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Abstract
We study supplier–buyer relationships in smallholder agri-food supply chains with 
equity concerns and under stakeholder engagement. We develop a game theoretic 
model to study the impact of these socially responsible practices in investment and 
pricing decisions. We model this as a Stackelberg game and study the impacts of the 
power structure in the outcomes. Our work was motivated by the business model 
of socially responsible Mexican company Fractal Café. We provide closed form 
expressions for the optimal wholesale and retail prices, and numerically study the 
effect of the model parameters. We show that equity concerns drive a redistribution 
of the profit towards an equitable outcome, but they do not have the same effect on 
the investment decisions. Additionally, we show that equity concerns may reverse 
the advantage of the game leader and transfer utility to the follower. We identify 
the settings under which the introduction of socially responsible practices increases 
the total supply chain profit by reducing the double marginalization effect. We find 
that capacity constraints result in a higher retail price, achieved by increasing the 
leader’s margin. Finally, we show that a two-part tariff contract with equity concerns 
is only convenient for the game follower when the leader has a high concern for 
advantageous inequity.
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1  Introduction

Smallholder farmers constitute about two thirds of the developing world’s rural 
population (Rapsomanikis 2015). Due to the limited access to markets and ser-
vices, many of these farmers do not obtain sufficient earnings for a decent stand-
ard of living (Willoughby and Gore 2018). These findings are consistent with The 
World Bank (2018) data, which suggest that 65% of the poor working adults in 
2016 depended on agriculture. In general, farmers’ average earnings are signifi-
cantly lower than the returns earned downstream in the supply chain (Willoughby 
and Gore 2018). Therefore, downstream firms’ role is undeniable in improving 
the living conditions of smallholder farmers. This can be achieved through corpo-
rate social responsibility (CSR) practices. The United Nations Industrial Devel-
opment Organization (UNIDO) views CSR practices as a way “through which a 
company achieves a balance of economic, environmental and social imperatives” 
(UNIDO 2018). In other words, CSR can help firms to incorporate social and 
environmental concerns in their operations without compromising their economic 
viability. In this paper, we focus on the integration of economic and social con-
cerns for an agri-food firm. In particular, we study stakeholder engagement and 
social equity. These two key practices can be aimed at the social development of 
smallholder farmers, but they can also bring economic benefits to firms (through, 
for example, increased sales, operational cost savings, and improved productivity 
and quality) (UNIDO 2018). The objective of this paper is to study the impact of 
these two practices (i.e., achieving equity and stakeholder engagement in deci-
sion-making) on the economic and social objectives of a (supplier) farmer and a 
(buyer) agri-food firm in a dyadic supply chain setting.

Murphy (2012) defines equity as “distribution of welfare goods and life 
chances on the basis of fairness”. He argues that an equitable distribution means 
that everyone should have an equal opportunity to survive and fulfill their devel-
opment potentials. This is often not the case for smallholder farmers as a result 
of their low earnings. Many socially responsible firms consider equity in their 
decisions regarding pricing and investment. This is due to its social importance 
and its causal ties to long-term change through efficiency growth, poverty reduc-
tion, and social cohesion (Jones 2009). In addition, the United Nations Develop-
ment Programme (UNDP) assures that effective stakeholder engagement is funda-
mental in combating inequality and ensuring equity (UNDP 2017). Stakeholder 
engagement is based on the idea that stakeholders should be given the opportu-
nity to comment and input into the development of decisions that affect them (Jef-
fery 2009). Thus, one form in which agri-food firms can implement stakeholder 
engagement is by involving the farmers in the aforementioned pricing and invest-
ment decisions.

In practice, some agri-food firms have implemented practices that incorporate 
equity and stakeholder engagement in their objectives. For example, global firms 
such as Nestlé and Starbucks are investing in funds to improve the productivity 
of their supplier farmers. They consider a more equitable profit sharing scheme 
when it comes to pricing decisions. This approach not only benefits the farmers, 
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but it also leads to improved availability of supplies for the global firms promot-
ing it (Tang et al. 2016). Furthermore, firms do not need to have a global presence 
to implement CSR practices. A clear example is Fractal Café—a small, local cof-
fee retailer in Mexico City—which obtains similar benefits by engaging its sup-
pliers in the pricing decisions. Typically, smallholder coffee farmers in Mexico 
have very little negotiation power with large agri-food firms. Fractal Café reaches 
out to the farmers and allows them to set the wholesale price on the basis of what 
the farmers consider equitable. By agreeing on the farmer’s proposed wholesale 
price, Fractal Café provides the farmer with a retail channel that generates suffi-
cient funds. This enables the farmer to invest her funds in improving her produc-
tion processes and, hence, her living conditions. This kind of stakeholder engage-
ment mechanism also allows Fractal Café to access a continued supply of coffee.

Motivated by these practices, we consider a game-theoretical, dyadic setting, 
which involves a (supplier) farmer and a (buyer) agri-food firm. (In what follows, 
we refer to the supplier as “she” and to the buyer as “he”). Our base model rep-
resents the setting in which players are not concerned with social responsibility. 
Specifically, we consider a two-stage Stackelberg game where the agri-food firm 
has the upper hand (i.e., the leadership) in decision-making with respect to pric-
ing and investment decisions, with the sole objective of maximizing profit. In the 
first stage, the players decide on how much to invest in improving the farmer’s 
production process. By decreasing the production cost, such an investment leads 
to further changes in the wholesale and retail prices, which are studied in the 
second stage. In order to account for the players’ social objectives (i.e., achiev-
ing an equitable profit distribution and stakeholder engagement), we then extend 
our base model. Our first extended model includes players’ equity concerns in 
decision-making through a utility-maximizing objective, where a player’s utility 
equals his or her profit less the disutility of deviating from what he or she consid-
ers equitable (Fehr and Schmidt 2001). In our second extended model, we incor-
porate stakeholder engagement in decision-making. Specifically, we consider a 
setting in which the agri-food firm engages the farmer in decision-making by 
granting her the leadership in setting the optimal investment and pricing deci-
sions. This setting is representative of the aforementioned stakeholder engage-
ment practices of Fractal Café. These stakeholder engagement settings become 
more common now as also smallholder farmers obtain access through more 
and better information because of (mobile) internet connectivity. In our study, 
we assume that supply and demand are deterministic, and there are no capacity 
restrictions. Later, we look at a case with capacity restrictions and the implica-
tions on the results. Finally, we look at the effects of introducing equity concerns 
in a two-part tariff contract. By analyzing these three models, we aim to address 
the following research questions:

•	 How does incorporating social objectives in decision-making affect the play-
ers’ optimal pricing and investment decisions?

•	 Do equity concerns have the power to reduce the advantage of the first mover 
in the decision-making process?
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•	 Under what conditions can socially responsible practices, such as equity con-
cerns and stakeholder engagement, be economically beneficial for the supply 
chain as well as for the individual players?

•	 What is the social cost of ignoring equity in decision-making?

Our main objective is to study how the dynamics of the selected decision-making 
processes are affected by the inclusion of socially responsible practices, namely 
equity and stakeholder engagement. Through the analysis of the base model, we find 
that it is optimal for the buyer to let the supplier make all the investment to lower the 
unit production cost. This investment results in a lower wholesale price and a higher 
demand, which enables both players to benefit from higher profits. The introduction 
of equity concerns shows that the only case in which both players can achieve equity 
is when the profit amount that the players want to distribute aligns with the actual 
supply chain profit. Regarding the investment decisions, the buyer still finds it opti-
mal not to invest an amount in the supplier’s production processes. However, equity 
concerns may lead to a setting where the no-investment strategy is optimal for both 
parties. Together with the equity concerns, we introduce stakeholder engagement 
practices and find that the buyer settles for a lower profit margin than when he has a 
profit maximizing objective whenever the wholesale price is sufficiently low. In this 
case, as game leader, the supplier now finds it optimal not to invest in her own pro-
duction processes, leaving the buyer to make all the investment, if any. In addition, 
we find that the effects of these socially responsible practices on the pricing and 
investment decisions can be overpowered by a restriction in the supplier’s produc-
tion quantity, which is a common scenario for smallholder farmers. Finally, we find 
that a two-part tariff contract results in some cases with higher inequity. Only when 
the leader’s concern for advantageous inequity is high, both players receive an equi-
table outcome.

Our contribution to the operations management literature on socially responsible 
operations is fourfold: First, we model a dyad of supplier and buyer incorporating 
stakeholder engagement in combination with equity concerns. Based on the real-life 
cases described, we study the impact that this combination of supply chain structure 
and socially responsible practices has on the players’ investment and pricing deci-
sions as well as on the profits, both per player and for the entire supply chain. Sec-
ond, we extend previous models that study equity in pricing decisions by incorporat-
ing the levels of investment as decision variables for both players. Third, we relax a 
prior assumption on the equity parameters to capture the concept of social responsi-
bility. With this, we allow a player to have a higher concern for receiving more than 
his equitable share of the profit (rather than only being concerned with receiving 
less). Fourth, we study the effects of equity concerns in a two-part tariff contract.

The remainder of this paper is organized as follows. In Sect.  2, we provide an 
overview of the related literature. Next, we present our base model in Sect. 3, fol-
lowed by the impact of equity concerns in Sect.  4 and the impact of stakeholder 
engagement in Sect. 5. Then we extend our proposed models in Sect. 6 to include 
capacity constraints. In Sect. 7 we present a model based on a two-part tariff con-
tract with equity concerns. We complement our analytical findings with a numerical 
study in Sect. 8. Finally, in Sect. 9, we present our conclusions and limitations.
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2 � Literature review

The relevant literature includes research related to quantitative measures of 
equity, supplier–buyer relationships with equity concerns, investment in suppli-
ers’ production processes, stakeholder engagement in socially responsible firms, 
and power structures in pricing games. In what follows, we present a brief over-
view of the most related works and present our contributions to each research 
stream.

Adams (1965) provides one of the earliest definitions of equity, which dictates 
that a person experiences equity when his outputs are equal to his inputs. Based 
on this definition, it is a common approach to measure the degree of equity in a 
given relationship via a numerical scale in the marketing domain (see Jambul-
ingam et al. 2011; Kim et al. 2017). In the field of operations management, equity 
is modeled both as an exogenous parameter and as an endogenous outcome. For 
example, similar to the aforementioned studies, McCoy and Lee (2014) define 
equity on a numerical scale using an exogenous parameter, where a higher value 
indicates a more equitable outcome allocation. On the other hand, Ye et al. (2017) 
introduce the objective of max-min fairness, which maximizes the minimum util-
ity over all stakeholders in the system. Similar measures have been utilized in 
problems that are pertinent to facility location, transportation, health delivery and 
distribution of public services (Maimon 1986; Marsh and Schilling 1994; McCoy 
and Lee 2014; Demirbilek et  al. 2019; Savas 1978). In our work, we adopt the 
economic model of Fehr and Schmidt (2001) to model inequity aversion in the 
decision-making process of a supplier and a buyer within a dyadic game-theo-
retical setup. They introduce inequity aversion through a disutility in the deci-
sion-makers’ utility functions when the outcome deviates from what they con-
sider equitable (see Rabin 1993; Cooper and Stockman 2002; Falk et al. 2008). 
We contribute to this literature by relaxing the assumption by Fehr and Schmidt 
(2001) that a player’s concern for disadvantageous inequity must be higher than 
that for advantageous inequity. This allows us to consider a more general setting, 
where the assumption presented by Fehr and Schmidt (2001) holds for a subset of 
the parameter combinations. For example, our findings show that if the follower’s 
concern for advantageous equity is higher than his or her concern for disadvanta-
geous equity, then the leader benefits from this by receiving a higher utility.

The second relevant stream is the body of research that investigates the impact 
of equity concerns on the interactions between a supplier and a buyer. For exam-
ple, a number of empirical works in the marketing discipline shows that high 
levels of equity perceived by both parties promote successful supplier–buyer 
relationships. They do this by inducing mutual knowledge sharing, continuous 
commitment, and investment in the relationship (see Duffy et  al. 2013; Gu and 
Wang 2011; Liu et al. 2012). Similarly, Katok and Pavlov (2013) experimentally 
show that inequality aversion is one of the most important factors that explain 
why supply chain contracts designed according to standard theory often fail to 
be accepted in practice. On the theoretical side, Cui et  al. (2007) demonstrate 
that equity concerns alleviate the double-marginalization problem in a vertical 
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supply chain that consists of a manufacturer and a retailer, and a simple whole-
sale price (that is higher than the marginal cost) coordinates the channel when 
the players exercise inequity aversion in their decision-making. In a follow-up 
work, Cui and Mallucci (2016) extend their earlier research to a two-stage set-
ting where in the first stage the players determine the investment level to increase 
demand, and in the second stage they determine the optimal wholesale and retail 
prices. The authors derive analytically the optimal pricing and investment deci-
sions for the standard economic model with no equity concerns, and the optimal 
pricing decisions for the model where the players exercise inequity aversion. Du 
et  al. (2014) consider a similar setting and include the players’ preferences for 
reciprocity. They find that the buyer, as game follower, uses the retail price to 
reward or punish the supplier based on the retailer’s perception of the supplier’s 
intention. Caliskan-Demirag et  al. (2010) extend the work by Cui et  al. (2007) 
by introducing nonlinear demand functions and find that an exponential demand 
function facilitates the supply chain coordination when only the buyer exhibits 
fairness concerns. Ingene et al. (2019) study different linear and nonlinear pricing 
schemes where the buyer has inequity aversion, including wholesale price, quan-
tity discount, and two-part tariff contracts. They show under which conditions 
each contract can coordinate the supply chain for the scenario where the supplier 
is the game leader. Ho et al. (2014) and Nie and Du (2017) study the interaction 
between distributional and peer-induced fairness in wholesale price and quantity 
discount contracts in supply chains with one supplier and two competing retail-
ers. However, they provide contradictory results regarding which type of fairness 
is more dominant and the resulting profit for the retailers. Our model builds on to 
Cui et al. (2007). In addition to providing the analysis for the case where the sup-
plier is the leader (similar to Cui et al. 2007; Cui and Mallucci 2016; Ingene et al. 
2019), we also analyze the setting in which the buyer is the leader. The latter is a 
more realistic representation of the context presented in this paper, i.e., the case 
where smallholder farmer supplies to a big agri-food firm. By comparing both 
leadership scenarios, we provide insights into the social and economic impacts of 
stakeholder engagement in decision-making, where the big agri-food firm grants 
the farmer the leadership in decision making. Our results show that the interac-
tion between investment decisions and equity concerns may diminish the leader-
ship advantage in the game, and in some settings, it may reverse it.

We also consider the stream of research about investments in supplier develop-
ment, specifically in the suppliers’ production processes. Several works study con-
tracts that include capacity investments by the suppliers, motivated by different 
incentives from buyers (Van Mieghem 1999; Taylor and Plambeck 2007a, b). Bai 
and Sarkis (2016) study a series of cooperative and non-cooperative game theoretic 
models and find the optimal investment quantities for each setting. They conclude 
that a cooperative scheme can result in higher profits for all players and identify 
some conditions in which it is more profitable not to make an investment. Cui and 
Mallucci (2016) study a pricing game with equity concerns where they include the 
investment as a parameter to calculate each player’s equitable profit share. In con-
trast, our model introduces each player’s investment as a decision variable, which 
reduces the supplier’s unit production cost. We also provide the analytical solutions 
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to the investment as well as the pricing decisions when both parties have equity con-
cerns in their decision-making.

According to Greenwood (2007), stakeholder engagement encompasses “prac-
tices the organisation undertakes to involve stakeholders in a positive manner in 
organisational activities.” Prado-Lorenzo et al. (2009) emphasize that the economic 
objectives of firms must be reached under the consideration of other stakeholder’s 
needs and demands along social dimensions. Similarly, Eccles et  al. (2014) iden-
tify stakeholder engagement as one of the four pillars that characterize sustainable 
organizations. They find empirical evidence that companies with a high level of 
sustainability focus on understanding the needs of their stakeholders take actions 
in managing their relationships, and they report on their quality. Liu et  al. (2018) 
study the initiative of creating consortia of retailers to address the social challenge 
of improving the working conditions of supplier factories in developing countries. 
They highlight that including all stakeholders in the value chain in the process of 
decision-making makes the improvement efforts “more effective, efficient, sustain-
able or just.” We contribute to this stream of literature by studying how big (buyer) 
agri-food firms can help (supplier) smallholder farmers by granting them the leader-
ship in decision-making. Motivated by the practices of Fractal Café, we examine the 
impact of this direct stakeholder engagement in pricing and investment decisions on 
improving equity in the supply chain. However, we find that granting the leadership 
in decision-making to farmers may have reverse effects than intended, leading to 
even lower (higher) profits and utilities for the farmer (agri-food firm).

In our model, we incorporate stakeholder engagement through different power 
structures, where we change which player acts as game leader. Choi (1991) studied 
Stackelberg leadership in pricing games and found that the game leader gets a higher 
share of the total supply chain profit. Cai et  al. (2009) identified some conditions 
where the use of inconsistent pricing and price discounts allows the game follower 
to earn a higher profit than the leader. Similarly, Zhang et al. (2012) studied a pricing 
game with product substitutability. They found that the game leader does not always 
get the highest profit, although all players have an incentive to lead. In our paper, we 
study the effects of the interaction between power structure and equity concerns in 
both the investment and pricing decisions. We analyze two different contracts and 
identify the conditions under which the game leader does not enjoy an advantage.

3 � Base model

We start by introducing the base model, where the buyer agri-food firm (indexed by 
B) has the upper hand in decision-making in his interactions with a supplier small-
holder farmer (indexed by S) in a dyadic supply chain with no equity concerns. In 
other words, we have a Stackelberg game setting where the buyer leads and the sup-
plier follows. The objective of each player is to maximize his or her own profit. We 
use a two-stage framework to model the problem. Specifically, in Stage 1, the opti-
mal investment decisions are determined to lower the supplier’s production cost. 
These decisions then influence the optimal pricing decisions in Stage 2. The order 
of events is as follows. First, the buyer decides on his investment IB and then the 
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supplier decides her investment IS . Given these investments, the buyer now sets the 
retail price p and then the supplier sets the wholesale price w.

Let D(p) = a − bp represent the buyer’s demand as a function of the retail price 
p, where a > 0 denotes the potential market demand, and b > 0 denotes the price 
sensitivity of demand. The supplier’s unit production cost c0 can be reduced by an 
amount f (IT ) via a total investment of IT in her production processes. Both the sup-
plier and the buyer can contribute to the total investment via amounts IS and IB , 
respectively. The total investment IT = IS + IB leads to a reduced production cost of 
c = c0 − f (IT ) , where f (IT ) =

√
s ⋅ IT  with s representing the sensitivity of produc-

tion cost reduction to total investment. This simple functional form is in line with 
Etro (2007), which states that investment is subject to diminishing marginal returns 
on the output produced. (Trivially, we impose the condition IT ≤ Imax ≡ c2

0
∕s to 

avoid a negative production cost.) In the absence of capacity constraints, the sup-
plier’s and buyer’s profits, Πi, i ∈ {S,B} , are given by:

and w represents the supplier’s wholesale price, and m denotes the buyer’s sales 
margin (i.e., m = p − w ). Following the approach presented in Choi (1991), we set 
the buyer’s margin m as the buyer’s decision variable in order to be able to analyze 
the Stackelberg setting in which the buyer is the leader.

Then, we use backward induction to first consider the Stage 2 problem in order to 
derive the expressions for the optimal pricing decisions for a given set of investment 
levels, i.e w∗(IS, IB) and m∗(IS, IB) . Next, we determine the optimal investment deci-
sions, I∗

S
 and I∗

B
 , in Stage 1. The following lemma characterizes the optimal solution 

to the base model. (We denote the optimal solution to the profit-maximizing base 
model with the superindex PR in the remaining of the paper.) To improve the expo-
sition of the paper, all proofs are relegated to the “Appendix”.

