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Abstract
In this paper, we propose a new linear programming-based approach that enables 
the consideration of technical car sequencing rules in the master production sched-
uling of mixed-model assembly lines at a much higher level of detail than previous 
approaches. To this end, we investigate certain interdependencies of car sequencing 
rules, which have largely been neglected, both in practice and in the research lit-
erature. We illustrate the existence and impact of these interdependencies and show 
that they induce additional implicit constraints, which can be represented by linear 
inequalities and incorporated into linear optimization models for master production 
scheduling. In a numerical study, we evaluate the approach and show, that it can sig-
nificantly reduce sequencing violations compared to existing approaches.

Keywords  Mixed-model assembly lines · Master production scheduling · Production 
planning · Car sequencing · Sequencing rules

1  Introduction

The concept of assembly lines was originally invented by Henry Ford to efficiently 
produce a uniform product in a high volume. However, currently, the age of mass 
customization, often a multitude of product variants is concurrently manufactured 
on the same assembly line. In the automotive industry, this approach is driven to the 
extreme, allowing customers to configure billions of model variants by selecting and 
combining optional equipment (short options) (Holweg and Pil 2001). At the assem-
bly line, complex options require more assembly time than simple standard options, 
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such as the installation of an electric sunroof (Herlyn 2012), increasing the risk of 
work overloads, which at this level can only be coped with by the deployment of an 
expensive additional workforce.

Many authors have addressed the challenge of finding good production sequences, 
alternating work-intensive models with less work-intensive models to avoid over-
loads (Boysen et al. 2009b). One approach, commonly known as car sequencing and 
widely used in industrial practice, requires that among every No subsequent models 
in a production sequence, only Ho may contain a certain complex option o (Dörmer 
2012; Boysen et al. 2009b). In addition, Solnon et al. (2008) distinguished between 
hard and soft sequencing rules. Hard rules are caused by technical capacity limits 
and must be strictly followed, as violations lead to a production line standstill such 
that the facility can complete its work and thus lead to loss of output. Soft rules are 
caused by personnel resources and can be violated for a short period if more person-
nel are assigned to the corresponding facilities. In this study, we concentrate on the 
hard restrictions, which typically affect only a small subset of all available equip-
ment options (often no more than five or six of them).

Other approaches in addition to car sequencing aim to explicitly minimize the 
work overload of a production sequence (mixed-model sequencing) or optimize part 
logistics by leveling material supply (level scheduling). For more details on these 
approaches, we refer to Bautista and Cano (2008), Boysen et al. (2009b), Dörmer 
(2012), and Golle et al. (2014).

Clearly, the achievable quality of the production sequence heavily depends on the 
set of model variants, which are to be sequenced, that is, which are assigned to a 
certain shift or a certain day by the preceding planning step, the master production 
scheduling. In this planning step, the major goal is to fulfill production deadlines 
while keeping inventory costs low. Previous studies have attempted to anticipate and 
incorporate the requirements of the sequencing step (Boysen et al. 2009a) or even 
integrate the two planning steps (Doermer et al. 2013). While the former approaches 
pursue rather simple strategies, such as ensuring certain ratios of equipment options 
in the production program, the full integration leads to very complex optimization 
problems, which are difficult to solve for practically relevant problem dimensions.

In this paper, we propose an approach of the first type, which enables the con-
sideration of sequencing requirements at a much higher level of detail compared 
to previous approaches. Consequently, we focus on the car sequencing approach 
and investigate the interdependencies of car sequencing rules, which have largely 
been neglected, both in practice and in previous studies. We illustrate the existence 
and impact of these interdependencies and show that they can be represented by 
linear inequalities, which can be incorporated into linear optimization models for 
master production scheduling. Although assembly lines, in reality, may have numer-
ous manufacturing constraints, in practice, special attention is usually attributed to 
the few hard restrictions, as their violation cannot easily be mitigated. Examples of 
affected options are roof systems (sunroof, panoramic roof, cabriolet) and all-wheel 
drive. In a numerical study, we evaluate our approach and show that it can signifi-
cantly reduce the resulting violations of hard restrictions in the sequencing step.

The remainder of this paper is structured as follows. In the next section, 
we review previous studies that investigate master production scheduling with 
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anticipated or integrated sequencing. In Sect.  3, the problem setting is explained, 
and basic models for master production scheduling and sequencing are presented. 
We discuss the basic model for master production scheduling and provide a simple 
extension. Subsequently, we show by means of an illustrative example that inter-
dependencies between car sequencing rules exist and can prevent the existence of 
a feasible car sequence. In Sect.  4, we derive linear inequalities, generalize these 
findings, and derive a general approach to consider interdependencies in master pro-
duction scheduling using additional linear constraints. In Sect. 5, we evaluate novel 
approaches in a numerical study.

2 � Literature review

Despite its high relevance, only relatively few studies on master production schedul-
ing problems and their interplay with a succeeding sequencing problem have been 
conducted. One of the first model-based approaches for master production schedul-
ing was proposed by Hindi and Ploszajski (1994). They focus on the selection of 
orders from an order bank, considering the desired number of orders and the maxi-
mum acceptable level of options. For each option k, there is a fixed upper bound bk , 
which allows the planner to consider the sequencing rules.

Bolat (2003) points out that the model of Hindi and Ploszajski “greedily 
choose[s] the easy jobs and leave[s] the difficult ones for later periods” To avoid 
“cherry picking,” Bolat’s model considers the upper and lower capacity limits for 
each station. The lower limit prevents the selection of only “simple” orders with a 
few options, whereas the upper limit represents the sequencing rules. The goal of the 
model is to select a fixed number of orders for the next period and minimize the total 
cost caused by deviation from the due dates.

Ding and Tolani (2003) developed a model to schedule the production of n mod-
els in a planning horizon of m time periods to achieve level production. The authors 
assume that the demands of various models are known. They calculated the ideal 
daily total production as well as the ideal average daily production for each model 
i and minimized the square deviation. In this model, the sequencing rules for the 
model options are not considered.

Boysen (2005) and Boysen et  al. (2007, 2009a) develop a basic mixed-integer 
programming model for master scheduling (MS-B) that, like Bolat’s model, mini-
mizes total costs by deviation from the due date. As an extension, they consider T 
planning periods and assume that costs for the deviation of an order from its due 
date increase linearly in terms of time, causing inventory costs for early produc-
tion and penalty costs for late delivery. In addition, Boysen et al. (2009a) developed 
linear constraints to anticipate the sequencing objectives in the master scheduling 
for each of the three sequencing approaches, thereby allowing for better coupling 
of master scheduling and sequencing. We will discuss this approach in the case of 
car sequencing in detail below. Fliedner and Boysen (2008) presented an approach 
to solve the car sequencing problem via Branch and Bound, also incorporating the 
coupling approach.
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According to Bolat’s model, Volling (2009), and Volling and Spengler (2011) 
investigate the link between master production scheduling and order promising. 
They proposed mixed-integer linear model formulations for both planning steps. 
In master scheduling, a resource-related and period-related capacity is introduced 
as the quotient of the available working time and cycle time. To include sequenc-
ing constraints, they defined fixed upper and lower bounds on resource utilization.

Doermer et  al. (2013) presented an approach in which master production 
scheduling (MPS) and sequencing were integrated. Orders from an order bank 
are assigned not only to a period but also to a cycle within a period. The mixed-
model conditions of the sequencing were considered by restrictions. Doermer 
et  al. indicated that this optimization problem can be solved optimally within a 
reasonable time for small-sized problem instances. To solve real-life instances, an 
adapted assignment heuristic was presented.

We will show below, that even if the ratios imposed by sequencing rules are 
considered in the master scheduling step as proposed by Bolat (2003), Boysen 
(2005), and Volling (2009), it is not guaranteed that a feasible sequence exists 
in the car sequencing step. This phenomenon is caused by the interplay of the 
car sequencing rules, which leads to additional implicit constraints on car models 
featuring combinations of options. This issue is addressed only in the approach 
of Boysen et al. (2009a) by introducing an additional parameter, which enforces 
an over-fulfillment of the rule ratios. In the remainder of this paper, we will 
show that these implicit constraints can be made explicit and added to the master 
scheduling formulation in the form of linear inequalities, significantly decreasing 
the number of rule violations in the car sequencing step.

3 � Problem setting, basic modeling, and an illustrative example

Most automotive OEMs pursue a build-to-order production strategy accompanied 
by an order-driven planning process (ODP) to match the supply of resources and 
given capacities with highly variable product demand (Meyr 2004; Volling and 
Spengler 2011). In this study, we took a short-term planning perspective, that is, 
we assumed that production capacities and shift plans are given as a result of a 
mid-term aggregate production planning step (Sillekens et  al. 2011). In the fol-
lowing section, we briefly describe and formalize the parts of the ODP process, 
which are relevant for our investigation.

3.1 � Master production scheduling

We present two approaches for the basic modeling of master production schedul-
ing. The basic model (MPS) from existing studies, and an approach with a small 
modification to improve the anticipation of sequencing rules (MPS+).
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3.1.1 � Basic model (MPS)

Within the ODP, first, delivery dates for individual customer requests are determined 
in a real-time order promising (OP) process, considering lead times, sales quotas, and 
available capacities, and communicated to the customer. If the customer accepts the 
offer, a production order associated with a production due date is added to the order 
bank. The main purpose of MPS in the automotive context is to assign individual cus-
tomer orders to production periods, such that the capacity constraints are met and the 
violation of due dates and the incurring of inventory costs are prevented.

In this study, we formalize the MPS along the lines of Boysen et al. (2009a). A com-
plete list of all the symbols used in this study is given in Appendix 1. We divide the 
planning horizon into T production shifts to which N (i = 1,… ,N) production orders 
are to be assigned, which are associated with due dates Li and characterized by a sub-
set of a set O of equipment options. Deviating from the formulation in Boysen et al. 
(2009a), we use an additional period T + 1 to capture orders, which cannot be assigned 
within the planning horizon because of the violation of constraints. The system capac-
ity for each period is limited by P cycles. The cost coefficients cit account for inventory 
holding costs in the case of early and penalty costs in the case of late production with 
respect to the due date Li of an order i . We elaborate on the details of the calculation of 
these coefficients in Sect. 5.

