point in Fig. 11 includes only those instances for which
the number of maintenance activities is higher or equal to the number of available
resources.

Clearly, relaxing either one of the two constraints results in lower objective val-
ues. The effect of increasing the number of available resources appears to be stronger
compared to stretching the working hours. The results show that significantly more

Fig. 10 The average differ-
ence in RPD between fixed and
flexible maintenance scheduling
versus the number of mainte-
nance activities

1 2 3 4
0.2

0.3

0.4

0.5

Number of maintenance activities

D
iff
er
en
ce

in
R
P
D

14 16 18 20 22 24

0.00

0.20

0.40

0.60

0.80

1.00

Maintenance interval (hours)

Im
pr
ov
em

en
t
T
T

(%
)

w = 1
w = 2
w = 3
w = 4

14 16 18 20 22 24

0.00

0.02

0.04

0.06

0.08

0.10

Maintenance interval (hours)

Im
pr
ov
em

en
t
T
M
C
T

(%
)

w = 1
w = 2
w = 3
w = 4

)b()a(

Fig. 11 TT and TMCT versus the daily working hours for various numbers of resources w. The black
cross represents the improvement obtained from the case study in Sect. 6.5 shown in Table 6

 M. Geurtsen et al.

1 3

gain can be achieved in terms of TT, compared to TMCT. Interestingly, increasing
the resources appears to have a larger effect on TT than on TMCT. A significant dif-
ference is only noticeable for TMCT in the case of four resources.

It is also interesting to see that when the working hours are relatively low, the
effect of adding an additional resource is small only for TMCT. These results pro-
vide valuable insights for managers and indicate directions for further improve-
ments. Based on this analysis, practical recommendations would be to increase the
workforce of maintenance if reducing total tardiness is the goal. Another sugges-
tion is to extend the working hours of maintenance only if the workforce is already
expanded, as only then extending the working hours will pay off. We find that a
reduction of up to 0.165% and 2.264% in total machine completion time and total
tardiness, respectively, can be realized. This is derived from adding the numbers in
Table 6 to the maximum realizable improvement from Fig. 11. In our case study,
these results can be translated to an approximate reduction of 50 h in total machine
completion time and 207 h in total tardiness for the complete factory per week,
showing the potential gain associated with relaxing the maintenance constraints in
practice. To put these numbers into perspective, 50 h of total machine completion
time corresponds to the output that can be produced by

one-third of an assembly line per produced schedule, where the scheduling hori-
zon is typically one week. Therefore, 50 h of capacity can be made available per
week. As the costs of such an assembly line are typically multiple millions of dol-
lars throughout the entire lifetime, the savings by adopting the smart maintenance
scheduling approach proposed in this work can save multiple millions of dollars in
the long run. In addition, the company considered in this use case, Nexperia, pro-
duces hundreds of billions of products per year. Without expanding in new assembly
lines, tens of millions of additional products can be produced per year. On top of
that, they can be produced with 207 h less tardiness on a weekly basis, resulting
in higher customer satisfaction and more accurate targets downstream in the supply
chain process.

7 Conclusions

Motivated from practice, this paper considers the problem of simultaneously sched-
uling resource-constrained maintenance activities and production jobs for unrelated
parallel machines. The novel elements of the problem come from the constraints
related to maintenance activities. In particular, each maintenance activity that is to
be scheduled on a machine holds a multitude of possible windows in which it can be
scheduled, and the maximum number of maintenance activities that can be sched-
uled in each of these windows is limited by a scarce shared resource. In addition,
sequence- and machine-dependent setup times, due dates and eligibility constraints
are addressed. The makespan and a weighted sum of total machine completion time
and total tardiness are considered as objectives. A Mixed Integer Linear Program-
ming (MILP) formulation is presented, and a Hybrid Generic Algorithm (HGA)
is developed to be able to solve industry-scale large instances. A real-world case
study is performed where the factory practice of a semiconductor manufacturer is

1 3

Integrated maintenance and production scheduling for unrelated…

compared to the integrated maintenance and production scheduling approach pro-
posed in this work. Experiments with real-world factory data show that the fixed-
maintenance scheduling approach of the factory can be substantially improved by
adopting flexible-maintenance scheduling with the proposed approach, and the ben-
efit grows as the number of maintenance activities increases. The benefit from flex-
ible-scheduling is also quantified as the maintenance window is stretched or when
more resources are added.

