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Abstract
Two-echelon vehicle routing problems which contain synchronization between vehi-
cles can be deeply impacted by time uncertainty, because one vehicle’s delay can 
propagate to other vehicles. In this paper, we evaluate the deterministic solution of 
such a problem based on simulated travel time scenarios. The information obtained 
by simulation is incorporated in the optimization procedure iteratively. Computa-
tional results show that the degree of synchronization in an instance is directly cor-
related with the potential improvements by reoptimization. We present findings on 
the number of travel time scenarios required to obtain a representative picture of the 
stochastic solutions. In addition, we demonstrate that time dependent travel times 
can be aggregated on a city-wide level and linearized as a function of free flow times 
without major loss of reliability.
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1 Introduction

Emission-free, agile vehicles are increasingly used for freight deliveries within cities 
and especially within historic city centers. This development is triggered by the ongo-
ing urbanization as well as the negative effects of climate change caused by greenhouse 
gas emissions. Also negative health effects in cities caused by other transport-related 
emissions (WHO 2016) contribute to this trend. However, innovative logistic concepts 
are required to enable the efficient use of these vehicles within a distribution network. 
Since the loading capacity and the operating distance of these vehicles are lower, cer-
tain limitations have to be taken into consideration. Either consolidation centers near 
the city center are required, where those vehicles can reload goods (Quak et al. 2014), 
or a reorganized distribution scheme with synchronization between different types of 
vehicles can be used to allow for reloading.

The latter approach does not require additional storage facilities, but deals with the 
problem of reloading agile emission-free vehicles by synchronized meetings with pos-
sibly conventional vehicles of larger capacity and operating distance. The conventional 
vehicles are used for transporting goods from a depot to customers located outside 
the city center as well as to supply the agile emission-free vehicles at so-called satel-
lites. Satellites are easily accessible spaces which do not offer any storage possibilities. 
Therefore, temporal and spatial synchronization between reloading vehicles is required. 
One main characteristic of a solution to such a problem is its inherent interdependence, 
which makes it sensitive to uncertainties.

The aim of this paper is to investigate the impact of stochastic travel times on the 
cost of a deterministic solution of a two-echelon vehicle routing problem (2eVRP) 
with spatial and temporal synchronization. Additionally, we explore how the deter-
ministic solution can be improved with respect to stochasticity by exploiting the 
available stochastic information. Therefore, we build on an existing solution algo-
rithm for the deterministic problem (Anderluh et al. 2017) and add additional buffer 
time at time-critical nodes based on information we gain by simulating travel time 
scenarios.

The contribution of this paper is twofold. On the one hand it provides first insights 
into the quality of a deterministic solution to a complex VRP with synchronization con-
straints when applied to a real-life stochastic setting. On the other hand ways of improv-
ing the deterministic solution by exploiting stochastic information are evaluated.

The remainder of the paper is organized as follows: Sect. 2 reviews the literature 
related to stochasticity in routing problems, whereas Sect. 3 describes the problem at 
hand and Sect. 4 focuses on the solution procedure in use. In Sect. 5 computational 
results are presented and Sect. 6 concludes the paper.

2  Literature review

An early work on stochastic vehicle routing can be found in Stewart and Golden 
(1983). In the 1990s Bertsimas and van Ryzin (1991), Bertsimas (1992) and 
Bastian and Rinnooy Kan (1992) continued dealing with this class of problems. 
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Gendreau et  al. (1996) provided a first literature review on the topic. A recent 
literature review by Braekers et al. (2016) about VRPs shows that only 58 out of 
277 articles published between 2009 and 2015 focus on the stochastic aspects. 
The majority of these papers—34 articles—deal with stochasticity in demand 
and dynamic requests. Some of these papers deal with specific solution meth-
ods like a branch-cut-and-price algorithm (Gauvin et  al. 2014) or a self-adap-
tive robust search (Chen et al. 2012). Others focus on additional constraints like 
time windows (Lei et al. 2011), pickup and delivery (Minis and Tatarakis 2011), 
weighted related cost (Luo et al. 2016) or maximum tour duration (Erera et al. 
2010). Juan et al. (2011) generate different scenarios for the VRP with stochas-
tic demand to solve the resulting deterministic problems efficiently with existing 
solvers. Only 14 articles included in the review by Braekers et  al. (2016) deal 
with stochastic or unknown travel times, only 10 papers focus on time-dependent 
travel times and none considers stochastic as well as time-dependent travel times 
at once.

