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Abstract
This paper investigates a dynamic and stochastic shipment matching problem faced 
by network operators in hinterland synchromodal transportation. We consider a 
platform that receives contractual and spot shipment requests from shippers, and 
receives multimodal services from carriers. The platform aims to provide optimal 
matches between shipment requests and multimodal services within a finite hori-
zon under spot request uncertainty. Due to the capacity limitation of multimodal 
services, the matching decisions made for current requests will affect the ability to 
make good matches for future requests. To solve the problem, this paper proposes 
an anticipatory approach which consists of a rolling horizon framework that handles 
dynamic events, a sample average approximation method that addresses uncertain-
ties, and a progressive hedging algorithm that generates solutions at each decision 
epoch. Compared with the greedy approach which is commonly used in practice, the 
anticipatory approach has total cost savings up to 8.18% under realistic instances. 
The experimental results highlight the benefits of incorporating stochastic informa-
tion in dynamic decision making processes of the synchromodal matching system.
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1 Introduction

Hinterland transportation is the movement of shipments between deep-sea ports 
and inland terminals by trucks, trains, barges, or any combination of them (Stead-
ieSeifi et al. 2014). Typically, a hinterland transport system is made up of mul-
tiple stakeholders that interact with each other, including network operators, 
shippers, carriers, terminal operators, and institutional authorities (Crainic et al. 
2018). Network operators (e.g., logistics service providers and alliances formed 
by multiple carriers) control the transport system. Shippers (e.g., manufacturers, 
ocean carriers, and freight forwarders) generate freight transport demand and out-
source transport activities to network operators. Carriers (e.g., truck, train, and 
barge companies) provide transport services and supply timely transport capac-
ity to network operators. Terminal operators handle transshipment operations at 
terminals. Institutional authorities (e.g., governments and public administrations) 
charge tax, give incentives, and regulate transport activities to network operators, 
such as the charging of carbon emissions.

As shippers become more time-sensitive that require shipments to be deliv-
ered within tight time windows, trucks are used more often which contributes 
to road traffic congestion, transport costs, and carbon emissions (Demir et  al. 
2016). However, due to the increasing environmental issues and the enforced 
regulations, companies in the transport industry are required to control carbon 
emissions (Demir et al. 2016). Synchromodal transportation, as an emerging and 
attractive concept, aims to manage different types of shipments considering the 
trade-off among costs, delays, and emissions through integrated real-time plan-
ning and synchronization of activities (Giusti et al. 2019). Under synchromodal-
ity, shippers only specify shipments’ origin, destination, volume, release time, 
and due time, and leave the choice of modes, routes, and departure and arrival 
times to network operators. For example, for time-sensitive shipments, network 
operators can assign trucks for transportation; but if time available, barges, trains 
or barge-truck can be assigned taking into account their impact on costs, time, 
and emissions.

With the development of digitization in the logistics industry, increasing online 
booking platforms have appeared in freight transportation, such as Uber Freight, 
Quicargo, and Maersk Spot. In this paper, we consider a synchromodal match-
ing platform owned by a network operator (e.g., European Gateway Services or 
Contargo) that receives contractual and spot shipment requests from shippers and 
receives time-scheduled services (e.g., trains) and departure time-flexible ser-
vices (e.g., trucks) from carriers. The platform aims to provide optimal matches 
between shipment requests and transport services over a given planning horizon. 
Having a match between a shipment and a service means that the shipment will 
be transported by the service from the service’s origin terminal to the service’s 
destination terminal. The platform combines the matched services into ship-
ments’ itineraries.

In practice, container transport companies receive shipment requests from 
both long-term contracts and spot markets (Meng et  al. 2019). Different from 
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the contractual requests received from large shippers whose information is 
known before the operational planning horizon, the information of spot requests 
is unknown and revealed dynamically (Guo et  al. 2020). The demand from the 
spot market is influenced by many factors, such as global economy, seasonality, 
fluctuations of freight rate, and competitions from other companies (Wang and 
Meng 2021). Due to the capacity limitation of multimodal services, the capacity 
assigned to current requests will be unavailable for future requests which might 
be more profitable. Thanks to the advancements in information technologies, 
such as increased use of sensors in transport infrastructures, communication tech-
nologies, open data sources, and data analytics, exploiting stochastic information 
of spot requests is increasingly achievable (Gendreau et al. 2016). With the sto-
chastic information, network operators might hold some barge and train capaci-
ties available for spot requests which are predicted to be more profitable.

In this paper, we define the matching of shipments and services under spot request 
uncertainty with the aim to minimize total costs over a given planning horizon as the 
dynamic and stochastic shipment matching (DSSM) problem. The complexity of the 
DSSM problem lies in three aspects. First, spot requests arrive in the platform in 
real-time which calls for a dynamic approach that handles dynamic events. Second, 
the stochastic information of spot requests is available which calls for a stochastic 
approach that addresses uncertainties. Third, the computation complexity of the 
optimization problem calls for an efficient algorithm that generates timely solutions 
at each decision epoch.

In the literature, Guo et  al. (2020) developed a myopic approach to solve the 
DSSM problem which does not consider the stochasticity of spot requests. The 
myopic approach involves a rolling horizon framework that handles dynamic events 
and a preprocessing-based heuristic algorithm that generates timely solutions at 
each decision epoch. As an extension of Guo et al. (2020), this paper proposes an 
anticipatory approach to incorporate the stochastic information of spot requests in 
the dynamic shipment matching processes. The anticipatory approach involves a 
sample average approximation method that addresses spot request uncertainties and 
a progressive hedging algorithm that solves the deterministic formulations at each 
decision epoch of a rolling horizon framework.

The remainder of this paper is structured as follows. We briefly review the rel-
evant literature and specify our contributions in Sect. 2. In Sect.  3, we describe the 
DSSM problem. In Sect.  4, we design the rolling horizon framework, the sample 
average approximation method, and the progressive hedging algorithm. In Sect. 5, 
we describe the experimental setup, and present the experimental results. Finally, in 
Sect. 6, we provide concluding remarks and directions for future research.

