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Abstract

In this paper, we propose a new linear programming-based approach that enables
the consideration of technical car sequencing rules in the master production sched-
uling of mixed-model assembly lines at a much higher level of detail than previous
approaches. To this end, we investigate certain interdependencies of car sequencing
rules, which have largely been neglected, both in practice and in the research lit-
erature. We illustrate the existence and impact of these interdependencies and show
that they induce additional implicit constraints, which can be represented by linear
inequalities and incorporated into linear optimization models for master production
scheduling. In a numerical study, we evaluate the approach and show, that it can sig-
nificantly reduce sequencing violations compared to existing approaches.

Keywords Mixed-model assembly lines - Master production scheduling - Production
planning - Car sequencing - Sequencing rules

1 Introduction

The concept of assembly lines was originally invented by Henry Ford to efficiently
produce a uniform product in a high volume. However, currently, the age of mass
customization, often a multitude of product variants is concurrently manufactured
on the same assembly line. In the automotive industry, this approach is driven to the
extreme, allowing customers to configure billions of model variants by selecting and
combining optional equipment (short options) (Holweg and Pil 2001). At the assem-
bly line, complex options require more assembly time than simple standard options,
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such as the installation of an electric sunroof (Herlyn 2012), increasing the risk of
work overloads, which at this level can only be coped with by the deployment of an
expensive additional workforce.

Many authors have addressed the challenge of finding good production sequences,
alternating work-intensive models with less work-intensive models to avoid over-
loads (Boysen et al. 2009b). One approach, commonly known as car sequencing and
widely used in industrial practice, requires that among every N, subsequent models
in a production sequence, only A, may contain a certain complex option o (Dérmer
2012; Boysen et al. 2009b). In addition, Solnon et al. (2008) distinguished between
hard and soft sequencing rules. Hard rules are caused by technical capacity limits
and must be strictly followed, as violations lead to a production line standstill such
that the facility can complete its work and thus lead to loss of output. Soft rules are
caused by personnel resources and can be violated for a short period if more person-
nel are assigned to the corresponding facilities. In this study, we concentrate on the
hard restrictions, which typically affect only a small subset of all available equip-
ment options (often no more than five or six of them).

Other approaches in addition to car sequencing aim to explicitly minimize the
work overload of a production sequence (mixed-model sequencing) or optimize part
logistics by leveling material supply (level scheduling). For more details on these
approaches, we refer to Bautista and Cano (2008), Boysen et al. (2009b), Dérmer
(2012), and Golle et al. (2014).

Clearly, the achievable quality of the production sequence heavily depends on the
set of model variants, which are to be sequenced, that is, which are assigned to a
certain shift or a certain day by the preceding planning step, the master production
scheduling. In this planning step, the major goal is to fulfill production deadlines
while keeping inventory costs low. Previous studies have attempted to anticipate and
incorporate the requirements of the sequencing step (Boysen et al. 2009a) or even
integrate the two planning steps (Doermer et al. 2013). While the former approaches
pursue rather simple strategies, such as ensuring certain ratios of equipment options
in the production program, the full integration leads to very complex optimization
problems, which are difficult to solve for practically relevant problem dimensions.

In this paper, we propose an approach of the first type, which enables the con-
sideration of sequencing requirements at a much higher level of detail compared
to previous approaches. Consequently, we focus on the car sequencing approach
and investigate the interdependencies of car sequencing rules, which have largely
been neglected, both in practice and in previous studies. We illustrate the existence
and impact of these interdependencies and show that they can be represented by
linear inequalities, which can be incorporated into linear optimization models for
master production scheduling. Although assembly lines, in reality, may have numer-
ous manufacturing constraints, in practice, special attention is usually attributed to
the few hard restrictions, as their violation cannot easily be mitigated. Examples of
affected options are roof systems (sunroof, panoramic roof, cabriolet) and all-wheel
drive. In a numerical study, we evaluate our approach and show that it can signifi-
cantly reduce the resulting violations of hard restrictions in the sequencing step.

The remainder of this paper is structured as follows. In the next section,
we review previous studies that investigate master production scheduling with
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anticipated or integrated sequencing. In Sect. 3, the problem setting is explained,
and basic models for master production scheduling and sequencing are presented.
We discuss the basic model for master production scheduling and provide a simple
extension. Subsequently, we show by means of an illustrative example that inter-
dependencies between car sequencing rules exist and can prevent the existence of
a feasible car sequence. In Sect. 4, we derive linear inequalities, generalize these
findings, and derive a general approach to consider interdependencies in master pro-
duction scheduling using additional linear constraints. In Sect. 5, we evaluate novel
approaches in a numerical study.

2 Literature review

Despite its high relevance, only relatively few studies on master production schedul-
ing problems and their interplay with a succeeding sequencing problem have been
conducted. One of the first model-based approaches for master production schedul-
ing was proposed by Hindi and Ploszajski (1994). They focus on the selection of
orders from an order bank, considering the desired number of orders and the maxi-
mum acceptable level of options. For each option k, there is a fixed upper bound b,,
which allows the planner to consider the sequencing rules.

Bolat (2003) points out that the model of Hindi and Ploszajski “greedily
choose[s] the easy jobs and leave[s] the difficult ones for later periods” To avoid
“cherry picking,” Bolat’s model considers the upper and lower capacity limits for
each station. The lower limit prevents the selection of only “simple” orders with a
few options, whereas the upper limit represents the sequencing rules. The goal of the
model is to select a fixed number of orders for the next period and minimize the total
cost caused by deviation from the due dates.

Ding and Tolani (2003) developed a model to schedule the production of » mod-
els in a planning horizon of m time periods to achieve level production. The authors
assume that the demands of various models are known. They calculated the ideal
daily total production as well as the ideal average daily production for each model
i and minimized the square deviation. In this model, the sequencing rules for the
model options are not considered.

Boysen (2005) and Boysen et al. (2007, 2009a) develop a basic mixed-integer
programming model for master scheduling (MS-B) that, like Bolat’s model, mini-
mizes total costs by deviation from the due date. As an extension, they consider T
planning periods and assume that costs for the deviation of an order from its due
date increase linearly in terms of time, causing inventory costs for early produc-
tion and penalty costs for late delivery. In addition, Boysen et al. (20092a) developed
linear constraints to anticipate the sequencing objectives in the master scheduling
for each of the three sequencing approaches, thereby allowing for better coupling
of master scheduling and sequencing. We will discuss this approach in the case of
car sequencing in detail below. Fliedner and Boysen (2008) presented an approach
to solve the car sequencing problem via Branch and Bound, also incorporating the
coupling approach.
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According to Bolat’s model, Volling (2009), and Volling and Spengler (2011)
investigate the link between master production scheduling and order promising.
They proposed mixed-integer linear model formulations for both planning steps.
In master scheduling, a resource-related and period-related capacity is introduced
as the quotient of the available working time and cycle time. To include sequenc-
ing constraints, they defined fixed upper and lower bounds on resource utilization.

Doermer et al. (2013) presented an approach in which master production
scheduling (MPS) and sequencing were integrated. Orders from an order bank
are assigned not only to a period but also to a cycle within a period. The mixed-
model conditions of the sequencing were considered by restrictions. Doermer
et al. indicated that this optimization problem can be solved optimally within a
reasonable time for small-sized problem instances. To solve real-life instances, an
adapted assignment heuristic was presented.

We will show below, that even if the ratios imposed by sequencing rules are
considered in the master scheduling step as proposed by Bolat (2003), Boysen
(2005), and Volling (2009), it is not guaranteed that a feasible sequence exists
in the car sequencing step. This phenomenon is caused by the interplay of the
car sequencing rules, which leads to additional implicit constraints on car models
featuring combinations of options. This issue is addressed only in the approach
of Boysen et al. (2009a) by introducing an additional parameter, which enforces
an over-fulfillment of the rule ratios. In the remainder of this paper, we will
show that these implicit constraints can be made explicit and added to the master
scheduling formulation in the form of linear inequalities, significantly decreasing
the number of rule violations in the car sequencing step.

3 Problem setting, basic modeling, and an illustrative example

Most automotive OEMs pursue a build-to-order production strategy accompanied
by an order-driven planning process (ODP) to match the supply of resources and
given capacities with highly variable product demand (Meyr 2004; Volling and
Spengler 2011). In this study, we took a short-term planning perspective, that is,
we assumed that production capacities and shift plans are given as a result of a
mid-term aggregate production planning step (Sillekens et al. 2011). In the fol-
lowing section, we briefly describe and formalize the parts of the ODP process,
which are relevant for our investigation.

3.1 Master production scheduling
We present two approaches for the basic modeling of master production schedul-

ing. The basic model (MPS) from existing studies, and an approach with a small
modification to improve the anticipation of sequencing rules (MPS+).
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3.1.1 Basic model (MPS)

Within the ODP, first, delivery dates for individual customer requests are determined
in a real-time order promising (OP) process, considering lead times, sales quotas, and
available capacities, and communicated to the customer. If the customer accepts the
offer, a production order associated with a production due date is added to the order
bank. The main purpose of MPS in the automotive context is to assign individual cus-
tomer orders to production periods, such that the capacity constraints are met and the
violation of due dates and the incurring of inventory costs are prevented.

In this study, we formalize the MPS along the lines of Boysen et al. (2009a). A com-
plete list of all the symbols used in this study is given in Appendix 1. We divide the
planning horizon into T production shifts to which N (i = 1, ..., N) production orders
are to be assigned, which are associated with due dates L; and characterized by a sub-
set of a set O of equipment options. Deviating from the formulation in Boysen et al.
(2009a), we use an additional period T+ 1 to capture orders, which cannot be assigned
within the planning horizon because of the violation of constraints. The system capac-
ity for each period is limited by P cycles. The cost coefficients c;, account for inventory
holding costs in the case of early and penalty costs in the case of late production with
respect to the due date L; of an order i. We elaborate on the details of the calculation of
these coefficients in Sect. 5.