Lemma 1  The optimal solution for the base model is given by:

Lemma 1 shows that a reduction in the unit production cost is beneficial for 
both players. Not surprisingly, as the game leader, the buyer finds it optimal that 
the supplier makes all the investment to lower the unit production cost. Although 
an investment in the production processes results in additional costs for the 

(1)
ΠS =�S − IS, and ΠB = �b − IB,

where, �S = (w − c)(a − bp), and �B = (p − w)(a − bp),

w∗PR =
1
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supplier, it leads to a lower wholesale price. This enables the supplier to obtain 
higher profits due to higher demand by the buyer. This is also beneficial for the 
buyer, as he enjoys higher sales with a higher sales margin. Next, we extend our 
base model to study the impact of equity concerns on the optimal solution.

4 � The impact of equity concerns

We now consider a setting where the (buyer) agri-food firm is concerned not 
only about the economic outcomes, but also about the social outcomes of his 
decisions in terms of equity. In order to demonstrate this, we use the inequity 
aversion model proposed by Fehr and Schmidt (2001). They assume that the 
objective of each player is to maximize their own utility, which equals their 
monetary payoff less the disutility of obtaining a profit amount that deviates 
from the amount they perceive as equitable. In this setting, the utility functions 
for the supplier ( US ) and the buyer ( UB ), are given by:

Equations (2) and (3) show that given the exogenous parameter �i , which denotes 
the proportion of the total supply chain profit that is considered equitable by player 
i ∈ {S,B} , an equitable profit allocation occurs if �i ⋅ (�S + �B) = �i . Otherwise, 
disadvantageous inequity occurs if player i ∈ {S,B} receives a lower profit than 
his equitable share of the total supply chain profit, i.e., 𝜋i < 𝛾i ⋅ (𝜋S + 𝜋B) . Advan-
tageous inequity occurs if player i ∈ {S,B} receives a higher profit than his equi-
table share of the total supply chain profit, i.e., 𝜋i > 𝛾i ⋅ (𝜋S + 𝜋B) . The impact of 
disadvantageous and advantageous inequity on the players’ utility functions is cap-
tured via exogenous parameters �i and �i , respectively, where 0 ≤ 𝛼i < 1, 0 ≤ 𝛽i < 1 
for i ∈ {S,B} . This formulation extends the model presented by Fehr and Schmidt 
(2001). While they define a player’s equitable profit share in relation to the other 
player’s profit outcome, we assume that the equitable profit is defined in relation 
to the total supply chain profit (similar to Khan 2018). We also relax the assump-
tion that �i ≥ �i, i ∈ {S,B} , as we consider that a player with high level of social 
responsibility could have a higher concern for advantageous inequity than for dis-
advantageous inequity. This allows us to consider a more general setting where the 
assumptions presented by Fehr and Schmidt (2001) hold for a subset of the param-
eter combinations.

We use backward induction in our analysis (similar to our solution approach 
for the base model presented in Sect.  3). In what follows, we first present the 
optimal pricing decisions as a function of the players’ investments under equity 
concerns (Stage 2).

(2)US =ΠS − �S ⋅ max{�S(�S + �B) − �S, 0} − �S ⋅ max{�S − �S(�S + �B), 0},

(3)UB =ΠB − �B ⋅ max{�B(�S + �B) − �B, 0} − �B ⋅ max{�B − �B(�S + �B), 0}.
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4.1 � Optimal pricing decisions (Stage 2)

4.1.1 � Supplier’s problem

We start our analysis with the supplier’s (follower’s) problem, which is to maxi-
mize her utility US by optimizing the wholesale price w for any given retail margin 
m. Equation (2) shows that the supplier’s utility function US exhibits a piece-wise 
structure in the supplier’s wholesale price w. Hence, based on the retailer’s sales 
margin, the optimal wholesale price follows a different functional form. Theorem 1 
fully characterizes the structure of the optimal wholesale price for any given retail 
margin ( w∗EQ(m) ). This constitutes the optimal solution at the subgame equilibrium, 
given that this solution does not yet consider the results from the investment deci-
sions (Stage 1).

Theorem 1  The supplier’s utility US is concave in the wholesale price w, and for 
any given retail margin m, the optimal wholesale price w∗EQ(m) has the following 
structure:

where m̄1 ≡
(−a+bc)(−1+𝛼S(𝛾S−1))(𝛾S−1)

b(𝛾S(𝛼S−1)−(1+𝛼S))
 , and m̄2 ≡

(−a+bc)(1+𝛽S(𝛾S−1))(𝛾S−1)
b(1+𝛽S(𝛾S−1)+𝛾S)

≤ m̄1.

Theorem 1 shows that when the buyer’s sales margin is sufficiently small (i.e., 
m ≤ m̄2 ), the supplier will set her wholesale price to a value that is lower than the 
profit-maximizing wholesale price presented in the base case model; see Sect. 3. By 
sacrificing a portion of her profits, the supplier maximizes her utility and obtains 
advantageous inequity in this setting [i.e., w∗EQ(m) = w2(m) ]. However, as the retail 
margin grows, the supplier’s optimal wholesale price gradually decreases to a value 
that results in an equitable profit share for the supplier [i.e., w∗EQ(m) = w̄(m) ]. While 
an equitable profit share holds for intermediate retail margin (i.e., m̄2 < m ≤ m̄1 ), 
further growth in the retail margin raises the optimal wholesale price beyond the 
profit-maximizing wholesale price presented in the base case model. Consequently, 
a large retail margin (i.e., m > m̄1 ) forces the supplier to set her wholesale price such 
that she experiences disadvantageous inequity [i.e., w∗EQ(m) = w1(m) ]. Figure  1 
depicts the behavior of w∗EQ(m) for a problem instance.

Theorem 1 also shows that as the supplier’s concern for advantageous inequity 
( �S ) increases, her optimal wholesale price ( w2(m) ) decreases. On the other hand, 
a greater concern for disadvantageous inequity ( �S ) forces the supplier to raise her 
wholesale price ( w1(m) ). These findings are not surprising, as greater equity con-
cerns would put more weight on the disutility terms in the utility-maximizing objec-
tive function. Therefore, a higher deviation between the profit-maximizing wholesale 

(4)w∗EQ(m) =

⎧
⎪⎪⎨⎪⎪⎩

w2(m) ≡
1

2

�
a

b
+ c +

m(𝛽S(1−2𝛾S)−1)
1+𝛽S(𝛾S−1)

�
, if m ≤ m̄2

w̄(m) ≡
c(𝛾S−1)−𝛾Sm

𝛾S−1
, if m̄2 < m ≤ m̄1

w1(m) ≡
1

2

�
a

b
+ c +

m(1+𝛼S(1−2𝛾S))
𝛼S(𝛾S−1)−1

�
, if m > m̄1,
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price and the utility-maximizing wholesale price becomes inevitable. These findings 
can be extended to the impact of �S (i.e., the proportion of the total supply chain 
profit that is considered equitable by the supplier) on the optimal wholesale price, as 
the impact of �S on the utility-maximizing objective function is similar to that of �S 
and �S.

4.1.2 � Buyer’s problem

The supplier’s wholesale price response function, w∗EQ(m) , takes a different form for 
different ranges of the buyer’s retail margin, m. Therefore, the buyer’s utility func-
tion UB follows a piece-wise functional form in m when w∗EQ(m) is substituted into 
the buyer’s utility function, see Fig. 2.

As depicted in Fig.  2, UB is not concave in m, and it may have multiple local 
optima. The set of candidate solutions can be characterized based on the parameter 
�T = �S + �B , which can be interpreted as the proportion of the total supply chain 
profit, �S + �B , that leads to an equitable profit distribution among players. In other 
words, if �T = 1 , the sum of the individual profit amounts that players consider 
equitable, �T (�S + �B) , is equal to the actual supply chain profit. On the other hand, 
if 𝛾T < 1 ( 𝛾T > 1 ), the sum of the individual profit amounts that players consider 
equitable is less (greater) than the actual supply chain profit. The following theorem 
characterizes the structure of the buyer’s optimal retail margin.

Theorem 2  The buyer’s utility function UB is not concave in the retail margin m, 
and for any given �T , the optimal retail margin m∗EQ has the following structure:

Fig. 1   Supplier’s optimal wholesale price response function w∗(m) for a given set of investment levels 
I
S
, I

B
 (where a = 550, b = 2.3, c0 = 10, s = 0.08, �

S
= 0.7, �

S
= 0.5, �

S
= 0.4, �

B
= 0.4, �

B
= 0.6, 

�
B
= 0.7, I

S
= 700, I

B
= 0)



1038	 N. Hernandez‑Martinez et al.

1 3

where

For ease of exposition, the expressions for {di}1≤i≤9 are given in the “Appen-
dix”. Theorem 2 has implications for the players’ equity outcomes for different 
values of �T . The following corollary summarizes the equity outcome of different 
candidate solutions of m∗EQ for the buyer and supplier.

Corollary 1  For any given �T , the set of possible optimal solutions (m∗EQ and 
w∗EQ(m∗EQ)) and the resulting equity outcomes can be characterized as in Table 1.

(5)m
∗EQ =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

m1, if 𝛾
T
< 1, d1 > d2 & d3 > d4,

m2, if 𝛾
T
< 1, d4 > d3, d5 > 0 & d7 > d6,

m4, if 𝛾
T
< 1, d6 > d7,

m̄2, if 𝛾
T
= 1 & d7 > d6,

m4, if 𝛾
T
= 1 & d6 > d7,

m3, if 𝛾
T
> 1, d9 > d8,

m4, if 𝛾
T
> 1, d8 > d9,

m1 ≡
(1 + �B)(−a + bc)(1 + �S(�S − 1))2

b(�S − 1)((�S − 1)(−2 + �B(�B − 2)) + 2�S�S(1 + �B))
,

m2 ≡
(�B − 1)(−a + bc)(1 + �S(�S − 1))2

b(�S − 1)((�S − 1)(2 + �B(�B − 2)) + 2�S�S(�B − 1))
,

m3 ≡
(1 + �B)(−a + bc)(1 + �S(1 − �S))

2

b(1 + �S)((1 + �S)(−2 + �B(�B − 2)) + 2�S�S(1 + �B))
,

m4 ≡
(�B − 1)(−a + bc)(1 + �S(1 − �S))

2

b(1 + �S)((1 + �S)(2 + �B(�B − 2)) + 2�S�S(�B − 1))
.

Fig. 2   Buyer’s utility U
B
 as function of the retail margin m for a given set of investment levels I

S
, I

B
 

(where a = 872, b = 2.4, c0 = 13.4, s = 0.3, �S = 0.13, �S = 0.35, �S = 0.62, �B = 0.55, �B = 0.3, �B = 0.5, IS = 1125, IB = 0)
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Interestingly, Table 1 shows that when the sum of the individual profit amounts 
that players consider equitable is less than the actual supply chain profit, i.e., 𝛾T < 1 , 
then the supplier always experiences inequity. While any equity outcome is possible 
for the buyer in this setting, the supplier never experiences equity. Another extreme 
setting occurs when the sum of the equitable profit amounts is greater than the actual 
supply chain profit, i.e., 𝛾T > 1 . In this setting, the supplier suffers both in terms of 
profit and in terms of equity, as the only possible outcome for the supplier is disad-
vantageous inequity. In contrast, the buyer can experience any of the three possible 
equity outcomes. Table 1 shows that the only case in which both players can achieve 
equity is when �T = 1 , as this represents the setting where the sum of the equita-
ble profit amounts equals to the actual supply chain profit (i.e., the profit amount 
that the players want to distribute aligns with the actual supply chain profit). The 
intuition for these findings is as follows. Since the setting with 𝛾T < 1 allows for an 
excess profit amount (i.e., the actual profit amount minus the sum of profit amounts 
that are considered equitable by the players) to be distributed across players, at least 
one player obtains a profit amount that is greater than what he considers equitable, 
which leads to advantageous equity. The opposite holds when 𝛾T > 1 . Although an 
equitable outcome is possible for the buyer (since he is the leader of the game), the 
follower always obtains a disadvantageous equity when players try to distribute a 
profit amount that deviates from the actual supply chain profit.

In the next section, we consider the Stage 1 problem.

4.2 � Optimal investment decisions (Stage 1)

In Stage 1, we consider the optimal investment decisions using backward induction. 
Since the buyer is the leader of the game, we first analyze the supplier’s problem, 
which is to find the optimal investment amount for any given investment level by the 
buyer, I∗EQ

S
(IB) . Then we move to the buyer’s problem, which is to find the optimal 

investment, I∗EQ
B

 . The following theorem characterizes the structure of the optimal 
investment decisions.

Table 1   The candidate optimal 
solutions and the corresponding 
equity outcomes for players for 
any given �T

D disadvantageous inequity, E equity, A advantageous inequity

Optimal solution 
(m∗EQ,w∗EQ(m∗EQ))

Buyer’s equity 
outcome

Supplier’s 
equity out-
come

𝛾
T
< 1 m1,w2(m1) D A

m2,w2(m2) A A
m4,w1(m4) A D

�
T
= 1 m̄2, w̄(m̄2) E E

m4,w1(m4) A D
𝛾
T
> 1 m3,w1(m3) D D

m4,w1(m4) A D
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Theorem 3  The supplier’s utility function US is either concave or convex decreas-
ing in IS , depending on problem parameters. Hence, there exists a unique optimal 
solution I∗EQ

S
(IB) that maximizes the supplier’s utility. The buyer finds it optimal not 

to invest an amount, i.e., I∗EQ
B

= 0.

Theorem 3 shows that despite the equity concerns, the buyer still finds it optimal 
not to invest an amount in the supplier’s production processes (similar to the find-
ings of the base model, see Sect.  4). This finding can be attributed to the leader-
ship structure of the game. However, an interesting finding follows from Theorem 3: 
equity concerns may lead to a setting in which the supplier’s optimal investment 
amount is also zero. Consequently, in contrast to the base case scenario where the 
supplier (farmer) always finds it optimal to invest in her production processes, equity 
concerns may lead to a setting where the no investment strategy is optimal for both 
parties. In Sect.  6, we numerically quantify the impact of equity concerns on the 
optimal solution and the profit for both players compared to the base model, where 
the sole objective of the players is to maximize profits.

5 � The impact of supplier engagement

In addition to bringing equity concerns into the decision-making, the agri-food firm 
can also try to empower the smallholder farmer through stakeholder engagement, 
similar to Fractal Café. In this section, we analyze the setting in which the agri-food 
firm engages the smallholder farmer in decision-making. This is, the smallholder 
farmer is granted the leadership in setting the wholesale price as well as the invest-
ment for improving the production processes. For this case, we follow the same 
approach as in Sect. 4. That is, we use backward induction to first study the optimal 
pricing decisions and then find the optimal investment levels in a setting where the 
supplier is the leader. We show that the results for this setting have a similar struc-
ture to the case where the buyer is the leader, see Sect. 4. The results can be sum-
marized as follows (We use the superindex ST to denote the optimal solution of this 
model.).

Theorem 4  The buyer’s utility UB is concave in the retail margin m, and for any 
given wholesale price w, the optimal retail margin m∗ST (w) has the following 
structure:

(6)m∗ST (w) =

⎧
⎪⎪⎨⎪⎪⎩

m2(w) ≡
1

2

�
a

b
− w −

𝛽B𝛾B(w−c)

1+𝛽B(𝛾B−1)

�
, if w ≤ w̄2

m̄(w) ≡
𝛾B(w−c)

1−𝛾B
, if w̄2 < w ≤ w̄1

m1(w) ≡
1

2

�
a

b
− w −

𝛼B𝛾B(w−c)

𝛼B(𝛾B−1)−1

�
, if w > w̄1,
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where w̄1 ≡
a(1−𝛾B)(𝛼B(𝛾B−1)−1)+bc𝛾B(2−𝛼B(𝛾B−1))

b(1+𝛼B(1−𝛾B)+𝛾B)
 , 

w̄2 ≡
a(1−𝛾B)(1−𝛽B(𝛾B−1))+bc𝛾B(2−𝛽B(1−𝛾B))

b(1−𝛽B(1−𝛾B)+𝛾B)
≤ w̄1.

Thus, if the wholesale price is sufficiently low (i.e., w ≤ w̄2 ), then the buyer will 
experience advantageous inequity. The opposite holds when the wholesale price is 
sufficiently high (i.e., w > w̄1 ). The buyer experiences equity only when the whole-
sale price is neither too high nor too low (i.e., w̄2 < w ≤ w̄1 ). We find that when the 
agri-food firm grants the leadership in decision-making to the farmer, he will set-
tle for a lower profit margin than when he has a profit maximizing objective [i.e., 
m∗ST (w) < m∗PR(w) ] whenever the wholesale price is also sufficiently low (i.e., 
w ≤ w̄2 ), as this still leaves the buyer at an advantage. Below, we present the struc-
ture of the optimal wholesale price.

Theorem 5  The supplier’s utility US is not concave in the wholesale price w, and 
for any given �T , the optimal wholesale price w has the following structure:

where

For ease of exposition, the expressions for {di}10≤i≤18 are given in the “Appen-
dix”. The possible solution pairs depend on the value of �T as we show in Corol-
lary 2. The results show that the candidate optimal solutions and the corresponding 
equity outcomes follow a similar structure to that of the equity model.

Corollary 2  For any given �T , the set of possible optimal solutions w∗ST and 
m∗ST (w∗ST ) and the resulting equity outcomes can be characterized as in Table 2.

(7)w∗ST =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

w1, if 𝛾T < 1, d10 > d11 & d12 > d13,

w2, if 𝛾T < 1, d13 > d12, d14 > 0 & d16 > d15,

w4, if 𝛾T < 1, d15 > d16,

w̄2, if 𝛾T = 1 & d16 > d15,

w4, if 𝛾T = 1 & d15 > d16,

w3, if 𝛾T > 1, d18 > d17,

w4, if 𝛾T > 1, d17 > d18,

w1 ≡
−(1 + �

S
)(1 + �

B
(�

B
− 1))

(
a(1 + �

B
(�

B
− 1)) − bc

(
�
B
(1 + �

B
) − 1

))
+ �

S
�
S
bc(�

B
− 1)2

b(�
B
− 1)

(
2(1 + �

S
)(1 + �

B
(�

B
− 1)) + �

S
(�

B
− 1)�

S

) ,

w2 ≡
−(�

S
− 1)(1 + �

B
(�

B
− 1))

(
a(1 + �

B
(�

B
− 1)) − bc(�

B
(1 + �

B
) − 1)

)
+ �

S
�
S
bc(�

B
− 1)2

b(�
B
− 1)

(
2(�

S
− 1)(1 + �

B
(�

B
− 1)) + (�

B
− 1)�

S
�
S

) ,

w3 ≡
−(1 + �

S
)(−1 + �

B
(�

B
− 1))

(
−(1 + �

B
)(a + bc) + �

B
�
B
(a − bc)

)
+ �

S
�
S
bc(1 + �

B
)2

b(1 + �
B
)
(
2(1 + �

S
)(−1 + �

B
(�

B
− 1)) + (1 + �

B
)�

S
�
S

) ,

w4 ≡
−(�

S
− 1)(−1 + �

B
(�

B
− 1))

(
−(1 + �

B
)(a + bc) + �

B
�
B
(a − bc)

)
+ �

S
�
S
bc(1 + �

B
)2

b(1 + �
B
)
(
2(�

S
− 1)(−1 + �

B
(�

B
− 1)) + (1 + �

B
)�

S
�
S

) .
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Table  3 summarizes the outcomes in terms of equity that the supplier expe-
riences as a result of stakeholder engagement. These results show that, when 
𝛾T > 1 , she has the possibility to have an advantageous outcome. This is an 
improvement from the model without stakeholder engagement, where the sup-
plier is always at a disadvantage. Similarly, when �T = 1 , the supplier no longer 
has the possibility to end at a disadvantage. Although some of these results pro-
tect the supplier from a disadvantageous outcome, having an advantage over the 
buyer is also undesirable. A more detailed comparison of the outcomes from both 
models is presented in our numerical study in Sect. 8.

