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Abstract
This study investigates a method for improving real-time decisions regarding the 
storage location of export containers while the containers are arriving. To manage 
the decision-making process, we propose a two module-based data-driven dynamic 
stacking strategy that facilitates stowage planning. Module 1 generates the Gaussian 
mixture model (GMM) specific to each container group for container weight classifi-
cation. Module 2 implements the data-driven dynamic stacking strategy as an online 
algorithm to determine the storage location of an arriving container in real time. 
Numerical experiments were conducted using real-life data to validate the effec-
tiveness of the proposed method compared to other alternative stacking strategies. 
These experiments revealed that the performance of the proposed method is robust, 
and therefore it can improve yard operations and container terminal competitiveness.

Keywords Container terminals · Container stacking problem (CSP) · Machine 
learning · Gaussian mixture model (GMM)

1 Introduction

With the development of container transportation, the task of efficiently managing 
scarce storage space resources in container terminals has become an important role 
for marine transport hubs. Containers arrive at the storage area randomly and are 
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stacked on the ground in the arrangement of a yard block as shown in Fig. 1. Yard 
cranes (YCs) must first handle the containers located at the top tier, and the contain-
ers already stacked are rehandled to access the target container buried beneath them. 
Thus, inefficient handling can result in excessive operational delays, which can lead 
to bottlenecks in container flows. Therefore, to improve the productivity of container 
terminals, effective methods for determining the most efficient storage location of 
the arriving containers must be employed (Zhang et al. 2003).

Container terminals handle various types of incoming containers, which can 
be classified as import or export containers depending on the vehicles that carry 
them. Import containers are discharged from vessels and loaded onto external trucks 
(ETs), whereas export containers are transported to the terminal by ETs and are 
loaded onto vessels. All of these containers are temporarily stored in the yard, and 
the goal of the storage strategy is to minimize the amount of time the vehicles that 
are to be loaded stay in the terminal. For this reason, the way the containers are 
stored depends on the characteristics of the vehicles that are to be loaded, such as 
the vehicles’ capacities and their arrival times. For example, ETs have small carry-
ing capacities and large uncertainties in arrival times depending on the traffic con-
ditions. Therefore, import containers are stacked at higher tiers, as the estimated 
retrieval times are shorter. In contrast, vessels carry large quantities of containers, 
and their arrival times are expected via berth plans. Thus, export containers are 
stored through decisions at two different levels: planning and operational (Chen and 
Lu 2012; Jiang and Jin 2017; Zhou et al. 2020; He et al. 2020a, b; Feng et al. 2021). 
At the planning level, containers are assigned to sub-blocks based on the container 
group, which is defined as a group of containers having the same departing ves-
sel, port of destination (POD), size, and type (Kim et al. 2004; Zhen 2013, 2014; 
Jiang and Jin 2017; He et al. 2020a). At the operational level, containers are stacked 
within the range of a single yard bay in consideration of the loading operation (Kim 
et al. 2000; Zhang et al. 2010, 2014a, b). In the loading operation, planners schedule 
the loading sequence with two objectives: minimizing the handling effort of quay 
cranes (QCs) and YCs, and ensuring the stability of the vessel (Kim et  al. 2000). 
Therefore, the storage configuration of export containers must be in a good shape 
to generate an efficient loading sequence. In this study, we focus on the container 

Fig. 1  Yard block configuration
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stacking problem (CSP) for export containers at the operational level in order to aid 
planners in constructing optimal load sequences.

The CSP for export containers is a real-time decision problem because incom-
plete and imperfect information is involved (Steenken et  al. 2004; Borgman et  al. 
2010; He et al. 2020b). First, as most studies assume, the time at which the contain-
ers arrive at the yard cannot be accurately predicted because the arrival times are 
dynamically updated depending on the traffic conditions. Therefore, it is difficult to 
achieve the optimal results. Second, information on the weight of the containers to 
be loaded onto the vessel is uncertain. Many studies assume that container weight 
falls within one of three classes: heavy (H), medium (M), and light (L) (Kim et al. 
2000; Zhang et al. 2010, 2014a). Some extended studies have converted the uncer-
tainty of the weight information into probabilities (Kang et  al. 2006; Zhang et  al. 
2014b). In practice, the estimated weight class can be identified as a different weight 
class when the container arrives at the terminal. Because of this, terminal opera-
tors use their experience as the basis for classifying container weights into different 
classes for each vessel. Third, the stowage instructions are not known one to two 
weeks in advance. Container ships are berthed at multiple ports along the shipping 
line, and stowage instructions vary depending on the loading operations performed 
at the previous port. For example, as shown in Fig. 2, heavier containers are required 
in section A and lighter containers are required in section B. This requires a stacking 
strategy that responds flexibly to this uncertain environment. Lastly, the YC work-
load at the time of container arrival is unknown in advance (Jiang and Jin 2017). 
Therefore, containers are dynamically allocated to multiple bays depending on the 
YC’s workload at the time of arrival, resulting in different container weight distribu-
tions in each bay.

Fig. 2  Example of a set of stowage instructions
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In this study, we propose a stacking strategy based on an online algorithm in 
which decisions are made with incomplete knowledge of the future (Karp 1992). 
Unlike an offline algorithm that yields optimal solutions with extensive computa-
tions, an online algorithm facilitates operations in dynamic environments that do not 
have ample time to compute before performing tasks. Because containers cannot be 
held after they arrive and the order in which they arrive cannot be controlled, an 
online algorithm that allocates storage locations when containers arrive at the block 
is appropriate (Murty et al. 2005).