According to Boysen et al. (2009a) and using the notation given in Table 1, we can 
model the MPS planning task as the following binary linear programming problem:

subject to

(1)Minimize z1 =

N∑
i=1

T+1∑
t=1

cit ⋅ xit

(2)
T+1∑
t=1

xit = 1 ∀ i = 1,… ,N

Table 1   Notation for the master production scheduling model (MPS)

N Set of orders with i ∈ N

O Set of options with o ∈ O

T Number of production periods (shifts) with t = 1,… ,T + 1

cit Cost coefficient for order i  , if order i  is assigned to period t
dio Binary parameter: 1, if order i requires option o; 0, otherwise
Ho ∶ No Sequencing rule: at most Ho out of No successively sequenced 

copies may require option o
� Weighting factor—limitation of the utilization rate
P Number of cycles per period
xit Binary variable: 1, if order i  is assigned to period t; 0, otherwise
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The objective function (1) minimizes the total deviation and inventory holding costs. 
Constraint set (2) ensures that each order is assigned to exactly one planning period. 
For each period, the sum of the assigned orders may not exceed the number of avail-
able production cycles, P (3).

As mentioned above, Boysen et al. (2009a) proposed an extension of their formu-
lation to anticipate the sequencing rules by controlling the demand for option occur-
rences by adding the following set of constraints:

In this constraint set, the number of option occurrences per planning period is lim-
ited by the quotient of Ho and No times the available production cycles P controlled 
by a weighting factor � . Boysen et al. (2009a) indicated that the weighting factor � 
determines whether the resulting car sequencing problem can be solved without vio-
lations, and proposed an approach to set � appropriately by lower-bound computa-
tions (Fliedner and Boysen 2008). However, there is no exact approach to determine 
� . Furthermore, � is a constant value that applies to all options in the same man-
ner. This means that all options are equally weighted to improve the results of the 
car sequencing problem. In addition, � directly influences the utilization of the sta-
tion at which option o is installed. As � decreases, the utilization of this station also 
decreases. However, the goal of a decision-maker should be to utilize all resources 
to their maximum capacity ( � = 1) without violating sequencing rules.

3.1.2 � A model variant with improved anticipation (MPS+)

Another major issue of Inequality (5) is that the maximum installation rate on the 
right-hand side depends on the production capacity instead of the actual number of 
orders assigned to a period. Assuming the logistic problems of an option o led to the 
fact that this option could not be installed for a while, the percentage of this option 
in the order pool is now higher than the installation rate. Consider the following 
example: Assume an order pool with 100 orders and two periods with production 
capacities P = 50 . Owing to the logistic problems of an option o, the percentage 
of orders in the order pool featuring this option is assumed to be 60%, that is, 60 
orders. A sequencing rule of 1:2 is imposed on this option, which implies a maximal 
installation rate of 50%. The optimization model will schedule as many orders as 
possible while respecting Inequality (5), because the unscheduled orders (in period 
T + 1 ) cause the highest deviation costs. Owing to (5), a maximum of 25 orders with 
option o can be scheduled per period. This results in 50 orders for period one, and 
25 of them with option o. According to (5), only 25 of the remaining 35 orders with 

(3)
N∑
i=1

xit ≤ P ∀ t = 1,… , T

(4)xit ∈ {0, 1} ∀ i = 1,… ,N; t = 1,… , T + 1

(5)
N∑
i=1

dio ⋅ xit ≤ � ⋅

Ho

No

⋅ P ∀ o ∈ O; t = 1,… , T
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option o can be scheduled in period two. Thus, 40 orders are scheduled in period 
two, among which 25 with option o and 15 without option o. Ten orders with option 
o remain in the order pool. The actual installation rate of option o in period two is 
therefore 25∕40 = 62.5% , which inevitably leads to violations of the sequencing rule.

Thus, to better anticipate the sequencing rules in each period, it is necessary to 
consider the installation rate as a function of the total sum of orders in each period. 
Therefore, we suggest replacing the production capacity P with the number of 
scheduled orders:

In our example, the new Inequality (6) results in period one still scheduling 50 
orders and 25 of them with option o, and in period two, 30 orders and 15 of them 
with option x. In both periods, the installation rate of option o is 50% and can there-
fore, be sequenced without violations. This leaves 20 orders with option o in the 
order pool that cannot be scheduled.

We refer to model (1)–(5) originally suggested by Boysen et  al. (2009a) as the 
MPS approach and to our modified model (1)–(4) plus (6) as the MPS+ approach. 
A comparison and discussion of these two approaches are provided in the numerical 
studies.

3.2 � Car sequencing

After the orders for individual car models are assigned to production shifts, a pro-
duction sequence must be determined, which prevents work overload at the stations 
of the assembly line. Because each car model is characterized by an individual com-
bination of equipment options, the workload at the workstations usually varies from 
model to model. Typically, work overload occurs when several models with high 
workloads at a specific station (e.g., caused by the installation of a sunroof) directly 
follow each other in the production sequence. Work overload can require costly 
counter-actions, such as line stoppages (Boysen et al. 2009a; Wild 1972).

In this paper, we focus on the car sequencing approach, which is still of major 
relevance in the automotive industry (cf., e.g., Fliedner and Boysen 2008). A set 
of sequencing rules of type Ho ∶ No is imposed, ensuring that in the production 
sequence, out of No successive models, only Ho may contain option o.

To formalize the approach, we use a formulation as an optimization model, 
which is based on Boysen et al. (2009b). In this formulation, the planning horizon is 
divided into TS production cycles (with t = 1,… , TS ), where TS coincides with the 
number of orders that are assigned to the shift for which the production sequence 
is to be generated. In the traditional statement of the car sequencing model, viola-
tions of car sequencing rules are allowed; however, their number is minimized in the 
objective function. We list the notations used in the following model formulation in 
Table 2.

(6)
N∑
i=1

dio ⋅ xit ≤ � ⋅

Ho

No

⋅

N∑
i=1

xit ∀ o ∈ O; t = 1,… , T
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Objective function (7) minimizes the number of total sequencing rule violations. 
Constraint sets (8) and (9) ensure that each model is assigned to exactly one cycle 
and that, for each individual model m ∈ M , a demand dm is met. Sequencing rules 
of type Ho ∶ No are considered in the constraint set (10). The binary coefficient amo 
indicates whether model m contains option o.

3.3 � An illustrative example of the interdependency of car sequencing rules

In this section, we demonstrate using an example that even if we limit option 
occurrences in the master production schedule according to the car sequencing 
rules, we cannot guarantee the existence of a feasible sequence in the car sequenc-
ing problem. Assume a set of orders consisting of models with up to two options, 
A and B. The sequencing rule for option A is defined as 1 ∶ 2 = 50% and for option 

(7)Minimizez2 =
∑
m∈M

TS∑
t=1

zot

(8)
∑
m∈M

xmt = 1 ∀ t = 1,… , TS

(9)
TS∑
t=1

xmt = dm ∀m ∈ M

(10)

∑
m∈M

min
{
t+No−1;T

S
}

∑
t�=t

amo ∗ xmt� −

(
1 −

∑
m∈M

amo ∗ xmt

)
∗ BI ≤ Ho + BI ∗ zot ∀ o ∈ O;∀ t = 1,… , T

S

(11)xmt ∈ {0, 1} ∀m ∈ M; t = 1,… , T + 1

(12)zot ∈ {0, 1} ∀o ∈ O; t = 1,… , T + 1

Table 2   Notation for the car sequencing model

M Set of models with m ∈ M

TS Number of production cycles with t = 1,… ,TS

O Set of options with o ∈ O

amo Binary coefficient; 1, if model m contains option o; 0, otherwise
dm Demand for copies of model m
Ho ∶ No Sequencing rule: at most Ho out of No successively sequenced copies may require option o
BI Big number
xmt Binary variable: 1, if model m is produced in cycle t; 0, otherwise
zot Binary variable: 1, if a rule with respect to option o is violated in cycle t; 0, otherwise
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B as 1 ∶ 5 = 20% . Figure  1 shows the sequence in which orders with options A 
and B are ideally scheduled according to the sequencing rules. Row one displays 
the cycle number, rows two and three indicate whether the car model in this cycle 
contains options A and/or B, respectively, and line four shows the resulting model 
sequence. We have four possible combinations of the two options in the result-
ing sequence: option A only, option B only, both options AB or none of the two. 
The resulting sequence is characterized by an installation rate of 50%, 20%, and 
10% for options A, B, and AB, respectively. We call this sequence ideal because 
the option-specific ratios Ho ∶ No prescribed by the sequencing rules are exactly 
matched by the resulting production sequence. In the remainder of this paper, we 
will denote the installation rates of options and combinations of options by �o…o�.

A sequence can always be completed by repetition when the state from cycle one 
reoccurs. As shown in Fig. 1, the sequence could therefore be cut off after cycle ten.

Assuming the production schedule contains 15% AB and we want to sequence as 
many models with option B as possible, to improve the installation rate of AB, in 
Fig. 2, a model that features only option B is replaced by a model featuring the com-
bination AB in cycle six. Thus, no model with option A can be scheduled in cycles 
five and seven without violating the sequencing rule for option A.

As a result, the upper bound Ho ∶ No is met by option B, but no more than 45% 
of the models with option A can be sequenced. Consequently, no feasible model 
sequences exist for any production programs with a share of 15% of models featur-
ing options A and B and more than 45% of models including option A. However, 
such production programs can easily be generated by the master production schedul-
ing, even if the option occurrences are considered by upper bounds Ho ∶ No.

This example illustrates that a fixed share of models featuring a combination of 
both options can impose implicit limits on the maximum installation rates of the 
two individual options, which fall below the levels induced by the sequencing rules. 
Hence, even if the rule-specific ratios are met by the master production schedule, 
a feasible car sequence may not exist. To ensure that a sequence can be generated 
from the production plan without violating the sequencing rules, master production 
scheduling must consider these implicit limits.

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Option A A A A A A A A A A A

Option B B B B B

Sequence AB A A B A A AB A A B A A

Fig. 1   Ideal sequence of two options, A and B

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Option A A A A A A A A A A

Option B B B B B

Sequence AB A AB A AB A A B A A

Fig. 2   Sequence of two options A and B with 15% AB
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4 � Linear inequalities for implicit constraints imposed by two options

We now derive linear inequalities, which represent the implicit limits imposed on 
the installation rates of options and combinations of options based on the interde-
pendencies of the sequencing rules.