Finally, we analyze the optimal investment decisions. We identify the same 
behavior of the utility functions as in the case where the buyer leads the game. 
Theorem 6 characterizes the optimal solutions.

Theorem 6  The buyer’s utility function UB is either concave or convex decreasing 
in IB , depending on problem parameters. Hence, there exists a unique optimal solu-
tion I∗ST

B
(IS) that maximizes the buyer’s utility. The supplier finds it optimal not to 

invest an amount, i.e., I∗ST
S

= 0.

Table 2   The candidate optimal 
solutions and the corresponding 
equity outcomes for players for 
any given �T

D disadvantageous inequity, E equity, A advantageous inequity

Optimal solution 
(m∗ST ,w∗ST (m∗ST ))

Supplier’s equity 
outcome

Buyer’s 
equity 
outcome

𝛾
T
< 1 w1,m2(w1) D A

w2,m2(w2) A A
w4,m1(w4) A D

�
T
= 1 w̄2, m̄(w̄2) E E

w4,m1(w4) A D
𝛾
T
> 1 w3,m1(w3) D D

w4,m1(w4) A D

Table 3   Possible equity 
outcomes for the supplier for 
any given �T with the two 
proposed models

D disadvantageous inequity, E equity, A advantageous inequity

Model with equity 
concerns

Model with equity concerns 
and stakeholder engagement

𝛾
T
< 1 A D

A A
D A

�
T
= 1 E E

D A
𝛾
T
> 1 D D

D A
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The supplier’s utility function decreases in her investment IS , so as game leader 
she finds it optimal not to make an investment. Similar to the result in Sect. 4.2, 
the buyer as game follower finds it optimal to make an investment only when 
needed, depending on the problem parameters.

6 � The impact of production quantity constraints

Smallholder farmers are often faced with capacity restrictions that can result 
in their inability to satisfy the buyer’s demand in its totality. To understand the 
effects of such restrictions in the pricing and investment decisions, in this section 
we consider the case where the farmers have a restricted capacity. The farmer 
is only capable of producing a maximum quantity of q̄ , which restricts the buy-
er’s purchased quantity, such that a − bp ≤ q̄ . Given that our focus is on pricing 
decisions, we rewrite this restriction as p ≥

a−q̄

b
 or equivalently m ≥

a−q̄

b
− w . The 

implications of this restriction in each model are as follows.
Equity model. In this model, the optimal retail margin is found during the sec-

ond step of the backward induction process, which means that it does not depend 
on the value of the wholesale price. Based on the properties of the behavior of 
UB(m) found in the previous section for each of the intervals defined in m, the 
optimal retail price has the following form when the constraint in q̄ is tight:

Stakeholder engagement model. In this model, the optimal retail margin is found 
during the first step of the backward induction process. Hence, the solution is a 
function of the wholesale price selected by the supplier (m∗(w)) . Furthermore, we 
observe that m∗ is increasing in w. Then, we can conclude that, if the constraint in q̄ 
is tight, then the retail margin that yields this quantity, mq̄ , constitutes the new opti-
mal solution.

In both models, when the supplier’s capacity is not enough to fulfill the buyer’s 
demand, the retail price is increased to compensate for the lower production quan-
tity. This can be seen from the restriction p ≥

a−q̄

b
 , where the quantity constraint 

imposes a lower threshold on the value of the retail price (and the retail margin, 
accordingly). Recall Fig.  2, which shows the different intervals in the value of 
the retail margin that correspond to each equity outcome for the buyer. From this 
plot we can see that the size of the quantity constraint will determine its effect 
on the model outcomes. If the gap in the production quantity is small, then the 
retail price increases as the only effect of the capacity restriction. However, a 
larger gap in the production quantity will result in a larger price increase, which 
can cause the optimal solution to move to a different interval of the function. This 
would translate into a change in the equitable outcome (equity, disadvantageous 

(8)m∗EQ =

⎧
⎪⎪⎨⎪⎪⎩

argmax
m∈{mq̄,m4}

UB(m), if 𝛾T < 1

argmax
m∈{mq̄,m4}

UB(m), if 𝛾T = 1

argmax
m∈{mq̄,m3,m̂3,m4}

UB(m), if 𝛾T > 1,
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or advantageous inequity) for the players. Then, the effects of the socially respon-
sible practices can be overpowered by a restriction in the production quantity.In 
the next section, we present our analysis of a two-part tariff contract with equity 
concerns.

7 � Two‑part tariff contract

In this section, we consider an alternative to the contracts proposed in the previous sec-
tions. We study a two-part tariff contract (Lewis 1941) in our original problem setting, 
where the buyer acts as Stackelberg leader and both players have equity concerns. To 
distinguish from the other models, we use the superindex TP. In this contract, the buyer 
proposes a retail margin m and a fixed payment F to be paid by the supplier. This set-
ting is very common in a retail environment where the supplier pays a slotting fee F to 
have her product listed. The slotting fee is expected to cover part of the fixed costs such 
as the space needed on the shelf and promotional expenses (Hamilton 2003; Aydin and 
Hausman 2009; Pfeiffer 2016). If the supplier accepts the contract, then she will set her 
wholesale price w. In this setting, the player’s profits are given by:

Each player has the objective to maximize his or her own utility function:

As with the previous models, we solve this game using backward induction. We first 
find the solution to the supplier’s optimization problem.

Theorem 7  The supplier’s utility UTP
S

 is concave in the wholesale price w, and for 
any given retail margin m, the optimal wholesale price wTP(m) has the following 
structure:

where

(9)�TP
B

= m(a − b(w + m)) + F, and �TP
S

= (w − c)(a − b(w + m)) − F

(10)
U

TP

B
=�TP

B
− �

B
⋅ max{�

B
(�TP

S
+ �TP

B
) − �TP

B
, 0} − �

B
⋅ max{�TP

B
− �

B
(�TP

S
+ �TP

B
), 0},

(11)
U

TP

S
=�TP

S
− �

S
⋅ max{�

S
(�TP

S
+ �TP

B
) − �TP

S
, 0} − �

S
⋅ max{�TP

S
− �

S
(�TP

S
+ �TP

B
), 0}.

(12)

w
∗TP(m,F) =

⎧⎪⎪⎨⎪⎪⎩

w
TP

2
(m,F) ≡

1

2

�
a

b
+ c +

m(−1+𝛽S (1−2𝛾S ))

1+𝛽S (𝛾S−1)

�
, if m ≤ m̄

TP

2

w̄TP(m,F) ≡
(a+bc)(𝛾S−1)+bm(1−2𝛾S )

√
(a2−2abc)(𝛾S−1)

2−2abm(𝛾S−1)+b(4F(𝛾S−1)+b(c(1−𝛾S )+m)
2 )

2b(𝛾S−1)
, if m̄

TP

2
< m ≤ m̄

TP

1

w
TP

1
(m,F) ≡

1

2

�
a

b
+ c +

m(1+𝛼S (1−2𝛾S ))
𝛼S (𝛾S−1)−1

�
, if m > m̄

TP

1
,

m̄
TP

1
≡ −

(a − bc)(1 + 𝛼
S
(1 − 𝛾

S
))2 +

√
(1 + 𝛼

S
(1 − 𝛾

S
))2(4(1 + 𝛼

S
)2bF − 4(𝛼2

S
− 1)bF𝛾

S
+ (a − bc)2𝛾2

S
)

b(1 + 𝛼
S
)(−1 + 𝛼

S
(𝛾

S
− 1) − 𝛾

S
)

m̄
TP

2
≡ −

(a − bc)(1 + 𝛽
S
(𝛾

S
− 1))2 +

√
(1 + 𝛽

S
(𝛾

S
− 1))2(4(𝛽

S
− 1)2bF − 4(𝛽2

S
− 1)bF𝛾

S
+ (a − bc)2𝛾2

S
)

b(𝛽
S
− 1)(1 + 𝛽

S
(𝛾

S
− 1) + 𝛾

S
)

≤ m̄
TP

1
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Theorem 7 shows that the expressions for w∗TP(m,F) are the same as those for 
w∗EQ(m) (Theorem 1) in the intervals m ≤ m̄TP

2
 and m > m̄TP

1
 . Then, the wholesale 

price only depends on the value of the fixed fee F in the interval m̄TP
2

< m ≤ m̄TP
1

 . 
Now, we solve the buyer’s optimization problem.

Theorem 8  The buyer’s utility function UTP
B

 is not concave in the retail margin m 
and the fixed fee F, and for any given �T , the optimal strategy (m∗TP,F∗TP) has the 
following structure:

where

For ease of exposition, the expressions for {di}10≤i≤18 are given in the “Appen-
dix”. Our analysis shows that, in the intervals m ≤ m̄TP

2
 and m > m̄TP

1
 , the buyer’s 

utility function increases in F, which means that the buyer will find optimal to 
set the fixed fee as high as possible. The fixed fee must be set in a way such that 
the supplier will accept to participate in the contract. This means that she should 
at least earn her reservation profit, which would then be equal to the profit that 
the supplier would earn if she chooses not to participate in the contract (Feng 

(13)

(m∗TP,F∗TP) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(mTP

1
,F

max
), if 𝛾

T
< 1, d19 > d20, d21 > d22 & d23 > 0,

(mTP

2
,F

max
), if 𝛾

T
< 1, d20 > d19, 0 > d24 & d25 > 0,

(mTP

4
,F

max
), if 𝛾

T
< 1, d22 > d21, d23 > 0, d24 > 0 & d26 > 0,

(mTP

5
,FTP

5
), if 𝛾

T
< 1, 0 > d23, 0 > d25 & 0 > d26,

(mTP

4
,F

max
), if 𝛾

T
= 1 & d26 > 0,

(mTP

5
,FTP

5
), if 𝛾

T
= 1 & 0 > d26,

(mTP

3
,F

max
), if 𝛾

T
> 1, d27 > 0 & d29 > d28,

(m̂3
TP
,F

max
), if 𝛾

T
> 1, 0 > d23 & 0 > d27,

(mTP

4
,F

max
), if 𝛾

T
> 1, d23 > 0 & d28 > d29,

mTP
1

=
(1 + 𝛼B)(−a + bc)(1 + 𝛽S(𝛾S − 1))2

b(𝛽S − 1)((𝛽S − 1)(−2 + 𝛼B(𝛾B − 2)) + 2𝛽S𝛾S(1 + 𝛼B))

mTP
2

=
(1 − 𝛽B)(−a + bc)(1 + 𝛽S(𝛾S − 1))2

b(𝛽S − 1)((𝛽S − 1)(2 + 𝛽B(𝛾B − 2)) + 2𝛽S𝛾S(𝛽B − 1))

mTP
3

= −
(1 + 𝛼B)(a − bc)(1 + 𝛼S(1 − 𝛾S))

2

b(1 + 𝛼S)
(
(1 + 𝛼S)

(
−2 + 𝛼B(𝛾B − 2)

)
+ 2𝛼S𝛾S(𝛼B + 1)

)

mTP
4

= −
(𝛽B − 1)(a − bc)(1 + 𝛼S(1 − 𝛾S))

2

b(1 + 𝛼S)((1 + 𝛼S)(2 + 𝛽B(𝛾B − 2)) + 2𝛼S𝛾S(𝛽B − 1))

m̂3
TP =

(−a + bc)(−1 + 𝛼S(𝛾S − 1))

b(1 + 𝛼S)

Fmax =(w − c)(a − b(w + m))

FTP
5

= −
(a − bc)2(𝛾S − 1)

4b
−

m(a − bc)

2
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and Lu 2013). In our problem setting, both players’ profits would be zero if the 
parties do not reach a contract agreement, so the game leader can set F equal 
to the follower’s total revenue (Ingene et  al. 2019). Hence, in these intervals, 
F∗ = Fmax = (w − c)(a − b(w + m)) . In contrast, in the interval m̄TP

2
< m ≤ m̄TP

1
 , 

multiple solutions can maximize the buyer’s utility depending on the parameter 
values. This solution corresponds to a line where all points, for any mTP

5
> 0 , rep-

resent optimal solutions to our maximization problem. From the expression of 
FTP
5
(mTP

5
) , we can see that FTP

5
 decreases in mTP

5
 , the retail margin. This can be 

interpreted as a way to balance both quantities, as charging a high fixed fee cor-
responds to a low retail margin, and viceversa. We now show under which condi-
tions the candidate solutions from this interval are the optimal solutions to the 
problem. Table 4 summarizes the outcomes for each player in terms of equity for 
each set of candidate solutions.

These results show that a two-part tariff contract with equity concerns can be 
used by the game leader to regain his or her advantage (compared to our proposed 
base model with equity concerns). A two-part tariff contract results in a higher 
utility and profit for the game leader through the fixed fee. This occurs because 
in most cases the leader finds it optimal to charge a fixed fee as high as the total 
profit of the follower. As a result, this contract also increases inequity, as the fol-
lower will receive zero profit in most cases.

The game leader only chooses not to charge a fixed fee when certain condi-
tions on the parameter values are met. This is when d8 < 0 , which occurs when 
the buyer’s concern for advantageous inequity �B takes a high value. This result is 
intuitive, since the buyer as game leader restrains from charging a fixed fee that 
takes the entire supplier’s profit when the buyer is largely concerned with expe-
riencing advantageous inequity. This solution corresponds to the only solution 
where the game follower experiences equity and the leader can either experience 
equity, or disadvantageous inequity. When this solution is optimal, different pairs 
of the retail margin and fixed fee can achieve the same utility for the buyer. In 

Table 4   Set of candidate 
solutions for each equity 
outcome for any given �T in the 
two-part tariff contract

D disadvantageous inequity, E equity, A advantageous inequity

Optimal solution Buyer’s 
equity out-
come

Supplier’s 
equity out-
come

𝛾
T
< 1 m

TP

1
,F

max
,wTP

2
(m

TP

1
,F

max
) D A

m
TP

2
,F

max
,wTP

2
(m

TP

2
,F

max
) A A

m
TP

4
,F

max
,wTP

1
(m

TP

4
,F

max
) A D

m
TP

5
,FTP

5
, w̄TP

(m
TP

5
,FTP

5
) A E

�
T
= 1 m

TP

4
,F

max
,wTP

1
(m

TP

4
,F

max
) A D

m
TP

5
,FTP

5
, w̄TP

(m
TP

5
,FTP

5
) E E

𝛾
T
> 1 m

TP

3
,F

max
,wTP

1
(m

TP

3
,F

max
) D D

m̂
TP

3
,F

max
,wTP

1
(m̂

TP

3
,F

max
) E D

m
TP

4
,F

max
,wTP

1
(m

TP

4
,F

max
) A D
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these cases, it might be useful for the buyer to have a second objective, such as 
maximizing profit, to choose among the possible pairs of values.

Based on these results, we can conclude that a two-part tariff contract is not con-
venient when the players are concerned with equity. This type of contract increases 
inequity and only increases the utility of the game leader.

8 � Numerical study

In order to quantify the impact of equity considerations and stakeholder engage-
ment on the players, we performed an extensive numerical study. Our results show 
that while the demand and production parameters (a, b, c0, s) have an impact on the 
optimal solution, the behavior of the solutions stay the same as equity parameters 
(�i, �i, �i, i ∈ {S,B}) are varied. The parameters used for this study were based 
on Fractal Café’s demand and cost data. However, the price elasticity could not be 
approximated with the data available. We performed a sensitivity analysis to con-
sider a wide range of scenarios for the missing parameters. In order to keep our 
study brief and focused, in the remainder of this section we only present our findings 
for the case where a = 500 , b = 1 , c0 = 45 , s = 0.05 , if otherwise is not noted.

8.1 � Comparison of models

In order to get a general overview of the optimal utilities and profits generated by the 
three different models, we first calculated the optimal profit generated by the base 
model with the aforementioned demand and production parameters. Then, for the 
same demand and production parameters, we evaluated the optimal utilities obtained 
by the players when they include (1) equity concerns, and (2) stakeholder engage-
ment in their decision-making. For this analysis, we varied �i, �i, and �i, i ∈ {S,B} , 
using three levels {0.1, 0.5, 0.9} for each. That is, six parameters at three levels each, 
yielding 36 = 729 problem instances. Table 5 shows the optimal investment, optimal 
utilities and profits at the utility maximizing solutions for the equity and stakeholder 
engagement models. We show the mean across the 729 instances, as well as the min-
imum and the maximum values (in parenthesis), and the profit maximizing solution 
of the base model.

The first relevant observation from the results shown in Table  5 is that the 
investment made by the supplier is higher after introducing equity concerns in 
the profit maximizing model. This suggests that the equity concerns effectively 
constitute an incentive for investment. We can see that even the minimum value 
of the supplier’s profit is higher than that obtained with the base model, due to 
the fact that in every instance w∗EQ > w∗PR , while w∗PR + m∗PR > w∗EQ + m∗EQ . 
This means that the introduction of equity concerns results in a lower retail price, 
which also means a higher demand. As a consequence, the supplier is inclined to 
make a higher investment given that the equity concerns will allow her to set a 
higher wholesale price and, as a result, get a higher share of the benefits obtained 
from the investment. However, when the players also introduce stakeholder 
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engagement practices, the investment is lower in average than when they only 
introduce equity concerns in their decision making. In most of the instances 
(97%), the buyer sets a lower margin with the stakeholder engagement model than 
with the equity model. Contrary to what occurred for the supplier using the equity 
model, the lower margin using the stakeholder engagement model means that the 
buyer will not get such a high benefit from the investment, thus he finds it optimal 
to invest a lower amount than the supplier invests when she acts as follower.

Also from Table 5, we observe that the supplier’s utility and profit are higher 
when using the equity model (where she acts as follower) than with the stake-
holder engagement model (where she acts as leader). This can be observed for 
each one of the instances that we studied. If we replicate our experiment by only 
optimizing Stage 2 for each model (i.e., finding p∗ and m∗ with IS and IB as con-
stant parameters), we observe the opposite behavior: a player obtains a higher 
utility and profit from the model with equity concerns where he acts as leader 
than when he acts as follower. Thus, we infer that the behavior observed in 
Table 5 can be attributed to the investment, as this modifies the initial problem 
conditions (i.e., different production cost) and this in turn modifies the maximum 
achievable profits and utilities for each player. As we mentioned before, the total 
investment tends to be higher when using the equity model, which means a higher 
profit and utility for the supplier (follower).

We identify that for some instances in which �T = 1 , the results follow the 
behavior of the standard Stackelberg game, where the leader exercises his or her 
advantage and receives a higher profit and utility. Table 6 shows some instances 
that exemplify these results.

Another relevant observation from Table 5 is that the total supply chain profit 
is higher when introducing equity concerns and stakeholder engagement than 
when only maximizing profit. This can be due to two different effects. The first 
effect is that the introduction of equity concerns effectively encourages the play-
ers to make an investment as we explained before. Then, this investment reduces 
the production cost and this can result in a higher total supply chain profit. The 
second effect is that the transfer of profit to the follower can result in a decrease 
of the game leader’s advantage.

Additionally, after introducing equity concerns and stakeholder engagement 
practices, we observe that the leader’s utility (and in some cases the profit) attains 
its maximum value from all the instances studied when the follower has a high 
sense of social responsibility (i.e., 𝛽 > 𝛼 ). This result again reflects the impact 
of the equity concerns on the outcome for each player. While they can reverse 
the game leader’s advantage, they can also benefit him or her when the follower 
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is more concerned with getting an advantage than a disadvantage. In Table  7, 
we can observe for the equity model that the buyer’s utility is higher in average 
when 𝛽S > 𝛼S . This condition also yields the highest possible value of profit for 
the buyer, as well as for the supply chain profit. For the stakeholder engagement 
model, Table 8 shows that the supplier’s utility and profit are higher in average 
when 𝛽B > 𝛼B . Again, this condition yields the highest possible value for the total 
supply chain profit, as well as a higher average value than when �B ≤ �B.