Papers addressing stochastic and dynamic vehicle routing problems of the last 
three decades have been recently surveyed by Psaraftis et al. (2016), who consider 
117 papers in total in their review. 10 papers deal with travel times as dynamic 
element and 8 papers take travel times as stochastic element into account. Only 
one out of these papers considers travel times as stochastic and dynamic element 
simultaneously. Based on Pillac et  al. (2013), the difference between stochastic 
and dynamic problems can be defined as such: Dynamic problems refer to infor-
mation evolution—i.e. when do we get the information. Stochastic problems refer 
to information quality—i.e. how reliable is the information at hand.

VRPs solved with stochastic travel times typically take into account time win-
dow restrictions as shown in Taş et  al. (2014) who solve such a problem with 
an iterated local search. In some cases, in addition to stochastic travel times and 
time window restrictions, also stochastic service times are considered (Li et al. 
2010; Zhang et al. 2013). Ehmke et al. (2015) focus additionally on the service 
level of the solution. Besides, Zhang et al. (2012) solve a VRP with simultaneous 
pickup and delivery while taking into account stochastic travel times, whereas 
Chen et  al. (2014) focus on an arc routing problem with stochastic travel and 
service times.

The two-echelon capacitated VRP has already been investigated in detail as 
shown by Cuda et al. (2015) in their survey as well as by Cattaruzza et al. (2017). 
Synchronization aspects in a deterministic 2eVRP are tackled by Grangier et al. 
(2016). Stochastic information in a 2eVRP is only taken into account by Tav-
akkoli-Moghaddam and Raziei (2016) who consider fuzzy demand for multiple 
products in multiple periods in a two-echelon bi-objective distribution network. 
To our knowledge there is no paper dealing with stochastic travel times in a 
2eVRP.

When dealing with stochastic travel times, one important issue is the probability 
distribution of such travel times. This distribution can either be determined based 
on historic empirical data (Aron et  al. 2014; Rahmani et  al. 2015) or by using 
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traffic-related factors like the reduction in traffic capacities because of incidents 
as well as daily variation in travel activity (Boyles et al. 2010). Although different 
probability distributions have already been tested in vehicle routing (Gomez et al. 
2016; Aron et al. 2014), in the majority of stochastic VRP models a lognormal dis-
tribution is assumed as a good approximation (Lecluyse et al. 2009).

In contrast to stochastic travel times, time-dependent travel times can also be 
taken into account. Gendreau et  al. (2017) just recently edit a special section on 
time-dependent routing in which Montero et al. (2017) focus on a time-dependent 
TSP with time windows while Mancini (2017) deals with a combined construction 
heuristic for a time-dependent VRP which includes service times and maximum tour 
duration as additional constraints. Time-dependent travel times are also considered 
in green VRPs (Soysal and Cimen 2017) as well as green drone routing problems 
(Coelho et  al. 2017). In addition, time-dependent travel times can also be taken 
into account for point-to-point evacuation routing and scheduling (Osman and Ram 
2017).

Furthermore, Huang et al. (2017) deal with path flexibility in a time-dependent 
VRP while to our knowledge Soysal et al. (2015) are the only ones who consider 
time-dependent travel times in a 2eVRP.

Wang et  al. (2016) evaluate the value of deterministic solutions in service net-
work design. They show that parts of deterministic service network design solutions 
can be used effectively in a stochastic setting. To our knowledge the basic idea of 
their work has not been applied to a 2eVRP with spatial and temporal synchroniza-
tion yet.

Therefore, in this paper we focus on the impact of stochastic travel times on the 
solution cost of a 2eVRP with synchronization and customer deliveries on both ech-
elons. Our aim is to gain insights into the impact of these uncertainties to the deter-
ministic solution of the problem based on fixed as well as time-dependent travel 
times and to evaluate methods of reoptimizing the deterministic solution based on 
scenario simulation of lognormally distributed travel times.

3  Problem description

In this paper we consider a 2eVRP with spatial and temporal synchronization, 
and customer deliveries on both echelons. Customers are divided into two groups. 
Customers located in the predefined city center have to be served by cargo bikes, 
whereas all other customers have to be served by vans. Vans as first echelon vehicles 
start their routes at the van depot at the outskirts of the city (see red large rectangle 
in Fig. 1), which is also the storage facility for the goods.