2  Literature review

In the past decades, because of economic factors and environmental concerns, differ-
ent management concepts have appeared in the literature and in the logistics indus-
try: multimodal, intermodal, co-modal and synchromodal transportation. While 
multimodality refers to the utilization of multiple modes, intermodality emphasizes 
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the utilization of standardized loading units (i.e., containers), namely the vertical 
integration of different modes (SteadieSeifi et al. 2014); co-modality focuses on the 
optimal and sustainable utilization of different modes on their own or in combina-
tion, namely the horizontal integration of different modes. As an extension of inter-
modality and co-modality, synchromodality adds the (real-time) flexibility in plan-
ning when disturbances happen (Giusti et al. 2019).

The implementation of synchromodal transportation relies on collaboration 
among stakeholders, information technologies, and integrated planning at differ-
ent decision levels. Typically, synchromodal transport planning can be divided into 
three levels: strategic, tactical, and operational level. While strategic and tactical 
planning focus on physical network design (e.g., hub location) and service network 
design (e.g., service selection, service frequency) in long and medium time hori-
zons, operational planning deals with the routing of shipments under dynamic and 
stochastic environments (Giusti et al. 2019).

In the literature, the majority of the studies (e.g., Ayar and Yaman 2011; Chang 
2008; Moccia et al. 2010; van Riessen et al. 2014) related to synchromodal transport 
planning are conducted in a static and deterministic environment, namely, all the 
inputs are known beforehand and decisions do not change once they are set. How-
ever, in practice, there are many sources of uncertainties in synchromodal trans-
portation, such as demand uncertainty. With the growing amount of historical data, 
the stochastic information about uncertainties is available. Incorporating stochastic 
information in decision-making processes has been proven to have better perfor-
mance than the corresponding myopic approaches in many fields, such as vehicle 
routing problems (Albareda-Sambola et al. 2014) and dial-a-ride problems (Schilde 
et al. 2011).

In the field of stochastic synchromodal transport planning, Demir et  al. (2016) 
studied a green intermodal service network design problem with demand and travel 
time uncertainties. In this study, the origins, destinations, time windows of ship-
ments are known in advance, but the actual demand (i.e, the number of contain-
ers) is uncertain. A sample average approximation method was proposed to gener-
ate robust plans. Hrušovský et al. (2016) proposed a hybrid approach combining a 
deterministic model with a simulation model to investigate an intermodal transport 
planning problem with travel time uncertainty. Sun et al. (2018) established a fuzzy 
chance-constrained mixed integer nonlinear programming model to describe rail 
service capacity uncertainty and road traffic congestion. Generally, stochastic trans-
port planning problems have the probability distributions of random variables and 
the optimization process is performed before their realization. The transport plan 
will not be updated after the realization, thus, it is often referred to as a-priori opti-
mization (Ritzinger et al. 2015).

The trend towards digitalization in transportation allows gathering real-time 
information and thus dynamic decision making. In synchromodal transportation, 
some input data are revealed during the execution of the plan. The most common 
dynamic events are the arrival of new shipment requests, but demands and travel 
times are possible dynamics as well. In the literature, Li et al. (2015) presented a 
receding horizon intermodal container flow control approach to deal with the 
dynamic transport demands and dynamic traffic conditions. Mes and Iacob (2015) 
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considered the real-time planning of shipment requests under a synchromodal net-
work with the objective to minimize costs, delays, and emissions. van Heeswijk 
et al. (2016) proposed an online planning algorithm to schedule the transport of less 
than truckload freight via intermodal networks. Guo et al. (2020) developed a rolling 
horizon approach to handle shipment requests that arrive dynamically in a synchro-
modal matching platform.

The advances in information and communication technologies as well as the 
computing power allow the incorporation of stochastic information of future events 
in dynamic decision-making processes. Approaches for dynamic and stochastic 
transport planning problems can be divided into two categories: methods based on 
preprocessed decisions and methods based on online decisions. Solution approaches 
in the first group (preprocessed decisions) determine the values and policies of 
decision making before the execution of the transport plan (Ritzinger et al. 2015). 
Therefore, possible states need to be constructed in advance and evaluated based 
on possible dynamic events and stochastic information over a planning horizon. 
For example, van Riessen et al. (2016) designed a decision tree to derive real-time 
decision rules for suitable allocation of shipment requests to services. Rivera and 
Mes (2017) proposed an algorithm based on approximate dynamic programming to 
tackle the curse of dimensionality of a Markov decision process model. The second 
group (online decisions) focuses on the computation when a dynamic event occurs. 
Specifically, decisions are made online with respect to the current system state and 
the available stochastic information. SteadieSeifi (2017) proposed a rolling hori-
zon approach to handle dynamic demands. At each iteration of the rolling horizon 
framework, the author proposed a scenario-based two-stage stochastic programming 
model to incorporate the stochastic information of future demands.

In this paper, we investigate the dynamic and stochastic shipment matching 
(DSSM) problem in synchromodal transportation at the operational level. The for-
mulation characteristics of the DSSM problem include: (1) contractual and spot 
shipment requests; (2) stochastic information of spot requests; (3) unsplittable ship-
ments, i.e., a shipment should be delivered as a whole; (4) soft time windows, i.e., 
delay in delivery is available but with a penalty; (5) capacitated and time-sched-
uled barge and train services; (6) departure time-flexible truck services with time-
dependent travel times; (7) transshipment operations at terminals; (8) minimizing 
generalized costs which consist of transport costs, delay costs, and carbon tax over a 
planning horizon. The formulation characteristics, solution approaches, and experi-
mental size of related articles are summarized in Table 1.

Our work has three main contributions to the literature. First, we introduce the 
stochasticity of spot requests in the dynamic shipment matching processes. Second, 
we propose an anticipatory approach to solve the problem under realistic instances 
in a reasonable time. The anticipatory approach uses a sample average approxima-
tion method to address spot request uncertainty and applies a progressive hedging 
algorithm to get solutions at each decision epoch of a rolling horizon framework. 
This approach enables to consider a large set of scenarios (within 1 min of computa-
tion time) to more accurately represent the stochasticity and this in turn increases the 
benefits of incorporating stochastic information in dynamic decision-making pro-
cesses. Third, thanks to the above developed methodologies we propose a platform 
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in which companies can manage different types of shipments (e.g., time-sensitive 
shipments) under a synchromodal network considering the trade-off among costs, 
delays, and emissions. Such a platform provides the means for a more efficient, 
effective and sustainable decision-making framework for transportation systems.

3  Problem description and preprocessing procedures

In this section, we first describe the DSSM problem in detail, and then briefly pre-
sent the preprocessing procedures designed to reduce the computational complexity.