In our case study, data sets only included instances in which at most one main-
tenance activity per machine needs to be scheduled. While our HGA is capable of
scheduling multiple maintenance activities per machine, the MILP formulation has
not been designed with this property. It would be interesting to extend the MILP and
gather real-life instances such that multiple maintenance activities per machine are
scheduled. Another suggestion for future research would be to apply different solu-
tion methods on this novel integrated production and maintenance scheduling prob-
lem, and use the data set provided in this study for benchmarking purposes to seek
the algorithm characteristics that best suit this problem type. Our final suggestion
for future research concerns the setups. Although a setup does not require special-
ized personnel, it does require human effort and is usually performed by the machine
operator. However, time spent on a setup may be shortened significantly when the
operator is assisted by another operator. This is a practically relevant extension and a
challenging problem to solve.

Declarations

Conflict of interest The authors declare no conflict of interest (financial or non-financial).

 Human and animal rights The research does not involve any data collected from human participants or
experiments with animals.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Adan J (2022) A hybrid genetic algorithm for parallel machine scheduling with setup times: a compara-
tive study of metaheuristics on large problem instances. J Intell Manuf 33(7):2059–2073

Afzalirad M, Rezaeian J (2016) Resource-constrained unrelated parallel machine scheduling problem
with sequence dependent setup times, precedence constraints and machine eligibility restrictions.
Comput Ind Eng 98:40–52

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 M. Geurtsen et al.

1 3

Allahverdi A (2015) The third comprehensive survey on scheduling problems with setup times/costs. Eur
J Oper Res 246(2):345–378

Arnaout JP (2020) A worm optimization algorithm to minimize the Makespan on unrelated parallel
machines with sequence-dependent setup times. Ann Oper Res 285(1):273–293

Avalos-Rosales O, Angel-Bello F (2015) Efficient metaheuristic algorithm and re-formulations for the
unrelated parallel machine scheduling problem with sequence and machine-dependent setup times.
Int J Adv Manuf Technol 76(9):1705–1718

Avalos-Rosales O, Angel-Bello F, Álvarez A, Cardona-Valdés Y (2018) Including preventive mainte-
nance activities in an unrelated parallel machine environment with dependent setup times. Comput
Ind Eng 123:364–377

Beaton C, Diallo C, Gunn E (2016) Makespan minimization for parallel machine scheduling of semi-
resumable and non-resumable jobs with multiple availability constraints. INFOR Inform Syst Oper
Res 54(4):305–316

Bitar A, Dauzère-Pérès S, Yugma C (2021) Unrelated parallel machine scheduling with new criteria:
complexity and models. Comput Oper Res 132:105291

Chang PC, Chen SH (2011) Integrating dominance properties with genetic algorithms for parallel
machine scheduling problems with setup times. Appl Soft Comput 11(1):1263–1274

Chen YY, Huang PY, Huang CJ, Huang SQ, Chou FD (2021) Makespan minimization for scheduling on
two identical parallel machiens with flexible maintenance and nonresumable jobs. J Ind Prod Eng
38(4):271–284

Costa A, Cappadonna FA, Fichera S (2016) Total tardiness minimization in a parallel machine system
with flexible periodic maintenance. J Ind Prod Eng 33(7):485–494

Dantzig G (1948) Programming in a linear structure. Comptroller, United States Air Force, Washington
DC

Diana ROM, de Souza SR (2020) Analysis of variable neighborhood descent as a local search operator
for total weighted tardiness problem on unrelated parallel machines. Comput Oper Res 117:104886

Eroglu DY, Ozmutlu HC (2017) Solution method for a large-scale loom scheduling problem with
machine eligibility and splitting property. J Textile Inst 108(12):2154–2165