On the second echelon, cargo bikes start their routes at the bike depot inside 
the city center (see green small rectangle in Fig. 1). This bike depot is only used 
for parking and has no storage facilities. Thus, a cargo bike requires at least one 
temporally and spatially synchronized meeting with a van at one of the predefined 
synchronization points, the set of satellites (see blue triangles in Fig. 1), right after 
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starting from the bike depot. Because of a cargo bike’s limited capacity, reloading 
may also be required, once the cargo bike runs out of cargo during its tour (see 
cargo bike trips (dotted lines in Fig. 1) starting from the bike depot (green small 
rectangle), meeting a van at a satellite (blue triangle) to get the first load, then serv-
ing customers (black dots) and visiting again a satellite for loading the next part of 
goods).

The overall objective of this optimization problem is to minimize total cost for 
transporting all ordered goods to the customers either by van or by bike. This total 
cost consists of distance-based vehicle cost, time-based personnel cost and fixed cost 
for each vehicle in use. In addition to a maximum allowed route duration, synchro-
nized meetings between vans and cargo bikes at satellites are modeled in a way that 
any vehicle involved in a synchronization must not wait longer at a satellite than 
a predefined fraction of the maximum allowed route duration. Capacity constraints 
for vans on the first echelon must not be exceeded during each van route, whereas 
capacity constraints for bikes on the second echelon become effective on any route 
segment between two satellite visits, as well as the last part of the bike route from 
a satellite to the bike depot. For the complete mathematical model the interested 
reader is referred to Anderluh et al. (2017).

Fig. 1  City distribution scheme with vans and cargo bikes
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The multiple synchronizations between vans and cargo bikes in the described city 
distribution scheme, create a high degree of interdependence between the routes. A 
cargo bike can meet with a van to get the first part of goods, deliver it and then meet 
with another van to get the next load (see upper part in Fig. 2).

A delay of one vehicle naturally has an impact on the vehicle itself (see Van 1 
in the lower part of Fig. 2) but—because of its synchronized meeting with another 
vehicle—it can also cause delays at that second vehicle (see Cargo bike in the lower 
part of Fig. 2). Furthermore, the delay can also propagate to other vehicles which 
have a synchronized meeting with any of the already affected vehicles (see Van 2 in 
the lower part of Fig. 2). In the end all vehicles displayed in Fig. 2 are affected by 
only one delay.

Fig. 2  Interdependence between routes because of synchronization (upper part) and potential impact of a 
delay (lower part)
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Therefore, it is of interest how such a deterministic solution behaves under 
more realistic conditions characterized by uncertainties. In this context, we 
explicitly investigate the impact of stochastic travel times on the determinis-
tic solution, because travel time deviations are constantly caused by different 
amounts of traffic, congestion, and/or traffic jams.

In this paper we rely on findings by Lecluyse et al. (2009) for the probability 
distributions of travel times and assume a lognormal distribution for the travel 
times of vans. For extensive information on determining appropriate travel time 
distributions we refer the interested reader to Gomez et al. (2016) and Aron et al. 
(2014).

Travel times of bikes are assumed as rather unaffected by congestion and 
hardly uncertain as shown for example by Jensen et al. (2010).

4  Solution procedure

For the deterministic problem described in Sect.  3 a two-stage GRASP with path 
relinking is used (see Pseudocode 1, line 1), where cargo bike routes and van routes 
are built sequentially. After building the cargo bike routes, improving them by local 
search with a 2opt-, a move-, and a swap-operator and inserting necessary satel-
lites for synchronization purposes, the van routes are built accordingly, based on 
the demand and synchronization information of the already fixed cargo bike routes. 
Path relinking then enables finding additional promising solutions by converting one 
solution out of a pool of solutions into the pre-selected so-called guiding solution 
(Anderluh et al. 2017).

Then we apply a Monte Carlo simulation to generate N travel time scenarios for 
the deterministic solution based on lognormally distributed travel times. This yields 
different costs Cs

stoch
 for each scenario s. Based on these simulations we then calcu-

late the average cost of stochastic travel times C̄stoch =
1

N

∑N

s=1
Cs
stoch

 of the solution 
(see Pseudocode 1, lines 2–3) to estimate the performance of the deterministic solu-
tion under uncertain travel times. Hence, the higher the average cost of stochastic 
travel times C̄stoch in proportion to the cost of the deterministic solution Cdet , the 
worse the performance of the deterministic solution under travel time uncertainties. 
Therefore, the focus of this work is to find a good way of reducing C̄stoch without 
increasing Cdet significantly.
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After the average cost of stochastic travel times C̄stoch is determined, we mark in all 
simulated travel time scenarios infeasible paths with respect to the maximum route 
duration tmax , which is assumed as hard constraint. Such a path is called critical path.