A number of studies have employed online algorithms for the CSP (Dekker et al. 
2006; Borgman et al. 2010; Park et al. 2011; Chen and Lu 2012; Ambrosino et al. 
2013; Güven and Eliiyi 2014, 2019; He et  al. 2020b), but they do not take into 
account many practical considerations such as uncertainty of the weight, type and 
arrival timing of containers, uncertainty about the stowage instruction of the vessel, 
and the dynamic nature of YC workload according to other interconnected opera-
tions. Therefore, this study proposes a data-driven dynamic stacking strategy (DSS) 
based on an online algorithm.

The data-driven DSS consists of two modules. The first is the Gaussian mixture 
model (GMM) generation module, which clusters the container weight into several 
weight classes. The second is the DSS module based on the online algorithm to 
determine the storage location of an arriving container in real time. This module 
adjusts itself to dynamically respond to the environment.

The remainder of this paper is organized as follows. In Sect. 2, relevant literature 
on the CSP is reviewed. A detailed description of the proposed method is provided 
in Sect.  3. In Sect.  4, computational experiments are conducted and interpreted. 
Finally, the conclusions are drawn in Sect. 5.

2  Literature review

In this section, we review previous studies related to the CSP in container terminals. 
Many researchers have studied on the related problem, and we refer to Vis and De 
Koster (2003), Steenken et al. (2004), Stahlbock and Voß (2008), and Carlo et al. 
(2014) which conducted comprehensive reviews of numerous studies on the efficient 
operation of container terminals. The solutions to the CSP have been classified into 
two types: one for import containers and one for export containers. For import con-
tainers, De Castillo and Daganzo (1993) proposed two stacking strategies: a non-
segregation strategy that includes all stacks of the same size from all vessels, and 
a segregation strategy in which containers from different vessels are segregated. 
Kim and Kim (1999) implemented a segregation strategy for import containers that 
estimated the expected total number of rehandles. They presented a mathematical 
model for the relationship between the height of the stack and the number of rehan-
dles. They also considered the uncertainty in the arrival times of import containers 
for constant, periodic, and dynamic arrival rates. Kim and Kim (2002) proposed a 
cost model that determines the optimal storage space and number of transfer cranes 
for import containers. The cost model included the costs of space, transfer cranes, 
and ETs, and they illustrated the effectiveness of their deterministic and stochastic 
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models using numerical examples. Ting et al. (2010) proposed a category stacking 
strategy (also called a clustering stacking strategy) for import containers by analyz-
ing historical data. They presented a pick-up booking system that categorizes the 
containers into several groups according to the pick-up priority predicted by his-
torical data. Sauri and Martin (2011) extended the work of De Castillo and Daganzo 
(1993) and developed a segregation strategy that generates the fewest number of 
rehandles by mixing containers from different vessels. In addition, they considered 
the different probabilities of the time that elapsed before each container left the ter-
minal as a function of the time each container arrived. Ambrosino et al. (2013) mod-
eled import containers being loaded onto a train by comparing train loading policies 
(sequential, non-sequential, and partially sequential) for different stacking strategies 
(random, based on container weight, and based on container weight and commercial 
priority) in a container terminal. Maldonado et al. (2019) proposed three different 
stacking strategies based on the prediction (nominal, numerical, and nominal and 
numerical) of expected dwell times using the random forest method. They assessed 
their proposed method by applying it to two strategies (horizontal and vertical) in 
two scenarios (average and stressed).

Because the storage periods for import containers vary depending on the arrival 
time of ETs and trains, the CSP for import containers has been studied in a way 
that enables the arrival times to be predicted probabilistically. In contrast, the CSP 
for export containers considers vessel characteristics. Kim et  al. (2000) proposed 
a dynamic programming (DP) model to determine the storage locations of export 
containers based on their weights. They assumed that heavier containers should be 
loaded onto the lower tiers of a vessel to guarantee its stability. Therefore, heavier 
containers are stacked at the higher tiers of the yard block to reduce the expected 
number of rehandles. Furthermore, they developed a decision tree to support real-
time decisions. Duinkerken et al. (2001) evaluated the performance of the remain-
ing stack capacity (RSC) strategy, which considers the stack height and container 
category using various stacking strategies (random, levelling, and closest position). 
Dekker et al. (2006) proposed a category stacking strategy that allows online opti-
mization to facilitate loading operations. They used a simulation method to com-
pare random stacking with category stacking based on the number of rehandles. 
Kang et al. (2006) presented a stacking strategy for export containers with uncertain 
weight information using a simulated annealing approach to minimize the number of 
rehandles. Furthermore, they proposed an advanced stacking strategy that overcomes 
the uncertainty in container weight through machine learning techniques. Park et al. 
(2011) proposed stacking strategies to dynamically determine the stacking location 
as the operational environment changes. The proposed strategies, which were based 
on an online algorithm, were generated by evaluating the weights of the decision 
criteria during the evaluation period. Simulations were conducted for a variety of 
stacking strategies, which were demonstrated to be effective in reducing QC delays. 
Chen and Lu (2012) proposed a hybrid sequence stacking algorithm (HSSA) based 
on an online algorithm to make decisions in real time. They observed that the HSSA 
outperformed the random and vertical stacking strategies in terms of the number of 
rehandles. Zhang et al. (2010) analyzed the error of a key model transformation in 
Kim et al. (2000) and presented the correct form. Zhang et al. (2014a), which was 
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an extension of the studies by Kim et al. (2000) and Zhang et al. (2010), proposed 
two conservative models by reinterpreting the punishment coefficient for stacking 
light containers on top of stacks loaded with heavy containers. The proposed mod-
els outperformed the previous optimized models in terms of static and dynamic 
indicators. Zhang et  al. (2014b) considered adjusting the proportion of unarrived 
containers in each weight class to a non-constant proportion in the constant propor-
tion DP model proposed by Kim et al. (2000) and Zhang et al. (2010). In numerical 
experiments, they demonstrated that the proposed models with the adjusted weight 
class proportions for the remaining containers improved the stacking quality. Hu 
et  al. (2014) proposed a branch-and-bound method based on the least-cost prior-
ity queue (LCBB) to obtain an optimal solution in which the number of rehandles 
is minimized, using the HSSA proposed by Chen and Lu (2012) to calculate the 
upper bound for the LCBB. Güven and Eliiyi (2014) studied two stacking strate-
gies (random stacking and category stacking) for export containers. They considered 
container weight as another category attribute, and grouped containers with a weight 
of less than three tons into the same category. Güven and Eliiyi (2019) extended 
Güven and Eliiyi (2014) and expanded the stacking strategies to include all types 
of containers (export, transit, import, and empty containers). They compared three 
stacking strategies (random stacking, attribute-based stacking, and weight-relaxed 
stacking) through simulations. He et al. (2020b) studied stacking strategies that con-
sider the uncertainty in the arrival sequence of vessels, assuming that the weight 
information and arrival order of the containers are known. Based on the three stack-
ing rules (least reshuffle rule, lowest stack rule, and nearest stack rule), five heuristic 
algorithms were proposed according to a set of rules.