3.1  Problem description

We consider an online matching platform that receives contractual and spot ship-
ment requests from shippers, receives time-scheduled and departure-time flexible 
services from carriers, and receives unlimited handling services (i.e., loading and 
unloading) from terminal operators. Let N be the set of terminals. Let lcbarge

i
 , lctrain

i
 , 

lctruck
i

 be the loading/unloading cost coefficient of barge, train, and truck services at 
terminal i ∈ N , respectively. Let ltbarge

i
 , lttrain

i
 , lttruck

i
 be the loading/unloading time of 

barge, train, and truck services at terminal i ∈ N , respectively. Let cstorage
i

 be the stor-
age cost coefficient at terminal i ∈ N . The CO2 emissions-related cost coefficient is 
set as cemission.

Let R be the set of shipment requests. Each shipment request r ∈ R is charac-
terized by its announce time tannounce

r
 (i.e., the time when the platform receives the 

request), release time trelease
r

 (i.e., the time when the shipment is available for hinter-
land transportation) at origin terminal or , due time tdue

r
 (i.e., the time that the ship-

ment needs to be delivered) at destination terminal dr , expiry date texpirer  (i.e., the 
time that the matching decisions for request r cannot be further postponed), and con-
tainer volume ur . Delay in delivery is available but with a penalty cost per container 
per hour overdue cdelayr .

Requests R can be divided into two groups: contractual requests Rcontract 
and spot requests Rspot . While Rcontract are known beforehand, Rspot are 
unknown and revealed dynamically. However, the probability distributions 
{�o,�d,�u,�tannounce ,�trelease ,�tdue ,�texpire} of spot requests’ origin, destination, volume, 
announce time, release time, due time, and expiry date are assumed available from 
historic data. In addition, shippers require their shipments to be transported as a 
whole, and ask to receive the transport plan before shipments’ release time, namely 
the expiry date is equal to the release time, trelease

r
= t

expire
r .

Let V be the set of transport services, all the services are received before the plan-
ning horizon. According to the time schedules, services can be divided into two 
groups:

• Time-scheduled barge and train services. Each barge or train service 
v ∈ Vbarge ∪ V train is characterized by its departure time tdepaturev  at origin terminal 
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ov , arrival time tarrival
v

 at destination terminal dv , free capacity Uv , transport cost cv 
and carbon emissions ev.

• Departure time-flexible truck services. We view each truck service as a fleet 
of trucks which has flexible departure times and an unlimited capacity. Thus, a 
truck service might have multiple departure times for different shipments. Due 
to traffic congestion at several time periods throughout a day, the travel time of 
truck services is time-dependent (Ichoua et al. 2003). Therefore, each truck ser-
vice v ∈ V truck is characterized by its origin terminal ov , destination terminal dv , 
time-dependent travel time function ttruck

v
(�) , transport cost cv , and carbon emis-

sions ev.

The objective of the platform is to provide optimal online matches in total costs 
between shipment requests and transport services over a planning horizon T. The 
total costs consist of transit costs generated by using services, transfer costs and 
storage costs generated at transshipment terminals, penalty costs caused by delay in 
delivery, and carbon tax charged for services’ carbon emissions.

3.2  Preprocessing procedures

In this section, we briefly present the preprocessing procedures that aim to reduce 
the computational complexity of the DSSM problem by identifying infeasible 
matches between shipments and services. It consists of two steps: the preprocessing 
of feasible path and the preprocessing of feasible matches.

• Preprocessing of feasible path. We define a path p as a combination of services 
in sequence. A path p is feasible if the services inside a combination satisfy time-
spatial compatibility. Specifically, for two consecutive services vi, vi+1 within 
path p, the destination of service vi must be the same as the origin of service vi+1 ; 
the arrival time of service vi must be earlier than the departure time of service 
vi+1 minus loading and unloading time at transshipment terminal dvi . The set P 
denotes the collection of feasible paths.

• Preprocessing of feasible matches. A match (r,  p) means shipment r will be 
transported by path p from its origin to its destination. A match between request 
r ∈ R and path p =

[
v1, ..., vl

]
∈ P is feasible if it satisfies time-spatial compat-

ibility:

– Spatial compatibility. The origin terminal of shipment request r should be the 
same as the origin of service v1 ; the destination of request r should be the 
same as the destination of service vl.

– Time compatibility. The release time of request r should be earlier than the 
departure time of service v1 minus loading time at origin terminal or.

   Let Pr be the set of feasible paths for request r, and let crp denote the costs 
of matching request r with path p including transport costs, delay costs and car-
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bon tax. The details of the preprocessing procedures are presented in Guo et al. 
(2020).

An illustrative example of shipment matching with feasible paths is shown in Fig. 1. 
Here, a shipment needs to be transported from origin terminal 1 to destination termi-
nal 8 after release time 00:00, and the due time of the shipment is 24:00. The ship-
ment can be matched with different paths (i.e., service combinations). Using feasible 
path 1, the shipment will be loaded at origin terminal 1 and transported by a barge 
service to transshipment terminal 5, and then the shipment is transferred to a train 
service which delivers the shipment to its destination terminal.

The notation used in this paper is presented in Table 2.

4  Solution approaches

In this section, we propose an anticipatory approach (AA) to solve the DSSM prob-
lem and use the myopic approach (MA) proposed by Guo et al. (2020) as a bench-
mark. Both the AA and the MA are implemented under a rolling horizon frame-
work. However, the MA is based on deterministic information only while the AA 
incorporates stochastic information of future requests at each decision epoch, as 
shown in Fig. 2.