According to Boysen et al. (2009a) and using the notation given in Table 1, we can
model the MPS planning task as the following binary linear programming problem:

N T+l

Minimize 7, = Z Z Cip Xy (1

i=1 1=1
subject to

T+1

Y x,=1 Vi=1,...,N 2)
=1

Table 1 Notation for the master production scheduling model (MPS)

N Set of orders withi € N
(6] Set of options witho € O
T Number of production periods (shifts) witht=1,..., T+ 1

Cost coefficient for order i, if order i is assigned to period ¢

d,, Binary parameter: 1, if order i requires option o; 0, otherwise

H,:N, Sequencing rule: at most H, out of N, successively sequenced
copies may require option o

A Weighting factor—limitation of the utilization rate

Number of cycles per period
Binary variable: 1, if order i is assigned to period t; 0, otherwise
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N
D x, <P Vi=1,...T 3)
i=1

x,;€{0,1} Vi=1,....N;t=1,...,T+1 4)

The objective function (1) minimizes the total deviation and inventory holding costs.
Constraint set (2) ensures that each order is assigned to exactly one planning period.
For each period, the sum of the assigned orders may not exceed the number of avail-
able production cycles, P (3).

As mentioned above, Boysen et al. (2009a) proposed an extension of their formu-
lation to anticipate the sequencing rules by controlling the demand for option occur-
rences by adding the following set of constraints:

~ H
Zdio-xi,gi-N—”-P VoeO;t=1,...T 5)
i=1

o

In this constraint set, the number of option occurrences per planning period is lim-
ited by the quotient of H, and N, times the available production cycles P controlled
by a weighting factor A. Boysen et al. (2009a) indicated that the weighting factor A
determines whether the resulting car sequencing problem can be solved without vio-
lations, and proposed an approach to set A appropriately by lower-bound computa-
tions (Fliedner and Boysen 2008). However, there is no exact approach to determine
A. Furthermore, A is a constant value that applies to all options in the same man-
ner. This means that all options are equally weighted to improve the results of the
car sequencing problem. In addition, A directly influences the utilization of the sta-
tion at which option o is installed. As 4 decreases, the utilization of this station also
decreases. However, the goal of a decision-maker should be to utilize all resources
to their maximum capacity (4 = 1) without violating sequencing rules.

3.1.2 A model variant with improved anticipation (MPS+)

Another major issue of Inequality (5) is that the maximum installation rate on the
right-hand side depends on the production capacity instead of the actual number of
orders assigned to a period. Assuming the logistic problems of an option o led to the
fact that this option could not be installed for a while, the percentage of this option
in the order pool is now higher than the installation rate. Consider the following
example: Assume an order pool with 100 orders and two periods with production
capacities P = 50. Owing to the logistic problems of an option o, the percentage
of orders in the order pool featuring this option is assumed to be 60%, that is, 60
orders. A sequencing rule of 1:2 is imposed on this option, which implies a maximal
installation rate of 50%. The optimization model will schedule as many orders as
possible while respecting Inequality (5), because the unscheduled orders (in period
T + 1) cause the highest deviation costs. Owing to (5), a maximum of 25 orders with
option o can be scheduled per period. This results in 50 orders for period one, and
25 of them with option o. According to (5), only 25 of the remaining 35 orders with
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option o can be scheduled in period two. Thus, 40 orders are scheduled in period
two, among which 25 with option o and 15 without option o. Ten orders with option
o remain in the order pool. The actual installation rate of option o in period two is
therefore 25/40 = 62.5%, which inevitably leads to violations of the sequencing rule.

Thus, to better anticipate the sequencing rules in each period, it is necessary to
consider the installation rate as a function of the total sum of orders in each period.
Therefore, we suggest replacing the production capacity P with the number of
scheduled orders:

N H N
de-xitsi-ﬁo-z:x” VoeO;t=1,....T (©)

i=1 o =l

In our example, the new Inequality (6) results in period one still scheduling 50
orders and 25 of them with option o, and in period two, 30 orders and 15 of them
with option x. In both periods, the installation rate of option o is 50% and can there-
fore, be sequenced without violations. This leaves 20 orders with option o in the
order pool that cannot be scheduled.

We refer to model (1)—(5) originally suggested by Boysen et al. (2009a) as the
MPS approach and to our modified model (1)—(4) plus (6) as the MPS+ approach.
A comparison and discussion of these two approaches are provided in the numerical
studies.

3.2 Carsequencing

After the orders for individual car models are assigned to production shifts, a pro-
duction sequence must be determined, which prevents work overload at the stations
of the assembly line. Because each car model is characterized by an individual com-
bination of equipment options, the workload at the workstations usually varies from
model to model. Typically, work overload occurs when several models with high
workloads at a specific station (e.g., caused by the installation of a sunroof) directly
follow each other in the production sequence. Work overload can require costly
counter-actions, such as line stoppages (Boysen et al. 2009a; Wild 1972).

In this paper, we focus on the car sequencing approach, which is still of major
relevance in the automotive industry (cf., e.g., Fliedner and Boysen 2008). A set
of sequencing rules of type H, : N, is imposed, ensuring that in the production
sequence, out of N, successive models, only H, may contain option o.

To formalize the approach, we use a formulation as an optimization model,
which is based on Boysen et al. (2009b). In this formulation, the planning horizon is
divided into TS production cycles (with t =1, ..., T5), where T coincides with the
number of orders that are assigned to the shift for which the production sequence
is to be generated. In the traditional statement of the car sequencing model, viola-
tions of car sequencing rules are allowed; however, their number is minimized in the
objective function. We list the notations used in the following model formulation in
Table 2.
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Table 2 Notation for the car sequencing model

M Set of models withm € M
s Number of production cycles witht = 1,..., T
(6] Set of options witho € O
o Binary coefficient; 1, if model m contains option o; 0, otherwise
d, Demand for copies of model m
H, . N, Sequencing rule: at most H,, out of N, successively sequenced copies may require option o
BI Big number
Xt Binary variable: 1, if model m is produced in cycle t; 0, otherwise
2o Binary variable: 1, if a rule with respect to option o is violated in cycle t; 0, otherwise
TS
Minimizez; = )" ¥ z,, )
meM t=1
=1 Vi=1,...,T%
xml - = g eeey (8)
meM
TS
Y x,=d, VmeM ©)

min{[+Na—l;TS}
z 2 amo*xm,/—<l—Zamo*xm,>*BI§H{,+BI*ZO, YoeONr=1,..,T5

meM V=t meM
(10)
X, €1{0,1} VvmeM;t=1,...,T+1 (11)
7, €{0,1} YoeO;t=1,....,T+1 (12)

Objective function (7) minimizes the number of total sequencing rule violations.
Constraint sets (8) and (9) ensure that each model is assigned to exactly one cycle
and that, for each individual model m € M, a demand d,, is met. Sequencing rules
of type H, : N, are considered in the constraint set (10). The binary coefficient a,,
indicates whether model m contains option o.

0

3.3 Anillustrative example of the interdependency of car sequencing rules

In this section, we demonstrate using an example that even if we limit option
occurrences in the master production schedule according to the car sequencing
rules, we cannot guarantee the existence of a feasible sequence in the car sequenc-
ing problem. Assume a set of orders consisting of models with up to two options,
A and B. The sequencing rule for option A is defined as 1 : 2 = 50% and for option
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Ccyde [1|2|3]4|s5|6|7]8]9|10]i]|12[13]14|15|16|17]18|19]20
Option A | A A A A A A A A A Al 10A>0, =120 =50%
Option B | B B B B 4B S0y =--=20%
Sequence [AB| | A AlB|A Al |aB| |a AlB|A Al 2AB>g=2=10%

Fig. 1 Ideal sequence of two options, A and B

B as 1 :5=20%. Figure 1 shows the sequence in which orders with options A
and B are ideally scheduled according to the sequencing rules. Row one displays
the cycle number, rows two and three indicate whether the car model in this cycle
contains options A and/or B, respectively, and line four shows the resulting model
sequence. We have four possible combinations of the two options in the result-
ing sequence: option A only, option B only, both options AB or none of the two.
The resulting sequence is characterized by an installation rate of 50%, 20%, and
10% for options A, B, and AB, respectively. We call this sequence ideal because
the option-specific ratios H, : N, prescribed by the sequencing rules are exactly
matched by the resulting production sequence. In the remainder of this paper, we
will denote the installation rates of options and combinations of options by o, .

A sequence can always be completed by repetition when the state from cycle one
reoccurs. As shown in Fig. 1, the sequence could therefore be cut off after cycle ten.

Assuming the production schedule contains 15% AB and we want to sequence as
many models with option B as possible, to improve the installation rate of AB, in
Fig. 2, a model that features only option B is replaced by a model featuring the com-
bination AB in cycle six. Thus, no model with option A can be scheduled in cycles
five and seven without violating the sequencing rule for option A.

As a result, the upper bound H,, : N, is met by option B, but no more than 45%
of the models with option A can be sequenced. Consequently, no feasible model
sequences exist for any production programs with a share of 15% of models featur-
ing options A and B and more than 45% of models including option A. However,
such production programs can easily be generated by the master production schedul-
ing, even if the option occurrences are considered by upper bounds H,, : N,

This example illustrates that a fixed share of models featuring a combination of
both options can impose implicit limits on the maximum installation rates of the
two individual options, which fall below the levels induced by the sequencing rules.
Hence, even if the rule-specific ratios are met by the master production schedule,
a feasible car sequence may not exist. To ensure that a sequence can be generated
from the production plan without violating the sequencing rules, master production
scheduling must consider these implicit limits.