8.2 � Cost of ignoring equity

Now we look at cost of ignoring equity. We define the solution vectors 
x∗y =

(
w∗y,m∗y, I

∗y

S
, I

∗y

B

)
 , where y = {PR,EQ} . To assess the cost of ignoring  

equity, we implement both solution vectors in the model with equity concerns, 
where the buyer acts as game leader, and compare the outcomes. This comparison  
sis shown through the changes in utility as ΔUS% =

US(x
∗PR)−US(x

∗EQ)

US(x
∗EQ)

 and 
ΔUB% =

UB(x
∗PR)−UB(x

∗EQ)

UB(x
∗EQ)

 . This measure captures the change in utility that results 
from using a profit-maximizing solution in a setting where the players are concerned 
with equity. Table 9 exhibits some selected results exemplifying the relevant results 
discussed in what follows.

Table  9 shows that the buyer, as game leader, always receives a higher utility 
by including equity concerns in his decision making process 

(
UB(x

∗EQ)
)
 . From the 

instances that we studied, we identify that this increase in utility can go as high as 
70%. It is also important to acknowledge that this increase in the buyer’s utility can 
come at a cost to the supplier’s utility. The highest values of ΔUB% also correspond 
to the lowest values of ΔUS% . However, it is interesting how in some cases both 
players can experience an increase in their utility when introducing equity concerns. 
In these cases, the increase is smaller than when only the buyer experiences an 
increase.

Table 9   Resulting utilities for the equity model that reflect the cost of ignoring equity

�
S

�
S

�
S

�
B

�
B

�
B U

S
(x∗PR) U

S
(x∗EQ) ΔU

S
(%) U

B
(x∗PR) U

B
(x∗EQ) ΔU

B
(%)

1 0.9 0.01 0.5 0.45 0.99 46,501 45,344 2.6 12,858 21,503 − 40.2
1 0.9 0.01 0.5 0.9 0.99 60,529 51,410 17.7 12,858 42,687 − 69.9
0.5 0.45 0.5 0.5 0.45 0.5 39,605 39,748 − 0.36 18,443 20,554 − 10.3
1 0.45 0.5 1 0.45 0.5 7249 7281 − 0.44 3465 3971 − 12.7
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Considering that our main premise is to promote social equity by increasing 
smallholder farmers’ (suppliers’) profits, the results from this and the previous sec-
tion lead us to conclude that the suppliers are better off by acting as followers and 
including equity concerns in their decision making process.

8.3 � Capacity constraints

To study the effects of introducing a constraint in the supplier’s production capacity, 
we consider again the base case studied in Sect. 8.1 (where a = 500 , b = 1 , c0 = 45 , 
s = 0.05 and we varied �i, �i, and �i, i ∈ {S,B} using three levels {0.1, 0.5, 0.9} 
for each). From the previous results, we observed that these instances yield a total 
demand D = a − bp within the range [119.3, 228.8]. Hence we imposed a capac-
ity constraint of q̄ = 160 , which would be binding for a fraction of the instances 
studied. According to the analytical results in Sect. 6, this results in the constraint 
p ≥ 340 . Table 10 shows a summary of the results obtained after introducing the 
capacity constraint.

If we compare the results to those in Table  5, where the capacity is not con-
strained, we can see that the constraint causes the profits and utilities of the follower 
in each model to decrease in average, whereas those of the leader increase. In gen-
eral, if we look at each individual instance, the optimal solution is to produce the 
maximum possible amount q̄ when the constraint is binding. This means that the 
retail price is higher than that corresponding to the unconstrained optimal solution. 
This is achieved by increasing the wholesale price when the supplier is the leader, 
or by increasing the retail margin otherwise. Hence, we can see that the capacity 
constraint serves as a mechanism through which the game leader exercises his power 
by increasing his price. However, the introduction of constraints means that the total 
demand cannot be satisfied, and thus the resulting total supply chain profit will be 
lower.

9 � Conclusions

In this paper we include equity concerns in the investment and pricing decision-mak-
ing processes in agri-food supply chains to increase their levels of social responsibility. 
Using Stackelberg games, we model a supplier and buyer dyad with inequity aver-
sion and show that equity concerns have an impact on the wholesale and retail prices, 
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as well as on the investment levels. Our model is based on the works by Cui et  al. 
(2007) and Cui and Mallucci (2016). We based our study on the business model of the 
socially responsible company Fractal Café and made several modelling changes to the 
referred models to capture the characteristics of the relationship the company has with 
their coffee supplier. We model the equitable profit as a share of the total profit and 
not as a fraction of the other player’s payoff. Also, we include the investment levels as 
decision variables in the model with equity concerns and relax the assumption in ear-
lier work that �i ≥ �i, i ∈ {S,B} to capture the concept of social responsibility. Finally, 
we consider a variation of our model where the supplier acts as game leader.

One of the purposes of this study is to understand if equity concerns and stake-
holder engagement impact the pricing and investment decisions in supplier–buyer 
relationships. For the investment decisions, we find that the structure of the game 
is stronger than the equity concerns, so the leader of the game will always find it 
optimal not to make an investment. Since some social responsibility policies rely on 
buyers making an investment at the supplier, our results suggest that such a policy 
may require a different strategic relationship between both players. Despite this, the 
follower will still find it optimal to invest in some cases. Overall, compared to the 
base model, the investment is higher when using the equity model and lower when 
using the stakeholder engagement model. Regarding the pricing decisions, we find 
that the game follower uses his or her price as a mechanism to move towards an 
equitable distribution. Given that he or she is restricted by the leader’s decision, he 
or she can only use his price decision to minimize his deviation from an equitable 
distribution. Thus, he or she will increase the price when facing a situation of disad-
vantage, and decrease it when experiencing an advantage.

The second objective of our study concerns the effects of socially responsible 
practices on the game leader’s advantage. We find that being the leader of the game 
gives a player the power to be at an advantage, but this will not always be the out-
come due to the equity concerns. In other words, the game leader will not always 
choose to be at an advantage and get a higher utility than the follower. Both player’s 
equity concerns will impact the pricing decisions, and in some situations the follower 
can receive a higher utility than the leader. In contrast, we find that the leader retains 
his or her advantage when equity concerns are introduced in a two-part tariff contract. 
This results in some cases with higher inequity, given that the game leader charges a 
fixed fee that is as high as the follower’s profit. Only when the leader’s concern for 
advantageous inequity is high, both players receive an equitable outcome.

Our numerical study helped us fulfill the third objective of our work, which con-
sisted of identifying under which conditions the players and the supply chain as a 
whole can derive an economic benefit from implementing socially responsible prac-
tices. The results suggest that, when �T ≠ 1 , each player will obtain the highest profit 
when he or she has equity concerns but does not lead the Stackelberg game. Also, 
we identify that introducing equity concerns increases the total supply profit by 
increasing the investment and reducing the double marginalization. The results from 
the numerical study also provide us some insights regarding our final objective: the 
social cost of ignoring equity. We found that ignoring equity can result in a signifi-
cant cost in the leader’s utility, but this also represents a gain in the follower’s utility. 
However, we also find that ignoring equity in some cases comes at a cost for both 
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players, but this costs are not as high as in the aforementioned case, where there is a 
trade-off between both players’ utilities.

Finally, the introduction of production capacity constraints in the Equity and Stake-
holder engagement models allowed us to show that the main findings still hold even 
when the smallholder farmer has capacity restrictions. In the cases where the con-
straint is binding, it is still optimal for the buyer to purchase the entire production and 
to compensate for the quantity gap with an increase in the retail price. However, in the 
Stakeholder engagement model where the supplier acts as the leader, this increase in 
retail price is a result of an increase in the wholesale price. The buyer only benefits 
from this retail price increase in the Equity model, where he acts as leader. Thus, when 
there are capacity constraints, the discussed effects of introducing equity concerns in 
decision making are reversed and the game leader again exercises his advantage.

Overall, it is interesting to see how the prices are used by both players to 
attempt to reach an equitable allocation, but the investment decisions are not 
affected by equity concerns. We could argue that, despite having equity concerns, 
the players’ are conservative in the sacrifices they are willing to make for the 
other player. In other words, a player can be willing to reduce his price and, in 
turn, reduce his advantage over the other player, but still he will not be willing 
to make an investment if he is in a position of power. Thus, considering our set-
ting where a smallholder farmer does not obtain sufficient earnings for a decent 
standard of living from her interactions with an agri-food firm, we conclude that 
this situation can be reversed if both stakeholders engage in socially responsible 
practices in their decision-making in the form of equity concerns. Contrary to 
our initial belief based on Fractal Café’s case, the farmer will actually not benefit 
from stakeholder engagement practices.
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Appendices

Appendix A: Complementary expressions for the results in Sects. 4, 5 
and 7

d1 = ((�
S
− 1)(−2 + �

B
(�

B
− 2)) + 2(1 + �

B
)�

S
�
S
)((�

S
− 1)(1 + �

B
(�

B
− 1))

+ (�
B
− 1)�

S
�
S
)2

d2 = −((�
S
− 1)(−1 + �

B
(�

B
− 1)) + (1 + �

B
)�

S
�
S
)2((�

S
− 1)(2 + �

B
(�

B
− 2))

+ 2(�
B
− 1)�

S
�
S
)

d3 = −(�
S
− 1)((1 + �

S
)(1 + �

B
(�

B
− 1))

+ (�
B
− 1)�

S
�
S
)2((�

S
− 1)(−2 + �

B
(�

B
− 2)) + 2(1 + �

B
)�

S
�
S
)

d4 = (1 + �
S
)((1 + �

S
)(2 + �

B
(�

B
− 2))

+ 2(�
B
− 1)�

S
�
S
)((�

S
− 1)(−1 + �

B
(�

B
− 1)) + (1 + �

B
)�

S
�
S
)2

d5 = (�
S
+ �

S
(2�

S
− 1))(2 + �

B
(�

B
− 2))�

S
+ 2�

S
�
S
�2
S
(�

B
− 1)

− 2(1 + �
S
)(�

S
− 1)(1 + �

B
(�

B
− 21)

d6 = (1 + �
S
(�

S
− 1)

+ �
S
)2((1 + �

S
)(1 + �

B
(�

B
− 1)) + (�

B
− 1)�

S
�
S
)2

d7 = 4(1 + �
S
)(1 + �

S
(�

S
− 1))�

S
((1 + �

S
)(2 + �

B
(�

B
− 2))

+ 2(�
B
− 1)�

S
�
S
)(1 − �

S
+ �

B
(�

B
+ �

S
− 1))

d8 = −((1 + �
S
)(−2 + �

B
(�

B
− 2))

+ 2(1 + �
B
)�

S
�
S
)((1 + �

S
)(1 + �

B
(�

B
− 1)) + (�

B
− 1)�

S
�
S
)2

d9 = ((1 + �
S
)(−1 + �

B
(�

B
− 1))

+ (1 + �
B
)�

S
�
S
)2((1 + �

S
)(2 + �

B
(�

B
− 2)) + 2(�

B
− 1)�

S
�
S
)

d10 = −(2(1 + �
S
)(1 + �

B
(�

B
− 1))

+ (�
B
− 1)�

S
�
S
)((�

S
− 1)(1 + �

B
(�

B
− 1)) + (�

B
− 1)�

S
�
S
)2

d11 = (1 + �
S
)(1 + �

B
(�

B
− 1))

+ (�
B
− 1)�

S
�
S
)2(2(�

S
− 1)(1 + �

B
(�

B
− 1)) + (�

B
− 1)�

S
�
S
)

d12 = (�
B
− 1)(2(1 + �

S
)(1 + �

B
(�

B
− 1))

+ (�
B
− 1)�

S
�
S
)((�

S
− 1)(−1 + �

B
(�

B
− 1)) + (1 + �

B
)�

S
�
S
)2

d13 = −(1 + �
B
)((1 + �

S
)(1 + �

B
(�

B
− 1))

+ (�
B
− 1)�

S
�
S
)2(2(�

S
− 1)(−1 + �

B
(�

B
− 1)) + (1 + �

B
)�

S
�
S
)

d14 = (�
B
+ �

B
)(�

S
− 1)2�

B
(2(�

S
− 1)(−1 + �

B
(�

B
− 1))(1 + �

B
(�

B
− 1))

+ �
S
(2 + �

B
(2 + 2�

B
(�

B
− 1) − �

B
) + �

B
(�

B
− 2))�

S
)

d15 = (1 + �
B
(�

B
− 1) + �

B
)2((�

S
− 1)(−1 + �

B
(�

B
− 1))

+ (1 + �
B
)�

S
�
S
)2



1059

1 3

Social equity in supplier–buyer relationships in smallholder…

d16 = 4(1 + �B)(1 + �B(�B − 1))�B(2(�S − 1)(−1 + �B(�B − 1))

+ (1 + �B)�S�S)(1 − �B + �S(�B + �S − 1))

d17 = ((1 + �S)(−1 + �B(�B − 2)) + (1 + �B)�S�S)
2(−2(−1 + �S)(−1 + �B(�B − 1))

+ (�B + 1)�S�S)

d18 = (2(1 + �S)(−1 + �B(�B − 1))

+ (1 + �B)�S�S)((�S − 1)(−1 + �B(�B − 1)) + (�B + 1)�S�S)
2

y1 = (�B(�B − 1) − 1)

y2 = (1 + �B(�B − 1))

d19 = (1 + �B(1 − �B))((�S − 1)(−1 + �B(�B − 1))

+ (1 + �B)�S�S)((�S − 1)(−3 + �B(�B − 3))

+ 3(1 + �B)�S�S)((�S − 1)(2 + �B(�B − 2)) + 2(�B − 1)�S�S)
2

d20 = (1 + �B(�B − 1))((�S − 1)(−1 + �B(�B − 2))

+ 2(1 + �B)�S�S)
2((�S − 1)(1 + �B(�B − 1))

+ (�B − 1)�S�S)((�S − 1)(3 + �B(�B − 3)) + 3�S�S(�B − 1))

d21 = (−1 + �B(1 − �B))((1 + �S)(1 + �B(�B − 1))

+ (�B − 1)�S�S)((1 + �S)(3 + �B(�B − 3))

+ 3(�B − 1)�S�S)((�S − 1)(−2 + �B(�B − 2)) + 2(1 + �B)�S�S)
2

d22 = (−1 + �B(�B − 1))((1 + �S)(2 + �B(�B − 2))

+ 2(�B − 1)�S�S)
2((�S − 1)(−1 + �B(�B − 1))

+ (1 + �B)�S�S)((�S − 1)(−3 + �B(�B − 3)) + 3�S�S(1 + �B))

d23 = ((�S − 1)(�B(�B − 2) − 2) + 2�S�S(1 + �B))
2(�S − 1 − �B(�T − 1)) − y1((�S − 1)y1

+ (1 + �B)�S�S)((�S − 1)(�B(�B − 3) − 3) + 3(1 + �B)�S�S)

d24 = (�S + �S(2�S − 1))(4 + �B(�B − 4))�S

+ 4�S�S�
2

S
(�B − 1) − 2(1 + �S)(�S − 1)(2 + �B(�B − 2))

d25 = ((�S − 1)(�B(�B − 2) + 2) + 2�S�S(�B − 1))2(�S − 1 − �B(�T − 1)) + y2((�S − 1)y2

+ (�B − 1)�S�S)((�S − 1)(�B(�B − 3) + 3) + 3(�B − 1)�S�S)

d26 = ((1 + �S)(�B(�B − 2) + 2) + 2�S�S(�B − 1))2(�S − 1 − �B(�T − 1)) + y2((1 + �S)y2

+ (�B − 1)�S�S)((1 + �S)(�B(�B − 3) + 3) + 3(�B − 1)�S�S)

d27 = ((1 + �S)(−1 + �B(�B − 1))

+ (1 + �B)�S�S)((1 + �S)(−3 + �B(�B − 3)) + 3�S�S(1 + �B))

d28 = (−1 + �B(�B − 1))((1 + �S)(−1 + �B(�B − 1))

+ (1 + �B)�S�S)((1 + �S)(−3 + �B(�B − 3))

+ 3(1 + �B)�S�S((1 + �S)(2 + �B(�B − 2)) + 2�S(�B − 1)�S)
2

d29 = (−1 + �B(1 − �B))((1 + �S)(−2 + �B(�B − 2))

+ 2�S�S(1 + �B))
2((1 + �S)(1 + �B(�B − 1))

+ �S�S(�B − 1))((1 + �S)(3 + �B(�B − 3)) + 3�S�S(�B − 1))



1060	 N. Hernandez‑Martinez et al.

1 3

Appendix B: Proofs

Proof of Lemma 1

By backward induction, we begin solving the supplier’s problem. From the second 
order condition 

(
�2ΠS

�w2
= −2b

)
 we see that the supplier’s profit is concave in w and 

has a unique maximum, which we obtain from the first order condition 
�ΠS

�w
= a − b(2w + m − c) = 0:

We substitute this expression in ΠB and verify the second order condition (
�2ΠB

�m2
= −b

)
 . This shows that the buyer’s profit is concave in m and has a unique 

maximum. After obtaining the first order condition 
(

1

2
(a − bc) − bm = 0

)
 , we find:

Then we substitute these solutions back into the profit functions to solve the  
investment stage. Again, we start with the supplier’s problem by verifying that  

the second derivative with respect to IS is negative 
(

�2US

�I2
S

= −
(a−bc0)s

2

32(s(IS+IB))
3
2

)
 . Then we 

find the expression for the optimal investment using the first derivative �
�US

�IS
=

as−16
√
s(IS+IB)−bs(c0−

√
s(IS+IB))

16
√
s(IS+IB)

�
:

For the buyer’s problem, we substitute I∗
S
 into ΠB and find �UB

�IB
= −1 . This means that 

the buyer’s profit function is decreasing in his investment, hence I∗
B
= 0 . 	�  ◻

Proof of Theorem 1

For the analysis of the supplier’s utility function, we rewrite it in piecewise form:

where w̄ =
c(𝛾S−1)−𝛾Sm

𝛾S−1
.

We divide this proof in four parts: 

1.	 Concavity of each piece of the function in w.
	   We look at the second order condition of optimality 𝛿

2US

𝛿w2
< 0 . 

w∗ =
a + b(c − m)

2b

m∗ =
a − bc

2b
and w∗ =

1

4

(
a

b
+ 3c

)

I∗
S
=

s(a − bc)2 − IB(bs − 16)2

(bs − 16)2

U
S
(w) =

{
(w − c)(a − b(w + m)) − I

S
− 𝛼

S(a − b(w + m))
(
𝛾
S
(w + m) − w + (1 − 𝛾

S
)c
)
, w ≤ w̄

(w − c)(a − b(w + m)) − I
S
− 𝛽

S(a − b(w + m))
(
w − 𝛾

S
(w + m) − (1 − 𝛾

S
)c
)
, w > w̄
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 Given the intervals in which �S, �S, and �S are defined, we can see that 𝛿
2US

𝛿w2
< 0 

in every case and we can conclude that the two pieces of US are concave in w.
2.	 Continuity and differentiability of the function at w̄.
	   By definition, US(w) is continuous at w̄ if limw→w̄ US(w) = US(w̄) . We have that 

 Since limw→w̄ US(w) = US(w̄) , we conclude that US(w) is continuous at w = w̄.
	   B y  d e f i n i t i o n ,  US(w)  i s  d i f f e r e n t i a b l e  a t  w = w̄  i f 

limw→w̄−

US(w)−US(w̄)

w−w̄
= limw→w̄+

US(w)−US(w̄)

w−w̄
 . We have 

 We can see that limw→w̄−

US(w)−US(w̄)

w−w̄
≠ limw→w̄+

US(w)−US(w̄)

w−w̄
 , so we conclude that 

US(w) is not differentiable at w = w̄.
3.	 Concavity of the entire function in w.
	   We need to evaluate if limw→w̄−

𝛿US

𝛿w
− limw→w̄+

𝛿US

𝛿w
> 0 . We have 

 We substitute these expressions and w̄ to evaluate if the condition for concavity 
holds, which reduces to: c − m

𝛾S−1
<

a

b
 . From the condition that we imposed on 

the value of p so that demand is always positive, we know that m + w <
a

b
 and 

for w̄ this becomes c − m

𝛾S−1
<

a

b
 . Hence, we confirm that the condition holds so 

that US is concave in w in the interval 
[
0,

a

b

]
 and it has a unique global optimum.