4.1  Myopic approach

The MA presented in Guo et  al. (2020) utilizes a rolling horizon framework to 
handle dynamic events, which is known as an efficient periodic re-optimization 

Fig. 1  An illustrative example of shipment matching with different paths
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Table 2  Notation

Sets
R Shipment requests received within a planning horizon, R = R̂0 ∪ R̂1 ∪ ... ∪ R̂T

R̂0 Contractual requests that are received before the planning horizon

R̂t Spot requests that are received during time interval (t − 1, t] , t > 0

Rt Shipment requests that are received before stage t and will expire before stage t + 1

R̄t Shipment requests that are active at stage t

�rk Set of sampled requests received at stage k ∈ K = {t + 1, ..., min{t + H,T}} under 
scenario

� ∈ {1, ...,� }

V Transport services within a planning horizon, V = Vbarge ∪ V train ∪ V truck

P Feasible paths
Pr Feasible paths for shipment r
Prv Feasible paths for shipment r including service v
N Terminals
Parameters
or Origin terminal of shipment request r ∈ R

dr Destination terminal of shipment request r ∈ R

ur Container volume of shipment request r ∈ R

tannounce
r

Announce time of shipment request r ∈ R

trelease
r

Release time of shipment request r ∈ R

tdue
r

Due time of shipment request r ∈ R

t
expire
r

Expiry date of shipment request r ∈ R

ov Origin terminal of service v ∈ V , ov ∈ N

dv Destination terminal of service v ∈ V , dv ∈ N

t
depature
v

Departure time of time-scheduled service v ∈ Vbarge ∪ V train

tarrival
v

Arrival time of time-scheduled service v ∈ Vbarge ∪ V train

ttruck
v

(�) Time-dependent travel time of truck service v ∈ V truck

cv Transport cost of service v ∈ V  per container
ev Carbon emissions of service v ∈ V  per container
Ut

v Free capacity of service v ∈ Vbarge ∪ V train at stage t ∈ {0, 1, ...,T}

crp The cost of matching request r ∈ R with path p ∈ P

T The planning horizon, t ∈ {0, 1, ...,T}

� Number of scenarios
H Length of prediction horizon
N iteration Maximum iteration number
x̄t
rp

The ‘overall design vector’ for request r ∈ Rt matching with path p ∈ P

ȳt
rp The ‘overall design vector’ for request r ∈ R̄t�Rt matching with path p ∈ P

�t�
rp

Lagrangian multipliers for request r ∈ Rt matching with path p ∈ P

�̃�t𝛾
rp

Lagrangian multipliers for request r ∈ R̄t�Rt matching with path p ∈ P

�t�
rp

Penalty factors for request r ∈ Rt matching with path p ∈ P

�̃�t𝛾
rp Penalty factors for request r ∈ R̄t�Rt matching with path p ∈ P

� A small positive number designed to control the termination of simulations
� A constant designed to control the updating rate of penalty factors
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approach for dynamic problems (e.g., Arslan et al. 2019; Najmi et al. 2017; Wang 
and Kopfer 2015; Yang et  al. 2004). The planning horizon is rolled forward to 
incorporate the dynamically released information, and the process continues 
until the end of the horizon. Under the MA, the system is optimized periodically 
at pre-specified points in time called optimization times (i.e., decision epochs). 
Let R̂t = {r ∈ R|t − 1 < tannounce

r
≤ t} be the set of spot requests received during 

time interval (t − 1, t] , t > 0 . At decision epoch t, decisions for all active shipment 
requests R̄t are made. Request r is active if it is already announced but not expired 
yet, formally R̄t = {r ∈ R|tannounce

r
≤ t, t

expire
r > t} . However, the decision for request 

r ∈ R̄t is fixed only if r ∈ Rt = {r ∈ R|tannounce
r

≤ t, t < t
expire
r ≤ t + 1} , namely the 

request will expire before the next decision epoch. The platform will inform ship-
pers the decisions only if a match is fixed for them. Thus, only the matches fixed at 
stage t have effects on the free capacity of service v ∈ Vbarge ∪ V train at stage t + 1.

We define xt
rp

 as the binary variable which is 1 if request in r ∈ Rt is matched with 
path p ∈ P and define yt

rp
 as the binary variable which is 1 if request in r ∈ R̄t�Rt is 

matched with path p ∈ P . Let Prv be the set of feasible paths for shipment request r 

Table 2  (continued)

Random variables
Rspot Spot requests received over the planning horizon. The probability distributions

{�o,�d ,�u,�tannounce ,�trelease ,�tdue ,�texpire} are assumed known
Decision variables
xt
rp

A binary variable equal to 1 if request r ∈ Rt is matched with path p ∈ P , 0 other-
wise

yt
rp A binary variable equal to 1 if request r ∈ R̄t�Rt is matched with path p ∈ P , 0 

otherwise
z�k
rp

A binary variable equal to 1 if request r ∈ ��k is matched with path p ∈ P under 
scenario

� ∈ {1, ...,� } at stage k ∈ K , 0 otherwise
xt�
rp

Binary variable; 1 if request r ∈ Rt is matched with path p ∈ P under scenario �
yt�
rp Binary variable; 1 if request r ∈ R̄t�Rt is matched with path p ∈ P under scenario �

(a) (b)

Fig. 2  Illustration of the myopic approach and the anticipatory approach



494 W. Guo et al.

1 3

including service v, Prv = {p ∈ Pr|v ∈ p} . Under the MA, the objective function is 
to minimize the total costs of the current-stage decisions made for active requests 
R̄t . The formulation of the DSSM problem at stage t ∈ {0, 1, ..., T} under the MA is:

subject to

Constraints (2–3) ensure that each request will be matched with one feasible path 
only. Constraints (4) ensure that the total container volumes of shipments assigned 
to service v ∈ Vbarge ∪ V train does not exceed its free capacity at stage t. Constraints 
(5) represent that the free capacity of service v ∈ Vbarge ∪ V train at the next stage is 
only influenced by the free capacity of service v at the current stage and the match-
ing decisions made for requests Rt which will expire before the next stage.

4.2  Anticipatory approach

In this section, we propose the AA to incorporate the stochastic information of 
future requests at each decision epoch of the rolling horizon framework, in contrast 
to the MA in which dynamic decisions are made based on deterministic information 
only. The implementation of the AA for a synchromodal matching system is shown 
in Algorithm 1. Before the planning horizon, the system applies the preprocessing 
of feasible path to get the set of feasible paths. At each decision epoch of the roll-
ing horizon framework, the system generates scenarios of future requests by ran-
domly sampling from their probability distributions, applies the preprocessing pro-
cedure to obtain feasible matches for active requests and sampled requests, utilizes 
a sample average approximation method presented in Sect. 4.2.1 to get deterministic 

(1)�� min
xt ,yt

∑
r∈Rt

∑
p∈Pr

crpx
t
rp
+

∑
r∈R̄t�Rt

∑
p∈Pr

crpy
t
rp

(2)
∑
p∈Pr

xt
rp
= 1, ∀r ∈ Rt,

(3)
∑
p∈Pr

yt
rp
= 1, ∀r ∈ R̄t�Rt,

(4)
∑
r∈Rt

∑
p∈Prv

urx
t
rp
+

∑
r∈R̄t�Rt

∑
p∈Prv

ury
t
rp
≤ Ut

v
, ∀v ∈ Vbarge ∪ V train,

(5)Ut+1
v

= Ut
v
−
∑
r∈Rt

∑
p∈Prv

urx
t
rp
, ∀v ∈ Vbarge ∪ V train,

(6)xt
rp
∈ {0, 1}, ∀r ∈ Rt, p ∈ P,

(7)yt
rp
∈ {0, 1}, ∀r ∈ R̄t�Rt, p ∈ P.
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formulations, and utilizes a progressive hedging algorithm presented in Sect. 4.2.2 
to generate solutions. The state of the system is updated based on the decisions 
made for requests Rt . Then the system is rolled forward to obtain the decisions for 
the next stage.