The contributions of our study in the context of the aforementioned studies are 
summarized as follows. First, this is the first study that applies predictive analyt-
ics for container weight classification to prescribe optimal decisions for the CSP. 
Most previous studies have simplified the problem by assuming three classes (light, 
medium, and heavy), and certain studies (Kang et  al. 2006; Zhang et  al. 2014b) 
have considered the weight uncertainty for each class. However, in practice, these 
assumptions are not practical because the weight is classified according to the size 
of the vessel and the range of weights of the containers to be loaded. Therefore, this 
study analyzes the historical data for container weight, and estimates the classifica-
tion model for container weight class as a GMM using a machine learning technique. 
Second, we propose a dynamic stacking strategy that considers multiple bays. To the 
best of our knowledge, most studies have focused on the CSP for a single bay, and 
the stacking strategy was applied homogeneously to each bay. However, in a real-
world environment, the proportion of containers in each weight class assigned to 
each bay is not constant. Hence, the remaining containers must respond dynamically 
to the containers that are already stacked. Therefore, this study presents a stacking 
strategy that responds to the configurations of multiple bays. Third, we develop a 
category stacking strategy to present practical alternatives that reflect real-world 
considerations. In most studies on the CSP for export containers (the exceptions 
being Dekker et al. 2006; Güven and Eliiyi 2019), the problem is defined as mini-
mizing the expected number of rehandles based on the weight class. However, heav-
ier containers are normally loaded onto lower tiers, depending on the configuration 
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of the stowage and the precise weight of the containers. The category stacking that 
clusters containers with similar weights into the same stack can facilitate stowage 
planning by providing containers of various weights on the top tier in the yard.

3  Problem description

This study aims to optimize real-time decisions regarding the precise storage loca-
tion of export containers for a given storage area while the containers are arriving. 
The storage area consists of multiple stacks in a bay, as shown in Fig.  3. In this 
study, the decision on the storage location refers to the selection of one stack in the 
storage area. In practice, the storage areas of export containers are not shared with 
those of import containers (Kim and Kim 1999; He et al. 2020b; Hu et al. 2021). 
Furthermore, each storage area designates areas for containers belonging to the 
same container group (Kim et al. 2004; Zhen 2013, 2014; Jiang and Jin 2017; He 
et al. 2020a). For these reasons, different stacking decisions are made depending on 
the container group. Therefore, we focus on stacking decisions that apply to the con-
tainers in a single container group.

The goal is to assign an arriving container to a stack in a way that conforms 
to the category stacking strategy. Category stacking for export containers aims to 
cluster containers with similar weights in the same stack. However, it is difficult to 
achieve this outcome due to the randomness of the arriving containers. The follow-
ing two aspects need to be considered to improve the stacking quality according to 
the category stacking strategy: (1) how to define the similarity in container weights 
and (2) how to define the specific location assignment rules for each storage area. 
For aspect (1), researchers have manually classified container weights into several 
weight classes with approximate weight ranges. For aspect (2), the location assign-
ment rules have been executed in the same way for all storage areas. However, pre-
dictive analytics for container weight classification and container assignment rules 
specific to dynamic storage areas can enhance the stacking strategy. In this respect, 
we propose a data-driven DSS that outperforms existing stacking strategies.

Fig. 3  Yard bay configuration
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The proposed container stacking system is divided into two modules, as shown 
in Fig. 4. Module 1 is executed in advance, and module 2 is triggered by a container 
arriving at the port. In module 1, GMM-based predictive models, which cluster the 
container weights into several weight classes for each container group, are gener-
ated. Next, once a container has arrived, the pre-selected storage area is given, and 
the weight class for the container is predicted by the GMM generated in module 1. 
In module 2, the precise storage location (i.e., stack) for the container is selected 
using the proposed dynamic stacking strategy for the given storage area. The pro-
posed stacking strategy is intended to dynamically adjust itself depending on the 
stack configuration in the storage area. A detailed description of the modules is pro-
vided in the following subsections.