We consider a production program consisting only of models featuring up to two 
options, A and B, with car sequencing rules Ho ∶ No . In this section, we consider the 
case Ho = 1 , because this constellation is most prevalent in car sequencing rules in 
both theory and practice (Solnon et al. 2008). In Sect. 4.4, we generalize our find-
ings. We denote the minimal distance between two models featuring the same option 
o as the ratio of No and Ho:

First, we formalize the construction of an ideal production sequence. Accordingly, 
we assume that both options A and B are scheduled starting at cycle one and each 
qA∕qB cycle. As in cycle one, all uAB cycle orders contain A and B with

where LCM denotes the least common multiple.
In Fig.  3, the vertical lines in the first and second row indicate that the model 

scheduled in this cycle features options A and B, respectively. If both options are 
scheduled in the same cycle, the dotted line between them indicates this. The result-
ing sequence in Fig. 3 is called the ideal sequence, because options A and B can be 
scheduled without a loss with respect to their car sequencing rules.

If uAB equals qB , then qB is a multiple of qA (cf. Fig. 4). Assuming that we start 
with options A and B in cycle one. Then, we can schedule both options every qB 
cycle, and the ideal sequence does not contain any model that features option B 
only. Assuming the model in cycle one features either option A or option B. Here, 
the ideal sequence does not contain any model that features both options. By 

(13)qo =
No

Ho

(14)uAB = LCM
(
qA, qB

)
,

Fig. 3   Ideal sequence of two 
options with the average dis-
tances qA and qB
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combining these two subsequences, any proportion of the combination of options 
A and B can be sequenced. The loss of one of the two options always occurs 
when changing from one subsequence to another.

In an infinite sequence with few changes between the subsequences, this spe-
cial case leads to a negligible loss. To exclude the special case of uAB = qB for 
further research, we assume

Under this assumption, we now show that deviations from the ideal installation 
rate �AB of the combination of options A and B can implicitly reduce the maximum 
individual installation rates �A and �B of options A and B to levels below the ratios 
HA∕NA and HB∕NB , respectively.

Typically, when we deviate from the ideal installation rate �AB , we can either 
prefer the installation of option A or the installation of option B. Therefore, we 
first investigate the two extreme cases, in which we always prefer the same type 
of option. Subsequently, we consolidate the obtained results and derive gen-
eral dynamic limits representing the implicit interdependencies induced by the 
sequencing rules in the form of linear inequalities.

4.1 � Prefer option B over option A

We start with the case in which the more demanding option B is preferred, that is, 
we attempt to design a sequence that contains as many models featuring option B as 
possible, given a fixed share of AB-type models. As demonstrated in the illustrative 
example above, under these assumptions, the maximal installation rate of option A 
depends on the share of AB-type models in the production program. We derive the 
maximal installation rate of A for three distinctive installation rates of AB, which 
is then used in developing a representation as a piece-wise linear function. We start 
with the case in which none of the produced models features both options A and B.

(15)1 < qA < qB < uAB

Fig. 4   Sequence of two options with qB equals uAB
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Proposition 1  Under the assumption that option B is preferred and that �AB = 0 , the 
installation rate of A is limited by

where

Hence, �A,B represents the minimum number of cycles until options A and B would 
have to be sequenced in the same cycle, assuming that A is sequenced from cycle 
two every qA cycle and B is sequenced from cycle one every qB cycle.

Proof  According to its sequencing rule, starting in cycle 1, we can schedule option 
B at maximum every qB cycle, resulting in an upper bound on the installation rate of 
B, which is independent of the installation rates of A and the combination AB:

To determine the maximum installation rate of option A, our goal is to install 
option A in as many cycles as possible while avoiding those cycles in which option 
B is already scheduled ( �AB = 0 ). The resulting sequence is illustrated in Fig.  5. 
Because option B is scheduled in cycle one, we can only start scheduling option 
A in cycle two. Thus, we can schedule option A every qA cycle until it falls again 
together with option B. This is the case after �A,B cycles.

This subsequence can be repeated until the maximum number of cycles TS is 
reached, resulting in a loss of one cycle per �A,B cycles for option A. Thus, in a sub-
sequence of �A,B − 1 cycles, we sequence option A every qA cycle, such that the 
number of assigned options is �A,B−1

qA
 . If we divide this by the number of cycles in the 

subsequence, we obtain the maximum installation rate of A:

(16)�A ≤
�A,B − 1

�A,B ∗ qA
.

(17)�A,B = min
tA,tB∈{1..TS}

{
tBqB|tBqB = 1 + tAqA

}
.

(18)�B ≤
1

qB

Fig. 5   Subsequence �A,B
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	�  □
As the installation rate of combinations AB increases from zero, we can shift the 

schedule of option A by one cycle to the left in an increasing number of subse-
quences, as shown in Fig. 5 until we reach the ideal sequence (Fig. 3). In the ideal 
sequence, we have �AB = 1∕uAB

 and �A = 1∕qA
.

The installation rate of AB can increase to a maximum of the installation rate of 
B because the sequencing rule for B also applies to AB.

Proposition 2  Under the assumption that option B is preferred and that �AB = 1∕qB
 , 

the installation rate of A is limited by

Proof  In this scenario, as shown in Fig. 6, a subsequence is qB cycles long. As seen 

in this subsequence, option A can be scheduled at most 
⌊
qB

qA

⌋
 times, which leads to a 

maximal installation rate of

	�  □
Because the subsequences discussed in Propositions 1 and 2 and the ideal 

sequence can be arbitrarily combined, linear relationships are applied between the 
three extreme scenarios. The linear interdependencies between the maximal installa-
tion rate of option A and the installation rate of combination AB is shown in Fig. 7.

The findings of this subsection are summarized in the following proposition.

(19)�A ≤

�A,B−1

qA

�A,B

=
�A,B − 1

�A,B ∗ qA

(20)�A ≤

⌊
qB

qA

⌋
∗

1

qB
.

(21)
�A ≤

⌊
qB

qA

⌋

qB
=

⌊
qB

qA

⌋
∗

1

qB
.

Fig. 6   Subsequence for the 
maximum installation rate of 
AB (prefer B)
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Proposition 3  Under the assumption that option B is preferred, the installation rate 
of option A is constrained by the following linear inequalities:

with gradients

Proof  From the results of Propositions 1 and 2 and Fig. 7 it is easy to see that the 
gradients mA,AB,1 and mA,AB,2 can be calculated as follows:

(22)𝜎A ≤
𝛼A,B − 1

𝛼A,B ∗ qA
+ mA,AB,1 ∗ 𝜎AB if 0 ≤ 𝜎AB <

1

uAB
and

(23)�A ≤

(
−mA,AB,2 ∗

1

uAB
+

1

qA

)
+ mA,AB,2 ∗ �AB if

1

uAB
≤ �AB ≤

1

qB
.

mA,AB,1 =
uAB

�A,B ∗ qA
and mA,AB,2 =

uAB

(
qB

qA
−

⌊
qB

qA

⌋)

qB − uAB
.

(24)mA,AB,1 =

�A,B − 1

�A,B ∗ qA

−
1

qA

0 −
1

uAB

=
uAB

�A,B ∗ qA

Fig. 7   Maximum installation rate of option A as a function of the installation rate of the combination AB 
(prefer B)
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	�  □

4.2 � Prefer option A over option B

We proceed with the case in which the less demanding option A is preferred, that is, 
we attempt to design a sequence that contains as many models featuring option A as 
possible, given a fixed share of AB-type models. Similarly, we derive a set of linear 
inequalities, which limit the installation rates of options A and B depending on the 
installation rate of the combination AB. As mentioned above, we derive limits for a 
set of distinct values for �AB , which can then be combined linearly. We start with the 
case where �AB = 0.

Proposition 4  Under the assumption that option A is preferred and that �AB = 0 , the 
installation rate of B is limited by

where

Proof  The proof is analogous to the proof of Proposition 1.
	�  □

Similarly, we can increase the installation rate for AB from zero up to one 
order per uAB cycle by shifting the schedule of option B by one cycle to the left 
in an increasing number of subsequences underlying Proposition 4, until the ideal 
sequence is reached.

Assuming that option A is installed in every qA-th cycle, the installation rate of 
AB can be further increased until the scenario in Fig. 8 is reached. Every model fea-
turing option B also includes option A; however, compared to the ideal sequence, 
the scheduling of option B is delayed for a couple of cycles, resulting in a reduced 

installation rate �B . At this point, option B can be installed in every 
(⌊

qB

qA

⌋
+ 1

)
∗ qA 

cycle. Hence, the installation rate of both B and AB is the reciprocal of this value.
A further increase in the installation rate of AB can only be achieved at the 

cost of a reduced installation rate of A, resulting in fewer A and more B being 

(25)
mA,AB,2 =

1

qA

−

⌊
qB

qA

⌋

qB

1

uAB

−
1

qB

=

qB

qA

−

⌊
qB

qA

⌋

qB − uAB

uAB

(26)�B ≤
�B,A − 1

�B,A ∗ qB
.

(27)�B,A = min
tA,tB∈{1..TS}

{
tAqA|tAqA = 1 + tBqB

}
.
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installed until the subsequences in Fig. 6 are reached. Figure 9 shows the installa-
tion rates of options A and B depending on the installation rate of AB, and Propo-
sition 5 summarizes these findings in the form of linear inequalities.

Proposition 5  Under the assumption that option A is preferred over option B, the 
installation rates of options A and B are limited in the following way based on the 
installation rate of AB.

If 0 ≤ �AB ≤
1

uAB
:

If 1

uAB
< 𝜎AB ≤

1

⎛⎜⎜⎝

�
qB

qA

�
+1

⎞⎟⎟⎠
⋅qA

:

(28)�A ≤
1

qA

(29)�B ≤
�B,A − 1

�B,A ⋅ qB
+ mB,AB,1 ⋅ �AB

Fig. 8   Subsequence for the 
maximum installation rate of 
AB (Prefer A)

Fig. 9   Option A and B as a function of AB (Prefer A)
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If 1

⎛
⎜⎜⎝

�
qB

qA

�
+1

⎞
⎟⎟⎠
⋅qA

< 𝜎AB ≤
1

qB
:

with gradients

Proof  The inequalities and gradients can be directly concluded from Fig. 9.