4.2.1  Sample average approximation method

The sample average approximation method is an approach to solve stochastic 
optimization problems by generating scenarios. In this technique, the expected 
objective function is approximated by a sample average estimate derived 
from a random sample (Verweij et  al. 2003). At decision epoch t, a sample 
{�1,�2, ...,�� , ...,�� } of �  scenarios is generated by randomly sampling from the 
probability distributions of spot requests {�o,�d,�u,�tannounce ,�trelease ,�tdue ,�texpire} . 
For companies that do not have accurate probability distributions, scenar-
ios can also be sampled randomly from their historical operational data. 
Each scenario includes a realization of shipment requests from stage t + 1 to 
stage t + H , �� = {��(t+1),��(t+2), ...,��(t+H)} . Here, H is the prediction hori-
zon that is just long enough to obtain good decisions at stage t. The expected 
cost over the prediction horizon is approximated by the sample average func-
tion 1

�

∑�

�=1

∑t+H

k=t+1

∑
r∈��k

∑
p∈Pr

crpz
�k
rp

 , which is an unbiased estimator of future 
costs as the sample size �  goes to infinity and the prediction horizon t + H = T  
(Ruszczyński and Shapiro 2003). We define K as the set of predicted time stages 
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at stage t, K = {t + 1, ..., min{t + H, T}},∀t ∈ {0, 1, ..., T − 1} ; K = � when t = T  . 
Let z�k

rp
 be the binary variable which equals to 1 if request r ∈ ��k is matched with 

path p ∈ P under scenario � ∈ {1, ..,� } at stage k ∈ K . The formulation of the 
DSSM problem at stage t changes to:

subject to Constraints (2–3, 5–7),

In formulation �� , xt and yt are first-stage decisions which do not depend on the 
scenarios, zt is the second-stage decision which depends on the corresponding sce-
narios. However, only xt will be implemented at each decision epoch, yt and zt will 
be released after the optimization.

4.2.2  Progressive hedging algorithm

Formulation �� is a large-scale deterministic binary integer program which is 
non-convex and highly complex to solve. In this section, we apply the progressive 
hedging algorithm (PHA) to solve the formulation. The PHA is first proposed 
by Rockafellar and Wets (1991) and has been implemented in many applications, 
such as stochastic network design problems (Crainic et  al. 2014) and stochas-
tic resource allocation problems (Watson and Woodruff 2010). It is a horizontal 
decomposition method which decomposes �� by scenarios rather than by time 
stages, and iteratively solves penalized version of the scenario-based subprob-
lems to gradually enforce implementability (also called non-anticipativity) (Gade 
et al. 2016).

In �� , the condition that the first-stage decisions xt , yt must not depend on the 
realization of random variables is implicit. In the PHA scheme, we write the non-
anticipativity constraints explicitly. We define xt�

rp
 as the binary variable which 

equals to 1 if request r ∈ Rt is matched with path p ∈ P under scenario � , yt�
rp

 as 
the binary variable which equals to 1 if request r ∈ R̄t�Rt is matched with path 
p ∈ P under scenario � . Let x̄t and ȳt be the ‘overall design vector’. The DSSM 
problem is then reformulated as:

(8)�� min
xt ,yt ,zt

∑
r∈Rt

∑
p∈Pr

crpx
t
rp
+

∑
r∈R̄t�Rt

∑
p∈Pr

crpy
t
rp
+

1

𝛤

𝛤∑
𝛾=1

∑
k∈K

∑
r∈𝜔𝛾k

∑
p∈Pr

crpz
𝛾k
rp

(9)
∑
p∈Pr

z�k
rp

= 1, ∀� ∈ {1, ...,� }, k ∈ K, r ∈ ��k,

(10)

∑
r∈Rt

∑
p∈Prv

urx
t
rp
+

∑
r∈R̄t�Rt

∑
p∈Prv

ury
t
rp
+
∑
k∈K

∑
r∈𝜔𝛾k

∑
p∈Prv

urz
𝛾k
rp

≤ Ut
v
,

∀𝛾 ∈ {1, ...,𝛤 }, v ∈ Vbarge ∪ V train,

(11)z�k
rp

∈ {0, 1},∀� ∈ {1, ...,� }, k ∈ K, r ∈ ��k, p ∈ P.
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subject to

Constraints (17–18) are the non-anticipatory constraints which stipulate that in all 
feasible solutions, the first-stage decisions are not allowed to depend on scenarios. 
Therefore, the newly added variables do not affect the optimal solution, and thus P3 
is equivalent to P2.

Following the PHA scheme, we drop off the constant coefficient � −1 , and move the 
non-anticipativity constraints (17–18) into the objective function based on augmented 
Lagrangian strategy, which yields the objective function as follows:

(12)�� min
xt ,yt ,zt

1

𝛤

𝛤�
𝛾=1

⎛
⎜⎜⎝
�
r∈Rt

�
p∈Pr

crpx
t𝛾
rp
+

�
r∈R̄t�Rt

�
p∈Pr

crpy
t𝛾
rp
+
�
k∈K

�
r∈𝜔𝛾k

�
p∈Pr

crpz
𝛾k
rp

⎞
⎟⎟⎠

(13)
∑
p∈Pr

xt�
rp
= 1, ∀� ∈ {1, ...,� }, r ∈ Rt,

(14)
∑
p∈Pr

yt𝛾
rp
= 1, ∀𝛾 ∈ {1, ...,𝛤 }, r ∈ R̄t�Rt,

(15)
∑
p∈Pr

z�k
rp

= 1, ∀� ∈ {1, ...,� }, k ∈ K, r ∈ ��k,

(16)