3.1  Module 1: generation of GMM

In module 1, we aggregate the historical data for the container weights over the 
entire voyage for each container group, and then generate the GMM specific to each 
container group for the container weight classification. The GMM is a model that 
represents a population as a linear superposition of subpopulations, and it assumes 
that each subpopulation follows a Gaussian distribution. Because the class label 
(i.e., subpopulation) of the data point is unknown, the GMM is an unsupervised 
learning method (Figueiredo and Jain 2002). In addition, the GMM is a soft cluster-
ing method that uses probabilistic inference to explain how much a given data point 
is associated with a certain cluster (i.e., subpopulation). Due to these characteris-
tics, the GMM has been widely employed in unsupervised classification applications 
in which data tend to follow multimodal and complex distributions. In this study, 
the container weight class was defined for each cluster of the GMM. Furthermore, 

Fig. 4  Overview of the proposed container stacking system
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the probable weight class was predicted for new container input. For the detailed 
description, the following notations are introduced:

Notation

G Set of container groups, indexed by g
Kg Set of clusters (i.e., weight class) for container group g , indexed by k
x(i) Container weight of container i
g(i) Container group of container i
k(i) Probable weight class of container i
�
g

k
Mean of cluster k for container group g

Σ
g

k
Covariance of cluster k for container group g

�
g

k
Mixture weight of cluster k for container group g ; 0 ≤ �

g

k
≤ 1 and 

∑
k∈Kg

�
g

k
= 1

z
g

k
Latent indicator variable; defined as 1 if the observation data belongs to cluster k and 0 other-

wise; 
∑

k∈Kg
z
g

k
= 1 , p

(
z
g

k
= 1

)
= �

g

k

p(x|g) Marginal probability distribution of container weight x for container group g
�
(
z
g

k
|g) Posterior probability (i.e., “responsibility”) that container weight x is observed from cluster k 

for container group g ; �
(
z
g

k
|g) = p

(
z
g

k
= 1|x, g)

The GMM is parameterized by the mean �g

k
 , covariance Σg

k
 , and mixture weight 

�
g

k
 . The assignment of the unknown class label zg

k
 is considered a latent variable 

instead of a parameter. It enables the joint distribution p
(
x, z

g

k

)
 to marginalize the 

variable zg
k
 out to define the cost function independently of zg

k
 . The resulting standard 

form of the GMM is written as

To estimate the three parameters of the GMM, the objective function is to max-
imize the marginal likelihood of the data ( p(x|g) ). Because there is no analytical 
solution, a numerical method was employed for the maximum likelihood estimation. 
The most widely used method is expectation maximization (EM). The EM algo-
rithm estimates the model parameters through iterations of the expectation step (E 
step) and maximization step (M step). Given the initialized model parameters and 
the log-likelihood estimate, the E step uses the model parameters to evaluate the 
responsibility �

(
zk|g

)
 via

where Cg = 1∕
∑

k∈Kg
�
g

k
N
�
x��g

k
,Σ

g

k

�
 . Then the M step re-estimates the model 

parameters using this responsibility value. These iterations lead to the convergence 
of the model parameters, and the resulting trained GMM provides the probable 
weight class of the new container input via

(1)p(x|g) = ∑
k∈Kg

p
(
z
g

k

)
p
(
x|zg

k

)
=

∑
k∈Kg

�
g

k
N
(
x|�g

k
,Σ

g

k

)
.

(2)�
(
z
g

k
|g) = Cg × �

g

k
N
(
x|�g

k
,Σ

g

k

)
,

(3)k(i) = argmax
k∈Kg

�
(
z
g

k
|g)
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3.2  Module 2: dynamic stacking strategy

In module 2, we executed the DSS as an online algorithm to determine the storage 
location of an arriving container in real time. The overall framework of the proposed 
DSS is shown in Fig. 5. The algorithm inputs include the GMM-based prediction 
results for the weight class as well as the yard stack configuration of the pre-selected 
storage area for the arriving container. The storage location for the container is 
determined after the weight class-to-stack assignment. Both methods accommo-
date the GMM-based prediction results for the weight class obtained from module 
1. Furthermore, the weight class-to-stack assignment method adapts the adjustment 
mechanism according to the dynamic change in the stack configuration, which leads 
to the generation of the stacking strategy that is specific to the storage area.

For the weight class-to-stack assignment, conventional approaches of category 
stacking apply the assignment method homogeneously for all storage areas, and they 
remain consistent during the period in which containers are arriving. However, in 
real-world environments, the stack configuration cannot be the same for all stor-
age areas, and thus the stacking strategy must be adjusted according to the different 
stack configurations. Taking into account the limitations of conventional methods, 
we propose an improved approach to accommodate the dynamic change in the stack 
configuration of the storage areas. For the detailed description, the following nota-
tions are introduced:

Notation

Ag Set of storage areas for container group g , indexed by a
Sa Set of stacks in storage area a , indexed by s
Kas Set of weight classes designated for stack s in storage area a , indexed by k
R
g

k
Range of cumulative mixture weight values for weight class k

Ras Range of cumulative mixture weight values for stack s in storage area a
a(i) Pre-selected storage area for container i
s(i|a) Stack to be selected for container i  given storage area a
tas Remaining slot capacity (in number of containers) of stack s in storage area a
f k
as

Contribution of weight class k to Ras for k ∈ K
g
as

X
g
as List of container weights for stack s in storage area a of container group g

First, we describe the procedure for the weight class-to-stack assignment. This 
assignment satisfies a many-to-many relationship. Regarding the GMM-based 
prediction results for the weight class, we focus on the mixture weight �g

k
 , which 

Fig. 5  Framework of the proposed dynamic stacking strategy
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represents the estimated size of the weight class k . Given that the indices of the 
GMM are sorted in ascending order according to weight, the cumulative range of �g

k
 

for each weight class can be represented by

Likewise, given that the indices of the stacks are sorted, the cumulative range of 
�
g

k
 for each stack can be represented by

where Ca = 1∕
∑

s∈Sa
tas . Equation (5) calculates the coverage range for each stack 

based on the number of remaining slots, tas . For example, if the storage area consists 
of four empty stacks, the cumulative ranges Ras are set to (0, 0.25], (0.25, 0.5], (0.5, 
0.75], and (0.75, 1]. Then,

defines the weight class-to-stack assignment Kg
as such that the membership of the 

weight classes in a stack is determined by whether the elements of Rg

k
 lie in the 

specified Ras . The variable Kg
as is continuously adjusted because dynamic container 

placements change tas , which impact Ras.
Figures 6 and 7 provide an example of the adjustment mechanism in the weight 

class-to-stack assignment procedure. It is supposed that two storage areas are 
assigned containers that belong to the same container group. The number of weight 
classes is set to four for the container group, and the number of stacks is set to four 
for both storage areas. The mixture weights �g

k
 are set to 0.25 for all weight classes. 