For each node i we evaluate the critical value �i ∣ 0 ≤ �i ≤ 1 , which represents 
the fraction of scenarios in which node i is part of a critical path (see Pseudocode 1, 
line 4). Then we assign an additional buffer time bi to the given service time �i of a 
critical node, i.e. a node i where 𝜑i > 0 (see Pseudocode 1, lines 5–7). Then this new 
deterministic problem is reoptimized (see Pseudocode 1, lines 10–30).

The reoptimization phase of the deterministic solution now requires additional local 
search operators which respect all synchronization constraints of the existing determin-
istic solution—that is the required spatial and temporal synchronization of vehicles at 
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satellites and the related maximum allowed waiting time for vehicles at satellites traced 
through the complete solution:

• A Move*-operator, which moves one customer to a position in one of the routes of 
the same type with respect to the synchronization constraints.

• A Swap*-operator, which exchanges two customers in routes of the same type with 
respect to the synchronization constraints.

• A MoveVanSat*-operator, which inserts available satellites in van routes with 
respect to the synchronization constraints. This includes also changing the satellites 
in the respective bike routes.

• A DeleteSat*-operator, which removes unnecessary satellites from the solution.

Conducted pretests show that the most preferable order of applying these operators is:

1. Move*-operator
2. Swap*-operator
3. DeleteSat*-operator
4. MoveVanSat*-operator

In this way, the Swap*-operator which searches a larger neighborhood than the 
Move*-operator, is applied second. The DeleteSat*-operator is used to remove unnec-
essary satellites from the solution after applying the former two operators. Then the 
MoveVanSat*-operator is applied to check if satellites can be shifted in the solution.

The re-evaluation of the critical paths is done regularly after each ŷ th accepted local 
search step (see Pseudocode 1, lines 13–28). This reassessment of critical paths is based 
on simulated travel time scenarios and yields new �i values (see Pseudocode 1, line 21). 
Old �i-values are halved and stored (see Pseudocode 1, lines 17–19). Then the new val-
ues for �i are summed up with the old ones and new values for bi are calculated (see 
Pseudocode 1, lines 22–25). This is done to incorporate a kind of memory of the critical 
nodes during the reoptimization process. Finally, we re-evaluate the average cost of sto-
chastic travel times of the new found solution C̄∗

stoch
 without buffer times and compare it 

with the respective average cost C̄stoch calculated before (see Pseudocode 1, lines 31–34).
Table 1 provides an overview of all parameters used in this paper.

5  Computational results

The algorithm was coded in C/C++. All tests were performed under Linux Ubuntu 
16.04 LTS on a Virtual Machine using 2 processors and 2GB memory on a host 
Intel(R) Core(TM) i5-3320 M CPU @ 2.60GHz 4GB RAM and running on a sin-
gle thread.

Because of the different scale of the objective function values of our test 
instances, we focus in our tests on the relative change in average cost of stochas-
tic travel times of the reoptimized solution C̄∗

stoch
 compared to the respective cost 
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of the original deterministic solution C̄stoch (see Sect. 4 for details). Therefore, we 
look at C̄

∗
stoch

−C̄stoch

C̄stoch

 to assess the performance of the reoptimized solutions.
The instances used and data sets generated during the current study are avail-

able from the corresponding author on request.
The remainder of the section starts with a detailed description of the test 

instances used, followed by results of pretests and parameter tuning. Then the 
computational results regarding the degree of synchronization of an instance are 
discussed. Eventually, the use of time-dependent travel times is investigated.

5.1  Test instances

For our computational tests we use three types of instances. Six adapted Solo-
mon instances (one out of each group of Solomon instances) are used for pretests 
and parameter tuning. The adaption of the Solomon instances by Grangier et al. 
(2016) is extended by using the Solomon depot as bike depot and by adding addi-
tional vehicle information to reflect our two assumed vehicle types.