Cycle |12 415 718 1011 ]12]13]14]15[16[17]18]19]20
Option A | A A A A A A A A A 1A 0, = = =45%
Option B | B B B B 4B > g5 =55 =20%
Sequence |AB A AB A AB A A|B|A A 3AB> gy = 23—0 =15%

Fig.2 Sequence of two options A and B with 15% AB
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4 Linear inequalities for implicit constraints imposed by two options

We now derive linear inequalities, which represent the implicit limits imposed on
the installation rates of options and combinations of options based on the interde-
pendencies of the sequencing rules.

We consider a production program consisting only of models featuring up to two
options, A and B, with car sequencing rules H, : N,. In this section, we consider the
case H, = 1, because this constellation is most prevalent in car sequencing rules in
both theory and practice (Solnon et al. 2008). In Sect. 4.4, we generalize our find-
ings. We denote the minimal distance between two models featuring the same option
o as the ratio of N, and H,;

90 = (13)

First, we formalize the construction of an ideal production sequence. Accordingly,
we assume that both options A and B are scheduled starting at cycle one and each
q4/4q5 cycle. As in cycle one, all u,, cycle orders contain A and B with

Upp = LCM(‘]A’ QB)’ (14)

where LCM denotes the least common multiple.

In Fig. 3, the vertical lines in the first and second row indicate that the model
scheduled in this cycle features options A and B, respectively. If both options are
scheduled in the same cycle, the dotted line between them indicates this. The result-
ing sequence in Fig. 3 is called the ideal sequence, because options A and B can be
scheduled without a loss with respect to their car sequencing rules.

If u, 5 equals g, then gy is a multiple of g, (cf. Fig. 4). Assuming that we start
with options A and B in cycle one. Then, we can schedule both options every g
cycle, and the ideal sequence does not contain any model that features option B
only. Assuming the model in cycle one features either option A or option B. Here,
the ideal sequence does not contain any model that features both options. By

Fig. 3 Ideal sequence of two da da da da da da

options with the average dis-
tances g, and gp KWW

4B 4B B B

UsB UaB
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qa 94 94 494 94 9a da 94 94 4a

9B dB 5] 5] dp
w_/

Uap

Fig.4 Sequence of two options with g, equals u,p

combining these two subsequences, any proportion of the combination of options
A and B can be sequenced. The loss of one of the two options always occurs
when changing from one subsequence to another.

In an infinite sequence with few changes between the subsequences, this spe-
cial case leads to a negligible loss. To exclude the special case of u, =gy for
further research, we assume

1 <gy<qp<uypg (15)

Under this assumption, we now show that deviations from the ideal installation
rate 0,5 of the combination of options A and B can implicitly reduce the maximum
individual installation rates o, and o of options A and B to levels below the ratios
H,/N, and Hy /N, respectively.

Typically, when we deviate from the ideal installation rate o,5, we can either
prefer the installation of option A or the installation of option B. Therefore, we
first investigate the two extreme cases, in which we always prefer the same type
of option. Subsequently, we consolidate the obtained results and derive gen-
eral dynamic limits representing the implicit interdependencies induced by the
sequencing rules in the form of linear inequalities.

4.1 Prefer option B over option A

We start with the case in which the more demanding option B is preferred, that is,
we attempt to design a sequence that contains as many models featuring option B as
possible, given a fixed share of AB-type models. As demonstrated in the illustrative
example above, under these assumptions, the maximal installation rate of option A
depends on the share of AB-type models in the production program. We derive the
maximal installation rate of A for three distinctive installation rates of AB, which
is then used in developing a representation as a piece-wise linear function. We start
with the case in which none of the produced models features both options A and B.
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Proposition 1 Under the assumption that option B is preferred and that 6,5 = 0, the
installation rate of A is limited by

app—1
oy < ——. 16
4 Ay p * qa o
where
ayp= min {thBlthB =1+ tACIA}' (17)

1y.15€{1.75}

Hence, a, g represents the minimum number of cycles until options A and B would
have to be sequenced in the same cycle, assuming that A is sequenced from cycle
two every q, cycle and B is sequenced from cycle one every gy cycle.

Proof According to its sequencing rule, starting in cycle 1, we can schedule option
B at maximum every g, cycle, resulting in an upper bound on the installation rate of
B, which is independent of the installation rates of A and the combination AB:

op < — (18)

To determine the maximum installation rate of option A, our goal is to install
option A in as many cycles as possible while avoiding those cycles in which option
B is already scheduled (045 = 0). The resulting sequence is illustrated in Fig. 5.
Because option B is scheduled in cycle one, we can only start scheduling option
A in cycle two. Thus, we can schedule option A every g, cycle until it falls again
together with option B. This is the case after a4 5 cycles.

This subsequence can be repeated until the maximum number of cycles 7 is
reached, resulting in a loss of one cycle per a, 5 cycles for option A. Thus, in a sub-
sequence of a, 5 — 1 cycles, we sequence option A every g, cycle, such that the
number of assigned options is 2 If we divide this by the number of cycles in the

subsequence, we obtain the max1mum installation rate of A:

Fig.5 Subsequence a, z 1 CIA qA qA QA qA
N—M/—H—)W—H—H
1
L
| | |
| | |
A
4B 4B 4B
~ J
4,B
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a, p—1

ayp—1
o4 < qa — A.B (19)

IW:] Ay p * gy

O

As the installation rate of combinations AB increases from zero, we can shift the

schedule of option A by one cycle to the left in an increasing number of subse-

quences, as shown in Fig. 5 until we reach the ideal sequence (Fig. 3). In the ideal
sequence, we have 0,45 = 1/“AB ando, = I/CIA'

The installation rate of AB can increase to a maximum of the installation rate of
B because the sequencing rule for B also applies to AB.

Proposition 2 Under the assumption that option B is preferred and that o, = 1/‘]3’
the installation rate of A is limited by

1
o, < V—BJ . —. (20)
qda qdp

A

Proof In this scenario, as shown in Fig. 6, a subsequence is g5 cycles long. As seen

in this subsequence, option A can be scheduled at most Z—B times, which leads to a
A

maximal installation rate of

a5
< l‘fJ _ [Q_BJ L L 1)

CIB'

O
Because the subsequences discussed in Propositions 1 and 2 and the ideal
sequence can be arbitrarily combined, linear relationships are applied between the
three extreme scenarios. The linear interdependencies between the maximal installa-
tion rate of option A and the installation rate of combination AB is shown in Fig. 7.
The findings of this subsection are summarized in the following proposition.

Fig.6 Subsequence for the qa da da qa
maximum installation rate of
AB (prefer B) /_)\/\ /_)\/J\

@ Springer



364 T. Krueger et al.

azp—1

AaB * qa

Fig. 7 Maximum installation rate of option A as a function of the installation rate of the combination AB

(prefer B)

Proposition 3 Under the assumption that option B is preferred, the installation rate

of option A is constrained by the following linear inequalities:

ayp—1 " 1
6y < ———+my p; *04p if0=ZL 045 <— and
Ay B *qa Usp

1

1 1 . 1
o4 < <_mA,AB,2 Fo— o | Maagn * Oy if — <oyp<—.

AB 4A Uyp qp

<q3 [qJ )
Uap\ =~ |,

qga 4a
Usp

m =—"— and m =
AAB,1 AAB2
Qyp * Gy dp — Uap

with gradients

(22)

(23)

Proof From the results of Propositions 1 and 2 and Fig. 7 it is easy to see that the

gradients my 4p 1 and m, 45, can be calculated as follows:

ayp—1 1
Y R T LY
MpaB1 = 1 =
- — Xa * dg
Upp
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L_@ q_B_lq_BJ

m _4a 9 _ 49a qa (25)
AABZT1 1T 4B~ Uap
Usp 4B Usp
O

4.2 Prefer option A over option B

We proceed with the case in which the less demanding option A is preferred, that is,
we attempt to design a sequence that contains as many models featuring option A as
possible, given a fixed share of AB-type models. Similarly, we derive a set of linear
inequalities, which limit the installation rates of options A and B depending on the
installation rate of the combination AB. As mentioned above, we derive limits for a
set of distinct values for 0,5, which can then be combined linearly. We start with the
case where 6,5 = 0.

Proposition 4 Under the assumption that option A is preferred and that o453 = 0, the
installation rate of B is limited by

ap s — 1
op < ——. (26)
Apa * qp
where
ap, = min t t =14t .
BA el 175 { A9al14q0 BqB} (27)

Proof The proof is analogous to the proof of Proposition 1.
O

Similarly, we can increase the installation rate for AB from zero up to one
order per u,y cycle by shifting the schedule of option B by one cycle to the left
in an increasing number of subsequences underlying Proposition 4, until the ideal
sequence is reached.

Assuming that option A is installed in every g,-th cycle, the installation rate of
AB can be further increased until the scenario in Fig. 8 is reached. Every model fea-
turing option B also includes option A; however, compared to the ideal sequence,
the scheduling of option B is delayed for a couple of cycles, resulting in a reduced

installation rate oj. At this point, option B can be installed in every Z—” + 1) * (4
A

cycle. Hence, the installation rate of both B and AB is the reciprocal of this value.
A further increase in the installation rate of AB can only be achieved at the
cost of a reduced installation rate of A, resulting in fewer A and more B being
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Fig.8 Subsequence for the da da da da da da

maximum installation rate of
AB (Prefer A) D N

Y YT

5] 5]

installed until the subsequences in Fig. 6 are reached. Figure 9 shows the installa-
tion rates of options A and B depending on the installation rate of AB, and Propo-
sition 5 summarizes these findings in the form of linear inequalities.