4.	 Optimal solutions.
	   Given that US is not differentiable at w̄ , we have to solve the optimization 

problem for each of the pieces of the function separately.

w ≤ w̄ ∶
𝛿2US

𝛿w2
= 2b(−1 + 𝛼S(𝛾S − 1))

w > w̄ ∶
𝛿2US

𝛿w2
= −2b(1 + 𝛽S(𝛾S − 1))

lim
w→w̄−

U
S
(w) =(w̄ − c)(a − b(w̄ + m)) − I

S
− 𝛼

S(a − b(w̄ + m))
(
𝛾
S(w̄ + m) − w̄ + (1 − 𝛾

S
)c
)

lim
w→w̄+

U
S
(w) =(w̄ − c)(a − b(w̄ + m)) − I

S
− 𝛽

S(a − b(w̄ + m))
(
w̄ − 𝛾

S(w̄ + m) − (1 − 𝛾
S
)c
)

lim
w→w̄

U
S
(w) =

−𝛾
S
m

𝛾
S
− 1

(
a − b

(
c −

m

𝛾
S
− 1

))
− I

S

U
S
(w̄) =

−𝛾
S
m

𝛾
S
− 1

(
a − b

(
c −

m

𝛾
S
− 1

))
− I

S

lim
w→w̄−

U
S
(w) − U

S
(w̄)

w − w̄

=
(w − c)(a − b(w + m)) − 𝛼

S(a − b(w + m))
(
𝛾
S(w + m) − w + (1 − 𝛾

s
)c
)
− (w̄ − c)(a − b(w̄ + m))

w − w̄

lim
w→w̄+

U
S
(w) − U

S
(w̄)

w − w̄

=
(w − c)(a − b(w + m)) + 𝛽

S(a − b(w + m))
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𝛾
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s
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lim
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𝛿US

𝛿w
= a

(
1 − 𝛼S(𝛾S − 1)

)
− b

(
(2w̄ + m − c) − 𝛼S

(
(𝛾S − 1)(w̄ + m − c) − w̄ + 𝛾S(m + w̄)

))

lim
w→w̄+

𝛿US

𝛿w
= a

(
1 + 𝛽S(𝛾S − 1)

)
− b

(
(2w̄ + m − c) + 𝛽S

(
(𝛾S − 1)(w̄ + m − c) − w̄ + 𝛾S(m + w̄)

))
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–	 Optimization problem 1: 

 We use the first order condition �US

�w
= 0 to find the expression for the optimal 

wholesale price w∗EQ : 

 We find the values of m for which w ≤ w̄ holds, so we substitute w = w1 in 
this inequality and find m ≥

(−a+bc)(−1+𝛼S(𝛾S−1))(𝛾s−1)

b(𝛾S(𝛼S−1)−(1+𝛼S))
= m̄1.

	   We follow the same steps to find the optimal solution to the second optimi-
zation problem.

–	 Optimization problem 2: 

 Using the first order condition of optimality: 

 The values of m for which w > w̄ holds are given by 
m <

(−a+bc)(1+𝛽S(𝛾S−1))(𝛾s−1)

b(1+𝛽S(𝛾S−1)+𝛾S)
= m̄2

	    Finally we verify that m̄1 ≥ m̄2 is true in every case, so that we can define three 
intervals in m for which each of the optimal solutions for w∗EQ apply, as stated in 
Theorem 1. 

 We can see that all the terms in this condition are larger than or equal to zero, so 
the condition is true for every case and we can conclude that m̄1 ≥ m̄2.

	�  ◻

Proof of Theorem 2

We identify three expressions for w∗EQ(m) based on the interval that contains 
m∗EQ . We now follow the same four steps as in the previous stage to analyze the 
buyer’s utility function in each interval.

max
w

(w − c)(a − b(w + m)) − IS − 𝛼S(a − b(w + m))
(
𝛾S(w + m) − w + (1 − 𝛾S)c

)

s.t. w ≤ w̄

�U
S

�w
=a

(
1 − �

S
(�

S
− 1)

)
− b

(
(2w + m − c) − �

S

(
(�

S
− 1)(w + m − c) − w + �

S
(m + w)

))
= 0

w1 =
1

2

(
a

b
+ c +

m
(
1 + �

S
(1 − 2�

S
)
)

�
S
(�

S
− 1) − 1

)

max
w

(w − c)(a − b(w + m)) − IS − 𝛽S(a − b(w + m))
(
w − 𝛾S(w + m) −

(
1 − 𝛾S

)
c
)

s.t. w > w̄

�US

�w
= a

(
1 + �S(�S − 1)

)
− b

(
(2w + m − c) + �S

(
(�S − 1)(w + m − c) − w + �S(m + w)

))
= 0

w2 =
1

2

(
a

b
+ c +

m(−1 + �S(1 − 2�S))

1 + �S(�S − 1)

)

�S
(
�B + �B

)(
�S − 1

)2
(a − bc) ≥ 0
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–	 Interval 1 m ≤ m̄2, w∗EQ(m) = w2 We rewrite the buyer’s utility function in 
its piecewise form: 

 where m̂1 =
𝛾B(a−bc)(1+𝛽S(𝛾S−1))

b(𝛽S−1)(𝛾B−2)+2b𝛽S𝛾S
 . 

1.	 Concavity of the pieces of UB(m).
	   We look at the second order condition of optimality 𝛿

2UB

𝛿m2
< 0.

–	 For m ≤ m̂1 : 

 We know that 𝛽S − 1 < 0 , so the right hand side of the inequality is nega-
tive. The left hand side is always positive, so we conclude that this condi-
tion is always true and UB is concave in m in this interval.

–	 For m > m̂1 : 

 We see that the left hand side of the inequality is always negative and 
smaller than the positive right hand side. Thus, the condition always holds 
and we conclude that UB is concave in m in this interval.

2.	 Continuity and differentiability of UB(m) at m̂1.
	   By definition, UB(m) is continuous at m̂1 if limm→m̂1

UB(m) = UB(m̂1) . We 
have that 

U
B
(m) =

⎧⎪⎨⎪⎩

m
�
a − b

�
w2 + m

��
− I

B
− 𝛼

B

�
I
T
(1 − 𝛾

B
) − I

S
+ (a − b

�
w2 + m

���
𝛾
B

�
w2 + m − c

�
− m)

�
, m ≤ m̂1

m
�
a − b

�
w2 + m

��
− I

B
− 𝛽

B

�
I
T
(𝛾

B
− 1) + I

S
+ (a − b

�
w2 + m

���
m − 𝛾

B

�
w2 + m − c

��
, m > m̂1

𝛿2UB

𝛿m2
=

b(𝛽S − 1)
(
(𝛽S − 1)(−2 + 𝛼B(𝛾B − 2)) + 2(1 + 𝛼B)𝛽S𝛾S

)
2(1 + 𝛽S(𝛾S − 1))2

< 0

2𝛽S𝛾S(1 + 𝛼B) > (𝛽S − 1)(2 + 𝛼B(2 − 𝛾B))

𝛿2UB

𝛿m2
= −

b(𝛽S − 1)
(
(𝛽S − 1)(2 + 𝛽B(𝛾B − 2)) + 2(𝛽B − 1)𝛽S𝛾S

)
2(1 + 𝛽S(𝛾S − 1))2

< 0

2𝛽S𝛾S(𝛽B − 1) < (1 − 𝛽S)(2(1 − 𝛽B) + 𝛽B𝛾B)

lim
m→m̂

−
1

UB(m) =m̂1

(
a − b

(
w2 + m̂1

))
− IB − 𝛼B

(
a − b

(
w2 + m̂1

))(
𝛾B
(
w2 + m̂1 − c

)
− m̂1

)

=
1

2
m̂1

(
a − bc +

bm̂1(𝛽S − 1)

1 + 𝛽S(𝛾S − 1)

)
− IB

lim
m→m̂

+
1

UB(m) =m̂1

(
a − b

(
w2 + m̂1

))
− IB − 𝛽B

(
a − b

(
w2 + m̂1

))(
m̂1 − 𝛾B

(
w2 + m̂1 − c

))

=
1

2
m̂1

(
a − bc +

bm̂1(𝛽S − 1)

1 + 𝛽S(𝛾S − 1)

)
− IB

lim
m→m̂1

UB(m) =
1

2
m̂1

(
a − bc +

bm̂1(𝛽S − 1)

1 + 𝛽S(𝛾S − 1)

)
− IB

UB(m̂1) =
1

2
m̂1

(
a − bc +

bm̂1(𝛽S − 1)

1 + 𝛽S(𝛾S − 1)

)
− IB
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 Since limm→m̂1
UB(m) = UB(m̂1) , we conclude that UB(m) is continuous at 

m = m̂1.
	   By definition, UB(m) is differentiable at m = m̂1 if limm→m̂−

1

UB(m)−UB(m̂1)

m−m̂1

=

	   limm→m̂+
1

UB(m)−UB(m̂1)

m−m̂1

 . We have 

 We can see that limm→m̂−
1

UB(m)−UB(m̂1)

m−m̂1

≠ limm→m̂+
1

UB(m)−UB(m̂1)

m−m̂1

 , so we con-
clude that UB(m) is not differentiable at m = m̂1.

3.	 Concavity of entire function.
	   We need to evaluate if limm→m̂−

1

𝛿UB

𝛿m
− limm→m̂+

1

𝛿UB

𝛿m
> 0 . We have 

 We substitute these expressions and m̂ in the condition for concavity to 
evaluate if it holds: 

 Considering the intervals on which �S, �B, and �S are defined, we can see 
that all the terms on the left hand side of the inequality are always positive, 
so we confirm that the condition holds and conclude that, for m ≤ m̄2 , UB is 
concave in m and it has a unique global optimum.

4.	 Optimal solutions.
	   Given that UB is not differentiable at m̂1 , we again have to solve the opti-

mization problem for each of the pieces of the function separately.

–	 Optimization problem 1: 

 We use the first order condition �UB

�m
= 0 to find an expression for the opti-

mal retail margin m∗EQ : 

lim
m→m̂

−
1

UB(m) − UB(m̂1)

m − m̂1

=
m
(
a − b

(
w
∗
2
+ m

))
− 𝛼B

(
a − b

(
w
∗
2
+ m

))(
𝛾B
(
w
∗
2
+ m − c

)
− m

)
− m̂1

(
a − b

(
w
∗
2
+ m̂1

))
m − m̂1

lim
m→m̂

+
1

UB(m) − UB(m̂1)

m − m̂1

=
m
(
a − b

(
w
∗
2
+ m

))
− 𝛽B

(
a − b

(
w
∗
2
+ m

))(
m − 𝛾B

(
w
∗
2
+ m − c

))
− m̂1

(
a − b

(
w
∗
2
+ m̂1

))
m − m̂1

lim
m→m̂

−
1

𝛿U
B

𝛿m
=

1

2

(
(a − bc)(1 + 𝛼

B
) +

b(𝛽
S
− 1)

(
(𝛽

S
− 1)(−2 + 𝛼

B
(𝛾

B
− 2)) + 2(1 + 𝛼

B
)𝛽

S
𝛾
S

)
m̂1

(1 + 𝛽
S
(𝛾

S
− 1))2

)

lim
m→m̂

+
1

𝛿U
B

𝛿m
=

1

2

(
(a − bc)(1 − 𝛽

B
) −

b(𝛽
S
− 1)

(
(𝛽

S
− 1)(2 + 𝛽

B
(𝛾

B
− 2)) + 2(𝛽

B
− 1)𝛽

S
𝛾
S

)
m̂1

(1 + 𝛽
S
(𝛾

S
− 1))2

)

(𝛼B + 𝛽B)(a − bc)
(
1 − 𝛾B + 𝛽S(𝛾B + 𝛾S − 1)

)
2(1 + 𝛽S(𝛾S − 1))

> 0

max
m

m
(
a − b

(
w2 + m

))
− IB − 𝛼B

(
a − b

(
w2 + m

))(
𝛾B
(
w2 + m − c

)
− m

)

s.t. m ≤ m̄2

m ≤ m̂1
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 We follow the same procedure to find the optimal solution to the second 
optimization problem.

–	 Optimization problem 2: 

 Using the first order condition of optimality: 

	    We observe that, depending on the value of �T , it can occur that m̂1 ≥ m̄2 . 
This means that the threshold dividing the pieces of UB is equal or larger than 
the upper bound of the interval, m̄2 , so that only the first piece of the utility 
function needs to be considered to find the optimal solution. To identify these 
cases, we look at the value of m̄2 − m̂1 : 

 We can see that all the terms are positive for all cases except for 
(�S + �B − 1) , whose sign depends on the value of �T:

–	 If 𝛾T < 1 , then 𝛾S + 𝛾B − 1 < 0 and m̄2 > m̂1

–	 If �T = 1 , then �S + �B − 1 = 0 and m̄2 = m̂1

–	 If 𝛾T > 1 , then 𝛾S + 𝛾B − 1 > 0 and m̄2 < m̂1

	    Furthermore, we show that UB is increasing in m for the cases when 
�T ≥ 1 , such that m∗EQ = m̄2 . For this, we get the first derivative of UB(m) 
when m < m̂1 and obtain a condition on m for the function to be increasing 
(
�UB

�m
≥ 0) : 

 We verify if this is true in our interval of interest by checking if the lower 
bound m̄2 is always smaller or equal to this value. For this we check if 
m − m̄2 ≥ 0 : 

m1 =
(1 + �B)(−a + bc)(1 + �S(�S − 1))2

b(�S − 1)((�S − 1)(−2 + �B(�B − 2)) + 2�S�S(1 + �B))

max
m

m
(
a − b

(
w∗
2
+ m

))
− IB − 𝛽B

(
a − b

(
w∗
2
+ m

))(
m − 𝛾B

(
w∗
2
+ m − c

))

s.t. m ≤ m̄2

m > m̂1

m2 =
(�B − 1)(−a + bc)(1 + �S(�S − 1))2

b(�S − 1)((�S − 1)(2 + �B(�B − 2)) + 2�S�S(�B − 1))

m̂1 − m̄2 =
2(a − bc)(1 + 𝛽S(𝛾S − 1))2(𝛾B + 𝛾S − 1)

b(1 + 𝛽S(𝛾S − 1) + 𝛾S)((𝛽S − 1)(𝛾B − 2) + 2𝛽S𝛾S)

𝛿UB

𝛿m
=
1

2

(
(a − bc)(1 + 𝛼B) +

b(𝛽S − 1)
(
(𝛽S − 1)(−2 + 𝛼B(𝛾B − 2)) + 2(1 + 𝛼B)𝛽S𝛾S

)
m̂1

(1 + 𝛽S(𝛾S − 1))2

)
≥ 0

m ≤
(−a + bc)(1 + 𝛼B)(1 + 𝛽S(𝛾S − 1))2

b(𝛽S − 1)((𝛽S − 1)(−2 + 𝛼B(𝛾B − 2)) + 2(1 + 𝛼B)𝛽S𝛾S)
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 From the intervals in which �B, �S, �S, and �B are defined, we can see that the 
terms (�S − 1) and the third term in the numerator are always smaller or equal 
to zero, whereas the rest are always positive. Hence, the entire expression is 
always larger than or equal to zero and we can conclude that UB is increasing in 
(0, m̄2) when �T ≥ 1 . Then, its maximum value is attained at m∗EQ = m̄2.

–	 Interval 2 m̄2 < m ≤ m̄1, w∗EQ(m) = w̄ We rewrite UB in its piecewise form: 

 where m̂2 = 0.
	   We observe that the first piece of the function is outside the feasible interval 

for m, so we only have to look at the second piece of UB for the optimization in 
this interval. Also, UB(m) is decreasing in the interval m̄2 < m < m̄1 , so the opti-
mal solution is always equal to m̄2 , the lower bound of the interval. To show this, 
we get the first derivative of UB(m) when m > m̂2 and obtain a condition on m for 
the function to be decreasing ( �UB

�m
≤ 0) : 

 We verify if this is true in our interval of interest by checking if the lower bound 
m̄2 is always larger or equal to this value. For this we check if m − m̄2 ≤ 0 : 

 The only negative term is (�S − 1) , so we verify that this condition is always 
true and conclude that UB is decreasing in (m̄2, m̄1) , hence its maximum value is 
attained at m̄2.

–	 Interval 3 m > m̄1, w∗EQ(m) = w1

	   We rewrite the utility function in its piecewise form: 

 where m̂3 =
𝛾B(a−bc)(−1+𝛼S(𝛾S−1))

b(1+𝛼S)(𝛾B−2)+2b𝛼S𝛾S

1.	 Concavity of the pieces of UB(m).
	   We look at the second order condition of optimality 𝛿

2UB

𝛿m2
< 0.

(a − bc)(1 + �S(�S − 1))((�S − 1)(3 − 2�S + �B(3 + �S(�B − 2) − �B))�S + (1 + �B)(�S − 3)�S�
2

S
)

b(�S − 1)(1 + �S(�S − 1) + �S)((�S − 1)(−2 + �B(�B − 2)) + 2(1 + �B)�S�S)

+
(a − bc)(1 + �S(�S − 1))(−(�S − 1)2(−1 + �B(�B − 1)))

b(�S − 1)(1 + �S(�S − 1) + �S)((�S − 1)(−2 + �B(�B − 2)) + 2(1 + �B)�S�S)
≥ 0

UB(m) =

{
m(a − b(w̄ + m)) − IB − 𝛼B(a − b(w̄ + m))

(
𝛾B(w̄ + m − c) − m

)
, m ≤ m̂2

m(a − b(w̄ + m)) − IB − 𝛽B(a − b(w̄ + m))
(
m − 𝛾B(w̄ + m − c)

)
, m > m̂2

�UB

�m
= −

(
1 − �S + �S(−1 + �B + �S)

)(
(a − bc)(�S − 1) + 2bm

)
(
�S − 1

)2 ≤ 0

m ≥ −
(a − bc)(�S − 1)

2b

(�S − 1)(�S − 1)2(a − bc)

2b(1 + �S(�S − 1) + �S)
≥ 0

UB(m) =

{
m
(
a − b

(
w1 + m

))
− IB − 𝛼B

(
a − b

(
w1 + m

))(
𝛾B
(
w1 + m − c

)
− m

)
, m ≤ m̂3

m
(
a − b

(
w1 + m

))
− IB − 𝛽B

(
a − b

(
w1 + m

))(
m − 𝛾B

(
w1 + m − c

))
, m ≥ m̂3
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–	 For m < m̂3

 Considering the intervals on which �B, �S, �S, and �B are defined, we can 
see that the third term on the numerator is always negative and the rest are 
always positive, so this condition always holds. We conclude that UB is 
concave in m in this interval.

–	 For m > m̂3 : 

 All the terms in the equation are always positive, thus resulting in a nega-
tive quantity with the minus sign. We conclude that UB is concave in m in 
this interval.