In addition, 12 synthetic test instances which cover three different layouts and two 
different instance sizes are generated. The three different layouts are based on the 
idea of the Solomon instances with randomly located customers (r), clustered cus-
tomers (c), and a combination of the former two customer location schemes (rc). 
All customers are located in an area representing a city like Vienna. The instances 

Table 1  Overview of parameters and variables

Parameter/
variable

Description

B Total amount of buffer time
bi Fraction of buffer time B assigned to node i
tmax Maximum allowed route duration
�i Critical value of node i
di Demand of node i
�i Service time at node i
Vb
c

Set of customers to be served by a second echelon vehicle

Qb
min

Minimum capacity of a second echelon vehicle

Qb
max

Maximum capacity of a second echelon vehicle

Qb
z

Capacity of a second echelon vehicle at capacity level z
Qv Capacity of a first echelon vehicle
Cdet Cost of original solution based on deterministic travel times
Cs
stoch

Cost of original solution based on travel times generated in scenario s
C̄stoch

Average cost of the original solution evaluated averaged over the N generated scenarios
C∗
det

Cost of reoptimized solution based on deterministic travel times
C̄∗
stoch

Average cost of the reoptimized solution evaluated averaged over the N generated scenarios
ŷ Number of accepted LS-steps after which the recalculation of �i is applied
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include 100/125 (n100, n125) customers and 10 satellites. The satellites are located 
around the assumed city center approximately in the middle of the instance area. The 
values for the vehicles used reflect realistic values for speed, capacity as well as costs 
of cargo bikes and 3.5-ton vans. Service time and demand of customers are random 
numbers in an appropriate range (for further details see Anderluh et al. (2017)).

To cover also time-dependent travel times a real-life instance of the city of 
Vienna is used. This instance includes 100 randomly selected pharmacies in Vienna 
and the van depot is the location of a pharmacy wholesaler in Vienna. 18 potential 
satellites are assumed at appropriate locations along the outer ring street. The bike 
depot is assumed at an appropriate location in the city center (for further details see 
Anderluh et al. (2017)). We expand this instance by time-dependent travel times for 
the first echelon vehicles (vans) based on data described as follows.

Leodolter et al. (2015) use historical floating car data (FCD) collected from 3500 
taxis in the region of Vienna. The taxis are equipped with an on-board-unit providing 
global positioning system (GPS) data of the position of the taxis every 30 to 60 s. The 
GPS data is analyzed using the real-world FCD system FLEET (Toplak et al. 2011) and 
projected on the road network graph in order to obtain vehicle speed measurements.

The goal of the work of Leodolter et al. (2015) is to estimate the variation of travel 
speed in the course of a typical day. The authors present a method using a linear regres-
sion model based on static map parameters to estimate the diurnal variation of travel 
times for vehicles in urban areas. This enables the estimation of realistic travel times 
from static map coefficients without the need for further data collection. Data is extracted 
from the FLEET system, containing daily time series of 96 15-min intervals for 4 differ-
ent speed profiles on each link of the road network of Vienna (Toplak et al. 2011).

5.2  Pretests and parameter settings

To figure out an appropriate number of scenarios for each evaluation step, we con-
duct pretests with an increasing number of scenarios. In these tests a sample size 
of N = 60 yields already an acceptably low deviation in the simulated travel time 
scenarios, which we express in the additional average cost of stochastic travel times 
( ̄Cstoch − Cdet ) in cost units. Furthermore, this sample size also guarantees good 
results in a reasonable amount of computational time (see Fig. 3).

Three different methods for allocating buffer times are tested. The total amount of 
buffer time B, which is a fraction of the maximum route duration tmax , is assigned to 
each node i:

(1) Proportionally based on �i.
(2) As equal share to any node i with 𝜑i > 0.5.
(3) As a combination of the former two ways. 2 / 3 of B are based on (1), the rest is 

based on (2).

The reassignment of B is done either only once before starting the reoptimization or 
after every ŷ th accepted improvement step in the local search of the reoptimization 
with ŷ ∈ (5000, 1000, 500, 100, 10).
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The different parameter settings were tested with all pretest instances and an aver-
age of five runs was considered for each instance. Table 2 shows the ranking of all 
combinations with respect to change in average cost of stochastic travel times, where 
1.000 as the maximum value represents the best parameter setting.

The tests show that using type (1) for the assignment of buffer time B and reop-
timizing the critical values �i after every 1000th acceptance of a local search step 
yield the best results.