Fisher RAS, Yates F (1963) Statistical tables for biological, agricultural, and medical research (6th ed.,
rev. and enlarged ed.). Edinburgh: Oliver and Boyd

Fowler J, Horng SM, Cochran JK (2003) A hybridized genetic algorithm to solve parallel machine sched-
uling problems with sequence dependent setups. Int J Ind EngTheory Appl Pract 10(3):232–243

Gedik R, Rainwater C, Nachtmann H, Pohl EA (2016) Analysis of a parallel machine scheduling problem
with sequence dependent setup times and job availability intervals. Eur J Oper Res 251(2):640–650

Graves G, Lee C (1999) Scheduling maintenance and semiresumable jobs on a single machine. Nav Res
Logist 46(7):845–863

Gurobi Optimization 2020. Gurobi optimizer reference manual- version 9.0. http:// www. gurobi. com,
accessed 12th March 2020

Hashemian N, Diallo C, Vizvári B (2014) Makespan minimization for parallel machines scheduling with
multiple availability constraints. Ann Oper Res 213(1):173–186

Hidri L, Alqahtani K, Gazdar A, Badwelan A (2021) Integrated scheduling of tasks and preventive
maintenance periods in a parallel machine environment with single robot server. IEEE Access
9:74454–74470

Hoseinpour Z, Kheirkhah AS, Fattahi P, Taghipour M (2020) The problem solving of bi-objective hybrid
production with the possibility of production outsourcing through meta-heuristic algorithms. Man-
agement 4(2):1–17

Hoseinpour Z, Taghipour M, Beigi JH, Mahboobi M (2021) The problem solving of bi-objective hybrid
production with the possibility of production outsourcing through imperialist algorithm, NSGA-II,
GAPSO hybrid algorithms. Turkish J Compu Math Educ 12(13):8090–8111

Kaabi J, Harrath Y (2014) A survey of parallel machine scheduling under availability constraints. Int J
Comput Inform Technol 3(2):238–245

Kaabi J, Harrath Y (2019) Scheduling on uniform parallel machines with periodic unavailability con-
straints. Int J Prod Res 57(1):216–227

Kim DW, Kim KH, Jang W, Chen FF (2002) Unrelated parallel machine scheduling with setup times
using simulated annealing. Robot Comput Integr Manuf 18(3):223–231

Lee C, Chen Z (2000) Scheduling jobs and maintenance activities on parallel machines. Nav Res Logist
47:145–165

http://www.gurobi.com

1 3

Integrated maintenance and production scheduling for unrelated…

Lee JY, Kim YD, Lee TE (2018) Minimizing total tardiness on parallel machines subject to flexible
maintenance. Int J Ind Eng 25(4):472–489

Lee WC, Wang JY, Lee LY (2015) A hybrid genetic algorithm for an identical parallel-machine problem
with maintenance activity. J Oper Res Soc 66(11):1906–1918

Li G, Liu M, Sethi SP, Xu D (2017) Parallel-machine scheduling with machine-dependent maintenance
periodic recycles. Int J Prod Econ 186:1–7

Liao LW, Sheen GJ (2008) Parallel machine scheduling with machine availability and eligibility con-
straints. Eur J Oper Res 184(2):458–467

Mellouli R, Sadfi C, Chu C, Kacem I (2009) Identical parallel-machine scheduling under availability con-
straints to minimize the sum of completion times. Eur J Oper Res 197(3):1150–1165

Montgomery DC, Runger GC (2010) Applied statistics and probability for engineers. Wiley, Hoboken
Rebai M, Kacem I, Adjallah KH (2013) Scheduling jobs and maintenance activities on parallel machines.