∑
r∈Rt

∑
p∈Prv

urx
t𝛾
rp
+

∑
r∈R̄t�Rt

∑
p∈Prv

ury
t𝛾
rp
+
∑
k∈K

∑
r∈𝜔𝛾k

∑
p∈Prv

urz
𝛾k
rp

≤ Ut
v
,

∀𝛾 ∈ {1, ...,𝛤 }, v ∈ Vbarge ∪ V train,

(17)xt𝛾
rp
= x̄t

rp
, ∀𝛾 ∈ {1, ...,𝛤 }, r ∈ Rt, p ∈ Pr,

(18)yt𝛾
rp
= ȳt

rp
, ∀𝛾 ∈ {1, ...,𝛤 }, r ∈ R̄t�Rt, p ∈ Pr,

(19)Ut+1
v

= Ut
v
−
∑
r∈Rt

∑
p∈Prv

urx̄
t
rp
, ∀v ∈ Vbarge ∪ V train,

(20)xt�
rp
∈ {0, 1}, ∀� ∈ {1, ...,� }, r ∈ Rt, p ∈ P,

(21)yt𝛾
rp
∈ {0, 1}, ∀𝛾 ∈ {1, ...,𝛤 }, r ∈ R̄t�Rt, p ∈ P,

(22)z�k
rp

∈ {0, 1},∀� ∈ {1, ...,� }, k ∈ K, r ∈ ��k, p ∈ P.
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subject to Constraints (13–16, 19–22).
In formulation P4, �t�

rp
 and �̃�t𝛾

rp
 are Lagrangian multipliers, �t�

rp
 and �̃�t𝛾

rp
 are penalty fac-

tors. Given the binary requirements for variables xt, yt, x̄t, ȳt , the objective function can 
be further formulated as:

subject to Constraints (13–16, 19–22).
For a given overall design x̄t , ȳt , the relaxed formulation P5 is separable on a sce-

nario basis. As it contains �  scenarios, it can be broken down into �  individual sub-
problems. An arbitrary subproblem indexed by � ∈ {1, ...,� } by dropping constant 
terms has the following form:

subject to

(23)

�� min
xt ,yt ,zt

𝛤�
𝛾=1

⎛
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�
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Formulation �� is a scenario-based binary integer program which can be solved by 
using commercial solvers within an acceptable computational time, such as CPLEX. 
For a given scenario subproblem � , the Lagrangian multiplier �t�

rp
 ( ̃𝜆t𝛾

rp
 ) and the 

penalty parameter �t�
rp

 ( ̃𝜌t𝛾
rp

 ) contribute to penalize the difference in terms of values 
between the local variable xt�

rp
 ( yt�

rp
 ) and the current overall design x̄t

rp
 ( ̄yt

rp
).

The pseudocode of the PHA at each decision epoch is shown in Algorithm  2. 
Each iteration of the PHA involves an optimization (Step 2) for scenario-based sub-
problems, an aggregation (Step 3) which corresponds to a projection of the individ-
ual scenario solutions onto the subspace of non-anticipative policies, a termination 
criteria (Step 4) to make sure the algorithm converges to within a tolerance, and a 
modification (Step 5) to update multipliers.

The key to success in implementing the PHA under a rolling horizon framework 
is to choose a proper �-value to avoid slow convergence. However, in the literature, 
there are no conclusive results on the selection of �-value. In this paper, we choose 
the � in proportion to the matching cost of the associated request and path, namely 
�t
rp
= �crp for r ∈ Rt , p ∈ P . This method will be evaluated in the experiments in 

comparison to a commonly used method in container transportation �n+1 = ��n 
(Crainic et al. 2011; Dong et al. 2015).
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∀v ∈ Vbarge ∪ V train,

(30)xt�
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∈ {0, 1}, ∀r ∈ Rt, p ∈ P,

(31)yt𝛾
rp
∈ {0, 1}, ∀r ∈ R̄t�Rt, p ∈ P,

(32)z�k
rp

∈ {0, 1}, ∀k ∈ K, r ∈ ��k, p ∈ P.
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5  Numerical experiments

In this section, we evaluate the performance of the anticipatory approach (AA) on 
the DSSM problem in comparison to the myopic approach (MA) proposed by Guo 
et al. (2020) and the commonly used greedy approach (GA) in the container trans-
port industry (van Riessen et  al. 2016). The GA is sometimes also referred to as 
a first come first served approach (Meng et  al. 2019). Under the GA, a shipment 
request is assigned to the cheapest feasible path at the time of request arrival. To 
provide a theoretical lower bound of the AA, we also report the optimal solutions 
obtained when all the input information is known beforehand. The approaches are 
implemented in MATLAB, and all experiments are executed on 3.70 GHz Intel 
Xeon processors with 32 GB of RAM. The optimization problems are solved with 
CPLEX 12.6.3.

5.1  Experimental setup

In this paper, we use the hinterland synchromodal network designed by Guo et al. 
(2020) for the numerical experiments, which includes 3 deep-sea terminals in the 
port of Rotterdam (i.e., node 1, 2, and 3) and 7 inland terminals in the Netherlands, 
Belgium, and Germany (i.e., node 4, 5, 6, 7, 8, 9, and 10), as shown in Fig. 3. The 
network consists of 116 services, including 49 barge services, 33 train services, 
and 34 truck services. The detailed information of the services is presented in the 
Appendix.

We generate several instances to represent different characteristics of shipment 
requests within a given planning horizon. Each shipment request is characterized by 
its origin, destination, container volume, announce time, release time, expiry date, 
and due time. We assume that:
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• the origins of shipments are independent and identically distributed among 
{1, 2, 3} with probabilities {0.66, 0.2, 0.14} ; the destinations of shipments are 
independent and identically distributed among {4, 5, 6, 7, 8, 9, 10} with probabili-
ties {0.306, 0.317, 0.153, 0.076, 0.071, 0.034, 0.043};

• the container volumes of shipment requests which arrive before the planning 
horizon (i.e., contractual requests) are drawn independently from a uniform 
distribution with range [10,  30], the average container volume of contractual 
requests UAVE

1
= 20 ; the container volumes of spot requests are drawn indepen-

dently from uniform distributions with range [1, 9], the average container vol-
ume of spot requests UAVE

2
= 5;

• the announce time of contractual requests is 0, while the frequency of spot 
requests arriving in the system belongs to Poisson distributions with mean 
ATAVE;

• the release time of contractual requests is drawn independently from a uniform 
distribution with range [1,  120]; the release time of spot requests is generated 
based on its announce time, trelease

r
= ⌈tannounce

r
⌉ + �T  , �T  belongs to a uniform 

distribution with range [1, 6]; the expiry date is equal to the release time;
• the due time of shipment requests is generated based on its release time and 

lead time, tdue
r

= trelease
r

+ LDr , the lead time of shipments is independent and 
identically distributed among {24, 48, 72} (unit: hours) with probabilities 
{0.15, 0.6, 0.25} . The delay cost coefficients of shipments with lead time 24, 48, 
and 72 h are 100, 70, and 50 €/h-TEU, respectively.