Figure 6 shows the initialized Kg
as in which there are no differences between the stor-

age areas.
In contrast, Fig. 7 shows the adjusted Kg

as after a total of 22 containers are stacked. 
The adjustment varies depending on the storage area. We now elaborate the steps to 
derive Kg

as for storage area “A” using Eqs. (4)-(6). First, Rg

k
 is always (0, 0.25], (0.25, 

0.5], (0.5, 0.75], and (0.75, 1] for the weight classes. Second, Ras is initialized as (0, 
0.25], (0.25, 0.5], (0.5, 0.75], and (0.75, 1] for the empty storage area. After three, 
three, one, and three containers are stacked in each stack, Ras is updated as (0, 0.2], 
(0.2, 0.4], (0.4, 0.8], and (0.8, 1] for the stacks. Therefore, it is necessary to check 
whether there is an overlap between Rg

k
 and Ras . For weight class 1, the infimum 

and supremum of Rg

k
 lie in Ras for stacks 1 and 2, respectively. Accordingly, Kg

as of 

(4)R
g

k
=

⎧
⎪⎪⎨⎪⎪⎩

r ∶
�

k� ∈ Kg

k� < k

𝜋
g

k�
< r ≤

�
k� ∈ Kg

k� ≤ k

𝜋
g

k�
, r ∈ ℝ

⎫
⎪⎪⎬⎪⎪⎭

.

(5)Ras =

⎧
⎪⎪⎨⎪⎪⎩

r ∶
�

s� ∈ Sa
s� < s

Ca × tas� < r ≤
�

s� ∈ Sa
s� ≤ s

Ca × tas� , r ∈ ℝ

⎫
⎪⎪⎬⎪⎪⎭

,

(6)Kg
as
=
{
k ∶ R

g

k
∩ Ras ≠ �, k ∈ Kg

}
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weight class 1 includes stacks 1 and 2. In this way, the Kg
as of the weight classes 

are dynamically updated when the stack configuration is changed, establishing the 
stacking strategy specific to the storage area.

Next, we describe the procedure for the storage location assignment for a con-
tainer, given the weight class-to-stack assignment. Regarding the GMM-based 
prediction results for the weight class, we focus on the responsibility value 
�
(
z
g

k
|g) , which represents the probability that a container belongs to a certain 

weight class. If a single weight class is assigned to each stack (e.g., the weight 
class-to-stack assignment is 1–1, 2–2, 3–3, 4–4), as shown in Fig. 6, an effective 
strategy is to select a stack with the largest �

(
z
g

k
|g) for the corresponding weight 

Fig. 6  Illustration of an initialized weight class-to-stack assignment ( �g

k
= 0.25 ��� � = 1, 2, 3, 4)

Fig. 7  Illustration of an adjusted weight class-to-stack assignment ( �g

k
= 0.25 ��� � = 1, 2, 3, 4)
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class k . However, because multiple weight classes can be assigned to each stack, 
as shown in Fig. 7, a more sophisticated strategy that considers the contributions 
of multiple weight classes should be employed. In this context,

 defines the contribution of weight class k to Ras . Then,

where Cas = 1∕
∑

k∈K
g(i)
as

f k
as

 , indicates the proposed strategy that ensures the selection 
of a stack with the largest weighted average of �

(
z
g

k
|g) according to the normalized 

f k
as

.
Figure  8 provides an example of the storage location assignment proce-

dure, extending the example for storage area “A” in Fig.  7. In this example, f k
as

 
of stack 1 is derived as f 1

A1
= min{0.25, 0.2} − max{0, 0} = 0.2 − 0 = 0.2 for 

weight class 1. Similarly, the resulting f k
as

 of stack 2 for weight classes 1 and 
2 are f 1

A2
= 0.25 − 0.2 = 0.05 and f 2

A2
= 0.4 − 0.25 = 0.15 , respectively. Then 

the weighted averages of �
(
z
g

k
|g) are derived as f 1

A1
∕f 1

A1
× �

(
z
g

1
|g) for stack 1 and 

f 1
A2
∕
(
f 1
A2

+ f 2
A2

)
× �

(
z
g

1
|g) + f 2

A2
∕
(
f 1
A2

+ f 2
A2

)
× �

(
z
g

2
|g) for stack 2. Thus, for a new 

container input, the stack that yields the largest weighted average of �
(
z
g

k
|g) is 

selected among all the stacks in the given storage area.
The overall procedure of the DSS is described by Algorithm 1.

(7)f k
as
= min

{
supR

g

k
, supRas

}
−max

{
infR

g

k
, infRas

}

(8)s(i|a) = argmax
s∈Sa

∑
k∈K

g(i)
as

Cas × f k
as
× �

(
zk|g(i)

)
,

Fig. 8  Illustration of the storage 
location assignment procedure 
( �g

k
= 0.25 ��� � = 1, 2, 3, 4)
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4  Numerical experiments

We conducted numerical experiments to validate the data-driven DSS (also called a 
GMM-DSS), which features the GMM-based weight clustering and dynamic adjust-
ment mechanism for storage location assignment. We illustrate the improvements 
achieved by our proposed method through the experiments comparing with the 
stacking strategies that do not employ GMMs and/or dynamic adjustment mecha-
nisms. First, the input data in the numerical experiment are described. Second, as 
a result of module 1, the generated GMM to define the weight class for each test 
instance is reported. Third, the impacts of the unit number of stacks on the algo-
rithm performance are analyzed. Finally, an analysis comparing the stacking perfor-
mances of the container stacking strategies is presented. This analysis shows how 
the wealth of data can be applied in the CSP to provide valuable decision support. 
All the algorithms were coded in Python and executed on a PC with an i5-6600H 
3.3 GHz Intel Core processor and 8.0 GB of RAM.