(30)�A ≤
1

qA

(31)�B ≤

(
−mB,AB,2 ⋅

1

uAB

+
1

qB

)
+ mB,AB,2 ⋅ �AB

(32)�A ≤

(
−mA,AB,3 ⋅

1

qB
+

⌊
qB

qA

⌋
⋅

1

qB

)
+ mA,AB,3 ⋅ �AB

(33)�B ≤

(
−1 ⋅

1

qB
+

1

qB

)
+ 1 ⋅ �AB = �AB

(34)
mA,AB,3 =

1

qA

−

⌊
qB

qA

⌋
⋅

1

qB

1(⌊
qB
qA

⌋
+ 1

)
⋅ qA

−
1

qB

(35)mB,AB,1 =

�B,A − 1

�B,A ⋅ qB

−
1

qB

0 −
1

uAB

=
uAB

�B,A ⋅ qB

(36)
mB,AB,2 =

1

qB

−
1
(⌊

qB

qA

⌋
+ 1

)
⋅ qA

1

uAB

−
1(⌊

qB

qA

⌋
+ 1

)
⋅ qA

(37)mB,AB,3 =

1(⌊
qB

qA

⌋
+ 1

)
⋅ qA

−
1

qB

1(⌊
qB
qA

⌋
+ 1

)
⋅ qA

−
1

qB

= 1
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	�  □

4.3 � Prefer no attribute

Clearly, in master production scheduling, we do not know a priori whether and to 
what extent we prefer the installation of one of the equipment options. Next, we uti-
lize the findings from the preceding subsections to derive generally valid inequali-
ties, which represent the interdependencies of the installation rates. These findings 
are summarized in Fig.  10. The shaded region represents the solution space in a 
general case. We cast our results into the following two propositions.

Proposition 6  If we have for the installation rate �AB of the combination AB that 
0 ≤ �AB ≤

1

uAB
 , then the installation rates of options A and B are limited by the fol-

lowing inequalities:

with

Proof  We start by investigating the case where no combination AB is installed at all, 
that is, �AB = 0 . As shown in Fig. 10, we can install either option A at a rate of 1

qA
 

(38)�A ≤
1

qA

(39)�A ≤

(
−mA,B,1 ⋅

1

qB
+

�A,B − 1

�A,B ∗ qA

)
+ mA,B,1 ⋅ �B + mA,AB,1 ⋅ �AB

(40)�B ≤
1

qB

(41)mA,B,1 = −
mA,AB,1

mB,AB,1

Fig. 10   Attribute A and B as a function of AB (Prefer no attribute)
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and option B at a rate of �B,A−1
�B,A⋅qB

 (preferring option A) or A at a rate of �A,B−1
�A,B⋅qA

 and B at a 
rate of 1

qB
 (preferring option B), or we can trade off A against B (combining the cor-

responding subsequences). Figure 11 shows the installation rate of A as a function 
of the installation rate of B in this situation. From this diagram, we can directly 
derive the gradient mA,B,1 of the trade-off.

When �AB increases from zero, the linear trade-off function moves upward until 
the ideal sequence is reached with �AB =

1

uAB
 , �A =

1

qA
, and �B =

1

qB
 . From Proposi-

tion 3 (Eq. (22)), we can conclude that the gradient used to move the trade-off func-
tion is mA,AB,1 and obtain Inequality (42).

	�  □

Proposition 7  If we have for the installation rate �AB of the combination AB that 
1

uAB
≤ �AB ≤

1

qB
 , then the installation rates of options A and B are limited by the fol-

lowing inequalities:

with

(42)mA,B,1 =

1

qA
−

�A,B−1

�A,B⋅qA

�B,A−1

�B,A⋅qB
−

1

qB

= −
�B,A ⋅ qB

�A,B ⋅ qA
= −

mA,AB,1

mB,AB,1

(43)�A ≤

(
1

qA
− mA,B,2 ⋅

1

qB
− mA,AB,2 ⋅

1

uAB

)
+ mA,B,2 ⋅ �B + mA,AB,2 ⋅ �AB

(44)�A ≤

(
qB

qA
⋅

1

qB
− mA,AB,3 ⋅

1

qB

)
+ mA,AB,3 ⋅ �AB

Fig. 11   The installation rate of A 
(
�A

)
 as a function of the installation rate of B 

(
�B

)
 given that �AB ≤

1

uAB

 
or �AB ≥

1

uAB
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and inequalities (38) and (40)

Proof  When the installation rate of AB exceeds 1

uAB
 , a choice between A and B must 

be made. The trade-off function limiting the installation rate of A in dependency of 
B moves downwards until AB is sequenced once per qB cycle, as shown in Fig. 11. 
From Proposition 3 and Inequality (23), the gradient used to move the function is 
mA,AB,2 yielding Inequality (43).

In addition, we can conclude from Proposition 5 and Inequality (32) that the 
upper bound on �A moves downwards with the gradient mA,AB,3 as soon as �AB is 
greater than 1

⎛⎜⎜⎝

�
qB

qA

�
+1

⎞⎟⎟⎠
⋅qA

 yielding Inequality (44).

	�  □

We can summarize the following: in case no preferences are given the implicit 
limits on the installation rates caused by the interdependencies of the sequencing 
rules are described by the inequalities (38)–(40) and (43)–(44).

4.4 � Generalization

In the previous sections, we devised implicit constraints when considering two 
options with HO = 1 . In practice, it is necessary to consider more than two options, 
and options with HO > 1 . Therefore, we generalize the inequalities and present the 
modifications of the basic MPS model.

While possible, in principle, the derivation of implicit constraints becomes 
increasingly complicated for more than two options. In this study, we do not pursue 
this direction further; however, it was left for future research. Instead, in cases of 
more than two options, we generate implicit constraints for all possible pairs of 
options and add them to the basic MPS model (Sect. 4.5). The more pairs and inter-
dependencies are included, the better the sequencing can be anticipated. For 
instance, for three options (A, B, and C), restrictions for three pairs can be generated 
(A-B with AB, A-C with AC, and B-C with BC). The restrictions for A-B with AB 
means the proportion of AB is set in each period such that A and B are scheduled as 
often as possible (ideally �AB =

1

uAB
 , see Fig.  10). We also call these restrictions 

Level-2 restrictions because the number of options in the considered combination is 
exactly two. We can define Level-3 restrictions as well, for example, for A-C with 
ABC. These determine the proportion of the car model ABC, such that, in this 
example, A and C can be optimally scheduled.

For each pair of two options A and B, five parameters need to be determined to 
construct the additional constraints for the MPS model; qA , qB , uAB , �A,B, and �B,A . qA 
and qB describe the minimum distance between two orders (Eq. (13)) and can easily 
be determined by

(45)mA,B,2 = −
mA,AB,2

mB,AB,2
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For level-2 restrictions, the parameter uAB defines the ideal distance between two 
orders containing options A and B (Eq. (14)) and with

where LCM denotes the least common multiple. Analogously, for level-3 restric-
tions, the ideal distance between orders containing A, B, and C is given by:

The parameter �A,B , inserted in Inequality (16), determines the maximum instal-
lation rate �A for option A if the installation rate �AB for AB is zero and option B is 
preferred (analogous to parameter �B,A ). For options o with Ho = 1 , the value of the 
parameter can easily be determined using Eq. (17).

For the case of Ho > 1 for at least one of the considered options, the determi-
nation of �A,B and �B,A is more challenging, because Ho options can be sequenced 
arbitrarily in No cycles, thus providing more flexibility. We address this problem by 
devising and solving a specially tailored sequencing problem to directly determine 
the maximum installation rates �A and �B and then use Inequality (16) to deduce val-
ues for �A,B and �B,A . The procedure is described in detail in Appendix 2.

4.5 � Modifications to the MPS model

After determining all parameters, we can incorporate the inequalities derived in 
Propositions 6 and 7 into the MPS model formulation (1)–(4). We start by trans-
forming Inequalities (38) and (40) by replacing the installation rate �o for a certain 
option o with the quotient of the number of orders containing this option and the 
total number of orders:which results after multiplying with the denominator of the 
left-hand term in the following set of linear constraints for all options and periods:

(46)qA =
NA

HA

(47)qB =
NB

HB

(48)uAB =
LCM

(
NA,NB

)
HA ⋅ HB

(49)uAB =
LCM

(
NA,NB,NC

)
HA ⋅ HB ⋅ HC

∑N

i=1
dio ⋅ xit∑N

i=1
xit

≤
1

qo
,

(50)
N∑
i=1

dio ⋅ xit ≤ � ⋅

1

qo
⋅

N∑
i=1

xit ∀ o ∈ O; t = 1,… ,T
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Constraint set (50) replaces constraint set (5) in the basic MPS model. Note that we 
introduced a parameter � to control the utilization rate (Sect. 3.1) in our numerical 
experiments. The default value of � should be 1.

The following constraint sets (51)–(53) are derived similarly from Inequalities 
(39) and (43)–(44), respectively, and are added as additional constraints to the 
basic MPS model. The parameters m

⋅,⋅,⋅ are defined in the related propositions.

To add level-3 restrictions, the terms 
∑N

i=1

�
dio ⋅ dio� ⋅ xit

�
 are replaced 

by 
∑N

i=1

�
dio ⋅ dio� ⋅ dio�� ⋅ xit

�
 . Here, o, o′ and o″ represent the three options 

considered.