Proposition 5 Under the assumption that option A is preferred over option B, the
installation rates of options A and B are limited in the following way based on the

installation rate of AB.

1.
f0<oyp < —:

1
2 28)
A
ap 4 — 1
Op S ———— +Mpap; - Oyp (29)
Op 4 - dp
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Fig.9 Option A and B as a function of AB (Prefer A)
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1
o, < — 30
s (30)
1 1
op S | —Mpupy-——+ — | +Mpaps - Oup (31)
Usp Y4B
If I <04 <
1 qBJ 1 >
o, < |—-m =+ | == )+m XY 32
A < AAB3 s l 7.] AAB3 " OAB (32)
1 1
op < |-1-—+ — | +1-045=0yp (33)
4 4B

with gradients

aAB3 = I 1 (34)
(o] 1) *
qda
aps— 1 _ i
Apa 9 4B Usp
= = 35
mB’AByl 1 aB,A qB ( )
0— —
Uxp
-1(2]1)
m _4p qa
B.AB,2 — L ~ 1 (36)

(DR

Mpap3 = 1 T - 1 (37)

[

Proof The inequalities and gradients can be directly concluded from Fig. 9.
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O

4.3 Prefer no attribute

Clearly, in master production scheduling, we do not know a priori whether and to
what extent we prefer the installation of one of the equipment options. Next, we uti-
lize the findings from the preceding subsections to derive generally valid inequali-
ties, which represent the interdependencies of the installation rates. These findings
are summarized in Fig. 10. The shaded region represents the solution space in a
general case. We cast our results into the following two propositions.

Proposition 6 If we have for the installation rate o,y of the combination AB that
0<o,; < ML, then the installation rates of options A and B are limited by the fol-
AB

lowing inequalities:

1
o, < — 38
A (38)

o, |—-m L+O[AL_1 +m op+m [ 39
A S A,B,1 05 | Gyp % ds A,B,1 " OB AAB,1 “ OAB 39)

1
o < ‘I_B (40)
with
Mypy = _ Zadn (41)
Mp A1

Proof We start by investigating the case where no combination AB is installed at all,

that is, 0,5 = 0. As shown in Fig. 10, we can install either option A at a rate of qi
A

7’} Op

Apa*dp

0AB 0AB

i

i

I

i

i

i

i

1

1
as

“

Fig. 10 Attribute A and B as a function of AB (Prefer no attribute)
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Apa—

(preferrmg option A) or A at a rate of ~2£— Land B ata
ApA'qp XpB A

rate of — (preferring option B), or we can trade off A against B (combining the cor-

and option B at a rate of

respondlng subsequences). Figure 11 shows the installation rate of A as a function
of the installation rate of B in this situation. From this diagram, we can directly
derive the gradient m, g ; of the trade-off.

L _ a,LB—l
dr pda OpA " qp My AB,1
mA’B’l = 1 N = — = — (42)
A LW BV Mp AB,1
apA'dB 9B

When o, increases from zero, the linear trade-off function moves upward until

the ideal sequence is reached with o, = ML, oy = qi, and o = qi From Proposi-
AB A B

tion 3 (Eq. (22)), we can conclude that the gradient used to move the trade-off func-

tion is m, 4 ; and obtain Inequality (42).
O

Proposition 7 If we have for the installation rate o5 of the combination AB that
L< Oup < L then the installation rates of options A and B are limited by the fol-

Uap
lowing znequalmes.

1 1 1
o, < <— —Mypo— —Myaps- _> +Mmypo - OptMyaps-0Oap  (43)
qda UF] Uysp

9 1 1
oy < <a : g —MpaB3* CIB> + My Ap3 " Oap 44)

with

1 1% N
m,
= E = \'\' 4,8,2
: .
1 N
s < .
| (RO el
@yp* qa 1 qa| a8 'S,
H
1
1
H
H
)
1
1
H
1
1
1
' Op Op
0 a1 S 0 L
Apa*qp as B

Fig. 11 The installation rate of A (O‘A) as a function of the installation rate of B (0'3) given that o5 <=
AB

oro,y > —
Uap
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MpAB2

Mppor = — 45)

Mp AB2

and inequalities (38) and (40)

Proof When the installation rate of AB exceeds ML, a choice between A and B must
AB

be made. The trade-off function limiting the installation rate of A in dependency of
B moves downwards until AB is sequenced once per gy cycle, as shown in Fig. 11.
From Proposition 3 and Inequality (23), the gradient used to move the function is
my 4p. yielding Inequality (43).

In addition, we can conclude from Proposition 5 and Inequality (32) that the
upper bound on 6, moves downwards with the gradient m, 453 as soon as o,p is
greater than — 1 yielding Inequality (44).

T

O

We can summarize the following: in case no preferences are given the implicit
limits on the installation rates caused by the interdependencies of the sequencing
rules are described by the inequalities (38)—(40) and (43)—(44).

4.4 Generalization

In the previous sections, we devised implicit constraints when considering two
options with H, = 1. In practice, it is necessary to consider more than two options,
and options with H,, > 1. Therefore, we generalize the inequalities and present the
modifications of the basic MPS model.

While possible, in principle, the derivation of implicit constraints becomes
increasingly complicated for more than two options. In this study, we do not pursue
this direction further; however, it was left for future research. Instead, in cases of
more than two options, we generate implicit constraints for all possible pairs of
options and add them to the basic MPS model (Sect. 4.5). The more pairs and inter-
dependencies are included, the better the sequencing can be anticipated. For
instance, for three options (A, B, and C), restrictions for three pairs can be generated
(A-B with AB, A-C with AC, and B-C with BC). The restrictions for A-B with AB
means the proportion of AB is set in each period such that A and B are scheduled as
often as possible (ideally o, = ﬁ, see Fig. 10). We also call these restrictions

Level-2 restrictions because the number of options in the considered combination is
exactly two. We can define Level-3 restrictions as well, for example, for A-C with
ABC. These determine the proportion of the car model ABC, such that, in this
example, A and C can be optimally scheduled.

For each pair of two options A and B, five parameters need to be determined to
construct the additional constraints for the MPS model; q,, g, itsp, @4 g, and ap 4. g4
and g5 describe the minimum distance between two orders (Eq. (13)) and can easily
be determined by
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NA

qa = H_A (46)
NB

qp = H, 47

For level-2 restrictions, the parameter u,,; defines the ideal distance between two
orders containing options A and B (Eq. (14)) and with

LCM (N4, Ng)

= 48
Upsp H, H, (48)
where LCM denotes the least common multiple. Analogously, for level-3 restric-
tions, the ideal distance between orders containing A, B, and C is given by:

. _ LCM(N,,Ng,Nc) )
ABT H,-Hy-H

The parameter @ p, inserted in Inequality (16), determines the maximum instal-
lation rate o, for option A if the installation rate o, for AB is zero and option B is
preferred (analogous to parameter ay ,). For options o with H,, = 1, the value of the
parameter can easily be determined using Eq. (17).

For the case of H, > 1 for at least one of the considered options, the determi-
nation of a, 5 and ap 4 is more challenging, because H, options can be sequenced
arbitrarily in N, cycles, thus providing more flexibility. We address this problem by
devising and solving a specially tailored sequencing problem to directly determine
the maximum installation rates o, and o5 and then use Inequality (16) to deduce val-
ues for a, 5 and ay 4. The procedure is described in detail in Appendix 2.

4.5 Modifications to the MPS model

After determining all parameters, we can incorporate the inequalities derived in
Propositions 6 and 7 into the MPS model formulation (1)-(4). We start by trans-
forming Inequalities (38) and (40) by replacing the installation rate o, for a certain
option o with the quotient of the number of orders containing this option and the
total number of orders:which results after multiplying with the denominator of the
left-hand term in the following set of linear constraints for all options and periods:

N
Zi=1 d;, - X < l,
Zi\;xit 9o
N 1 N
Zd,.g-x,.,gz-q—-zxi, VoeO;t=1,...,T (50)
i=1 o =1
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Constraint set (50) replaces constraint set (5) in the basic MPS model. Note that we
introduced a parameter 4 to control the utilization rate (Sect. 3.1) in our numerical
experiments. The default value of A should be 1.

The following constraint sets (51)—(53) are derived similarly from Inequalities
(39) and (43)—(44), respectively, and are added as additional constraints to the
basic MPS model. The parameters m. . . are defined in the related propositions.

N
Z lt—( 00’1 1 +— > Z'xlt

9y Xy o *dq, i=

N

+m00’1 : 2 (dm’ 'xit)

N
000’1 Z d dlo’ Xit

N
—(1—/1)-l-2x,., Vo, €0:q,<q,;Vt=1,..,T

o =l

(51)
al | 1
; dio Xt < <q_0 - mo,o’,2 : E - mo,oo/,Z hyy > let
N
+ mo,o/,Z : Z (dl'()/ ' xit)
=1
N
+m, 00'2 " Z (dio : dio’ : xit)
i=1
N
(-2 Zx,, Vo, €0:q,<q,;Vi=1,....,T
o i=1
(52)
N q 1 N
;dio cXy < <q_(; * q_u — My o003 * _> ;xn
N
+ My 003 ° z (dio : dio’ : xit)
i=1
N
—1-4- Zx,, Vo,o' €0:q,<q,:Vt=1,....T
o =1
(53)

To add level-3 restrictions, the terms Zf\i (diy - diy x) are replaced
by Zf\il (diy - diy + i 'xi,). Here, 0,0’ and o” represent the three options
considered.
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Consequently, our enhanced MPS model (EMPS) consists of constraint sets
(1)-(4) and the additional constraints (50)—(53).