We use EU − n1 − n2 to represent an instance with n1 contractual requests and n2 
spot requests. We set ATAVE to 20, 10, 6, 5, and 4 min (i.e., about 0.33, 0.17, 0.1, 
0.08, and 0.07 h per request) for instances EU-300-400, EU-200-800, EU-100-1200, 
EU-50-1400, and EU-0-1600, respectively, as shown in Fig. 4. We define the degree 
of dynamism as the ratio between the number of containers from spot requests and 

Fig. 3  The topology of the hinterland synchromodal network derived from Guo et al. (2020)
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the total number of containers, namely, degree of dynamism= n2∗U
AVE
2

n1∗UAVE
1

+n2∗UAVE
2

 . There-
fore, the degrees of dynamism for instances EU-300-400, EU-200-800, EU-100-
1200, EU-50-1400, and EU-0-1600 are 25%, 50%, 75%, 87.5%, and 100%, 
respectively.

The length of the planning horizon is set to 168 h for all the instances. The length 
of the optimization interval is set to 1 h in the MA and the AA. At each decision 
epoch of the AA, a sample is generated randomly based on the probability distribu-
tions presented above. In case of sample instability, for each instance, we replicate 
the optimization process 10 times under the AA.

5.2  Impact of the degree of dynamism

To test the influence of the degree of dynamism, we set the number of scenarios 
to 10, and the length of prediction horizon to 12 h. We use ‘gaps in total costs’ as 
the performance indicator which is given by (benchmark value - objective value)/
benchmark value. Here, the total cost generated by the MA is the benchmark value, 
while the total cost generated by the AA is the objective value. Therefore, the higher 
the ‘gaps in total costs’, the better the performance of the AA in reducing total costs. 
Fig. 5 shows that the AA has better performance than the MA in all the instances 
in reducing total costs, and the gap between the AA and the MA grows with the 
increasing of the degree of dynamism from 25% to 87.5%. Nevertheless, further 
increasing the degree of dynamism to 100%, the gap in total costs stays around 4%.

Fig. 4  Arrival frequency of instances



503

1 3

Anticipatory approach for dynamic and stochastic shipment…

5.3  Impact of the number of scenarios and the length of prediction horizon

With regards to the number of scenarios, we set the degree of dynamism to 
87.5% (i.e., instance EU-50-1400), and the length of prediction horizon to 12 h. 
The number of scenarios is varied from 1 to 30. Figure 6a shows that increas-
ing the number of scenarios, the gap in total costs between the AA and the MA 
becomes larger. The reason is that the larger the number of scenarios, the more 
accurate the representation of the future. On the other hand, we set the number 
of scenarios to 10, and vary the length of prediction horizon from 1 to 24 h for 
instance EU-50-1400. Figure 6b shows that the length of prediction horizon has 
high influences on the performance of the AA in reducing total costs. The longer 
the prediction horizon, the more the stochastic information of future requests 

Fig. 5  Impact of the degree of dynamism

Fig. 6  Impact of the number of scenarios and the length of prediction horizon
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will be considered. The system thus reserves capacities for predicted future 
requests which are more ‘valuable’. In turn, the performance of the system over 
the planning horizon becomes better.

5.4  Impact of the selection of �‑value

To test the impact of the selection of �-value, we design 10 instances with dif-
ferent number of requests, different number of scenarios and different length of 
prediction horizon. The proposed cost proportional method (i.e., �rp = �crp ) is 
evaluated in comparison to the typical iterative method (i.e., 𝜌n+1 = �̂�𝜌n ). We set 
𝛼 = 1, �̂� = 1.1, 𝜌0 = 1 . Table 3 shows that the costs generated by these two methods 
are almost the same in all the instances. However, the number of iterations (i.e., N. 
Iteration) and the computation time (i.e., CPU) under the typical iterative method 
are way much higher than the cost proportional method. The larger the number of 
scenarios and the length of prediction horizon, the higher the gaps between these 
two methods. We also notice that the CPU increases dramatically with the increase 
of shipment requests under the typical iterative method. In comparison, all these 
instances can be solved by the cost proportional method within 20 s. With the cost 
proportional method, the PHA can be implemented under a rolling horizon frame-
work to provide timely solutions at each decision epoch.

5.5  Comparison between the GA, the MA, and the AA

In this section, we test the performance of the AA in comparison to the MA and the 
GA. While the result obtained from the GA provides an upper bound of the AA, we 

Table 3  Impact of the selection of �-value

Instances � H �
rp
= �c

rp 𝜌n+1 = �̂�𝜌n

Costs (€) N. iteration CPU (s) Costs (€) N. iteration CPU (s)

EU-50-0 5 6 144553 2 1.25 144549 35 29.43
EU-50-0 10 12 195831 3 2.66 195810 51 44.39
EU-50-0 10 24 283651 2 4.10 283654 50 99.60
EU-50-0 10 48 434789 3 17.95 434763 50 275.49
EU-50-0 30 12 189193 2 1.84 189194 48 137.82
EU-50-0 30 24 286633 2 4.10 286631 52 111.17
EU-50-0 30 48 438920 3 17.39 442021 94 589.13
EU-100-0 10 12 292268 2 2.20 292274 27 31.36
EU-200-0 10 12 422272 3 3.65 422273 69 87.17
EU-300-0 10 12 634021 5 13.06 632923 60 182.77
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use the solutions obtained when all the input information is known in advance as 
the theoretical lower bounds. Specifically, we assume all the contractual and spot 
requests are received before the planning horizon, which gives rise to an optimi-
zation problem that includes all the shipments and services. Due to the computa-
tional complexity, the problem is solved by the heuristic algorithm designed in Guo 
et al. (2020). We set � = 100,H = 48,N iteration = 100, � = 1, � = 0.001 for the AA. 
The comparison between the GA, the MA, and the AA is shown in Table  4. We 
consider three performance indicators: the total costs (€), the ave. CPU (s), and the 
improvements. The ave. CPU of the GA, the MA, and the AA is the average com-
putation time per stage over the planning horizon (i.e., 168 time stages). Although 
the AA needs to solve a large number of subproblems at each decision epoch due to 
the iteration of Lagrangian multipliers, applying the parallel computing techniques 
enables to use multiple CPUs to solve the subproblems in a single iteration of the 
AA simultaneously. We use the results obtained from the GA as the benchmark, the 
improvements between the MA/AA and the GA are given by (benchmark value - 
objective value)/benchmark value. Table 4 shows that the AA outperforms the GA 
and the MA in all the instances. While the MA has average improvements of about 
2.37% in comparison to the GA, the AA has average improvements of about 6.12%. 
Impressively, we notice that with the designed AA, the gap between the AA and the 
theoretical lower bounds is no more than 2.65% on average.