(51)

N∑
i=1

dio ⋅ xit ≤

(
−mo,o�,1 ⋅

1

qo�
+

𝛼o,o� − 1

𝛼o,o� ∗ qo

)
⋅

N∑
i=1

xit

+ mo,o�,1 ⋅

N∑
i=1

(
dio� ⋅ xit

)

+ mo,oo�,1 ⋅

N∑
i=1

(
dio ⋅ dio� ⋅ xit

)

− (1 − 𝜆) ⋅
1

qo
⋅

N∑
i=1

xit ∀ o, o� ∈ O ∶ qo < qo� ; ∀ t = 1,… , T

(52)

N∑
i=1

dio ⋅ xit ≤

(
1

qo
− mo,o�,2 ⋅

1

qo�
− mo,oo�,2 ⋅

1

uoo�

)
⋅

N∑
i=1

xit

+ mo,o�,2 ⋅

N∑
i=1

(
dio� ⋅ xit

)

+ mo,oo�,2 ⋅

N∑
i=1

(
dio ⋅ dio� ⋅ xit

)

− (1 − 𝜆) ⋅
1

qo
⋅

N∑
i=1

xit ∀ o, o� ∈ O ∶ qo < qo� ; ∀ t = 1,… , T

(53)

N∑
i=1

dio ⋅ xit ≤

(
qo�

qo
∗

1

qo
− mo,oo�,3 ∗

1

qo�

)
⋅

N∑
i=1

xit

+ mo,oo�,3 ⋅

N∑
i=1

(
dio ⋅ dio� ⋅ xit

)

− (1 − 𝜆) ⋅
1

qo
⋅

N∑
i=1

xit ∀ o, o� ∈ O ∶ qo < qo� ; ∀ t = 1,… , T
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Consequently, our enhanced MPS model (EMPS) consists of constraint sets 
(1)–(4) and the additional constraints (50)–(53).

5 � Numerical study

In this section, we evaluate the effect of considering the implicit sequencing con-
straints in the master production scheduling step on the number of rule violations 
in the sequencing step. Accordingly, we compare our EMPS derived in Sect. 4.5 
with the original MPS approach suggested by Boysen et al. (2009a) and our modi-
fied MPS+, both discussed in Sect. 3.1. We concentrate on hard sequencing rules, 
as these are critical to be fulfilled, and violations lead to losses in output.

We compared the three planning approaches based on the sequencing rule 
violations. After solving the master production scheduling model, each period is 
sequenced using the heuristic “very fast local search,” as described in Appendix 
3. In Appendix 4, we show that the heuristic delivers near-optimal results. Dur-
ing the planning process, a production sequence is formed for each production 
shift. However, at the assembly line, an infinite sequence is manufactured, which 
must fulfill all the sequencing rules at the transitions from one shift to the next. 
Because we do not know the sequence of the following shift when sequencing 
and the cycle normally contains a so-called heavy order with many options, we 
evaluate the last orders as if in the first cycle of the following shift, only orders 
with all considered options would be sequenced. For example, suppose that we 
are sequencing 20 orders, in the sequencing step when calculating the sequenc-
ing rule violations, we considered five more orders with all considered options 
in cycles 21 to 25. This results in few options being sequenced in the last cycles 
or they are detected as rule violations. However, both behaviors are desired with 
respect to the transition of the two shifts.

In the following, we present and discuss three experiments. In Experiment 1, we 
compare the three approaches on specially generated ‘ideal’ benchmark instances, 
of which we know that perfect scheduling and sequencing without rule violations is 
possible. Hence, on these instances all rule violations that occur in the sequencing 
phase can be attributed to the planning quality of the MPS phase. Having shown that 
our new approaches can provide a significant advantage for realistic applications, we 
conduct a deeper analysis of the EMPS approach in Experiment 2. In particular, we 
want to understand why and under which circumstances the EMPS approach outper-
forms the other two approaches. For this purpose, we investigated a case with two 
options, each with a 100% utilization rate, that differ only in the number of orders 
containing both options (installation rate �AB ). Because this installation rate is not 
considered in the approaches MPS and MPS+, we expect a substantial and coincid-
ing number of sequencing rule violations for them, whereas according to our theo-
retical results, EMPS should cause no violations at all. Finally, in Experiment 3, we 
show the influence of lambda on the number of scheduled orders as well as on the 
number of violations, and we investigate the limitations of the EMPS approach by 
investigating the number of considered options.
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For each experiment, we first describe the data generation before we present 
and discuss the numerical results. The instances of experiment one and three 
are available online at the Harvard repository (Krüger 2021a). The instances of 
Experiment two were easily reproducible based on these data.

All model instances were solved for a maximum of 10 min or to at least 99,9% 
optimality with IBM ILOG Cplex 12.4 on an Intel® Xeon® CPU E5-2667 v3 
3.2 GHz PC.

5.1 � Experiment 1: Effectiveness on ‘ideal’ benchmark instances

5.1.1 � Data generation

In this experiment, we selected five instances of the car sequencing problem (90-1, 
90-2, 90-3, 90-5 and 90-7) from the CSPLib (Smith n.d.), which can be sequenced 
without violations. These instances consist of 200 orders and five options with five 
different sequencing rules (1:2, 1:3, 1:5, 2:3, and 2:5). In the master sequencing 
step, we want to assign the order pool to T = 10 periods. Therefore, we increase the 
number of each car model by a factor of ten to reach n = 2000 orders in the pool. 
Therefore, the instances are constructed such that they can be sequenced without 
rule violations if the orders of the car sequencing instance are assigned once to each 
period. To avoid “cherry picking,” we set the due date Li and the order-specific due 
date deviation costs c′

i
 to 1.0 for each order i. Furthermore, we assume in line with 

Boysen (2005), that assigning an order in periods smaller than the due date causes 
inventory holding costs (l = 0.1) , which are less than the late delivery costs per 
period (s = 0.2) . Because all orders have the due date of one, orders cannot be pro-
duced early, and we can determine the order-specific and period-dependent schedul-
ing costs of each order with the late delivery costs s.

In this experiment, we set � = 1 for all instances.

5.1.2 � Numerical results

The results of the five benchmark instances are presented in Table 3. All instances 
were solved in less than 7 s, whereby the runtime of the MPS was approximately 
one-fourth of the runtime of the EMPS.

The “Solution” column shows the optimal objective function value of the master 
production scheduling problem, that is., the due date deviation costs. All instances 
in each model incur the same deviation costs because all orders have the due date 
one and the same order-specific deviation costs. Furthermore, it can be seen in the 
column “Assigned orders” that, in almost all cases, the complete order pool has been 
assigned to production periods. This results in 200 orders meeting their due date in 
period one. In period two, 200 orders are one period late and cause deviation costs 
of 1 ∗ 200 ∗ 0.2 = 40 . In period three, another 200 orders are two periods late and 
cause costs of 2 ∗ 200 ∗ 0.2 = 80 etc.

(54)cit ⋅
(
t − Li

)
⋅ s ⋅ c�

i
, ∀i = 1,… , n; t = 1,… , T + 1
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After sequencing each period for each instance using the sequencing heuris-
tic described in Appendix 3, the resulting violations are shown for each instance 
in the column “Viol.”. Using the MPS+ approach, the number of violations is 
reduced on average by 55%, and using the EMPS approach on average by 74%. 
This corresponds to 3.6 violations per period for EMPS, compared to 13.7 viola-
tions per period for the MPS approach.

The improvement of the MPS+ approach is noteworthy because the production 
capacity is almost completely exhausted in each period, such that 

∑N

i=1
xit = P 

applies. Hence, Inequalities 5 and 6 are identical. This improvement can be 
explained using Fig.  12, which shows the violations depending on the average 
utilization rates over five options for each period t, calculated as follows:

The utilization rate of an option is the quotient of the actual installation rate 
and the maximum installation rate of an option. The higher the utilization rate 
of an option, the more difficult it is for the sequencing step. A utilization rate of 
100% means that Ho orders with option o must be sequenced in No cycles. In term 
(55), the number of assigned orders with option o is divided by the total number 
of orders in period t  and then divided by the maximum installation rate of option 
o . Thus, the mean value of the five option-specific utilization rates is calculated.

First, Fig. 12 shows that the MPS approach generates more periods with utili-
zation rates of less than 80% and more than 90% compared to MPS+ and EMPS. 
Therefore, the MPS+ approach better distributes the orders containing options 
over all periods, thus avoiding utilization peaks. We can only speculate the rea-
sons for this favorable behavior. One reason might be that Inequality 6 behaves 
differently in the course of the branch-and-bound solution process and thus guides 
the solution algorithm to more favorable solutions. Second, a higher utilization 
rate leads to more violations. Consequently, the MPS+ approach caused fewer 

(55)
1

5
⋅

�
o∈O

�∑N

i=1
dio� ⋅ xit∑N

i=1
xit

�
Ho

No

�

Fig. 12   Violations depending on the utilization rates for the five benchmark instances
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violations than the MPS approach. By introducing � into the MPS approach (5), 
the maximum utilization per period is limited, and thus, the number of violations 
is reduced. However, the decision maker would like to have a high utilization of 
his system and still receive no violations of the sequencing rules. Therefore, in 
the next experiment, we examine an order pool with 100% utilization.

It is noteworthy that the models assign all orders in all instances, incur the same 
deviation costs, and our approach still causes significantly fewer sequence viola-
tions. This is achieved by the additional constraints of EMPS, which limit the solu-
tion space to those solutions that can be sequenced with fewer violations. As shown 
in Fig. 12, fewer than 15 violations are caused by EMPS in each period, and even 
for utilization rates of more than 90%, significantly fewer violations are caused than 
MPS and MPS+. The results also show that the EMPS approach currently cannot 
consider all interdependencies; owing to the construction of the test instances, there 
must be a solution in which all periods can be sequenced without sequence viola-
tions. We further detailed our investigation in the next experiment. In this study, we 
consider only two options to investigate the effectiveness of the EMPS approach and 
choose a 100% utilization rate for both options.