4.1  Input data

The input data used in the numerical experiments were collected for 10 months in 
2018 from a typical container terminal in Busan, Republic of Korea. The original 
data included detailed container information, such as the time of arrival and depar-
ture, departing vessel, POD, size, type, and weight of each container. Because the 
stacking decisions are made according to the container group, the original data were 
classified into container groups with the same attributes (e.g., departing vessel, 
POD, size, and type). In addition, only 20-foot containers were used in this study. 
Subsequently, a dataset of 12 container groups was used for the analysis. Table 1 
reports the details of the selected 12 instances.

Next, we present the input data distributions over the entire voyage to check 
the justification for converting the container weights. This analysis comes from 
our assumption that the probability distribution of the container weights can be 
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made available from the historical data due to the repeated tendencies over the 
voyage. It is rarely studied in literature to handle the information on container 
weights. Only a few studies, such as Kang et al. (2006) and Zhang et al. (2014b), 
utilized the true probability distribution or portion of the weight groups assuming 
such information is given or estimated by analysis of historical data in advance.

Figure 9 shows the distribution of the container weights over the entire voy-
age for instances 4 and 7. The x-axis indicates the range of container weight uni-
formly divided by 10 classes, and the y-axis indicates the number of containers 
for each voyage which is normalized to a value between 0 and 1. In this case, the 
distribution of container weights was similar over the entire voyage of the same 
instance. This is reasonable because the composition of the export cargo tends to 

Table 1  Test instances for 
numerical experiments

Instance no Average number of 
containers for each 
voyage

Number 
of voy-
ages

Average con-
tainer weights 
(kg)

1 45 12 19,243
2 85 5 20,388
3 106 11 21,204
4 147 22 22,247
5 198 6 20,729
6 322 5 19,735
7 390 4 20,229
8 419 4 21,648
9 493 4 19,801
10 526 5 19,828
11 526 7 20,032
12 559 6 19,879

Fig. 9  Distribution of container weights over the entire voyage (Instances 4 and 7)
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be similar for each voyage. Due to the extensive data, GMM-based predictions for 
weight classes can be a powerful tool for effective category stacking in yards.

For container groups of a general type, the terminal had 19 blocks consisting of 
50 bays each, as well as 10 stacks and six tiers. The storage area for the same con-
tainer group was reserved in a unit of stacks. Because the unit number of stacks is 
usually set to 10 stacks (i.e., one bay) or five stacks, we conducted the experiments 
for both cases where the experimental results are presented in Sect. 4.5. The total 
number of storage areas was set to the minimum value required for the correspond-
ing container group. Considering the buffer storage space for rehandling operations 
that exists in practice, the maximum allowable tier for containers was limited to the 
fifth tier.

4.2  Design of experiments

For each instance in this study, we divided a training dataset for generating the 
GMM in module 1 and a test dataset for simulation. The test dataset is constructed 
by randomly selecting a voyage and collecting a corresponding list of loaded con-
tainers from the historical data of the test ship-lanes (test instances). The training 
dataset is the remainder of historical data except for the test dataset. The results of 
GMM-based clustering with the training dataset are provided in Sect. 4.3, followed 
by sensitivity and comparative analysis results.

In simulation experiments, two kinds of randomness are considered: the con-
tainer arrival sequence and assignment to a storage area. The detailed list of the to-
be-stacked containers is unknown in advance and even unpredictable in practice. 
Further, a pre-selected storage area is given because the designation of the storage 
area for an arriving container is dynamically assigned depending on the workload of 
the YC. Therefore, the container arrival sequence was made by randomly selecting a 
container list in the test dataset, and a storage area was randomly assigned to a con-
tainer in the simulations.

The stacking performance was evaluated based on category stacking, which aims 
to cluster containers with similar weights into the same stack. Therefore, we intro-
duced an evaluation function

where the standard deviation of the container weights in the stack was measured. 
The evaluation function E(g) indirectly minimizes the makespan during future load-
ing operations for a given category stacking strategy.

4.3  GMM‑based clustering for container weights

Using 12 test instances, we employed the GMM method to cluster the container 
weights into K clusters. For the training data, a set of preliminary experiments was 
conducted to investigate the appropriate value of K for each test instance, varying K 

(9)E(g) =

∑
a∈Ag

∑
s∈Sa

SD
�
X
g
as

�
∑

a∈Ag

��Sa��
,
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from 1 to 5 in steps of 1. The value of K was assigned the smallest value based on 
the Bayesian information criterion (BIC). Figure 10 shows the resulting GMM for 
the two test instances. The histogram in Fig. 10 indicates that the container weights 
exhibited a multi-peak distribution, and in both instances, it can be seen that five 
clusters are most appropriate. Figure  10 shows that GMM obtained via statistical 
modeling reasonably represents a distribution that is difficult to express as a single 
normal distribution. The results of module 1 for all the instances are presented in 
Appendix A.