6  Conclusions and future research

In this paper, we introduced a dynamic and stochastic shipment matching (DSSM) 
problem in hinterland synchromodal transportation. The problem is considered 
dynamic since spot requests arrive in the system in real-time. The problem is con-
sidered stochastic since the information of spot requests is not known with certainty. 
To solve the problem, we developed an anticipatory approach (AA) which uses a 
sample average approximation method to address spot request uncertainties and a 
progressive hedging algorithm to generate solutions at each decision epoch of a roll-
ing horizon framework.

We validated the performance of the AA on the DSSM problem in comparison 
with the myopic approach (MA) proposed by Guo et al. (2020) in which dynamic 
decisions are made based on deterministic information only and the greedy approach 
(GA) which is commonly used in practice. The experimental results indicate that the 
AA outperforms the GA and the MA in all the instances of the synchromodal match-
ing system. Compared with the GA, the AA has total cost savings up to 8.18%.

From a managerial viewpoint, with the proposed AA, the utilization of barges, 
trains, and trucks can be managed more efficiently by taking into account the time-
sensitivity of current received requests and the predicted future requests. Besides, 
the proposed approach enables the decision makers to dynamically update the deci-
sions of the previously received shipments when the newly received ones can be 
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better served with the previously matched services. This increases the adaptive 
nature of transport systems to meet today’s environment. Furthermore, the experi-
mental results show that the more the stochastic information is incorporated, the bet-
ter the performance of the AA. However, the computational complexity increases 
with the increase of stochastic information. To implement such an approach in prac-
tice, the trade-off between solution quality and computational complexity must be 
considered.

Future research can be conducted under three directions. First, due to the capac-
ity limitation of road infrastructures, the number of trucks is limited in a synchro-
modal network. Therefore, the rejection of shipment requests can be considered in 
the online matching processes to avoid infeasible solutions. Another research direc-
tion is to investigate the benefits of incorporating ad hoc services (i.e., dynamic ser-
vices). Considering the excess capacity of services from carriers, the online match-
ing of contractual requests, spot requests, dedicated services, and ad hoc services 
gives rise to a new variant of the dynamic shipment matching problem in synchro-
modal transportation. Third, due to the existence of traffic congestion and terminal 
congestion in synchromodal transportation, travel time of services and transfer time 
at terminals are usually uncertain. Combining multiple uncertainties in dynamic 
shipment matching is a promising research direction.

Appendix

The detailed information of barge, train and truck services is presented in Tables 5, 
6 and 7. The barge and train connections are derived from European Gateway Ser-
vices (http:// www. europ eanga teway servi ces. com/ en/). We assume there exists truck 
connections between all the terminals. The distance of services used in this paper is 
obtained from European Gateway Services, InlandLinks (https:// www. inlan dlinks. 
eu/ en), and Google maps.  

http://www.europeangatewayservices.com/en/
https://www.inlandlinks.eu/en
https://www.inlandlinks.eu/en
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Table 7  Truck services in the numerical experiments

Truck services Origin Destination Transit time (h) Transit 
cost (€/
TEU)

Distance (km) Carbon emis-
sions (kg/
TEU)

1 Delta Euromax 0.2 92.00 15 13.30
2 Delta HOME 0.5 115.40 37.5 33.25
3 Delta Moerdijk 1.0 154.40 75 66.50
4 Delta Venlo 2.6 279.20 195 172.89
5 Delta Duisburg 3.2 326.00 240 212.78
6 Delta Willebroek 2.0 232.40 150 132.99
7 Delta Neuss 3.5 349.40 262.5 232.73
8 Delta Dortmund 4.0 388.40 300 265.98
9 Delta Nuremberg 9.0 778.40 675 598.46
10 Euromax HOME 0.6 123.20 45 39.90
11 Euromax Moerdijk 1.2 170.00 90 79.79
12 Euromax Venlo 2.8 294.80 210 186.19
13 Euromax Duisburg 3.3 333.80 247.5 219.43
14 Euromax Willebroek 2.2 248.00 165 146.29
15 Euromax Neuss 3.6 357.20 270 239.38
16 Euromax Dortmund 4.2 404.00 315 279.28
17 Euromax Nuremberg 9.5 817.40 712.5 631.70
18 HOME Moerdijk 0.6 123.20 45 39.90
19 HOME Venlo 2.3 255.80 172.5 152.94
20 HOME Duisburg 2.7 287.00 202.5 179.54
21 HOME Willebroek 1.5 193.40 112.5 99.74
22 HOME Neuss 3.0 310.40 225 199.49
23 HOME Dortmund 3.4 341.60 255 226.08
24 HOME Nuremberg 8.8 762.80 660 585.16
25 Moerdijk Venlo 1.8 216.80 135 119.69
26 Moerdijk Duisburg 2.4 263.60 180 159.59
27 Moerdijk Willebroek 1.4 175.20 95 84.23
28 Venlo Duisburg 0.8 138.80 60 53.20
29 Venlo Neuss 0.9 146.60 67.5 59.85
30 Venlo Dortmund 1.5 193.40 112.5 99.74
31 Venlo Nuremberg 6.6 591.20 495 438.87
32 Duisburg Neuss 0.5 115.40 37.5 33.25
33 Duisburg Dortmund 0.9 146.60 67.5 59.85
34 Duisburg Nuremberg 6 544.40 450 398.97
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