5 Numerical study

In this section, we evaluate the effect of considering the implicit sequencing con-
straints in the master production scheduling step on the number of rule violations
in the sequencing step. Accordingly, we compare our EMPS derived in Sect. 4.5
with the original MPS approach suggested by Boysen et al. (2009a) and our modi-
fied MPS+, both discussed in Sect. 3.1. We concentrate on hard sequencing rules,
as these are critical to be fulfilled, and violations lead to losses in output.

We compared the three planning approaches based on the sequencing rule
violations. After solving the master production scheduling model, each period is
sequenced using the heuristic “very fast local search,” as described in Appendix
3. In Appendix 4, we show that the heuristic delivers near-optimal results. Dur-
ing the planning process, a production sequence is formed for each production
shift. However, at the assembly line, an infinite sequence is manufactured, which
must fulfill all the sequencing rules at the transitions from one shift to the next.
Because we do not know the sequence of the following shift when sequencing
and the cycle normally contains a so-called heavy order with many options, we
evaluate the last orders as if in the first cycle of the following shift, only orders
with all considered options would be sequenced. For example, suppose that we
are sequencing 20 orders, in the sequencing step when calculating the sequenc-
ing rule violations, we considered five more orders with all considered options
in cycles 21 to 25. This results in few options being sequenced in the last cycles
or they are detected as rule violations. However, both behaviors are desired with
respect to the transition of the two shifts.

In the following, we present and discuss three experiments. In Experiment 1, we
compare the three approaches on specially generated ‘ideal’ benchmark instances,
of which we know that perfect scheduling and sequencing without rule violations is
possible. Hence, on these instances all rule violations that occur in the sequencing
phase can be attributed to the planning quality of the MPS phase. Having shown that
our new approaches can provide a significant advantage for realistic applications, we
conduct a deeper analysis of the EMPS approach in Experiment 2. In particular, we
want to understand why and under which circumstances the EMPS approach outper-
forms the other two approaches. For this purpose, we investigated a case with two
options, each with a 100% utilization rate, that differ only in the number of orders
containing both options (installation rate o,5). Because this installation rate is not
considered in the approaches MPS and MPS+, we expect a substantial and coincid-
ing number of sequencing rule violations for them, whereas according to our theo-
retical results, EMPS should cause no violations at all. Finally, in Experiment 3, we
show the influence of lambda on the number of scheduled orders as well as on the
number of violations, and we investigate the limitations of the EMPS approach by
investigating the number of considered options.
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For each experiment, we first describe the data generation before we present
and discuss the numerical results. The instances of experiment one and three
are available online at the Harvard repository (Kriiger 2021a). The instances of
Experiment two were easily reproducible based on these data.

All model instances were solved for a maximum of 10 min or to at least 99,9%
optimality with IBM ILOG Cplex 12.4 on an Intel® Xeon® CPU E5-2667 v3
3.2 GHz PC.

5.1 Experiment 1: Effectiveness on‘ideal’ benchmark instances
5.1.1 Data generation

In this experiment, we selected five instances of the car sequencing problem (90-1,
90-2, 90-3, 90-5 and 90-7) from the CSPLib (Smith n.d.), which can be sequenced
without violations. These instances consist of 200 orders and five options with five
different sequencing rules (1:2, 1:3, 1:5, 2:3, and 2:5). In the master sequencing
step, we want to assign the order pool to T = 10 periods. Therefore, we increase the
number of each car model by a factor of ten to reach n = 2000 orders in the pool.
Therefore, the instances are constructed such that they can be sequenced without
rule violations if the orders of the car sequencing instance are assigned once to each
period. To avoid “cherry picking,” we set the due date L; and the order-specific due
date deviation costs cl’, to 1.0 for each order i. Furthermore, we assume in line with
Boysen (2005), that assigning an order in periods smaller than the due date causes
inventory holding costs (/ = 0.1), which are less than the late delivery costs per
period (s = 0.2). Because all orders have the due date of one, orders cannot be pro-
duced early, and we can determine the order-specific and period-dependent schedul-
ing costs of each order with the late delivery costs s.

- (t=L)-s-c, Vi=1l,...,mr=1,...,T+1 (54)

In this experiment, we set 4 = 1 for all instances.
5.1.2 Numerical results

The results of the five benchmark instances are presented in Table 3. All instances
were solved in less than 7 s, whereby the runtime of the MPS was approximately
one-fourth of the runtime of the EMPS.

The “Solution” column shows the optimal objective function value of the master
production scheduling problem, that is., the due date deviation costs. All instances
in each model incur the same deviation costs because all orders have the due date
one and the same order-specific deviation costs. Furthermore, it can be seen in the
column “Assigned orders” that, in almost all cases, the complete order pool has been
assigned to production periods. This results in 200 orders meeting their due date in
period one. In period two, 200 orders are one period late and cause deviation costs
of 1 % 200 % 0.2 = 40. In period three, another 200 orders are two periods late and
cause costs of 2 * 200 x 0.2 = 80 etc.
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After sequencing each period for each instance using the sequencing heuris-
tic described in Appendix 3, the resulting violations are shown for each instance
in the column “Viol.”. Using the MPS+ approach, the number of violations is
reduced on average by 55%, and using the EMPS approach on average by 74%.
This corresponds to 3.6 violations per period for EMPS, compared to 13.7 viola-
tions per period for the MPS approach.

The improvement of the MPS+ approach is noteworthy because the production
capacity is almost completely exhausted in each period, such that Zi\;l x, =P
applies. Hence, Inequalities 5 and 6 are identical. This improvement can be
explained using Fig. 12, which shows the violations depending on the average
utilization rates over five options for each period ¢, calculated as follows:

N
1 Z Zi=1 i~ Xy H,
— /¥ (55)
0€0 le Xit N,

o

The utilization rate of an option is the quotient of the actual installation rate
and the maximum installation rate of an option. The higher the utilization rate
of an option, the more difficult it is for the sequencing step. A utilization rate of
100% means that H,, orders with option o must be sequenced in N, cycles. In term
(55), the number of assigned orders with option o is divided by the total number
of orders in period ¢ and then divided by the maximum installation rate of option
o. Thus, the mean value of the five option-specific utilization rates is calculated.

First, Fig. 12 shows that the MPS approach generates more periods with utili-
zation rates of less than 80% and more than 90% compared to MPS+ and EMPS.
Therefore, the MPS+ approach better distributes the orders containing options
over all periods, thus avoiding utilization peaks. We can only speculate the rea-
sons for this favorable behavior. One reason might be that Inequality 6 behaves
differently in the course of the branch-and-bound solution process and thus guides
the solution algorithm to more favorable solutions. Second, a higher utilization
rate leads to more violations. Consequently, the MPS+ approach caused fewer
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Fig. 12 Violations depending on the utilization rates for the five benchmark instances
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violations than the MPS approach. By introducing 4 into the MPS approach (5),
the maximum utilization per period is limited, and thus, the number of violations
is reduced. However, the decision maker would like to have a high utilization of
his system and still receive no violations of the sequencing rules. Therefore, in
the next experiment, we examine an order pool with 100% utilization.

It is noteworthy that the models assign all orders in all instances, incur the same
deviation costs, and our approach still causes significantly fewer sequence viola-
tions. This is achieved by the additional constraints of EMPS, which limit the solu-
tion space to those solutions that can be sequenced with fewer violations. As shown
in Fig. 12, fewer than 15 violations are caused by EMPS in each period, and even
for utilization rates of more than 90%, significantly fewer violations are caused than
MPS and MPS+. The results also show that the EMPS approach currently cannot
consider all interdependencies; owing to the construction of the test instances, there
must be a solution in which all periods can be sequenced without sequence viola-
tions. We further detailed our investigation in the next experiment. In this study, we
consider only two options to investigate the effectiveness of the EMPS approach and
choose a 100% utilization rate for both options.

5.2 Experiment 2: Impact of combined and mutually exclusive options
5.2.1 Data generation

In this experiment, we generate five instances to investigate the impact of the frac-
tion of orders featuring a combination of two options on the number of violations
produced in the sequencing step. As before, we consider a planning horizon of ten
periods (T = 10) and assume that each period has the same length such that the
number of available cycles can be calculated by dividing the length by the cycle
time. An 8-h shift with a one hour break (length = (8 — 1) - 3600 = 25,2005s) and
a cycle time of 120 s resulted in P = 210 production cycles. Thus, the size of the
order bank for ten periods was 2100 orders. We consider two options, A (1:2) and B
(1:3), which are available in the order pool at 50% and 33.3% respectively (resulting
in the utilization of the option stations of 100%). The five instances, which differ in
the percentage of orders containing A and/or B, are listed in Table 4. In the instance
AB-0, we choose two mutually exclusive options; therefore, the percentage of AB
is zero. For example, consider two different roof systems. Option A is a panoramic

Table 4 Instance overview of

k Instance ID Option percentages in the pool
Experiment 2
= (%) A (%) B (%) AB (%)
AB-0 16.7 50.0 333 0.0
AB-1/12 25.0 41.7 25.0 8.3
AB-1/6 333 333 16.7 16.7
AB-1/4 41.7 25.0 8.3 25.0
AB-1/3 50.0 16.7 0.0 333
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roof that cannot be opened. Option B is a sliding roof that can be opened. Both
options can be very complex to install and thus cause car sequencing rules. How-
ever, because a car can only have one of the two options installed, these two options
are mutually exclusive; therefore, the installation rate of the combination AB of both
options must be zero. Based on the percentage of AB, the percentages for A and B
were calculated such that orders with A and AB together were 50% and orders with
B and AB together were 33.3%. Orders “~" contain neither A nor B. In the other
four instances, we increased the percentage of AB by 1/12 in each instance and cal-
culated the percentages for A and B.

As in the preceding experiment, the order-specific due date deviation costs ¢/, the
due dates, and the parameter A are set to 1.