4.4  Sensitivity analysis of the unit number of stacks

This section validates the performance of GMM-DSS according to the unit num-
ber of stacks. The unit number of stacks within a storage area is usually set to 10 
stacks for export containers, but it varies from terminal to terminal. For the sensitiv-
ity analysis of the unit number of stacks, ||Sa|| was set to 5, 10, 15, and 20. The GMM 
was generated using the training dataset, and then GMM-DSS was implemented 
using the test dataset. Table 2 reports the change in the average of E(g) according 
to the variation in the unit number of stacks ||Sa|| . In the case of instance 1, it was 
excluded from experiments on more than 15 stacks as the number of tested contain-
ers was less than 50. In most instances, it is observed that E(g) decreases as the unit 
number of stacks increases. These results imply that as the number of unit stacks 
increases, the weight distribution of containers may have been relatively stable and 
homogeneous over storage areas since the containers are less scattered into multiple 
storage areas. Meanwhile, Instances 3, 5, and 6 yield the minimum E(g) when the 
unit number of stacks is equivalent to 10 and 15, although the differences of E(g) 
in instances are not significant. The GMM-DSS works reliably to comply with the 
category stacking strategy, including the case of 10 stacks widely used in container 
terminals. Thus it is believed to be worth being introduced into the terminal operat-
ing system.

4.5  Comparative analysis of container stacking strategies

For comparison purposes, we implemented four alternative stacking strategies: a 
GMM-based static stacking strategy (GMM-SS), current practice, hybrid sequence 

Fig. 10  Histogram and GMM-based density curve of the container weights (Instances 7 and 11)



187

1 3

Data‑driven dynamic stacking strategy for export containers…

stacking strategy (HSSS), and a random stacking strategy (RSS). For the GMM-SS, 
the weight classes and storage locations of the containers were determined by our 
GMM-based dynamic stacking strategy (GMM-DSS), while the dynamic adjust-
ment mechanism in the weight class-to-stack assignment was ignored. For the cur-
rent practice, the weight classes were defined by dividing the container weights into 
weight classes by ‘number of stacks in a bay,’ where each weight class has equal size 
of weight range according to the historical data. In addition, the storage locations of 
the containers were determined in such a way that the stack and weight classes were 
allocated on a one-to-one basis. For the HSSS proposed by Chen and Lu (2012), 
the weight classes were defined by dividing the container weights weight classes by 
‘(number of stacks in a bay)+(number of tiers in a stack)−3. ’ Then, HSSS induces 
heavier containers to be stacked in the left upper locations and lighter containers to 
be stacked in the right lower locations. In the RSS, the containers were stacked in a 
way that filled the stack sequentially according to the arrival order without consider-
ing the container weights. All five strategies, including our proposed method, were 
executed in seconds; thus, they are suitable for an online algorithm.

We conducted a simulation to compare the proposed method to the four alter-
native strategies for two different cases where the unit of storage area is five stacks 
or 10 stacks. The resulting performance for the stacking strategies is presented in 
Tables 3 and 4 for the cases in terms of the average E(g) for 100 repetitions. For 
both cases, the proposed GMM-DSS method obtained the minimum E(g) on aver-
age for all test instances. Specifically, for the case of five stacks in Table 3, the 
GMM-DSS performed better than the GMM-SS by 6.0%. This is the result of 
the dynamic adjustment mechanism in the weight class-to-stack assignment. In 
addition, the performance of the GMM-DSS was better than the current practice, 
HSSS, and RSS by 33.1, 41.6 and 44.1%, respectively. This result implies that the 
proposed method was more effective as the data-driven approach as well as the 
dynamic adjustment mechanism was incorporated into the stacking strategy. For 

Table 2  Impact of the unit 
number of stacks on average 
E(g)

Instance no Stack × Tier (Container),AverageE(g)

5 × 5 (25) 10 × 5 (50) 15 × 5(75) 20 × 5(100)

1 647.3 426.9 – –
2 676.7 650.8 644.7 643.7
3 806.4 662.9 584.8 601.4
4 552.1 420.2 344.0 319.3
5 461.7 283.6 320.7 301.1
6 466.7 296.9 315.7 304.5
7 666.5 571.5 530.6 515.1
8 551.0 422.4 378.8 366.9
9 478.9 323.4 285.4 265.4
10 502.5 356.1 316.4 299.8
11 486.4 354.7 303.3 279.2
12 449.5 326.3 282.1 261.9
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the case of 10 stacks in Table 4, the results show that proposed method is superior 
to the other methods as in the case of five stacks. The performance of the GMM-
DSS was better than the GMM-SS, current practice, HSSS, and RSS by 8.1, 43.6, 
52.8, and 59.6%, respectively. Moreover, Fig.  11 demonstrates the robust per-
formance of our proposed method for the experimental repetitions. The current 
practice performed better on average than the HSSS and RSS, and the proposed 
GMM-DSS and GMM-SS are dominant over the current practice. Therefore, we 

Table 3  Experimental results for the test instances (the unit of storage area = five stacks)

Instance no Stacking strategy, Average E(g)

GMM-DSS GMM-SS Current Practice HSSS RSS

1 647.3 880.5 1043.5 1503.1 1726.4
2 676.7 680.1 862.9 884.7 886.9
3 806.4 870.2 1091.4 1291.0 1348.8
4 552.1 573.8 919.2 1002.5 1030.6
5 461.7 467.6 522.4 533.4 540.2
6 466.7 472.7 519.3 536.7 537.8
7 666.5 676.0 859.1 946.3 981.2
8 551.0 555.4 1089.3 1206.1 1256.4
9 478.9 504.2 813.9 940.1 975.0
10 502.5 528.2 867.5 984.9 1023.1
11 486.4 506.8 790.3 904.8 935.4
12 449.5 458.5 707.2 813.0 832.6

Table 4  Experimental results for the test instances (the unit of storage area = 10 stacks)

Instance no Stacking strategy, Average E(g)