Nevertheless, the impact of the assignment type of B is rather small. Further-
more, the assessment of different reoptimization modes depicted in Table 2 show 
that calculating the critical values �i after every 1000th acceptance step in the 
local search yields the best results for each assignment type of B. Doing the reop-
timization only once at the beginning performs worst for assignment types (1) 
and (3), while assignment type (2) gives the worst result while reoptimizing after 
every 100th acceptance step. In all cases reoptimizing after every 5000th, 500th, 
100th or 10th acceptance step in the local search does not improve the results, 
although no clear pattern can be distinguished. In addition, computational times 
for all settings show that ŷ = 1000 yields good results in a small amount of com-
putational time (see Fig. 4). 

To determine an appropriate value for B, which we assume as fixed value, tests 
for different percentages of tmax (5, 10, 15, 20 and 25) over all test instances have 

Fig. 3  Impact of sample size of scenario simulation on deviation in additional average cost of stochastic 
travel times (in cost units) and average cpu-time (in s)

Table 2  Ranking of buffer 
time assignment type and 
reoptimization mode with 
respect to change in average cost 
of stochastic travel times

Bold values indicate the best setting

Assign-
ment 
type

Reoptimization mode

Once ŷ = 5000 ŷ = 1000 ŷ = 500 ŷ = 100 ŷ = 10

(1) 0.765 0.984 1.000 0.921 0.890 0.881
(2) 0.881 0.899 0.914 0.817 0.754 0.831
(3) 0.767 0.818 0.944 0.884 0.905 0.867
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been conducted. Figure 5 depicts the increase from the basic deterministic cost Cdet 
to the resulting deterministic cost C∗

det
 after reoptimization versus the decrease from 

the average cost of stochastic travel time C̄stoch compared to the cost C̄∗
stoch

 resulting 
after reoptimizing the solution. Hence, B =

tmax

10
 gives a good compromise between 

those two indicators.

5.3  Impact of the degree of synchronization

The level of interdependence in a solution depends on several drivers like the number 
of customers in the city center, the demand of these customers, and the specific loca-
tion of these customers. These factors impact the total load of cargo bikes, and such 
the required number of synchronized meetings with vans. One of the main influencing 
factors is the degree of synchronization in a problem instance. This factor is strongly 
correlated with Qb

z
—the capacity of the second echelon vehicles (cargo bikes) which 

reflects a certain synchronization level z. We performed our computational tests with a 
capacity varying from a minimum required capacity Qb

min
≥ max(di)∀i ∈ Vb

c
 to a max-

imum capacity Qb
max

≤
Qv

2
 . Qb

min
 represents the highest demand of all customers sup-

plied by a second echelon vehicle in the instance, as every customer has to be served 
by exactly one visit. Qb

max
 is assumed as half of the first echelon vehicle’s capacity. 

Between these two bounds the capacity Qb
z
∣ z = {1(= min), 2,… , n(= max)} is then 

increased by Qb
z
= Qb

z−1
+

Qv

20
∀{z ∣ 1 < z < n}.

A major insight from our computational results is that the amount of the decrease 
in average cost of stochastic travel times clearly depends on the degree of synchro-
nization which is reflected by Qb

z
 . Lower capacity and hence the necessity of more 

synchronizations (see dashed line in Fig. 6) for a feasible solution of the problem is 
related to a stronger decrease in average cost of stochastic travel times as depicted by 
the solid line in Fig. 6.

Fig. 4  Average computational time for recalculation of critical values after ŷ ∈ (10, 100, 500, 5000) local 
search steps and only once at the beginning
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A low level of bike capacity also implies a higher average number of successors 
(see dash-dotted line in Fig. 6), which reflects the average number of nodes in an 
instance that follows directly (in the same route) or indirectly (in a synchronized 
route) each node of the instance. These findings hold for all our test instances.

Figure 6 also shows that for low bike capacity levels 1 and 2—which reflect a 
high degree of synchronization—the average cost of stochastic travel times can be 
reduced by the reoptimization step by around 4% on average over all test instances. 
From bike capacity levels 3–6 this reduction is around 2% and for bike capacity lev-
els 7–9 this reduction stabilizes around 1%.

Therefore, our results show that the more interdependent the instance is, the more 
the performance of the deterministic solution under travel time uncertainties can be 
improved by reoptimization.