5.2 � Experiment 2: Impact of combined and mutually exclusive options

5.2.1 � Data generation

In this experiment, we generate five instances to investigate the impact of the frac-
tion of orders featuring a combination of two options on the number of violations 
produced in the sequencing step. As before, we consider a planning horizon of ten 
periods ( T = 10 ) and assume that each period has the same length such that the 
number of available cycles can be calculated by dividing the length by the cycle 
time. An 8-h shift with a one hour break (length = (8 − 1) ⋅ 3600 = 25, 200 s) and 
a cycle time of 120 s resulted in P = 210 production cycles. Thus, the size of the 
order bank for ten periods was 2100 orders. We consider two options, A (1:2) and B 
(1:3), which are available in the order pool at 50% and 33.3% respectively (resulting 
in the utilization of the option stations of 100%). The five instances, which differ in 
the percentage of orders containing A and/or B, are listed in Table 4. In the instance 
AB-0, we choose two mutually exclusive options; therefore, the percentage of AB 
is zero. For example, consider two different roof systems. Option A is a panoramic 

Table 4   Instance overview of 
Experiment 2

Instance ID Option percentages in the pool

– (%) A (%) B (%) AB (%)

AB-0 16.7 50.0 33.3 0.0
AB-1/12 25.0 41.7 25.0 8.3
AB-1/6 33.3 33.3 16.7 16.7
AB-1/4 41.7 25.0 8.3 25.0
AB-1/3 50.0 16.7 0.0 33.3
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roof that cannot be opened. Option B is a sliding roof that can be opened. Both 
options can be very complex to install and thus cause car sequencing rules. How-
ever, because a car can only have one of the two options installed, these two options 
are mutually exclusive; therefore, the installation rate of the combination AB of both 
options must be zero. Based on the percentage of AB, the percentages for A and B 
were calculated such that orders with A and AB together were 50% and orders with 
B and AB together were 33.3%. Orders “–” contain neither A nor B. In the other 
four instances, we increased the percentage of AB by 1/12 in each instance and cal-
culated the percentages for A and B.

As in the preceding experiment, the order-specific due date deviation costs c′
i
 , the 

due dates, and the parameter � are set to 1.

5.2.2 � Numerical results

The results of the sensitivity analysis are presented in Table 5. The column “Solu-
tion” shows the deviation costs caused by the scheduling step, the column “Assigned 
orders” presents the number of orders assigned over ten periods and the column 
“Viol.” shows the resulting sequencing rule violations over ten periods.

Because the order pool induces maximal installation rates for options A and B, 
it is plausible that MPS and MPS+ assign all orders to periods for all five instances 
and thus cause the same deviation costs for all instances (considering that all orders 
have the due date, and thus 90% of them exceed their due date). This results in up 
to 360 violations using MPS and MPS+ approaches. Unlike in Experiment 1, we 
did not observe any advantage of MPS+ compared to MPS. This is because there 
were no utilization peaks that could be avoided. The experimental setup is such 
that a utilization of 100% already exists for both options in the order pool and each 
period. It follows that MPS+ results in sometimes more and sometimes fewer vio-
lations than MPS. This difference is only caused by the different distributions of 
the orders in which both options are installed (combination AB). This dependence 
can be observed in Figs. 13 and 14, which resemble Fig. 10. For each period of the 
five instances, the position of each bubble indicates the installation rates for options 
A, B, and combination AB. The installation rates of A and B consider all orders 

Table 5   Results of the sensitivity analysis of the combination installation rate

Instance ID MPS MPS+ EMPS

Solution Assigned 
orders

Viol Solution Assigned 
orders

Viol Solution Assigned 
orders

Viol

AB-0 1890 2100 360 1890 2100 360 2205.2 1394 0
AB-1/12 1890 2100 198 1890 2100 185 1925 1925 0
AB-1/6 1890 2100 63 1890 2100 113 1890 2100 0
AB-1/4 1890 2100 175 1890 2100 210 1907.6 2012 0
AB-1/3 1890 2100 350 1890 2100 350 1925 1925 0
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containing these options, that is, including orders with the combination AB. The 
size of each bubble indicates the number of violations in the respective periods. 
Each bubble in Fig. 13 has a corresponding bubble in Fig. 14 with the same installa-
tion rate of AB. We marked three pairs of bubbles, 1, 2 and 3, as examples. We also 
separated the bubbles of the five instances by color.

Fig. 13   Violations per period depending on the installation rates of option A and combination AB

Fig. 14   Violations per period depending on the installation rates of option B and combination AB
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The two graphs show that MPS and MPS+ schedule 50% A and 33.3% option 
B in each period, that is, reach utilizations of 100% for both options in each 
period. The EMPS approach produced a considerable number of bubbles that 
were below the maximum installation rate. Only when the installation rate of AB 
reaches a value of 16.67% does the EMPS approach schedule 50% A and 33,3% 
B. These values correspond to the ideal distribution shown in Fig. 1. As shown in 
Sect. 3.3, for this distribution alone, a 100% utilization rate can be achieved for 
both options without violations.

The smaller or larger the installation rate of AB deviated from this ideal instal-
lation rate, the more violations are caused by MPS and MPS+. In Figs. 13 and 
14, we added the dashed lines from Fig.  10 showing the decision limits of the 
EMPS approach that result in these two options. These limits are determined with 
qA = 2 , qB = 3 , uAB = 6 , �A,B = 3 and �B,A = 4 . If the installation rate of AB is 
larger or smaller than 16.67% for EMPS, a tradeoff between options A and B 
occurs (corresponding to the grey-shaded area in Fig. 10). This tradeoff depends 
on the installation rate of AB, as shown in Fig. 11. The closer the installation rate 
for option A is to the maximum, the closer the corresponding bubble for option B 
must be to the dashed limit or below to avoid violations.

The additional constraints of the EMPS approach ensure that the orders are 
assigned to periods such that this tradeoff is considered, and all instances can be 
sequenced without violations. This is achieved by postponing some orders to later 
periods or not scheduling them at all. This leads to somewhat higher deviation 
costs in some cases.

In summary, for high utilization rates, the MPS+ approach is not superior to the 
MPS approach; however, the EMPS approach still achieves significant improve-
ments in these cases. Therefore, the sequencing step is anticipated early, and it can 
be recognized that not all orders can be scheduled. In the industry, master produc-
tion scheduling is performed in rolling-horizon frameworks. This means reschedul-
ing is performed at regular intervals. Orders that cannot be scheduled in the cur-
rent schedule are assigned to the period T + 1 in the model and must therefore be 
considered again in the next rescheduling. If the interval between the current and 
the new scheduling is smaller than the planning horizon of the master production 
scheduling, orders that have already been scheduled but not yet built must also be 
considered again. In addition, new orders are added from the order promising at 
defined regular intervals. When rescheduling in the rolling process, orders which 
have already received a production date, orders without a production date (T + 1), 
and new orders are all available. Orders without a production date have an earlier 
due date than new orders, reason why the model will prefer these orders to the new 
ones. If the same options cannot be assigned to a production date after several roll-
ing planning steps, special costly measures are necessary. These should ensure that 
the number of affected options in the order pool is reduced such that all orders can 
be scheduled in future planning steps. Possible special measures could be a shift 
in which this equipment option is built as a priority, or an adjustment in the order 
promising step such that fewer orders with this option are added to the order pool.

Consequently, it would be possible for the decision maker to react already after the 
scheduling step. It is also plausible that more orders are scheduled as the percentage 
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of AB in the order pool approaches the ideal percentage (1/u = 1/6). With this knowl-
edge, the decision maker can also check which orders should ideally be added to the 
order pool in the order promising step. In addition, it can be seen that we have properly 
integrated the interdependence between the two options. All instances were sequenced 
without violations.

In the third experiment, we highlighted the limitations of the EMPS approach. Con-
sequently, we varied the number of considered options between two and seven, and we 
also investigated whether values for 𝜆 < 1 led to an improvement in the sequencing step 
for the three models.

5.3 � Experiment 3: Impact of the number of considered options

5.3.1 � Data generation

In this experiment, we the impact of � and the number of options considered in the 
program planning. As before, we examined ten periods and 2100 orders. We generated 
order pools for the different scenarios listed in Table 6. For each scenario, ten different 
order pools were generated.

When generating the order pool, for each order i and each option o, a random num-
ber rnd between zero and one is used to decide whether this option is included (Eq. 
(56)).

Similar to Boysen (2005), we assume that orders with many options cause higher 
deviation costs than those with few options. Accordingly, the base costs c0 and costs 
for each option o were determined randomly between one and two. With these costs 
and the due date Li = 1 for each order i, we calculated the cost coefficients cit as 
follows:

(56)dio ∶=

{
1, rnd ≤ Ho∕No ∀ i ∈ I

0, otherwise ∀ o ∈ O

(57)
(a) c�

i
∶= c0 +

∑O

o=1
dio ⋅ co

(b) cit ∶=

��
Li − t

�
⋅ lcc�

i
, t ≤ Li�

t − Li
�
⋅ s ⋅ c�

i
, otherwise

∀ i = 1,… , n; t = 1,… , T + 1

Table 6   MPS scenarios Scenario Number of 
options

Restriction Ho∕No

1 2 1/2, 1/5
2 2 2/3, 1/2
3 2 2/3, 1/5
4 3 2/3, 1/2, 1/5
5 5 2/3, 2/5, 1/2, 1/3, 1/5
6 6 2/3, 2/5, 1/2, 1/3, 1/5, 1/7
7 7 2/3, 2/5, 1/2, 1/2, 1/3, 1/5, 1/7
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5.3.2 � Numerical results

Figure 15 shows the average results of ten experiments for each value of � and indi-
cates that with a decreasing value for �, fewer orders are planned. This is because, 
for each option, the expected value of the proportion in the order pool corresponds 
to the quotient of Ho and No and thus a workload of 100%. The goal is to achieve 
100% utilization of machines with zero violations. This requires � to be equal to 1. 
For 𝜆 < 1 the maximum utilization for each option is limited; thus, not all orders can 
be scheduled. The random distribution can cause the utilization of some options in 
the order pool to be over 100%, reason why not all 2100 orders are scheduled for 
� = 1 . In each model, � has the same influence on the number of scheduled orders. 
Figure 15 also shows that an increase in λ lead to a significant increase in violations 
for MPS+, whereas EMPS generates production programs for each � that can be 
sequenced with almost no violations. MPS causes many violations for all � values.

Two observations can be made. First, more orders are assigned using the MPS 
approach than MPS+ and EMPS. This observation is in line with the illustrative 
example in Sect. 3.1 in which options are limited only by an upper bound depending 
on the fixed production capacity and the sequencing rules in the MPS approach. In 
MPS+ and EMPS, this upper limit is determined by the number of orders assigned 
and the sequencing rules. Because the production capacity is not exhausted, fewer 
options and fewer orders can be scheduled. Second, as seen, MPS causes signifi-
cantly more violations for all � values and the number of violations increases as � 
decreases, although a decrease in � should lead to improved sequencing (Sect. 3.1). 
For 𝜆 < 1 , fewer orders with option o are scheduled than those allowed by the instal-
lation rate. Because all orders have the due date of one, orders without option o 
are assigned instead. Consequently, orders with option o are moved backward, and 
orders without option o are moved forward. With a high number of orders with 
option o in the order pool, many orders with this option and only a few orders 
without this option are scheduled in the last period. Figure 16 shows that the MPS 
approach leads to significantly more violations in the last periods because the upper 
limit for option o does not depend on the number of orders assigned in these periods. 
In MPS+, this limit is dynamic and depends on the number of scheduled orders. 