5.2.2 Numerical results

The results of the sensitivity analysis are presented in Table 5. The column “Solu-
tion” shows the deviation costs caused by the scheduling step, the column “Assigned
orders” presents the number of orders assigned over ten periods and the column
“Viol.” shows the resulting sequencing rule violations over ten periods.

Because the order pool induces maximal installation rates for options A and B,
it is plausible that MPS and MPS+ assign all orders to periods for all five instances
and thus cause the same deviation costs for all instances (considering that all orders
have the due date, and thus 90% of them exceed their due date). This results in up
to 360 violations using MPS and MPS+ approaches. Unlike in Experiment 1, we
did not observe any advantage of MPS+ compared to MPS. This is because there
were no utilization peaks that could be avoided. The experimental setup is such
that a utilization of 100% already exists for both options in the order pool and each
period. It follows that MPS+ results in sometimes more and sometimes fewer vio-
lations than MPS. This difference is only caused by the different distributions of
the orders in which both options are installed (combination AB). This dependence
can be observed in Figs. 13 and 14, which resemble Fig. 10. For each period of the
five instances, the position of each bubble indicates the installation rates for options
A, B, and combination AB. The installation rates of A and B consider all orders

Table 5 Results of the sensitivity analysis of the combination installation rate

Instance ID MPS MPS+ EMPS
Solution Assigned Viol Solution Assigned Viol Solution Assigned Viol
orders orders orders

AB-0 1890 2100 360 1890 2100 360 22052 1394 0
AB-1/12 1890 2100 198 1890 2100 185 1925 1925 0
AB-1/6 1890 2100 63 1890 2100 113 1890 2100 0
AB-1/4 1890 2100 175 1890 2100 210 1907.6 2012 0
AB-1/3 1890 2100 350 1890 2100 350 1925 1925 0
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Fig. 13 Violations per period depending on the installation rates of option A and combination AB
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Fig. 14 Violations per period depending on the installation rates of option B and combination AB

containing these options, that is, including orders with the combination AB. The
size of each bubble indicates the number of violations in the respective periods.
Each bubble in Fig. 13 has a corresponding bubble in Fig. 14 with the same installa-
tion rate of AB. We marked three pairs of bubbles, 1, 2 and 3, as examples. We also
separated the bubbles of the five instances by color.
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The two graphs show that MPS and MPS+ schedule 50% A and 33.3% option
B in each period, that is, reach utilizations of 100% for both options in each
period. The EMPS approach produced a considerable number of bubbles that
were below the maximum installation rate. Only when the installation rate of AB
reaches a value of 16.67% does the EMPS approach schedule 50% A and 33,3%
B. These values correspond to the ideal distribution shown in Fig. 1. As shown in
Sect. 3.3, for this distribution alone, a 100% utilization rate can be achieved for
both options without violations.

The smaller or larger the installation rate of AB deviated from this ideal instal-
lation rate, the more violations are caused by MPS and MPS+. In Figs. 13 and
14, we added the dashed lines from Fig. 10 showing the decision limits of the
EMPS approach that result in these two options. These limits are determined with
s =2, qp=3, uup="06, ayp =3 and ap, = 4. If the installation rate of AB is
larger or smaller than 16.67% for EMPS, a tradeoff between options A and B
occurs (corresponding to the grey-shaded area in Fig. 10). This tradeoff depends
on the installation rate of AB, as shown in Fig. 11. The closer the installation rate
for option A is to the maximum, the closer the corresponding bubble for option B
must be to the dashed limit or below to avoid violations.

The additional constraints of the EMPS approach ensure that the orders are
assigned to periods such that this tradeoff is considered, and all instances can be
sequenced without violations. This is achieved by postponing some orders to later
periods or not scheduling them at all. This leads to somewhat higher deviation
costs in some cases.

In summary, for high utilization rates, the MPS+ approach is not superior to the
MPS approach; however, the EMPS approach still achieves significant improve-
ments in these cases. Therefore, the sequencing step is anticipated early, and it can
be recognized that not all orders can be scheduled. In the industry, master produc-
tion scheduling is performed in rolling-horizon frameworks. This means reschedul-
ing is performed at regular intervals. Orders that cannot be scheduled in the cur-
rent schedule are assigned to the period T+ 1 in the model and must therefore be
considered again in the next rescheduling. If the interval between the current and
the new scheduling is smaller than the planning horizon of the master production
scheduling, orders that have already been scheduled but not yet built must also be
considered again. In addition, new orders are added from the order promising at
defined regular intervals. When rescheduling in the rolling process, orders which
have already received a production date, orders without a production date (T + 1),
and new orders are all available. Orders without a production date have an earlier
due date than new orders, reason why the model will prefer these orders to the new
ones. If the same options cannot be assigned to a production date after several roll-
ing planning steps, special costly measures are necessary. These should ensure that
the number of affected options in the order pool is reduced such that all orders can
be scheduled in future planning steps. Possible special measures could be a shift
in which this equipment option is built as a priority, or an adjustment in the order
promising step such that fewer orders with this option are added to the order pool.

Consequently, it would be possible for the decision maker to react already after the
scheduling step. It is also plausible that more orders are scheduled as the percentage
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of AB in the order pool approaches the ideal percentage (1/u=1/6). With this knowl-
edge, the decision maker can also check which orders should ideally be added to the
order pool in the order promising step. In addition, it can be seen that we have properly
integrated the interdependence between the two options. All instances were sequenced
without violations.

In the third experiment, we highlighted the limitations of the EMPS approach. Con-
sequently, we varied the number of considered options between two and seven, and we
also investigated whether values for 4 < 11led to an improvement in the sequencing step
for the three models.

5.3 Experiment 3: Impact of the number of considered options
5.3.1 Data generation

In this experiment, we the impact of A and the number of options considered in the
program planning. As before, we examined ten periods and 2100 orders. We generated
order pools for the different scenarios listed in Table 6. For each scenario, ten different
order pools were generated.

When generating the order pool, for each order i and each option o, a random num-
ber rnd between zero and one is used to decide whether this option is included (Eq.

(56)).

d = 1, md <H,/N,Viel
o "™\ 0, otherwise YoeO (56)

Similar to Boysen (2005), we assume that orders with many options cause higher
deviation costs than those with few options. Accordingly, the base costs ¢, and costs
for each option o were determined randomly between one and two. With these costs
and the due date L, = 1 for each order i, we calculated the cost coefficients c;, as
follows:

(@) ¢ i=co+ Zle d,-c,
®) . 1= (Li—1t) -lec), 1< L Vi=l,...,myt=1,...,T+1 (57)
L (t - Ll-) -5 - cl, otherwise
Table 6 MPS scenarios Scenario Number of Restriction H, /N,
options

1 2 172, 1/5
2 2 2/3,1/2
3 2 2/3,1/5
4 3 2/3,1/2, 1/5
5 5 2/3,2/5,1/2, 1/3, 1/5
6 6 2/3,2/5,1/2, 1/3, 1/5, 1/7
7 7 2/3,2/5,1/2,1/2, 1/3, 1/5, 1/7
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5.3.2 Numerical results

Figure 15 shows the average results of ten experiments for each value of A and indi-
cates that with a decreasing value for A, fewer orders are planned. This is because,
for each option, the expected value of the proportion in the order pool corresponds
to the quotient of H, and N, and thus a workload of 100%. The goal is to achieve
100% utilization of machines with zero violations. This requires 4 to be equal to 1.
For 4 < 1the maximum utilization for each option is limited; thus, not all orders can
be scheduled. The random distribution can cause the utilization of some options in
the order pool to be over 100%, reason why not all 2100 orders are scheduled for
A = 1. In each model, A has the same influence on the number of scheduled orders.
Figure 15 also shows that an increase in A lead to a significant increase in violations
for MPS+, whereas EMPS generates production programs for each 4 that can be
sequenced with almost no violations. MPS causes many violations for all A values.
Two observations can be made. First, more orders are assigned using the MPS
approach than MPS+ and EMPS. This observation is in line with the illustrative
example in Sect. 3.1 in which options are limited only by an upper bound depending
on the fixed production capacity and the sequencing rules in the MPS approach. In
MPS+ and EMPS, this upper limit is determined by the number of orders assigned
and the sequencing rules. Because the production capacity is not exhausted, fewer
options and fewer orders can be scheduled. Second, as seen, MPS causes signifi-
cantly more violations for all A values and the number of violations increases as A
decreases, although a decrease in A should lead to improved sequencing (Sect. 3.1).
For A < 1, fewer orders with option o are scheduled than those allowed by the instal-
lation rate. Because all orders have the due date of one, orders without option o
are assigned instead. Consequently, orders with option o are moved backward, and
orders without option o are moved forward. With a high number of orders with
option o in the order pool, many orders with this option and only a few orders
without this option are scheduled in the last period. Figure 16 shows that the MPS
approach leads to significantly more violations in the last periods because the upper
limit for option o does not depend on the number of orders assigned in these periods.
In MPS+, this limit is dynamic and depends on the number of scheduled orders.

2100 120

2050
80 R I

60

Violations

1950
40

Assigned Orders

1900 20

1850 0 — A —h— Ak —k-A
0.9 0.92 0.94 0.96 0.98 1 09 0.92 0.94 0.96 0.98 1
Lambda Lambda

- & —EMPS —@— MPS+ --4--- MPS - & =EMPS —@— MPS+ --4-- MPS

Fig. 15 Impact of the weighting factor A
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Sequencing rule violations per period
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Fig. 16 Sequencing rule violations per period of MPS and MPS+

Thus, orders that cannot be sequenced are not scheduled in the last period. With an
increase in A, the number of violations also increases because the interdependencies
between the two options are not considered in MPS+. Only the EMPS approach can
regulate the percentage of orders containing both options such that sequencing can
be performed almost without violations.