Oper Res Int J 13(3):363–383
Santos HG, Toffolo TA, Silva CL, Van den Berghe G (2019) Analysis of stochastic local search methods

for the unrelated parallel machine scheduling problem. Int Trans Oper Res 26(2):707–724
Seif J, Dehghanimohammadabadi M, Yu AJ (2020) Integrated preventive maintenance and flow shop

scheduling under uncertainty. Flex Serv Manuf J 32(4):852–887
Soni N, Kumar T (2014) Study of various mutation operators in genetic algorithms. Int J Comput Sci

Inform Technol 5(3):4519–4521
Sun K, Li H (2010) March. Scheduling problems with multiple maintenance activities and non-preemp-

tive jobs on two identical parallel machines. Int J Prod Econ 124:151–158
Touat M, Bouzidi-Hassini S, Benbouzid-Sitayeb F, Benhamou B (2017) A hybridization of genetic algo-

rithms and fuzzy logic for the single-machine scheduling with flexible maintenance problem under
human resource constraints. Appl Softw Comput 59:556–573

Tran T, Beck J (2012) Logic-based benders decomposition for alternative resource scheduling with
sequence dependent setups. 20th European Conference on Artificial Intelligence: 774–780

Vallada E, Ruiz R (2011) A genetic algorithm for the unrelated parallel machine scheduling problem with
sequence dependent setup times. Eur J Oper Res 211(3):612–622

Wang IL, Wang YC, Chen CW (2013) Scheduling unrelated parallel machines in semiconductor manu-
facturing by problem reduction and local search heuristics. Flex Serv Manuf J 25(3):343–366

Yang D, Hung C, Hsu C (2002) Minimizing the Makespan in a single machine scheduling problem with a
flexible maintenance. J Chin Inst Ind Eng 19(1):63–66

Yang S, Ma Y, Xu D, Yang J (2011) Minimizing total completion time on a single machine with a flexible
maintenance activity. Comput Oper Res 38(4):775

Yang XS (2014) Nature-Inspired Optimization Algorithms. Elsevier, Oxford
Yoo J, Lee I (2016) Parallel machine scheduling with maintenance activities. Comput Ind Eng

101:361–371

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Michael Geurtsen is a PhD student in the Department of Operations, Planning, Accounting and Con-
trol at Eindhoven University of Technology. He received his BSc and MSc Cum Laude in Mechanical
Engineering at the Eindhoven University of Technology. Currently, he conducts research on predictive
maintenance and the integration of maintenance, production and resource planning in a semiconductor
shop-floor. His current research interests are in the area of production, maintenance and resource schedul-
ing/planning, where he aims to apply discrete event simulation, digital twins, machine learning and deep
reinforcement learning tools.

Jelle Adan is a PhD graduate from the School of Industrial Engineering at Eindhoven University of
Technology. He has extensive experience with factory automation in the semiconductor industry across
Europe and Southeast Asia. He is a co-founder of Atlas4, a forward-thinking company dedicated to the
development and implementation of data-driven optimization solutions using AI to enhance the efficiency
of manufacturing processes.

 M. Geurtsen et al.

1 3

Alp Akcay is an Associate Professor in the Department of Industrial Engineering and Innovation Sciences
at Eindhoven University of Technology. He received his Ph.D. in Operations Management and Manu-
facturing from Carnegie Mellon University. His research interests include data-driven decision making
under uncertainty with applications in semiconductor manufacturing systems and supply chains. He is
an Associate Editor for the Journal of Simulation and serves as a track chair for the “Manufacturing &
Industry 4.0 applications” track of the Winter Simulation Conference.

	Integrated maintenance and production scheduling for unrelated parallel machines with setup times
	Abstract
	1 Introduction
	2 Literature review
	2.1 Parallel machine scheduling without maintenance
	2.2 Parallel machine scheduling with maintenance
	2.2.1 Fixed maintenance schedule
	2.2.2 Flexible maintenance schedule

	3 Problem description
	4 MILP formulation
	5 Hybrid genetic algorithm
	5.1 Solution representation
	5.2 Description of the proposed HGA

	6 Case study
	6.1 Real-world problem instances
	6.2 Setting the multi-objective weights
	6.3 Calibration of the proposed HGA
	6.4 Benchmarking the proposed HGA against the MILP formulation
	6.5 Flexible versus fixed maintenance scheduling
	6.6 The effect of maintenance-related constraints on performance measures

	7 Conclusions
	References