Fig. 15   Impact of the weighting factor �
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Thus, orders that cannot be sequenced are not scheduled in the last period. With an 
increase in � , the number of violations also increases because the interdependencies 
between the two options are not considered in MPS+. Only the EMPS approach can 
regulate the percentage of orders containing both options such that sequencing can 
be performed almost without violations.

After investigating the impact of � , we combine both graphs of Fig. 15 in Fig. 17 
showing the violations depending on the assigned orders for the first three scenarios. 
This demonstrates that EMPS outperforms MPS and MPS+ in each case and leads 
to 98% to 100% fewer violations, which is an awesome result. Owing to Inequalities 
(5) and (6), the models schedule over ten experiments on average have a maximum 
of approximately 2075 (MPS+ and EMPS) and 2086 (MPS) of the existing 2100 
orders. This is because the sequencing rules Ho∕No limit the options. If the percent-
age in the order pool is higher than Ho∕No , some orders cannot be assigned.

The results demonstrate that the MPS+ approach considerably reduces the num-
ber of violations, whereas the EMPS approach can almost completely prevent viola-
tions in the sequencing step when considering two options. In practice, sequenc-
ing usually requires consideration of five, six, or even more difficult sequencing 
rules. Figure 18 shows that even for this number of sequencing rules, an improve-
ment in the sequencing is achieved. For the three options, EMPS generates produc-
tion programs, especially by considering level-3 restrictions (cf. Sect.  4.4), which 
are sequenced almost with no loss. As a result, we obtained up to 98% fewer viola-
tions. The more the options to be considered, the smaller the improvement by EMPS 
compared to MPS+. This shows that the EMPS approach has limitations. The limit 
seems to be seven options for which no improvement in the sequencing step could 
be achieved compared to MPS+. Nevertheless, MPS+ and EMPS resulted in fewer 
violations than MPS.

Fig. 16   Sequencing rule violations per period of MPS and MPS+
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The limitation of EMPS is the interdependencies of car models, which contain 
multiple options. We derived the dependencies for the two options and considered 
them in the model. As shown, this can reduce the number of violations by 100%. For 
three options (A, B, and C), there are orders that contain all three options. For this 

Fig. 17   Violations depending on the assigned orders of the scenarios 1 to 3
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combination, there exists an ideal ratio such that all options can be fully sequenced. 
We have integrated this in Experiment 3 with the level-3-restrictions (49). Looking at 
the investigation with five options (A, B, C, D, and E), there are some combinations 
(ABCD, ABCE, ABDE, ACDE, BCDE, and ABCDE) for which no dependencies are 
currently considered. Each of these combinations has an ideal ratio for 100% utiliza-
tion of the workstations associated with the considered options. The deviation from this 
ideal ratio influences the maximum installation rates of the options, which currently 
cannot be considered. Our investigations into this direction resulted in highly nonlinear 
dependencies and were not further pursued in this study. However, we believe that this 
research direction might provide the potential to further reduce the number of viola-
tions. This experiment demonstrates the conflict between the assigned orders and the 
number of violations, which can be influenced by the parameter � . Small values of 
� lead to a lower number of assigned orders (for a high utilization rate in the order 
pool), and � = 1 leads to a high number of assigned orders, but also to a high number 
of violations. The decision-maker must therefore decide whether less output should be 
produced or whether to put in place cost-intensive measures to mitigate the violations 
(e.g., use of additional resources). Orders that are not built can also be rebuilt in spe-
cial shifts, which also leads to high additional costs. Thus, a good anticipation of the 
sequencing rule is important for � = 1 , such that all orders can be assigned without 
additional costs.

Fig. 18   Violations depending on the assigned orders of the scenarios 4 to 7
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6 � Summary and outlook

This study considers the problem of selecting orders from an order bank to be 
produced on a mixed-model assembly line using a car sequencing approach. We 
described and discussed the basic master production scheduling approach and 
presented a simple extension as well as an enhanced approach with additional 
constraints. We showed that interdependencies between car sequencing rules 
resulted in the existence of additional implicit and dynamic sequencing con-
straints on models that feature more than one option. In the case of two options, 
we derived linear inequalities that fully represent these implicit constraints in the 
master production scheduling step and presented a generalized modification to 
the basic master production scheduling model. In numerical studies, we compare 
the standard basic approach with a simple extension and an enhanced approach. 
Compared to the basic approach, our simple extension approach caused fewer 
violations in the sequencing step for most instances. The two approaches cause 
nearly the same number of violations if the utilization rate approaches 100% for 
all options. The enhanced approach outperformed the basic approach in each of 
the experiments. Compared to our simple extension approach, we showed that 
for up to six options, the implicit constraints in the master production schedul-
ing step can cause a significantly lower number of violations in the sequenc-
ing step. Especially for options that are mutually exclusive or conditional, an 
integration of interdependencies leads to a significant reduction in violations. 
Another advantage is the early anticipation of the sequencing step, such that it 
can be recognized that not all orders can be scheduled. Consequently, the deci-
sion-maker can react during the scheduling step.

For practical applications, the presented inequalities should be derived for 
hard sequencing rules, as these must be strictly met during the sequencing step 
as it may lead to a loss in the output if not met. In principle, additional soft 
sequencing rules can be considered in the enhanced master production schedul-
ing approach through Inequality (6). We believe that this might reduce the num-
ber of violations of hard sequencing rules without influencing the violations of 
soft sequencing rules. Further research in this field may identify the potential of 
combining the two approaches for hard and soft sequencing rules.

Another use case of our findings should be order promising. Presently, to 
accept orders and allocate them to production weeks, order promising usually 
uses the same restrictions as the standard master production scheduling model. 
As shown, sequencing is insufficiently anticipated in this case. This can lead 
to order pools that cannot be completely allocated to periods with improved 
sequencing anticipation in the master production scheduling step. The assurance 
that orders can be sequenced already in the promising step can thus ensure the 
assignment to periods and thus lead to an overall reduction in deviation costs in 
the master production step, which would arise if orders had to be postponed to 
earlier or later periods. Further investigations are left for future studies.
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Appendix 1

See Table 7.

Appendix 2

Here, we present an approach to determine the parameters �A,B and �B,A in the case of 
Ho > 1 for at least one of the considered options. We address this problem by devising 
and solving a specially tailored sequencing problem to determine the maximum instal-
lation rates �A and �B directly, and then use Inequality (16) to deduce values for �A,B and 
�B,A.

As in Proposition 1, we start with the assumption that option B is preferred and that 
the installation rate �AB = 0, However, we presume that HB > 1 . Thus, the goal is to 
determine �A,B . First, we calculate the maximum number of possible occurrences of 
option B in T cycles as follows:

The first term determines how often a subsequence of NB cycles fits into T. This is 
multiplied by HB , because option B fits HB times into each of the subsequences. The 
second term checks how many cycles are left in addition to these subsequences and 
whether further options can be sequenced. To avoid side effects (i.e., rule violations) 
with the car sequence of the following shift, we do not sequence option B in the last 
NB − HB cycles.

We can determine how often the non-preferred option A can be scheduled without 
causing violations while avoiding scheduling both options in the same cycle. Conse-
quently, we solve the following specially tailored car sequencing model:

(58)maxT�B =
T

NB

∗ HB +max

(
0, T −

(
T

NB

∗ NB

)
−
(
NB − HB

))

(59)max

T∑
t=1

xtA

(60)xtA + xtB ≤ 1 ∀ t = 1,… , T

(61)
T∑
t=1

xtB = maxT
B

(62)
t+No−1∑
t�=t

xt�o ≤ Ho ∀ t = 1,… , T ∀ o ∈ {A,B}

(63)xto = 0 ∀ t ≥ T −
(
No − Ho + 1

)
∀ o ∈ {A,B}
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Table 7   List of all symbols

�o,o′ Required parameter to calculate the maximum installation rate of option o in case option o′ is 
preferred an no combination of o and o′ is allowed (Eq. (17))

� Weighting factor—limitation of the utilization rate
�o Installation rate of option o
� Weighting factor—limitation of the utilization rate
amo Binary coefficient; 1, if model m contains option o ; 0, otherwise
BI Big integer
cit Cost coefficient for order i  , if order i  is assigned to period t
dio Binary parameter: 1, if order i requires option o; 0, otherwise
dm Demand for copies of model m in the car sequencing problem
Ho ∶ No Sequencing rule: at most Ho out of No successively sequenced copies may require option o
Li Due date (day) of order i
M Set of car models with m ∈ M

mo,o′ ,1 Increase in the maximum installation rate of option o in case the installation rate of o′ increase 
by one for 0 ≤ �oo′ ≤

1

uoo′
 (see Eq. (41))

mo,o′ ,2 Increase in the maximum installation rate of option o in case the installation rate of o′ increase 
by one for 1

uoo′
≤ �oo′ (see Eq. (45))

mo,oo′ ,1 Increase in the maximum installation rate of option o in case the installation rate of the combi-
nation of o and o′ increase by one and option o′ is preferred for �oo′ ≤