2.	 Continuity and differentiability of UB(m) at m̂3.
	   By definition, UB(m) is continuous at m̂3 if limm→m̂3

UB(m) = UB(m̂3) . We 
have that 

 Since limm→m̂3
UB(m) = US(m̂3) , we conclude that UB(m) is continuous at 

m = m̂3.
	   By definition, UB(m) is differentiable at m = m̂3 if limm→m̂−

3

UB(m)−UB(m̂3)

m−m̂3

	   = limm→m̂+
3

UB(m)−UB(m̂3)

m−m̂3

 . We have 

𝛿2UB

𝛿m2
=

(1 + 𝛼S)b((1 + 𝛼S)(−2 + 𝛼B(𝛾B − 2)) + 2(1 + 𝛼B)𝛼S𝛾S)

2(1 + 𝛼S(1 − 𝛾S))
2

< 0

𝛿2UB

𝛿m2
= −

(1 + 𝛼S)b((1 + 𝛼S)(2 + 𝛽B(𝛾B − 2)) + 2(𝛽B − 1)𝛼S𝛾S)

2(1 + 𝛼S(1 − 𝛾S))
2

< 0

lim
m→m̂

−
3

U
B
(m) =m̂3

(
a − b

(
w
∗
1
+ m̂3

))
− I

B
− 𝛼

B

(
a − b

(
w
∗
1
+ m̂3

))(
𝛾
B

(
w
∗
1
+ m̂3 − c

)
− m̂3

)

=
1

2
m̂3

(
a − bc +

bm̂3(1 + 𝛼
S
)

−11 + 𝛼
S
(𝛾

S
− 1)

)
− I

B

lim
m→m̂

+
3

U
B
(m) =m̂3

(
a − b

(
w
∗
1
+ m̂3

))
− I

B
− 𝛽

B

(
a − b

(
w
∗
1
+ m̂3

))(
m̂3 − 𝛾

B

(
w
∗
1
+ m̂3 − c

))

=
1

2
m̂3

(
a − bc +

bm̂3(1 + 𝛼
S
)

−11 + 𝛼
S
(𝛾

S
− 1)

)
− I

B

lim
m→m̂3

U
B
(m) =

1

2
m̂3

(
a − bc +

bm̂3(1 + 𝛼
S
)

−11 + 𝛼
S
(𝛾

S
− 1)

)
− I

B

U
B
(m̂3) =

1

2
m̂3

(
a − bc +

bm̂3(1 + 𝛼
S
)

−11 + 𝛼
S
(𝛾

S
− 1)

)
− I

B

lim
m→m̂

−
3

UB(m) − UB(m̂3)

m − m̂3

=
m
(
a − b

(
w
∗
1
+ m

))
− 𝛼B

(
a − b

(
w
∗
1
+ m

))(
𝛾B
(
w
∗
1
+ m − c

)
− m

)
− m̂3

(
a − b

(
w
∗
1
+ m̂3

))
m − m̂3

lim
m→m̂

+
3

UB(m) − UB(m̂3)

m − m̂3

=
m
(
a − b

(
w
∗
1
+ m

))
− 𝛽B

(
a − b

(
w
∗
1
+ m

))(
m − 𝛾B

(
w
∗
1
+ m − c

))
− m̂3

(
a − b

(
w
∗
1
+ m̂3

))
m − m̂3
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 We can see that limm→m̂−
3

UB(m)−UB(m̂3)

m−m̂3

≠ limm→m̂+
3

UB(m)−UB(m̂3)

m−m̂3

 , so we con-
clude that UB(m) is not differentiable at m = m̂3.

3.	 Concavity of entire function.
	   We need to evaluate if limm→m̂−

3

𝛿UB

𝛿m
− limm→m̂+

3

𝛿UB

𝛿m
> 0 . We have 

 We substitute these expressions and m̂3 to evaluate if the condition holds. 

 Considering the intervals on which �S, �B, and �S are defined, we can see that 
the first two terms in the numerator are always positive and the denominator 
is always negative. However, 

(
−1 + �B + �S(�B + �S − 1)

)
 can be either posi-

tive or negative, depending on the values of the parameters. We conclude 
that, for m ≥ m̄1 , UB is concave in m when 

(
−1 + 𝛾B + 𝛼S(𝛾B + 𝛾S − 1)

)
< 0 

and it has a unique global optimum.
	   For the cases when 

(
−1 + 𝛾B + 𝛼S(𝛾B + 𝛾S − 1)

)
> 0 , we now show that UB 

is decreasing to the right of m̄1 , such that m∗EQ = m̄1 . To prove this, we get 
the first derivative of UB(m) when m > m̂3 and obtain a condition on m for the 
function to be decreasing ( �UB

�m
≤ 0) : 

 We verify if this is true in our interval of interest by checking if the lower 
bound m̂3 is always larger than or equal to this value. For this we check if 
m̂3 − m ≥ 0 : 

 On the right hand side of the inequality, all the terms in the numerator are 
always negative, and the denominator is always positive. So we verify that, 
when the expression on the left of the inequality is positive, this condition 
is always true and conclude that UB is decreasing in this interval, hence its 
maximum value is attained at m̄1.

4.	 Optimal solutions.
	   Given that UB is not differentiable at m̂3 , we have to solve the optimization 

problem for each of the pieces of the function separately.

–	 Optimization problem 1: 

lim
m→m̂

−
3

𝛿UB

𝛿m
=

1

2

(
(a − bc)(1 + 𝛼B) +

b(1 + 𝛼S)
(
(1 + 𝛼S)(−2 + 𝛼B(𝛾B − 2)) + 2(1 + 𝛼B)𝛼S𝛾S

)
m̂3

(−1 + 𝛼S(𝛾S − 1))2

)

lim
m→m̂

+
3

𝛿UB

𝛿m
= −

1

2

(
(a − bc)(𝛽B − 1) +

b(1 + 𝛼S)
(
(1 + 𝛼S)(2 + 𝛽B(𝛾B − 2)) + 2(𝛽B − 1)𝛼S𝛾S

)
m̂3

(1 + 𝛼S(1 − 𝛾S))
2

)

(𝛼B + 𝛽B)(a − bc)
(
−1 + 𝛾B + 𝛼S(𝛾B + 𝛾S − 1)

)
2(−1 + 𝛼S(𝛾S − 1))

> 0

m ≥
−(�S − 1)x1(−(1 + �B)(a + bc) + �B�B(a − bc)) + �S�Sbc(1 + �B)

2

b(1 + �B)(2(�S − 1)x1 + �S�S(1 + �B))

−1 + �B + �S(�B + �S − 1) ≥
−�B�

2

B
(1 + �S)

2 + �B(�S − 1)(1 + �B)(1 + �S(�S − 1))

2(1 + �B)(1 + �S(�S − 1))
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 We use the first order condition �UB

�m
= 0 to find the expression for m∗EQ : 

 We follow the same steps to find the optimal solution to the second opti-
mization problem.

–	 Optimization problem 2: 

 Using the first order condition of optimality: 

 As occurred for Interval 1, depending on the value of �T it is possible 
that m̂3 ≤ m̄1 . This means that the threshold dividing the pieces of UB is 
equal to or smaller than the lower bound of the interval, m̄1 , so that only 

max
m

m
(
a − b

(
w1 + m

))
− IB − 𝛼B

(
a − b

(
w1 + m

))(
𝛾B
(
w1 + m − c

)
− m

)

s.t. m > m̄3

m < m̂3

m3 = −
(1 + �B)(a − bc)(1 + �S(1 − �S))

2

b(1 + �S)
(
(1 + �S)

(
−2 + �B(�B − 2)

)
+ 2�S�S(�B + 1)

)

max
m

m(a − b(w̄ + m)) − IB − 𝛽B(a − b(w̄ + m))
(
m − 𝛾B(w̄ + m − c)

)

s.t. m > m̄3

m > m̂3

m4 = −
(�B − 1)(a − bc)(1 + �S(1 − �S))

2

b(1 + �S)((1 + �S)(2 + �B(�B − 2)) + 2�S�S(�B − 1))

Table 11   Possible pricing 
solutions when the buyer is 
leader

Solution m∗EQ w∗EQ

1 m1 w2

2 m2 w2

3 m̄2 w̄

4 m3 w1

5 m4 w1

Table 12   Behavior of the supplier’s utility functions USjk with respect to IT , where j indicates the number 
of the solution (see Table 11) and k indicates if the utility function corresponds to a case of disadvanta-
geous (D) or advantageous (A) inequity

Concave functions Special cases

U
S1A , US2A , US3D , U

S3A, U
S1D , U

S2D

U
S4D , U

S4A,US5D , U
S5A
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the second piece of the utility function needs to be considered to find the 
optimal solution. To identify these cases, we look at the value of m̄1 − m̂3 : 

 We can see that all the terms in the denominator are always nega-
tive, and all the terms in the numerator are positive for all cases except 
for (�S + �B − 1) , whose sign depends on the value of �T:

	   •	 If 𝛾T < 1 , then 𝛾S + 𝛾B − 1 < 0 and m̄1 > m̂3

•	 If �T = 1 , then �S + �B − 1 = 0 and m̄1 = m̂3

•	 If 𝛾T > 1 , then 𝛾S + 𝛾B − 1 > 0 and m̄1 < m̂3

	   Hence, for the cases when �T ≤ 1 we only look at the second piece of UB in this 
interval, and m∗EQ = m4

   . 	�  ◻

Proof of Theorem 3

We have that �
2UB

�I2
B

= −1 , so the buyer’s utility function decreases directly with the 
investment and, as game leader, the buyer finds it optimal not to invest (I∗EQ

B
= 0).

Regarding the supplier’s investment, the results from the pricing stage yield seven 
possible combinations for the optimal solutions, as shown in Table 11. We substi-
tute the optimal expressions for the seven possible pricing solutions in the suppli-
er’s utility function to find the optimal investment, which we can now represent as 
IS = IT − IB , where IB = 0 . Hence, IS = IT . Considering that each utility function is 
defined by two pieces, this procedure results in 14 different utility functions for the 
supplier. These utility functions have different properties with respect to IT , as sum-
marized in Table 12. These properties allow us to conclude that it is possible to find 
a closed form expression for the optimal total investment I∗EQ

T
 for the concave func-

tions. For the utility functions listed as special cases:

–	 US1D is concave in IT when 

–	 US2D is concave in IT when 

If these conditions do not hold, the corresponding utility functions are convex 
decreasing in IT , which means that the optimal investment is I∗EQ

T
= I

∗EQ

S
= 0 . 	� ◻

m̂3 − m̄1 =
2(a − bc)(1 + 𝛼S(1 − 𝛾S))

2(𝛾B + 𝛾S − 1)

b(−1 + 𝛼S(𝛾S − 1) − 𝛾S)(−2 + 𝛾B + 𝛼S(𝛾B + 2(𝛾S − 1)))

− (1 + 𝛼S)(𝛽S − 1)2(−1 + 𝛼B(𝛾B − 1)) + (1 + 𝛼B)(𝛼S(𝛽S − 3) − 2𝛽S)𝛽S𝛾
2
S

+ (𝛽S − 1)(𝛽S(1 + 𝛼B) − 𝛼S(1 + 𝛼B)(−3 + 2𝛽S) + 𝛼S𝛼B𝛾B(𝛽S − 1))𝛾S > 0

− (1 + 𝛼S)(𝛽S − 1)2(1 + 𝛽B(𝛾B − 1)) + (𝛽B − 1)(𝛼S(𝛽S − 3) − 2𝛽S)𝛽S𝛾
2
S

+ (𝛽S − 1)(𝛽S(𝛽B − 1) − 𝛼S(𝛽B − 1)(−3 + 2𝛽S) + 𝛼S𝛽B𝛾B(𝛽S − 1))𝛾S < 0
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Proof of Theorem 4

For the analysis of the buyer’s utility function, we rewrite it in piecewise form:

where m̄ =
𝛾B(w−c)

1−𝛾B
.

We divide this proof in four parts: 

1.	 Concavity of each piece of the function in m.
	   We look at the second order condition of optimality 𝛿

2UB

𝛿m2
< 0 . 

 Given the intervals in which �B, �B, and �B are defined, we can see that 𝛿
2UB

𝛿m2
< 0 

in every case and we can conclude that the two pieces of UB are concave in m.
2.	 Continuity and differentiability of the function at m̄.
	   By definition, UB(m) is continuous at m̄ if limm→m̄ UB(m) = UB(m̄) . We have 

that 

 Since limm→m̄ UB(m) = UB(m̄) , we conclude that UB(m) is continuous at m = m̄.
	   B y  d e f i n i t i o n ,  UB(m)  i s  d i f f e r e n t i a b l e  a t  m = m̄  i f 

limm→m̄−
UB(m)−UB(m̄)

m−m̄
= limm→m̄+

UB(m)−UB(m̄)

m−m̄
 . We have 

 We can see that limm→m̄−
UB(m)−UB(m̄)

m−m̄
≠ limm→m̄+

UB(m)−UB(m̄)

m−m̄
 , so we conclude 

that UB(m) is not differentiable at m = m̄.

U
B
(m) =

{
m(a − b(w + m)) − I

B
− 𝛼

B(a − b(w + m))
(
𝛾
B(w + m − c) − m

)
, m ≤ m̄

m(a − b(w + m)) − I
B
− 𝛽

B(a − b(w + m))
(
m − 𝛾

B(w + m − c)
)
, m > m̄

m ≤ m̄ ∶
𝛿2UB

𝛿m2
= 2b(−1 + 𝛼B(𝛾B − 1))

m > m̄ ∶
𝛿2UB

𝛿m2
= −2b(1 + 𝛽B(𝛾B − 1))

lim
m→m̄−

UB(m) = m̄(a − b(w + m̄)) − IB − 𝛼B(a − b(w + m̄))
(
𝛾B(w + m̄ − c) − m̄

)

lim
m→m̄+

UB(m) = m̄(a − b(w + m̄)) − IB − 𝛽B(a − b(w + m̄))
(
m̄ − 𝛾B(w + m̄ − c)

)

lim
m→m̄

UB(m) =
𝛾B(w − c)

1 − 𝛾B

(
a − b

(
w +

𝛾B(w − c)

1 − 𝛾B

))
− IB

UB(m̄) =
𝛾B(w − c)

1 − 𝛾B

(
a − b

(
w +

𝛾B(w − c)

1 − 𝛾B

))
− IB

lim
m→m̄−

UB(m) − UB(m̄)

m − m̄

=
m(a − b(w + m)) − IB − 𝛼B(a − b(w + m))

(
𝛾B(w + m − c) − m

)
− m̄(a − b(w + m̄)) + IB

m − m̄

lim
m→m̄+

UB(m) − UB(m̄)

m − m̄

=
m(a − b(w + m)) − IB + 𝛽B(a − b(w + m))

(
𝛾B(w + m − c) − m

)
− m̄(a − b(w + m̄)) + IB

m − m̄
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3.	 Concavity of the entire function in m.
	   We need to evaluate if limm→m̄−

𝛿UB

𝛿m
> limm→m̄+

𝛿UB

𝛿m
 . We have 

 We substitute these expressions and m̄ to evaluate if the condition for concavity 
holds, which reduces to: w−𝛾Bc

1−𝛾B
<

a

b
 . From the condition that we imposed on the 

value of p so that demand is always positive, we know that m + w <
a

b
 and for m̄ 

this becomes w−𝛾Bc
1−𝛾B

<
a

b
 . Hence, we confirm that the condition holds so that UB is 

concave in m in the interval 
[
0,

a

b

]
 and it has a unique global optimum.

4.	 Optimal solutions.
	   Given that UB is not differentiable at m̄ , we have to solve the optimization 

problem for each of the pieces of the function separately.

–	 Optimization problem 1: 

 We use the first order condition �UB

�m
= 0 to find the expression for the optimal 

retail margin m∗ST : 

 We find the values of w for which m < m̄ holds, so we substitute m = m1 in 
this inequality and find w ≥

a(𝛾B−1)(𝛼B(𝛾B−1)−1)−bc𝛾B(𝛼B(𝛾B−1))
−b(𝛼B(𝛾B−1)−1−𝛾B)

= w̄1.
	   We follow the same steps to find the optimal solution to the second 

optimization problem.
–	 Optimization problem 2: 

 Using the first order condition of optimality: 

lim
m→m̄−

𝛿UB

𝛿m
= (a − b(w + m̄))

(
1 + 𝛼B(1 − 𝛾B)

)
− b

(
m̄(1 + 𝛼B) − 𝛼B𝛾B(m̄ + w − c)

)

lim
m→m̄+

𝛿UB

𝛿m
= (a − b(w + m̄))

(
1 − 𝛽B(1 − 𝛾B)

)
− b

(
m̄(1 − 𝛽B) + 𝛽B𝛾B(m̄ + w − c)

)

max
m

m(a − b(w + m)) − IB − 𝛼B(a − b(w + m))
(
𝛾B(w + m − c) − m

)

s.t. m ≤ m̄

�U
B

�m
= (a − b(w + m))

(
1 + �

B
(1 − �

B
)
)
− b

(
m(1 + �

B
) − �

B
�
B
(m + w − c)

)
= 0

m1 =
1

2

(
a

b
− w −

�
B
�
B(w − c)

�
B
(�

B
− 1) − 1

)

max
m

m(a − b(w + m)) − IB − 𝛽B(a − b(w + m))
(
m − 𝛾B(w + m − c)

)

s.t. m > m̄

�U
B

�m
= (a − b(w + m))

(
1 − �

B
(1 − �

B
)
)
− b

(
m(1 − �

B
) + �

B
�
B
(m + w − c)

)
= 0

m2 =
1

2

(
a

b
− w −

�
B
�
B(w − c)

1 + �
B
(�

B
− 1)

)
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 The values of w for which m > m̄ holds are given by 
w <

a(1−𝛾B)(1+𝛽B(𝛾B−1))+bc𝛾B(2+𝛽B(𝛾B−1))
b(1+𝛽B(𝛾B−1)+𝛾B)

= w̄2

	    Finally we verify that w̄1 ≥ w̄2 is true in every case, so that we can define three 
intervals in w for which each of the optimal solutions for m∗ST apply, as stated in 
Theorem 4. 

 We can see that all the terms in this condition are larger than or equal to zero, so 
the condition is true for every case and we can conclude that w̄1 ≥ w̄2.

	�  ◻

Proof of Theorem 5

We identify three expressions for m∗ST (w) based on the interval that contains w∗ST . We 
now follow the same four steps as in the previous stage to analyze the supplier’s utility 
function in each interval.

–	 Interval 1 w ≤ w̄2, m∗ST (w) = m2

	   We rewrite the buyer’s utility function in its piecewise form: 

 where ŵ1 =
a𝛾S(1+𝛽B(𝛾B−1))−bc(𝛽B(2+𝛾B(𝛾S−2)−2𝛾S)+2(𝛾S−1))

b(2−𝛾S+𝛽B(−2+2𝛾B+𝛾S))
 . 

1.	 Concavity of the pieces of US(w).
	   We look at the second order condition of optimality 𝛿

2US

𝛿w2
< 0.

–	 For w ≤ ŵ1 : 

 We know that 𝛽B − 1 < 0 , so the left hand side of the inequality results 
in an amount larger than two. The right hand side results in a very small 
number, so we conclude that this condition is always true and US is con-
cave in w in this interval.

–	 For w > ŵ1 : 

�B
(
�B + �B

)(
�B − 1

)2
(a − bc) ≥ 0

U
S
(w) =

{
(w − c)

(
a − b

(
w + m2

))
− I

S
− 𝛼

S

(
a − b

(
w + m2

))(
𝛾
S

(
w + m2

)
− w + (1 − 𝛾

S
)c
)
, w ≤ ŵ1

(w − c)
(
a − b

(
w + m

∗
2

))
− I

S
− 𝛽

S

(
a − b

(
w + m

∗
2

))(
w − 𝛾

S

(
w + m

∗
2

)
− (1 − 𝛾

S
)c
)
, w > ŵ1

𝛿2US

𝛿w2
=

b(𝛽B − 1)
(
2(𝛼S + 1)(1 + 𝛽B(𝛾b − 1)) + (𝛽B − 1)𝛼S𝛾S

)
2(1 + 𝛽B(𝛾b − 1))2

< 0

2

(
1 −

𝛽B𝛾B

𝛽B − 1

)
>

𝛼S𝛾S

1 + 𝛼S

𝛿2US

𝛿w2
=

b(𝛽B − 1)
(
−2(𝛽S − 1)(1 + 𝛽B(𝛾B − 1)) − (𝛽B − 1)𝛽S𝛾S

)
2(1 + 𝛽B(𝛾B − 1))2

< 0

− 2
(
𝛽S − 1

)
(1 + 𝛽B(𝛾B − 1)) − 𝛽S𝛾S(𝛽B − 1) > 0
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 Considering again that 𝛽B − 1 < 0 and that (1 + �B(�B − 1)) always has 
a positive value, we can see that we have a sum of two positive values so 
that this condition always holds and US is concave in w in this interval.