After investigating the impact of A, we combine both graphs of Fig. 15 in Fig. 17
showing the violations depending on the assigned orders for the first three scenarios.
This demonstrates that EMPS outperforms MPS and MPS+ in each case and leads
to 98% to 100% fewer violations, which is an awesome result. Owing to Inequalities
(5) and (6), the models schedule over ten experiments on average have a maximum
of approximately 2075 (MPS+ and EMPS) and 2086 (MPS) of the existing 2100
orders. This is because the sequencing rules H, /N, limit the options. If the percent-
age in the order pool is higher than H,/N,, some orders cannot be assigned.

The results demonstrate that the MPS+ approach considerably reduces the num-
ber of violations, whereas the EMPS approach can almost completely prevent viola-
tions in the sequencing step when considering two options. In practice, sequenc-
ing usually requires consideration of five, six, or even more difficult sequencing
rules. Figure 18 shows that even for this number of sequencing rules, an improve-
ment in the sequencing is achieved. For the three options, EMPS generates produc-
tion programs, especially by considering level-3 restrictions (cf. Sect. 4.4), which
are sequenced almost with no loss. As a result, we obtained up to 98% fewer viola-
tions. The more the options to be considered, the smaller the improvement by EMPS
compared to MPS+. This shows that the EMPS approach has limitations. The limit
seems to be seven options for which no improvement in the sequencing step could
be achieved compared to MPS+. Nevertheless, MPS+ and EMPS resulted in fewer
violations than MPS.
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Two options (1:2 & 1:5)

120
-
100 '~‘
u [ ]
« 80 LN S
S -
% 60 — & — EMPS
©°
5 10 —e— MPS+
0 -98%| [-99%  --4-- MPS
0 —h A A— A -k ——A
1850 1900 1950 2000 2050 2100
Assigned orders
Two options (2:3 & 1:2)
350
300
.‘.‘n
@ 250 LW
S 200 -
= — & — EMPS
S 150
35 -100% —@— MPS+
100
---- MPS
50
0 —A-A--A-A- Ak - A A--4A
1750 1800 1850 1900 1950 2000 2050 2100
Assigned orders
Two options (2:3 & 1:5)
250
200 .
“m
"
§ 150 l\
% ‘l. - & - EMPS
©° s
S 100 " —e— MPs+
50 --4--- MPS
—98%l -98%
0 -—-—A-Ak-4

1750 1800 1850 1900 1950 2000 2050 2100
Assigned orders

Fig. 17 Violations depending on the assigned orders of the scenarios 1 to 3
The limitation of EMPS is the interdependencies of car models, which contain
multiple options. We derived the dependencies for the two options and considered

them in the model. As shown, this can reduce the number of violations by 100%. For
three options (A, B, and C), there are orders that contain all three options. For this
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Fig. 18 Violations depending on the assigned orders of the scenarios 4 to 7

combination, there exists an ideal ratio such that all options can be fully sequenced.
We have integrated this in Experiment 3 with the level-3-restrictions (49). Looking at
the investigation with five options (A, B, C, D, and E), there are some combinations
(ABCD, ABCE, ABDE, ACDE, BCDE, and ABCDE) for which no dependencies are
currently considered. Each of these combinations has an ideal ratio for 100% utiliza-
tion of the workstations associated with the considered options. The deviation from this
ideal ratio influences the maximum installation rates of the options, which currently
cannot be considered. Our investigations into this direction resulted in highly nonlinear
dependencies and were not further pursued in this study. However, we believe that this
research direction might provide the potential to further reduce the number of viola-
tions. This experiment demonstrates the conflict between the assigned orders and the
number of violations, which can be influenced by the parameter 4. Small values of
A lead to a lower number of assigned orders (for a high utilization rate in the order
pool), and A = 1 leads to a high number of assigned orders, but also to a high number
of violations. The decision-maker must therefore decide whether less output should be
produced or whether to put in place cost-intensive measures to mitigate the violations
(e.g., use of additional resources). Orders that are not built can also be rebuilt in spe-
cial shifts, which also leads to high additional costs. Thus, a good anticipation of the
sequencing rule is important for A = 1, such that all orders can be assigned without
additional costs.
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6 Summary and outlook

This study considers the problem of selecting orders from an order bank to be
produced on a mixed-model assembly line using a car sequencing approach. We
described and discussed the basic master production scheduling approach and
presented a simple extension as well as an enhanced approach with additional
constraints. We showed that interdependencies between car sequencing rules
resulted in the existence of additional implicit and dynamic sequencing con-
straints on models that feature more than one option. In the case of two options,
we derived linear inequalities that fully represent these implicit constraints in the
master production scheduling step and presented a generalized modification to
the basic master production scheduling model. In numerical studies, we compare
the standard basic approach with a simple extension and an enhanced approach.
Compared to the basic approach, our simple extension approach caused fewer
violations in the sequencing step for most instances. The two approaches cause
nearly the same number of violations if the utilization rate approaches 100% for
all options. The enhanced approach outperformed the basic approach in each of
the experiments. Compared to our simple extension approach, we showed that
for up to six options, the implicit constraints in the master production schedul-
ing step can cause a significantly lower number of violations in the sequenc-
ing step. Especially for options that are mutually exclusive or conditional, an
integration of interdependencies leads to a significant reduction in violations.
Another advantage is the early anticipation of the sequencing step, such that it
can be recognized that not all orders can be scheduled. Consequently, the deci-
sion-maker can react during the scheduling step.

For practical applications, the presented inequalities should be derived for
hard sequencing rules, as these must be strictly met during the sequencing step
as it may lead to a loss in the output if not met. In principle, additional soft
sequencing rules can be considered in the enhanced master production schedul-
ing approach through Inequality (6). We believe that this might reduce the num-
ber of violations of hard sequencing rules without influencing the violations of
soft sequencing rules. Further research in this field may identify the potential of
combining the two approaches for hard and soft sequencing rules.

Another use case of our findings should be order promising. Presently, to
accept orders and allocate them to production weeks, order promising usually
uses the same restrictions as the standard master production scheduling model.
As shown, sequencing is insufficiently anticipated in this case. This can lead
to order pools that cannot be completely allocated to periods with improved
sequencing anticipation in the master production scheduling step. The assurance
that orders can be sequenced already in the promising step can thus ensure the
assignment to periods and thus lead to an overall reduction in deviation costs in
the master production step, which would arise if orders had to be postponed to
earlier or later periods. Further investigations are left for future studies.
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Appendix 1

See Table 7.

Appendix 2

Here, we present an approach to determine the parameters @, 3 and ap 4 in the case of
H, > 1for at least one of the considered options. We address this problem by devising
and solving a specially tailored sequencing problem to determine the maximum instal-
lation rates ¢, and o directly, and then use Inequality (16) to deduce values for a, 5 and
ap -

As in Proposition 1, we start with the assumption that option B is preferred and that
the installation rate o,z = 0, However, we presume that H; > 1. Thus, the goal is to
determine @, p. First, we calculate the maximum number of possible occurrences of
option B in T cycles as follows:

max,TBz I *H3+max<O,T— <1 *NB> —(NB—HB)> (58)
Ng Np
The first term determines how often a subsequence of Ny cycles fits into T. This is
multiplied by Hy, because option B fits Hy times into each of the subsequences. The
second term checks how many cycles are left in addition to these subsequences and
whether further options can be sequenced. To avoid side effects (i.e., rule violations)
with the car sequence of the following shift, we do not sequence option B in the last
Ny — Hg cycles.
We can determine how often the non-preferred option A can be scheduled without
causing violations while avoiding scheduling both options in the same cycle. Conse-
quently, we solve the following specially tailored car sequencing model:

T
max ) x, (59)
=1
Xp+xp<1 Ve=1,...,T (60)
T
Z _ T
Xp = maxy (61)
=1
t+N,-1
Y x,<H, Vt=1,...TVo€ (A B} (62)
t'=t
X, =0 Vt>T-(N,—H,+1) Vo€ {A B} (63)
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Table 7 List of all symbols

Q

0,0'

mo,o’ 2
mo,oo’ L1
m

0,00',2

mu,{m’,3

My oor,1

Myt o' 2

my ,00'3

Required parameter to calculate the maximum installation rate of option o in case option o’ is
preferred an no combination of o and o' is allowed (Eq. (17))

Weighting factor—limitation of the utilization rate

Installation rate of option o

Weighting factor—limitation of the utilization rate

Binary coefficient; 1, if model m contains option o; 0, otherwise
Big integer

Cost coefficient for order i, if order i is assigned to period ¢
Binary parameter: 1, if order i requires option o; 0, otherwise
Demand for copies of model m in the car sequencing problem
Sequencing rule: at most H, out of N, successively sequenced copies may require option o
Due date (day) of order i

Set of car models with m € M

Increase in the maximum installation rate of option o in case the installation rate of o’ increase
by one for0 < o,, < ML (see Eq. (41))

Increase in the maximum installation rate of option o in case the installation rate of o’ increase
by one for HL <o,y (see Eq. (45))

oo’

Increase in the maximum installation rate of option o in case the installation rate of the combi-

nation of o and o’ increase by one and option o' is preferred foro,, < uL (see Eq. (24))
oo’

Increase in the maximum installation rate of option o in case the installation rate of the combi-
nation of o and o' increase by one and option o' is preferred for L < o, (see Eq. (25))

00’

0o’

00’

Increase in the maximum installation rate of option o in case the installation rate of the combi-
1

LRJr])'qA

< Ouy
nation of o and o' increase by one for (m

O
(see Eq. (34))
Increase in the maximum installation rate of option o' in case the installation rate of the combi-
nation of o and o’ increase by one and option o is preferred for ¢, < L (see Eq. (35))

7
00’
Uoo!