1

uoo′
 (see Eq. (24))

mo,oo′ ,2 Increase in the maximum installation rate of option o in case the installation rate of the combi-
nation of o and o′ increase by one and option o′ is preferred for 1

uoo′
≤ �oo′ (see Eq. (25))

mo,oo′ ,3 Increase in the maximum installation rate of option o in case the installation rate of the combi-

nation of o and o′ increase by one for 
1(

qB

qA
+1

)
⋅qA

≤ �oo�

 (see Eq. (34))
mo′ ,oo′ ,1 Increase in the maximum installation rate of option o′ in case the installation rate of the combi-

nation of o and o′ increase by one and option o is preferred for �oo′ ≤
1

uoo′
 (see Eq. (35))

mo′ ,oo′ ,2 Increase in the maximum installation rate of option o′ in case the installation rate of the com-

bination of o and o′ increase by one and option o is preferred for 
1

uoo�
≤ �oo� ≤

1(
qB

qA
+1

)
⋅qA (see 

Eq. (36))
mo′ ,oo′ ,3 Increase in the maximum installation rate of option o′ in case the installation rate of the combi-

nation of o and o′ increase by one and option o is preferred for 
1(

qB

qA
+1

)
⋅qA

≤ �oo�

 (see Eq. (37))
maxT′B Maximum occurrences of option B in T cycles (Eq. (58))
N Set of orders with i ∈ N

O Set of options with o ∈ O

qo Quotient of the car sequencing parameters No and Ho(Eq. (13))
P Number of cycles per period
T Number of production periods (shifts) in the MPS with t = 1,… ,T + 1

TS Number of production cycles in the car sequencing model with t = 1,… ,TS

uoo′ Least common multiple of the sequencing rules of options o and o′
xit Binary variable: 1, if order i  is assigned to period t  ; 0, otherwise
xmt Binary variable: 1, if model m is produced in cycle t  ; 0, otherwise
xto Binary variable: 1, if option o is produced in cycle t  ; 0, otherwise
zot Binary variable: 1, if a rule with respect to option o is violated in cycle t  ; 0, otherwise
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In the objective function (59) the number of occurrences of the non-preferred option 
A is maximized. Inequality (60) ensures that only one option is sequenced per cycle 
(and not both) and inequality (61) prescribes the number of occurrences of the pre-
ferred option B. Inequalities (62) and (63) ensure that the car sequencing rules are 
followed and that no options are sequenced in the last No − Ho cycles.

Let x∗
to

 for o ∈ {A,B} be an optimal solution to model (59) to (63). Thus, the max-
imum installation rate �A and parameter �A,B can be determined as:

where Eq. (65) is derived from Inequality (16).
The parameter �B,A can be determined analogously by preferring option A and 

maximizing the occurrences of option B.

Appendix 3

Greedy heuristic

Greedy heuristics are useful in obtaining good initial solutions. Greedily building 
a sequence means that the next car to sequence is iteratively chosen with respect 
to some given heuristic functions. First, an order that introduces the smallest num-
ber of new sequencing rule violations should be chosen. If more than one candidate 
minimizes the number of new violations, another heuristic function must be applied. 
The function we use is inspired by the DHU heuristic from Gottlieb et al. (2003), 
which is based on the dynamic utilization rate

defined for each option o, where �j represents the partial sequence built until posi-
tion j, C =

{
c1,… , cn

}
 is the set of cars to be produced, |C| is the number of cardi-

nality of set C and |||�j
||| is the length of a sequence �j . Ho ∶ No defined the sequencing 

rule (see Table 1). The number of cars that require an option o within a sequence �j 
(resp. within a set S of cars) is denoted r

(
�j, o

)
 (resp. r(S, o) ). In each iteration and 

after evaluating all options, we choose car ci that maximizes the heuristic

(64)�A =

∑T

t=1
x∗
tA

T

(65)�A,B =
1

1 − �A ∗ qA

(66)dynUtilRate
(
o,�j

)
=

No

Ho

∗
r(C, o) − r

(
�j, o

)

|C| − |||�j
|||

(67)�DHU

(
ci
)
=
∑
o∈O

r
(
ci, o

)
∗ 2k
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if o is the option with the kth smallest utilization rate. The function r
(
ci, o

)
 indicates 

whether car ci requires option o 
(
r
(
ci, o

)
= 1

)
 or not 

(
r
(
ci, o

)
= 0

)
.

Local search

The idea of local search is to improve an initial sequence by locally exploring the 
“neighborhood” of orders, iteratively. For local search, we use the formulation of 
Estellon et al. (2008), which enabled them to win the ROADEF 2005 challenge. 
The broad lines of the heuristic are as follows:

VFLS heuristic (TIME-LIMIT)
Begin;

compute initial sequence;
while TIME-LIMIT is not reached do

choose transformation and positions where applying it;
if transformation is good then

Update current sequence by performing it;
end if;

end do;
return current sequence;

end;

We use five basic transformations: swap, forward insertion, backward inser-
tion, reflection, and random shuffle (see Fig.  19, for detailed information, see 
Estellon et al. 2008).

After choosing the transformation, we must define the positions k and l , where 
to apply swap, insertion, and reflection transformations. Because we do not con-
sider colors in this study, we use the following five variants: generic, similar, con-
secutive, violation, and denominator (see Table 8).

      ►        
swap

            

      ►       
forward insertion

            

      ►        
backward insertion

            

      ►        
reflection

            

      ►        
Random shuffle

Fig. 19   The five VFLS transformation (Estellon et al. 2008)
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Through extensive experiments on RENAULT’s instances, Estellon et  al. 
(2008) determined good proportions for transformations and variants. Because 
we examined sequencing rules and not colors, the number of swaps should domi-
nate. The compositions in Table 9 were taken from Estellon et al. (2008).

Our C++ source code is provided in the Harvard repository (Krüger 2021b).

Appendix 4

Evaluation of the car sequencing heuristic

To prove the suitability of the heuristic for our investigations, we solved some self-
created car sequencing instances with the optimization model (7)–(12) and the heu-
ristic and compared them using car sequencing violations. Because high utilization of 
the options leads to difficult problems to solve (Miguel et al. 2021), we investigated 
nearly 90% and 100% utilization with four options. More options are also difficult to 
solve and are generally not solved using the optimization model within an accept-
able time. For both utilization rates, we created and solved 20 instances with 100 
orders. The results are shown in Tables 10 and 11 show that the average deviation 

Table 8   The different VFLS variants for choosing positions

Variants Description

Generic Pick two positions k and l  randomly
Similar Pick two positions k and l  such that the corresponding orders 

share some options
Consecutive Pick a position k randomly and set l = k + 1

Violation Pick a position k where violation appears and choose l  randomly
Denominator Pick a position k and an option o randomly and set l = k + No

Table 9   The composition for the 
optimization subroutine

Transformation Variants Percentage

Swap Generic 66
Similar 2
Consecutive 2
Violation 2

Insertion Generic 4
Denominator 4

Insertion Generic 4
Denominator 4

Reflection Generic 7
Denominator 4

Shuffle Generic 1
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from the optimal solution is less than one. Thus, the heuristic is well-suited for our 
investigations. The column “Solution” shows the resulting number of violations for 
this instance and the column “Best Solution” shows the best solution found within 
60 min. In both investigations, some instances could not be solved to 100% optimal-
ity in 60 min. In addition, we showed the number of violations in the greedy heuristic 
and the very fast local search (VFLS) when applied for 5, 15, and 60 s. In the column 
“Delta between OM and VFLS-5 s” we calculate the difference between the solution 
of the optimization model and the solution of the VFLS after 5 s.

Appendix 5

Detailed overview of the results of Experiment 3

In experiment 3, eleven different values for � were examined for each of the seven 
scenarios, and ten experiments were performed for each � . An overview of the 

Table 10   Comparison of the optimization model and car sequencing heuristic for four options with the 
expected 100% utilization rate

Optimization model (OM) Greedy 
heuris-
tic

VFLS 
seconds

Delta between 
OM and 
VFLS-5 s

Average 
devia-
tion

Solution Best solution Time 5 15 60

Solved to opti-
mality

6 6 1268.5 12 6 6 6 0 0.75

1 1 0.9 1 1 1 1 0
11 11 6.5 11 11 11 11 0
9 9 26.7 14 10 10 10 1

13 13 2271.6 17 15 14 14 2
2 2 3.4 3 2 2 2 0

44 44 0.5 48 44 44 44 0
23 23 16.9 30 26 26 26 3

Solved with gap 25 24 3600 30 27 27 27 2 1.17
6 4 3600 8 6 6 6 0

30 20 3600 36 33 33 33 3
17 13 3600 26 17 17 17 0
6 4 3600 8 7 7 6 1
4 2 3600 10 6 5 5 2

32 24 3600 37 33 32 32 1
72 60 3600 77 74 74 74 2
9 0 3600 10 10 10 9 1

16 5 3600 18 17 17 17 1
23 20 3600 27 23 23 23 0
13 10 3600 18 14 14 14 1
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variance of the results is presented in Tables  12, 13 and 14. MPS is the basic 
approach, MPS+ is the modified basic approach (Inequality (6) instead of (5)), 
and EMPS is our enhanced MPS model. Column “Objective” shows the average 
deviation costs for ten experiments and the column “Objective gap” shows the 
average solution gap of the solutions because we solved the models for a maxi-
mum of 10  min or to at least 99.9% optimality. For the “assigned orders” and 
the resulting “violations” in the sequencing step, we presented the average, mini-
mum, and maximum values as well as the standard deviation of the ten experi-
ments. A discussion of the results is provided in Sect. 5.3.

Table 11   Comparison of the optimization model and car sequencing heuristic for four options with the 
expected 90% utilization rate

Optimization model (OM) Greedy 
heuris-
tic

VFLS 
runtime in 
seconds

Delta between 
OM and 
VFLS-5 s

Average 
devia-
tion

Solution Best solution Time 5 15 60

Solved to opti-
mality

0 0 1.1 0 0 0 0 0 0

0 0 3.1 0 0 0 0 0
0 0 0.8 0 0 0 0 0
0 0 0.6 0 0 0 0 0
0 0 1.1 0 0 0 0 0
0 0 0.7 0 0 0 0 0
0 0 1.1 0 0 0 0 0
0 0 1.016 0 0 0 0 0
0 0 2.141 1 0 0 0 0
7 0 3605 7 7 7 7 0
0 0 2.437 0 0 0 0 0
0 0 0.891 0 0 0 0 0
4 4 1.422 5 4 4 4 0
0 0 2.812 0 0 0 0 0
0 0 2.313 0 0 0 0 0

Solved with gap 11 4 3600.0 11 11 11 11 0 0.6
5 0 3600.0 6 6 6 5 1

17 12 3600.0 22 18 18 18 1
9 0 3600.0 10 9 9 9 0
6 3.8 3600.0 12 7 6 6 1
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