2.	 Continuity and differentiability of US(w) at ŵ1.
	   By definition, US(w) is continuous at ŵ1 if limw→ŵ1

US(w) = US(ŵ1) . We 
have that 

 Since limw→ŵ1
US(w) = US(ŵ1) , we conclude that US(w) is continuous at 

w = ŵ1.
	   By definition, US(w) is differentiable at w = ŵ1 if limw→ŵ−

1

US(w)−US(ŵ1)

w−ŵ1

=

	   limw→ŵ+
1

US(w)−US(ŵ1)

w−ŵ1

 . We have 

 We can see that limw→ŵ−
1

US(w)−US(ŵ1)

w−ŵ1

≠ limw→ŵ+
1

US(w)−US(ŵ1)

x−ŵ1

 , so we conclude 
that US(w) is not differentiable at w = ŵ1.

3.	 Concavity of entire function.

lim
w→ŵ

−
1

US(w) =
(
ŵ1 − c

)(
a − b

(
ŵ1 + m2

))
− IS − 𝛼S

(
a − b

(
ŵ1 + m2

))(
𝛾S
(
ŵ1 + m2

)
− ŵ1 + (1 − 𝛾S)c

)

=
(
ŵ1 − c

)(a
(
1 + 𝛼B(𝛾B − 1)

)
− b

(
ŵ1 − 𝛽B

(
ŵ1 − 𝛾Bc

))
2(1 + 𝛽B(𝛾B − 1))

)
− IS

lim
w→ŵ

+
1

US(w) =
(
ŵ1 − c

)(
a − b

(
ŵ1 + m2

))
− IS − 𝛽S

(
a − b

(
ŵ1 + m2

))(
ŵ1 − 𝛾S

(
ŵ1 + m2

)
− (1 − 𝛾S)c

)

=
(
ŵ1 − c

)(a
(
1 + 𝛼B(𝛾B − 1)

)
− b

(
ŵ1 − 𝛽B

(
ŵ1 − 𝛾Bc

))
2(1 + 𝛽B(𝛾B − 1))

)
− IS

lim
w→ŵ1

US(w) =
(
ŵ1 − c

)(a
(
1 + 𝛼B(𝛾B − 1)

)
− b

(
ŵ1 − 𝛽B

(
ŵ1 − 𝛾Bc

))
2(1 + 𝛽B(𝛾B − 1))

)
− IS

US(ŵ1) =
(
ŵ1 − c

)(a
(
1 + 𝛼B(𝛾B − 1)

)
− b

(
ŵ1 − 𝛽B

(
ŵ1 − 𝛾Bc

))
2(1 + 𝛽B(𝛾B − 1))

)
− IS

lim
w→ŵ

−
1

U
S
(w) − U

S
(ŵ1)

w − ŵ1

(w − c)
(
a − b

(
w + m2

))
− 𝛼

S

(
a − b

(
w + m2

))(
𝛾
S

(
w + m2

)
− w + (1 − 𝛾

S
)c
)
−
(
ŵ1 − c

)(
a − b

(
ŵ1 + m2

))
w − ŵ1

lim
w→ŵ

+
1

U
S
(w) − U

S
(ŵ1)

w − ŵ1

=
(w − c)

(
a − b

(
w + m2

))
− 𝛽

S

(
a − b

(
w + m2

))(
w − 𝛾

S

(
w + m2

)
− (1 − 𝛾

S)c
)
−
(
ŵ1 − c

)(
a − b

(
ŵ1 + m2

))
w − ŵ1
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	   We need to evaluate if limw→ŵ−
1

𝛿US

𝛿w
− limw→ŵ+

1

𝛿US

𝛿w
> 0 . We have 

 We substitute these expressions and ŵ in the condition for concavity to 
evaluate if it holds: 

 Considering the intervals on which �S, �B, and �B are defined, we can see 
that all the terms on the left hand side of the inequality are always positive, 
so we confirm that the condition holds and conclude that, for w ≤ w̄2 , US is 
concave in w and it has a unique global optimum.

4.	 Optimal solutions.
	   Given that US is not differentiable at ŵ1 , we again have to solve the optimi-

zation problem for each of the pieces of the function separately.

–	 Optimization problem 1: 

 We use the first order condition �US

�w
= 0 to find an expression for the opti-

mal retail margin w∗ST : 

 We follow the same procedure to find the optimal solution to the second 
optimization problem.

–	 Optimization problem 2: 

lim
w→ŵ−

1

𝛿US

𝛿w
=

a − bc

2

(
3 + 𝛼S +

𝛼S𝛾S(𝛽B − 1)

1 + 𝛽b(𝛾b − 1)
+

−4(1 + 𝛽b(𝛾b − 1))

2 − 𝛾S + 𝛽B(2(𝛾B − 1) + 𝛾S)

)

lim
w→ŵ+

1

𝛿US

𝛿w
=

a − bc

2

(
3 − 𝛽S −

𝛽S𝛾S(𝛽B − 1)

1 + 𝛽b(𝛾b − 1)
+

−4(1 + 𝛽b(𝛾b − 1))

2 − 𝛾S + 𝛽B(2(𝛾B − 1) + 𝛾S)

)

(𝛼S + 𝛽S)(a − bc)
(
1 − 𝛾S + 𝛽B(𝛾B + 𝛾S − 1)

)
2x2

> 0

max
w

(w − c)
(
a − b

(
w + m2

))
− I

S
− 𝛼

S

(
a − b

(
w + m2

))(
𝛾
S

(
w + m2

)
− w + (1 − 𝛾

S
)c
)

s.t. w ≤ w̄2

w ≤ ŵ1

w1 =
−(1 + �

S
)(1 + �

B
(�

B
− 1))

(
a(1 + �

B
(�

B
− 1)) − bc

(
�
B
(1 + �

B
) − 1

))
+ �

S
�
S
bc(�

B
− 1)2

b(�
B
− 1)

(
2(1 + �

S
)(1 + �

B
(�

B
− 1)) + �

S
(�

B
− 1)�

S

)
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 Using the first order condition of optimality: 

	    We observe that, depending on the value of �T , it can occur that ŵ1 ≥ w̄2 . 
This means that the threshold dividing the pieces of US is equal to or larger 
than the upper bound of the interval, w̄2 , so that only the first piece of the 
utility function needs to be considered to find the optimal solution. To identify 
these cases, we look at the value of w̄2 − ŵ1 : 

 We can see that all the terms are positive for all cases except for 
(�S + �B − 1) , whose sign depends on the value of �T:

–	 If 𝛾T < 1 , then 𝛾S + 𝛾B − 1 < 0 and w̄2 > ŵ1

–	 If �T = 1 , then �S + �B − 1 = 0 and w̄2 = ŵ1

–	 If 𝛾T > 1 , then 𝛾S + 𝛾B − 1 > 0 and w̄2 < ŵ1

	    Furthermore, we show that US is increasing in w for the cases when �T ≥ 1 , 
such that w∗ST = w̄2 . For this, we get the first derivative of US(w) when w < ŵ1 
and obtain a condition on w for the function to be increasing ( �US

�w
≥ 0) : 

max
w

(w − c)
(
a − b

(
w + m2

))
− I

S
− 𝛽

S

(
a − b

(
w + m2

))(
w − 𝛾

S

(
w + m2

)
− (1 − 𝛾

S
)c
)

s.t. w ≤ w̄2

w > ŵ1

w2 =
−(�S − 1)(1 + �B(�B − 1))

(
a(1 + �B(�B − 1)) − bc(�B(1 + �B) − 1)

)
+ �S�Sbc(�B − 1)2

b(�B − 1)
(
2(�S − 1)(1 + �B(�B − 1)) + (�B − 1)�S�S

)

w̄2 − ŵ1 = −
2(1 + 𝛽B(𝛾B − 1))2(a − bc)(𝛾S + 𝛾B − 1)

b(1 + 𝛽B(𝛾B − 1) + 𝛾B)(2 − 𝛾S + 𝛽B(−2(1 − 𝛾B) + 𝛾S))

�U
S

�w
=

a(1 + �
S
)x2 + bc

(
−(1 + �

S
)(1 + �

B
(�

B
− 1))(−1 + �

B
(1 + �

B
)) − �

S
�
S
(�

B
− 1)2

)
+bw(�

B
− 1)

(
2(1 + �

S
)x + �

S
�
S
(�

B
− 1)

)
2x2

≥ 0

x = (1 + �
B
(�

B
− 1))

w ≤
−(1 + �

S
)(1 + �

B
(�

B
− 1))(a(1 + �

B
(�

B
− 1)) − bc(−1 + �

B
(1 + �

B
))) + �

S
�
S
bc(�

B
− 1)2

b(�
B
− 1)(2(1 + �

S
)(1 + �

B
(�

B
− 1)) + �

S
�
S
(�

B
− 1))
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 We verify if this is true in our interval of interest by checking if the lower 
bound w̄2 is always smaller or equal to this value. For this we check if 
w̄2 − w ≤ 0 : 

 From the intervals in which �S, �B, �S, and �B are defined, we can see that 
the terms (�B − 1) and the third term in the numerator are always smaller 
than or equal to zero, whereas the rest are always positive. Hence, the entire 
expression is always smaller than or equal to zero and we can conclude that 
US is increasing in (0, w̄2) when �T ≥ 1 . Then, its maximum value is attained 
at w∗ST = w̄2.

–	 Interval 2 w̄2 < w ≤ w̄1, w∗ST (m) = m̄

	   We rewrite US in its piecewise form: 

 where ŵ2 = c

	   We observe that ŵ2 < w̄2 in every case, so we only have to look at the sec-
ond piece of US for the optimization in this interval.For this, we evaluate if 
ŵ2 − w̄2 < 0 : 

 Considering the conditions a − bp > 0 and p > c , we can conclude that ŵ2 < w̄2 
is true.

	   Also, we observe that US(w) is decreasing in the interval w̄2 < w < w̄1 , so the 
optimal solution is always equal to w̄2 , the lower bound of the interval. To show 
this, we get the first derivative of US(w) when w > ŵ2 and obtain a condition on w 
for the function to be decreasing ( �US

�w
≤ 0) : 

 We verify if this is true in our interval of interest by checking if the lower bound 
w̄2 is always larger or equal to this value. For this we check if w̄2 − w ≥ 0 : 

−(1 + �
B
(�

B
− 1))(a − bc)((1 + �

B
(�

B
− 1))(1 + �

S
)(1 + �

B
(�

B
− 1) − 3�

B
) + �

S
�
S
(�

B
− 1)(�

B
− 1)2)

b(�
B
− 1)(1 + �

B
(�

B
− 1) + �

B
)(2(1 + �

B
(�

B
− 1))(1 + �

S
) + �

S
�
S
(�

B
− 1))

≤ 0

US(w) =

{
(w − c)(a − b(w + m̄)) − IS − 𝛼S(a − b(w + m̄))

(
𝛾S(w + m̄) − w + (1 − 𝛾S)c

)
, w ≤ ŵ2

(w − c)(a − b(w + m̄)) − IS − 𝛽S(a − b(w + m̄))
(
w − 𝛾S(w + m̄) − (1 − 𝛾S)c

)
, w > ŵ2

(a − bc)𝛾Bx2

b
(
x2 + 𝛾B

) < 0

�US

�w
= −

(
1 − �B + �B(−1 + �B + �S)

)(
a(�B − 1) + b

(
2w − c(1 + �B)

))
(
�B − 1

)2 ≤ 0

w ≥
1

2

(
a(1 − �B)

b
+ (1 + �B)c

)

−
(�B − 1)(�B − 1)2(a − bc)

2b(x2 + �B)
≥ 0

(1 − �B)(�B − 1)2(a − bc) ≥ 0
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 All the terms always take a positive value, so we verify that this condition is 
always true and conclude that US is decreasing in (w̄2, w̄1) , hence its maximum 
value is attained at w̄2.

–	 Interval 3 w > w̄1, m∗ST (w) = m1

	   We rewrite the utility function in its piecewise form: 

 where ŵ3 =
a𝛾S(𝛼B(𝛾B−1)−1)+bc(2(𝛾S−1)+𝛼B(−2(1−𝛾S−𝛾B)−𝛾B𝛾S))

b(−2+𝛾S+𝛼B(−2(1−𝛾B)+𝛾S))

1.	 Concavity of the pieces of US(w).
	   We look at the second order condition of optimality 𝛿

2US

𝛿w2
< 0.

–	 For w < ŵ3

 Considering the intervals on which �B, �S, �S, and �B are defined, we can 
see that the result on the left hand side of the inequality is a number close 
to two, whereas the result on the right hand side is a very small number, 
which will always be smaller. We conclude that US is concave in w in this 
interval.

–	 For w > ŵ3 : 

 All the terms to the left of the inequality are negative, thus resulting in a 
negative quantity. On the contrary, the expression to the right of the ine-
quality is always positive, so this condition always holds and US is concave 
in w in this interval.

2.	 Continuity and differentiability of US(w) at ŵ3.
	   By definition, US(w) is continuous at ŵ3 if limw→ŵ3

US(w) = US(ŵ3) . We 
have that 

U
S
(w) =

{
(w − c)

(
a − b

(
w + m1

))
− I

S
− 𝛼

S

(
a − b

(
w + m1

))(
𝛾
S

(
w + m1

)
− w + (1 − 𝛾

S
)
)
, w ≤ ŵ3

(w − c)
(
a − b

(
w + m1

))
− I

S
− 𝛽

S

(
a − b

(
w + m1

))(
w − 𝛾

S

(
w + m1

)
− (1 − 𝛾

S
)
)
, w ≥ ŵ3

𝛿2US

𝛿w2
=

(1 + 𝛼B)b
(
2(𝛼S + 1)(𝛼B(𝛾B − 1) − 1) + (1 + 𝛼B)𝛼S𝛾S

)
2(1 + 𝛼B(1 − 𝛾B))

2
< 0

𝛿2US

𝛿w2
=

(1 + 𝛼B)b
(
−2(𝛽S − 1)x1 − (1 + 𝛼B)𝛽S𝛾S

)
2(1 + 𝛼B(1 − 𝛾B))

2
< 0

− 2
(
𝛽S − 1

)
x1 < 𝛽S𝛾S(𝛼B + 1)
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 Since limw→ŵ3
US(w) = US(ŵ3) , we conclude that US(w) is continuous at 

w = ŵ3.
	   By definition, US(w) is differentiable at w = ŵ3 if limw→ŵ−

3

US(w)−US(ŵ3)

w−ŵ3

	   = limw→ŵ+
3

US(w)−US(ŵ3)

w−ŵ3

 . We have 

 We can see that limw→ŵ−
3

US(w)−US(ŵ3)

w−ŵ3

≠ limw→ŵ+
3

US(w)−US(ŵ3)

w−ŵ3

 , so we conclude 
that US(w) is not differentiable at w = ŵ3.

3.	 Concavity of entire function.
	   We need to evaluate if limw→ŵ−

3

𝛿US

𝛿w
− limw→ŵ+

3

𝛿US

𝛿w
> 0 . We have 

 We substitute these expressions and ŵ3 to evaluate if the condition holds. 

lim
w→ŵ

−
3

US(w) =
(
ŵ3 − c

)(
a − b

(
ŵ3 + m1

))
− IS − 𝛼S

(
a − b

(
ŵ3 + m1

))(
𝛾S
(
ŵ3 + m1

)
− ŵ3 + (1 − 𝛾S)c

)

=
(
ŵ3 − c

)( ax1 + b
(
ŵ3 + 𝛼B

(
−𝛾Bc + ŵ3

))
2(𝛼B(𝛾B − 1) − 1)

)
− IS

lim
w→ŵ

+
3

U
S
(w) =

(
ŵ3 − c

)(
a − b

(
ŵ3 + m1

))
− I

S
− 𝛽

S

(
a − b

(
ŵ3 + m1

))(
ŵ3 − 𝛾

S

(
ŵ3 + m1

)
− (1 − 𝛾

S
)c
)

=
(
ŵ3 − c

)( a(𝛼B(𝛾B − 1) − 1) + b
(
ŵ3 + 𝛼B

(
−𝛾

Bc + ŵ3

))
2(𝛼B(𝛾B − 1) − 1)

)
− IS

lim
w→ŵ3

U
S
(w) =

(
ŵ3 − c

)( a(𝛼
B(𝛾B − 1) − 1) + b

(
ŵ3 + 𝛼B

(
−𝛾Bc + ŵ3

))
2(𝛼B(𝛾B − 1) − 1)

)
− IS

U
S
(ŵ3) =

(
ŵ3 − c

)( a(𝛼B(𝛾B − 1) − 1) + b
(
ŵ3 + 𝛼B

(
−𝛾Bc + ŵ3

))
2(𝛼B(𝛾B − 1) − 1)

)
− I

S

lim
w→ŵ

−
3

U
S
(w) − U

S
(ŵ3)

w − ŵ3

(w − c)
(
a − b

(
w + m1

))
− 𝛼

S

(
a − b

(
w + m1

))(
𝛾
S

(
w + m1

)
− w + (1 − 𝛾

S
)c
)
−
(
ŵ3 − c

)(
a − b

(
ŵ3 + m1

))
w − ŵ3

lim
w→ŵ

+
3

U
S
(w) − U

S
(ŵ3)

w − ŵ3

=
(w − c)

(
a − b

(
w + m1

))
− 𝛽

S

(
a − b

(
w + m1

))(
w − 𝛾

S

(
w + m1

)
− (1 − 𝛾

S
)c
)
−
(
ŵ3 − c

)(
a − b

(
ŵ3 + m1

))
w − ŵ3

lim
w→ŵ

−
3

𝛿U
S

𝛿w
=

(a − bc)(2(1 + 𝛼
S
)(𝛼

B
(𝛾

B
− 1) − 1)2 + 3𝛾

S
(1 + 𝛼

B
)(1 + 𝛼

S
)(𝛼

B
(𝛾

B
− 1) − 1) + 𝛼

S
𝛾2
S
(1 + 𝛼

B
)2)

2(𝛼
B
(𝛾

B
− 1) − 1)(−2 + 𝛾

S
+ 𝛼

B
(−2(1 − 𝛾

B
) + 𝛾

S
))

a − bc

2

(
3 + 𝛽

S

(
−1 −

𝛾
S
(1 + 𝛼

B
)

𝛼
B
(𝛾

B
− 1) − 1

)
+

−4(𝛼
B
(𝛾

B
− 1) − 1)

−2 + 𝛾
S
+ 𝛼

B
(−2(1 − 𝛾

B
) + 𝛾

S
)

)

(𝛼S + 𝛽S)(a − bc)
(
−1 + 𝛾S + 𝛼B(𝛾B + 𝛾S − 1)

)
2x1

> 0
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 Considering the intervals on which �S, �B, and �B are defined, we can see that 
the first two terms in the numerator are always positive and the denominator 
is always negative. However, 

(
−1 + �S + �B(�B + �S − 1)

)
 can be either posi-

tive or negative, depending on the values of the parameters. We conclude 
that, for w ≥ w̄1 , US is concave in w when 

(
−1 + 𝛾S + 𝛼B(𝛾B + 𝛾S − 1)

)
< 0 

and it has a unique global optimum.
	   For the cases when 

(
−1 + 𝛾S + 𝛼B(𝛾B + 𝛾S − 1)

)
> 0 , we prove that US is 

decreasing to the right of w̄1 , such that w∗ST = w̄1 . To prove this, we get the 
first derivative of US(w) when w > ŵ3 and obtain a condition on w for the 
function to be decreasing ( �US

�w
≤ 0) : 

 We verify if this is true in our interval of interest by checking if the lower 
bound ŵ3 is always larger than or equal to this value. For this we check if 
ŵ3 − w ≥ 0 : 

 On the right hand side of the inequality, all the terms in the numerator are 
always negative, and the denominator is always negative. So we verify that, 
when the expression on the left of the inequality is positive, this condition 
is always true and conclude that US is decreasing in this interval, hence its 
maximum value is attained at w̄1.