GMM-DSS GMM-SS Current practice HSSS RSS

1 426.9 447.1 584.0 1040.8 2059.9
2 650.8 669.6 855.0 876.9 948.0
3 662.9 721.7 1060.9 1240.2 1346.3
4 420.2 566.1 765.1 977.1 1029.1
5 283.6 310.1 493.0 513.8 588.8
6 296.9 315.2 493.3 519.8 586.2
7 571.5 598.5 775.7 910.5 984.6
8 422.4 452.9 973.4 1146.1 1293.5
9 323.4 346.4 733.0 898.0 975.0
10 356.1 386.6 792.1 948.8 1021.8
11 354.7 381.0 784.3 894.9 939.8
12 326.3 347.5 729.8 829.7 852.0
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can conclude that the proposed GMM-DSS method is worth introducing in prac-
tice because it has the most reliable and best performance.

4.6  Comparative analysis according to variability

This section validates the algorithm performances according to variability in container 
weights. The proposed GMM-DSS utilizes the information on container weights from his-
torical data and creates a GMM to approximate the distribution of container weights; thus 
it should be verified whether the GMM-DSS and GMM-SS can yield robust performance 
under a certain degree of variability. To this end, container weights x(i)� for the test were ran-
domly generated as follows: x(i)

�

= min(max(x(i) + 500 × � × N(0, 1), LB(i)),UB(i))

(kg), where x(i) is a randomly selected sample data from the training dataset, � is related 
to the variability, N(0, 1) is the random generator from a standard normal distribution, and 
LB(i) and UB(i) are the lower bound and upper bound on weights of container i introduced 
to avoid extreme values. � was set to 0, 1, 2, 3, and 4. Figure 12 shows the performance 
of five stacking algorithms for the experimental repetitions under variability on container 
weights. For all the cases of σ, the proposed GMM-DSS and GMM-SS dominantly out-
perform the other algorithms in terms of E(g) . GMM-DSS slightly outperforms GMM-
SS. Furthermore, although performance degrades as variability increases, there is no sig-
nificant difference in the change compared to other algorithms. Thus, it can be concluded 
that the proposed algorithms are robust to variabilities by taking advantage of predictive 
analytics.

5  Conclusion

The goal of this paper is to introduce the wealth of data generated by the con-
tainer terminal into the methodology of determining the storage location of the 
arriving containers. We presented a two module-based DSS to manage the CSP 

Fig. 11  Box plots of experimental results for E(g) after 100 repetitions (the unit of storage area = 10 
stacks, Instances 10 and 12)
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in container terminals. In our study, the CSP was solved by a category stack-
ing strategy to facilitate stowage planning. In contrast to previous studies, the 
proposed method applies predictive analytics for container weight classifica-
tion using historical data, and container assignment to a specific storage area is 
executed dynamically to outperform the existing stacking strategies. To the best 
of our knowledge, these two main features have not been introduced in the lit-
erature before. Specifically, in module 1, we generated a container group-specific 
GMM for container weight classification. In module 2, we implemented the DSS 
as an online algorithm to determine the storage location of an arriving container 
in real time. We conducted numerical experiments to validate the effectiveness 
of the proposed method using real-life data from a typical container terminal in 
Busan, Republic of Korea. For the generality of terminal environments, two dif-
ferent cases for the reservation unit in a storage area are considered in the experi-
ments. The experimental results showed that the proposed method outperforms 
four other alternative stacking strategies (i.e., the GMM-SS, current practice, 
HSSS, and RSS). Therefore, our proposed method performs robustly and can fur-
ther improve yard operations and terminal competitiveness.

The experimental results are encouraging in that it implies that the improve-
ments in the stacking performance are related to the category stacking. The pro-
posed method is expected to achieve greater improvements in practice when data-
driven inferences can be derived from more historical data. In future research, 
our method could be extended to transshipment containers by considering the 
detailed characteristics of those operations. In addition, novel stacking strategies, 
such as the flexible space-sharing strategy and related operations such as stowage 
planning, could be integrated into our method to generate greater effectiveness in 
terminal operations.

Appendix A: The results of module 1 for the test instances

See Table 5.

Fig. 12  Results according to variability on E(g) (the unit of storage area = 10 stacks, Instances 5 and 9)
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Table 5  Parameters of GMM Instance no k �
g

k
(kg) Σ

g

k
�
g

k

1 1 5600 2.0 0.17
2 14,500 21.5 0.22
3 21,200 1.1 0.23
4 26,800 2.3 0.38

2 1 6200 5.5 0.09
2 18,500 10.8 0.21
3 22,800 0.5 0.70

3 1 7900 16.3 0.17
2 19,600 2.2 0.22
3 23,200 0.6 0.26
4 25,800 3.9 0.25
5 29,800 0.0 0.11

4 1 3400 0.2 0.05
2 16,500 35.4 0.09
3 20,300 0.1 0.05
4 22,700 0.3 0.60
5 28,000 2.5 0.21

5 1 8000 14.3 0.13
2 22,000 6.5 0.59
3 23,500 0.0 0.24
4 27,300 0.0 0.04

6 1 8000 14.3 0.13
2 22,000 6.5 0.59
3 23,500 0.0 0.24
4 27,300 0.0 0.04

7 1 5500 2.2 0.07
2 12,900 9.9 0.08
3 19,700 3.1 0.34
4 23,100 0.4 0.43
5 27,100 1.3 0.08

8 1 5900 3.1 0.07
2 11,200 3.1 0.04
3 22,000 8.3 0.66
4 27,300 0.0 0.23

9 1 7300 6.9 0.07
2 16,400 7.5 0.18
3 19,800 0.8 0.38
4 22,600 0.4 0.24
5 26,500 1.3 0.13
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