Increase in the maximum installation rate of option o’ in case the installation rate of the com-

1
o,

1
— < <
=00 = T

bination of o and o' increase by one and option o is preferred for * 0 +')“’f‘ (see
Eq. (36))

Increase in the maximum installation rate of option o' in case the installation rate of the combi-

1
<0,y

nation of o and o’ increase by one and option o is preferred for (:T}i“ )"“ ! (see Eq. (37))
Maximum occurrences of option B in T cycles (Eq. (58))
Set of orders withi € N
Set of options witho € O
Quotient of the car sequencing parameters N, and H, (Eq. (13))
Number of cycles per period
Number of production periods (shifts) in the MPS withr=1,..., T +1
Number of production cycles in the car sequencing model witht =1, ..., TS

Least common multiple of the sequencing rules of options o and o’
Binary variable: 1, if order i is assigned to period ¢; 0, otherwise
Binary variable: 1, if model m is produced in cycle ¢; 0, otherwise
Binary variable: 1, if option o is produced in cycle ¢; 0, otherwise

Binary variable: 1, if a rule with respect to option o is violated in cycle ¢; 0, otherwise
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In the objective function (59) the number of occurrences of the non-preferred option
A is maximized. Inequality (60) ensures that only one option is sequenced per cycle
(and not both) and inequality (61) prescribes the number of occurrences of the pre-
ferred option B. Inequalities (62) and (63) ensure that the car sequencing rules are
followed and that no options are sequenced in the last N, — H, cycles.

Let x} for o € {A, B} be an optimal solution to model (59) to (63). Thus, the max-
imum installation rate 5, and parameter @,  can be determined as:

T
o) = z’}lx”* (64
. 1
A\B= 1 _o %a. 4 * 4 (65)

where Eq. (65) is derived from Inequality (16).
The parameter ap, can be determined analogously by preferring option A and
maximizing the occurrences of option B.

Appendix 3
Greedy heuristic

Greedy heuristics are useful in obtaining good initial solutions. Greedily building
a sequence means that the next car to sequence is iteratively chosen with respect
to some given heuristic functions. First, an order that introduces the smallest num-
ber of new sequencing rule violations should be chosen. If more than one candidate
minimizes the number of new violations, another heuristic function must be applied.
The function we use is inspired by the DHU heuristic from Gottlieb et al. (2003),
which is based on the dynamic utilization rate

dynUtilRate(0, ;) = =2 * r(C.0)—r(x0)
yn txate\ o, ﬂ'] = F _— (66)
)

N,

defined for each option o, where z; represents the partial sequence built until posi-
tion j, C = {cl, ,cn} is the set of cars to be produced, |C| is the number of cardi-

nality of set C and |7rj| is the length of a sequence ;. H, : N, defined the sequencing

rule (see Table 1). The number of cars that require an option o within a sequence x;
(resp. within a set S of cars) is denoted r(nj, 0) (resp. 7(S, 0)). In each iteration and
after evaluating all options, we choose car c; that maximizes the heuristic

,uDHU(c,») = Z r(ci,o) x 2K (67)

0€0
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if o is the option with the k™ smallest utilization rate. The function r(cl-, 0) indicates
whether car ¢; requires option o (r(c;,0) = 1) or not (r(c;, 0) = 0).

Local search

The idea of local search is to improve an initial sequence by locally exploring the
“neighborhood” of orders, iteratively. For local search, we use the formulation of
Estellon et al. (2008), which enabled them to win the ROADEF 2005 challenge.
The broad lines of the heuristic are as follows:

VFLS heuristic (TIME-LIMIT)
Begin;
compute initial sequence;
while TIME-LIMIT is not reached do
choose transformation and positions where applying it;
if transformation is good then
Update current sequence by performing it;
end if}
end do;
return current sequence;
end,

We use five basic transformations: swap, forward insertion, backward inser-
tion, reflection, and random shuffle (see Fig. 19, for detailed information, see
Estellon et al. 2008).

After choosing the transformation, we must define the positions k and [, where
to apply swap, insertion, and reflection transformations. Because we do not con-
sider colors in this study, we use the following five variants: generic, similar, con-
secutive, violation, and denominator (see Table 8).

| v | (v [ » [v ] | v |
swap

(ol x|y lz]w[»]ulw|[x]|y]z]
forward insertion

(o lx[ylz]w[w[x]y[z]|v]|wu]
backward insertion

lw x|y fzf[w[w][w]z]y][x]wu]
reflection |
(o lx|ylz]w[w[x]v]lz]|w]y]

Random shuffle

Fig. 19 The five VFLS transformation (Estellon et al. 2008)
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Table 8 The different VFLS variants for choosing positions

Variants Description

Generic Pick two positions k and / randomly

Similar Pick two positions k and / such that the corresponding orders
share some options

Consecutive Pick a position k randomly and set [ = k + 1

Violation Pick a position k where violation appears and choose / randomly

Denominator Pick a position k and an option o randomly and set/ = k + N,

Table9 The composition for the

7 . Transformation Variants Percentage
optimization subroutine
Swap Generic 66
Similar 2
Consecutive 2
Violation 2
Insertion Generic 4
Denominator 4
Insertion Generic 4
Denominator 4
Reflection Generic 7
Denominator 4
Shuffle Generic 1

Through extensive experiments on RENAULT’s instances, Estellon et al.
(2008) determined good proportions for transformations and variants. Because
we examined sequencing rules and not colors, the number of swaps should domi-
nate. The compositions in Table 9 were taken from Estellon et al. (2008).

Our C++ source code is provided in the Harvard repository (Kriiger 2021b).

Appendix 4
Evaluation of the car sequencing heuristic

To prove the suitability of the heuristic for our investigations, we solved some self-
created car sequencing instances with the optimization model (7)—(12) and the heu-
ristic and compared them using car sequencing violations. Because high utilization of
the options leads to difficult problems to solve (Miguel et al. 2021), we investigated
nearly 90% and 100% utilization with four options. More options are also difficult to
solve and are generally not solved using the optimization model within an accept-
able time. For both utilization rates, we created and solved 20 instances with 100
orders. The results are shown in Tables 10 and 11 show that the average deviation
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Table 10 Comparison of the optimization model and car sequencing heuristic for four options with the
expected 100% utilization rate

Optimization model (OM) Greedy VFLS Delta between  Average
heuris-  seconds OM and devia-
Solution Best solution Time te 5 15 60 VELS-5s tion
Solved to opti- 6 6 1268.5 12 6 6 60 0.75
mality
1 1 0.9 1 1 1 10
11 11 6.5 11 11 11 11 O
9 9 26.7 14 10 10 10 1
13 13 2271.6 17 15 14 14 2
2 2 34 3 2 2 20
44 44 0.5 48 44 44 44 0
23 23 16.9 30 26 26 26 3
Solved with gap 25 24 3600 30 27 27 27 2 1.17
6 4 3600 8 6 6 60
30 20 3600 36 33 33 33 3
17 13 3600 26 17 17 17 0
6 4 3600 8 1
4 2 3600 10 6 5 52
32 24 3600 37 33 32 32 1
72 60 3600 77 74 74 74 2
9 0 3600 10 10 10 9 1
16 5 3600 18 17 17 17 1
23 20 3600 27 23 23 23 0
13 10 3600 18 14 14 14 1

from the optimal solution is less than one. Thus, the heuristic is well-suited for our
investigations. The column “Solution” shows the resulting number of violations for
this instance and the column “Best Solution” shows the best solution found within
60 min. In both investigations, some instances could not be solved to 100% optimal-
ity in 60 min. In addition, we showed the number of violations in the greedy heuristic
and the very fast local search (VFLS) when applied for 5, 15, and 60 s. In the column
“Delta between OM and VFLS-5 s we calculate the difference between the solution
of the optimization model and the solution of the VFLS after 5 s.

Appendix 5
Detailed overview of the results of Experiment 3

In experiment 3, eleven different values for A were examined for each of the seven
scenarios, and ten experiments were performed for each 4. An overview of the
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Table 11 Comparison of the optimization model and car sequencing heuristic for four options with the

expected 90% utilization rate

Optimization model (OM) Greedy VFLS Delta between ~ Average
heuris- runtimein OM and devia-
tic seconds VEFLS-5 s tion

Solution Best solution Time 5 15 60

Solved to opti- 0 0 1.1 0 0 0 00 0
mality
0 0 3.1 0 0 0 00O
0 0 0.8 0 0 0 00O
0 0 0.6 0 0 0 00O
0 0 1.1 0 0 0 00O
0 0 0.7 0 0 0 00O
0 0 1.1 0 0 0 00O
0 0 1.016 0 0 0 00
0 0 2.141 1 0 0 00
7 0 3605 7 7 7 70
0 0 2437 0 0 0 00
0 0 0.891 0 0 0 00
4 4 1422 5 4 4 40
0 0 2812 0 0 0 00
0 0 2313 0 0 0 00
Solved with gap 11 4 3600.0 11 11 11 11 0 0.6
5 0 3600.0 6 6 6 5 1
17 12 3600.0 22 18 18 18 1
9 0 3600.0 10 9 9 90
6 3.8 3600.0 12 7 6 61

variance of the results is presented in Tables 12, 13 and 14. MPS is the basic
approach, MPS+ is the modified basic approach (Inequality (6) instead of (5)),
and EMPS is our enhanced MPS model. Column “Objective” shows the average
deviation costs for ten experiments and the column “Objective gap” shows the
average solution gap of the solutions because we solved the models for a maxi-
mum of 10 min or to at least 99.9% optimality. For the “assigned orders” and
the resulting “violations” in the sequencing step, we presented the average, mini-
mum, and maximum values as well as the standard deviation of the ten experi-
ments. A discussion of the results is provided in Sect. 5.3.
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