4.	 Optimal solutions.
	   Given that US is not differentiable at ŵ3 , we have to solve the optimization 

problem for each of the pieces of the function separately.

–	 Optimization problem 1: 

w ≥
−(�

S
− 1)(�

B
(�

B
− 1) − 1)(−(1 + �

B
)(a + bc) + �

B
�
B
(a − bc)) + �

S
�
S
bc(1 + �

B
)2

b(1 + �
B
)(2(�

S
− 1)(�

B
(�

B
− 1) − 1) + �

S
�
S
(1 + �

B
))

−1 + �
S
+ �

B
(�

B
+ �

S
− 1) ≥

�
S
�2
S
(1 + �

B
)2 − �

S
(�

B
− 1)(�

S
− 1)(�

B
(�

B
− 1) − 1)

−2(�
S
− 1)(�

B
(�

B
− 1) − 1)

max
w

(w − c)
(
a − b

(
w + m

∗
1

))
− I

S
− 𝛼

S

(
a − b

(
w + m

∗
1

))(
𝛾
S

(
w + m

∗
1

)
− w + (1 − 𝛾

S
)c
)

s.t. w > w̄3

w < ŵ3

Table 13   Possible pricing 
solutions when the supplier is 
leader

Solution w∗ST m∗ST

1 w1 m2

2 ŵ1 m2

3 w2 m2

4 w̄2 m̄

5 w3 m1

6 ŵ3 m1

7 w4 m1
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 We use the first order condition �US

�w
= 0 to find the expression for w∗ST : 

 We follow the same steps to find the optimal solution to the second opti-
mization problem.

–	 Optimization problem 2: 

 Using the first order condition of optimality: 

 As occurred for Interval 1, depending on the value of �T it is possible that 
ŵ3 ≤ w̄1 . This means that the threshold dividing the pieces of US is equal 
to or smaller than the lower bound of the interval, w̄1 , so that only the sec-
ond piece of the utility function needs to be considered to find the optimal 
solution. To identify these cases, we look at the value of w̄1 − ŵ3 : 

 We can see that all the terms in the denominator are always nega-
tive, and all the terms in the numerator are positive for all cases except 
for (�S + �B − 1) , whose sign depends on the value of �T:

•	 If 𝛾T < 1 , then 𝛾S + 𝛾B − 1 < 0 and w̄1 > ŵ3

•	 If �T = 1 , then �S + �B − 1 = 0 and w̄1 = ŵ3

•	 If 𝛾T > 1 , then 𝛾S + 𝛾B − 1 > 0 and w̄1 < ŵ3

	   Hence, for the cases when �T ≤ 1 we only look at the second piece of US 
in this interval, and w∗ST = w4.

   	�  ◻

w3 =
−(1 + �S)(�B(�B − 1) − 1)

(
−(1 + �B)(a + bc) + �B�B(a − bc)

)
+ �S�Sbc(1 + �B)

2

b(1 + �B)
(
2(1 + �S)(�B(�B − 1) − 1) + (1 + �B)�S�S

)

max
w

(w − c)
(
a − b

(
w + m

∗
1

))
− I

S
− 𝛽

S

(
a − b

(
w + m

∗
1

))(
w − 𝛾

S

(
w + m

∗
1

)
− (1 − 𝛾

S
)c
)

s.t. w > w̄3

w > ŵ3

w4 =
−(�

S
− 1)(�

B
(�

B
− 1) − 1)

(
−(1 + �

B
)(a + bc) + �

B
�
B
(a − bc)

)
+ �

S
�
S
bc(1 + �

B
)2

b(1 + �
B
)
(
2(�

S
− 1)(�

B
(�

B
− 1) − 1) + (1 + �

B
)�

S
�
S

)

ŵ3 − w̄1 = −
2(−𝛼B(𝛾B − 1) + 1)2(a − bc)(𝛾S + 𝛾B − 1)

b(𝛼B(𝛾B − 1) − 1 − 𝛾B)(−2 + 𝛾S + 𝛼B(−2(1 − 𝛾B) + 𝛾S))

Table 14   Behavior of the buyer’s utility functions UBjk with respect to IT , where j indicates the number of 
the solution (see Table 13) and k indicates if the utility function corresponds to a case of disadvantageous 
(D) or advantageous (A) inequity

Concave functions Convex decreasing functions Special cases

U
B1A , UB2A , UB3A , UB4D , U

B4A, U
B1D , U

B3D U
B2D , U

B6A

U
B5D , U

B5A , UB6D , U
B7D , U

B7A
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Proof of Theorem 6

We have that �
2US

�I2
S

= −1 , so the supplier’s utility function decreases directly with the 
investment and, as game leader, the supplier finds it optimal not to invest (I∗ST

S
= 0).

Regarding the buyer’s investment, the results from the pricing stage yield seven 
possible combinations for the optimal solutions, as shown in Table 13.

We substitute the optimal expressions for the seven possible pricing solutions in 
the buyer’s utility function to find the optimal investment, which we can now rep-
resent as IB = IT − IS , where IS = 0 . Hence, IB = IT . Considering that each utility 
function is defined by two pieces, this procedure results in 14 different utility func-
tions for the buyer. These utility functions have different properties with respect to 
IT , as summarized in Table 14.

These properties allow us to conclude that it is possible to find a closed form 
expression for the optimal total investment I∗ST

T
 for the concave functions. The 

utility functions listed as special cases are concave in IT when the condition 
−1 + 𝛾S + 𝛼B(𝛾T − 1) < 0 holds, and convex when −1 + 𝛾S + 𝛼B(𝛾T − 1) > 0 holds.	
� ◻

Capacity constraints

Equity model
First, we show that the properties we previously found for UB(m) also hold for 

UB(p).

–	 UB is increasing in p in the interval 0 < p ≤ p̄2 when �T ≥ 1.

Proof  For this, we verify the condition U�
B
(p1) ≥ 0 , where 

p1 =
(�S−1)(−(1+�B)(3a+bc)+�B�B(a+bc))+�S�S(1+�B)(3a+bc)

2b(�S−1)(�B(�B−2)−2)+4b�S�S(1+�B)
 . This condition translates into

From the intervals in which �B, �S, �B and �S are defined, we can verify that the con-
dition holds and UB is increasing in p in the interval 0 < p ≤ p̄2 < p < p̄1 . 	�  ◻

–	 UB is decreasing in p in the interval p̄2 < p ≤ p̄1.

Proof  For this, we verify the condition U�
B
(p̄2) ≤ 0 , which translates into

p̄2 ≤ p1

− (𝛽
S
− 1)2(−1 + 𝛼

B
(𝛾

B
− 1)) + (𝛽

S
− 1)(3 − 2𝛽

S
+ 𝛼

B
(3 + 𝛽

S
(𝛾

B
− 2) − 𝛾

B
))𝛾

S
+ (1 + 𝛼

B
)(𝛽

S
− 3)𝛽

S
𝛾2
S
≤ 0
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From the intervals in which �S and �S are defined, we can verify that the condition 
holds and UB is decreasing in p in the interval p̄2 < p ≤ p̄1 . 	�  ◻

With these properties, we can observe that, depending on the interval in which 
the optimal retail price falls, the fact that a binding capacity constraint requires a 
higher retail price means that the new optimal solution must be found within the 
price associated to the capacity constraint, pq̄ , and the possible solutions that cor-
respond to the interval p > p̄1.

Stakeholder engagement model
The optimal solutions for the buyer in this model, in terms of p, are as follows:

where w̄1 ≡
−a(𝛾B−1)(𝛼B(𝛾B−1)−1)+bc𝛾B(−2+𝛼B(𝛾B−1))

−b(1+𝛼B)+(𝛼B−1)b𝛾B
 , 

w̄2 ≡
−a(𝛾B−1)(1+𝛽B(𝛾B−1))+bc𝛾B(2+𝛽B(𝛾B−1))

b(1+𝛽B(𝛾B−1)+𝛾B)
≤ w̄1.

If we take the first derivatives of the expressions for the possible optimal solu-
tions, we can see that they are all increasing in w.

Thus, if the capacity constraint is binding and the buyer needs to set a higher retail 
price, his optimal solution will be to set the price that corresponds to the capacity 
constraint: pq̄ = a−q̄

b
.

Two‑part tariff contract

Proof of Theorem 7

Following backward induction, we first find the supplier’s reaction func-
tion w∗TP(m,F) to the buyer’s decisions (m,  F). The supplier’s utility function 
becomes:

a + bc

2b
≤ p̄2

−
(𝛽S − 1)(a − bc)(𝛾S − 1)

2b(1 + 𝛽S(𝛾S − 1) + 𝛾S)
≤ 0

p∗ST (w) =

⎧
⎪⎪⎨⎪⎪⎩

p2(w) ≡
1

2

�
a

b
+

c𝛽B𝛾B+w(1−𝛽B)
1+𝛽B(𝛾B−1)

�
, if w ≤ w̄2

p̄(w) ≡
w−𝛾Bc

1−𝛾B
, if w̄2 < w ≤ w̄1

p1(w) ≡
1

2

�
a

b
+

c𝛼B𝛾B−w(1+𝛼B)
𝛼B(𝛾B−1)−1

�
, if w > w̄1,

dp2

dw
=

1 − 𝛽B

2(1 + 𝛽B(𝛾B − 1))
,

dp̄

dw
= 1, and

dp1

dw
=

−1 − 𝛼B

2(−1 + 𝛼B(𝛾B − 1))
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where

We use the first order condition dUS

dw
= 0 to find the expression for the optimal whole-

sale price w∗:

–	 Optimization problem 1 (w ≤ w̄TP) : 

 We find the values of m for which w ≤ w̄TP holds, so we substitute w = w∗TP
1

 in this 

inequality and find m ≥ −
(a−bc)(1+𝛼

S
(1−𝛾

S
))2+

√
(1+𝛼

S
(1−𝛾

S
))2(4(1+𝛼

S
)2bF−4(𝛼2

S
−1)bF𝛾

S
+(a−bc)2𝛾2

S
)

b(1+𝛼
S
)(−1+𝛼

S
(𝛾

S
−1)−𝛾

S
)

= m̄
TP

1
.

–	 Optimization problem 2 (w > w̄TP) : 

 The values of m for which w > w̄TP holds are given by 

The last possible solution to the supplier’s problem is w∗ = w̄TP . At this point, 
UTP

S
= �TP

S
 , and this constitutes the supplier’s optimal response when m is set in the 

interval (m̄TP < m ≤ m̄TP
1
).

Proof of Theorem 8

In the next step, we find the retail margin m and fixed fee F that maximize the buy-
er’s utility. We first look into the analysis of the retail margin. We previously identi-
fied three expressions for w∗TP(m,F) based on the interval that contains m∗TP . Fig-
ure  2 shows an example of how the buyer’s utility function is divided into three 
different intervals.

We now follow the same steps as in the previous stage to analyze the buyer’s util-
ity function in each interval, which now becomes:

U
TP

S
(w) =

⎧
⎪⎨⎪⎩

(w − c)(a − b(w + m)) − F − 𝛼
S
[𝛾

S
(m + w − c)(a − b(w + m)) − (w − c)(a − b(w + m)) + F], w ≤ w̄TP

(w − c)(a − b(w + m)) − F − 𝛽
S
[(w − c)(a − b(w + m)) − F − 𝛾

S
(m + w − c)(a − b(w + m))], w > w̄TP

w̄
TP =

(a + bc)(𝛾S − 1) + bm(1 − 2𝛾
S
)
√
(a2 − 2abc)(𝛾

S
− 1)2 − 2abm(𝛾

S
− 1) + b(4F(𝛾

S
− 1) + b(c(1 − 𝛾

S
) + m)2)

2b(𝛾S − 1)

dU
S

dw
= a

(
1 − �

S
(�

S
− 1)

)
− b

(
(2w + m − c) − �

S

(
(�

S
− 1)(w + m − c) − w + �

S
(m + w)

))
= 0

w
∗TP
1

=
1

2

(
a

b
+ c +

m
(
1 + �

S
(1 − 2�

S
)
)

�
S
(�

S
− 1) − 1

)

dUS

dw
= a

(
1 + �S(�S − 1)

)
− b

(
(2w + m − c) + �S

(
(�S − 1)(w + m − c) − w + �S(m + w)

))
= 0

w
∗TP
2

=
1

2

(
a

b
+ c +

m(−1 + �S(1 − 2�S))

1 + �S(�S − 1)

)

m < −
(a − bc)(1 + 𝛽

S
(𝛾

S
− 1))2 +

√
(1 + 𝛽

S
(𝛾

S
− 1))2(4(𝛽

S
− 1)2bF − 4(𝛽2

S
− 1)bF𝛾

S
+ (a − bc)2𝛾2

S
)

b(𝛽
S
− 1)(1 + 𝛽

S
(𝛾

S
− 1) + 𝛾

S
)

= m̄
TP

2
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The first two intervals, which correspond to the solutions that result in inequity, 
again match those for our model with equity concerns:

–	 Interval 1 m ≤ m̄TP
2
, w∗(m) = wTP

2

	   First we find the threshold that divides the utility function in two pieces (where 
UTP

B
= �TP

B
 ): 

 For the first piece of the function: 

 For the second piece of the function: 

–	 Interval 2 m > m̄TP
1
, w∗(m) = wTP

1

	   The threshold that divides the utility function in two pieces (where 
UTP

B
= �TP

B
 ) is given by: 

 For the first piece of the function: 

U
B
(m,F) =

⎧⎪⎨⎪⎩

m(a − b(w∗ + m)) + F − 𝛼
B
[𝛾

B
(m + w

∗ − c)(a − b(w∗ + m)) − m(a − b(w∗ + m)) − F], m ≤ m̂
TP

m(a − b(w∗ + m)) + F − 𝛽
B
[m(a − b(w∗ + m)) + F − 𝛾

B
(m + w∗ − c)(a − b(w∗ + m))], m > m̂TP

m̂1
TP =

(−a + bc)(1 + 𝛽S(𝛾S − 1))

b(𝛽S − 1)

�U
B

�m
=
1

2

(
(a − bc)(1 + �

B
) +

b(�
S
− 1)((�

S
− 1)(−2 + �

B
(�

B
− 2)) + 2�

S
�
S
(1 + �

B
))m

(1 + �
S
(�

S
− 1))2

)
= 0

m
∗TP
1

=
(1 + �

B
)(−a + bc)(1 + �

S
(�

S
− 1))2

b(�
S
− 1)((�

S
− 1)(−2 + �

B
(�

B
− 2)) + 2�

S
�
S
(1 + �

B
))

�U
B

�m
=
1

2

(
(a − bc)(�

B
− 1) −

b(�
S
− 1)((�

S
− 1)(2 + �

B
(�

B
− 2)) + 2�

S
�
S
(�

B
− 1))m

(1 + �
S
(�

S
− 1))2

)
= 0

m
∗TP
2

=
(1 − �

B
)(−a + bc)(1 + �

S
(�

S
− 1))2

b(�
S
− 1)((�

S
− 1)(2 + �

B
(�

B
− 2)) + 2�

S
�
S
(�

B
− 1))

m̂3
TP =

(−a + bc)(−1 + 𝛼S(𝛾S − 1))

b(1 + 𝛼S)

�U
B

�m
=

1

2

(
(a − bc)(1 + �

B
) +

b(1 + �
S
)((1 + �

S
)(−2 + �

B
(�

B
− 2)) + 2�

S
�
S
(1 + �

B
))m

(−1 + �
S
(�

S
− 1))2

)
= 0

m
∗TP
3

= −
(1 + �

B
)(a − bc)(1 + �

S
(1 − �

S
))2

b(1 + �
S
)
(
(1 + �

S
)
(
−2 + �

B
(�

B
− 2)

)
+ 2�

S
�
S
(�

B
+ 1)

)
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 For the second piece of the function: 

–	 Interval 3 (m̄TP
2

< m ≤ m̄TP
1
), w∗(m) = w̄TP

	   When w∗(m) = w̄TP , the threshold that divides the utility function takes the 
value m̂TP = −

F

a−bc
 . We can see that this expression takes a negative value, so 

m̂TP < 0 is outside of our interval of interest and the analysis can be focused 
on the second piece of UB (∀m > m̂TP) : 

 Then, we use the first derivatives of the buyer’s utility function with respect to m 
and F to find the critical points of UB : 

 where K1 =
(
(a − bc)(�S − 1) + bm

)2
+ 4bF(�S − 1).

	   Given the form of these partial derivatives, we identify two possible cases 
to solve this system of equations:

–	 Case 1: when (1 − �S + �B(−1 + �B + �S)) = 0 , both partial derivatives equal 
zero. Then, any pair (m, F) satisfies the first order condition. However, this 
condition cannot be met in our range of values for parameters �S , �B and �B . 
If we rewrite the condition as �B =

�S−1

�S+�B−1
 , to stay within the defined range 

of 0 < 𝛽B < 1 we would require that 𝛾S > 𝛾S + 𝛾B , which is not possible. 
Hence, this solution is not valid for our problem.

–	 Case 2: when 
�
−bm +

√
K1

�
= 0 , both partial derivatives equal zero. Then 

any pair (m, F) that satisfies this equality satisfies both first order condi-
tions. We can solve this equation for either of our decision variables. We 
solve for F and find: 

	    The next step is to look at the Hessian matrix of UB to verify if the func-
tion is jointly concave in m and F and if the critical points represent (local) 
maxima. 

�U
B

�m
=

1

2

(
(a − bc)(1 − �

B
) +

b(1 + �
S
)((1 + �

S
)(2 + �

B
(�

B
− 2)) + 2�

S
�
S
(�

B
− 1))m

(1 + �
S
(1 − �

S
))2

)
= 0

m
∗TP
4

= −
(�

B
− 1)(a − bc)(1 + �

S
(1 − �

S
))2

b(1 + �
S
)((1 + �

S
)(2 + �

B
(�

B
− 2)) + 2�

S
�
S
(�

B
− 1))

U
B
=m

(
a − b(w̄TP + m)

)
+ F − 𝛽

B
[m

(
a − b(w̄TP + m)

)
+ F − 𝛾

B
(m + w̄

TP − c)
(
a − b(w̄TP + m)

)
]

= −
(1 − 𝛾

S
+ 𝛽

B
(𝛾

B
+ 𝛾

S
− 1))(2F(𝛾

S
− 1) + m((a − bc)(𝛾

S
− 1) + bm) − m

√(
(a − bc)(𝛾

S
− 1) + bm

)2
+ 4bF(𝛾

S
− 1))

2(𝛾
S
− 1)2

�U
B

�m
=

(1 − �
S
+ �

B
(−1 + �

S
+ �

B
))
�
−bm +

√
K1

�
((a − bc)(1 − �

S
) − bm +

√
K1)

2(�
S
− 1)2

√
K1

= 0

�U
B

�F
= −

(1 − �
S
+ �

B
(−1 + �

B
+ �

S
))
�
−bm +

√
K1

�

(�
S
− 1)

√
K1

= 0

FTP
5

= −
(a − bc)2(�S − 1)

4b
−

mTP
5
(a − bc)

2
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 where 

 Now we compute the determinant of the Hessian matrix: 

 The determinant is equal to zero so it is semidefinite. Since this information is 
not enough to understand what is happening at the critical points, we now look 
at the eigenvalues, which are the roots �1 and �2 of the equation det(� − ��) = 0 : 

 At (mTP
5
,FTP

5
) , we have �1 = 0 and �2 = −

(4+(a−bc)2)(1−�S+�B(�S+�B−1))

2bm2
 . This is a 

degenerate case, where one of the eigenvalues is equal to zero and the other is 
negative. This means that the critical points represent maxima (Lakshmanan and 
Rajaseekar 2003).
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