On the other hand the increase in deterministic cost by reoptimization is rather con-
stant at around 1% on average for all bike capacity levels (see dotted line in Fig. 6).

Detailed results for each instance and bike levels are depicted in Tables 3, 4 and 5 
in the “Appendix”. These results show that, especially for the clustered test instances 

Fig. 5  Trade-off between 
increase in deterministic cost 
and decrease in average cost of 
stochastic travel times depend-
ing on the amount of B as frac-
tion of tmax

Fig. 6  Impact of level of bike capacity on change in average cost of stochastic travel times (%), number 
of required synchronizations and average number of successors



820 A. Anderluh et al.

1 3

(n*_c*, and ’vienna’), the average cost of stochastic travel times can be reduced by 
up to around 9%, whereas instances with randomly distributed customers (n*_r*) in 
most cases perform worse in our setting.

In contrast to that the size of the instance does not show a significant impact in our tests.

5.4  Use of time‑dependent Travel Times

For the Vienna test instance we test also the influence of time-dependent travel times 
in the reoptimization process. Therefore, we calculate solutions for starting times of 
first echelon vehicles from 7:00 to 13:00 in 1-h steps. We compare these results with 
the solution calculated based on free flow times.

Additionally, we use the idea of linear regression (Leodolter et al. 2015) based on 
time-dependent travel times in the provided 1-h slots from 7:00 am to 7:00 pm on 
typical working days. Comparing free flow times for all arcs in the Vienna instance 
with the average time based on the time-dependent times over the working day is 
depicted in Fig.  7. Therefore, recalculating travel times based on free flow times 
with the above mentioned linear regression seems to be a viable estimate.

Travel times for the second echelon vehicles (cargo bikes) are assumed as steady 
over the working day as bikes are usually not delayed by accidents or traffic jams. 
This assumption is also supported by Jensen et al. (2010), who show in their survey 
that cyclists travel at nearly the same speed during the day.

Fig. 7  Linear regression of average time-dependent travel times to free flow times
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Figure  8 depicts the notion of additional average cost of stochastic travel times 
( ̄Cstoch − Cdet ) on the deterministic cost Cdet for the original deterministic solution (solid 
bar) as well as the respective cost ( ̄C∗

stoch
− C∗

det
 ) as fraction of C∗

det
 (hatched bar). The 

consistent difference between the solid and the hatched bars for each travel time basis 
show that reoptimization works comparably well regardless of the travel time basis.

Furthermore, Fig. 8 shows the comparable behavior when using time-dependent 
travel times as well as travel times gained by applying linear regression. On the other 
hand the use of free flow travel times causes proportionally higher additional cost of 
stochastic travel times.

Based on these results we conclude that, at least for our realistic test instance of 
the city of Vienna, using adapted free flow times performs similarly to using time-
dependent travel times. This is of importance because deriving time-dependent travel 
times based on floating car data for the complete road network requires significantly 
more effort than determining free flow travel times from publicly available sources as 
for example openstreetmap.org, surveying time-dependent data only for some repre-
sentative arcs and deriving the linear regression based on these observations.

6  Conclusion

In this paper we analyze the performance of an innovative city distribution scheme 
for a two-echelon vehicle routing problem with temporal and spatial synchroniza-
tion between vans and cargo bikes in a realistic setting. Travel time uncertainties are 
taken into account.

We present a reoptimization method for the deterministic solution of the problem 
based on stochastic information to improve the quality of the overall solution. Com-
putational results show that our simple iterative reoptimization of the deterministic 
solution based on information gained by evaluating simulated travel time scenarios 
can improve the behavior of the solution under real-life circumstances significantly.

Fig. 8  Notion of additional average cost of stochastic travel times on cost of deterministic original and 
reoptimized solution calculated for different travel time basis
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The evaluation of all test instances shows that the performance of our method depends 
on the degree of synchronization—that is the number of synchronizations between first-
echelon and second-echelon vehicles—in the solution. The higher the degree of synchro-
nization the more can be gained by applying the reoptimization step. We expect this to 
generalize to other vehicle routing problems containing synchronization constraints.

Using time-dependent travel times has turned out to yield no better results than 
transformed free flow travel times, where the transformation is based on a simple 
linear regression. These results indicate the good performance of the latter approach, 
which is of importance especially for decision makers, because such travel times are 
easier to obtain than time-dependent ones.

Additional stochastic information concerning for example uncertain service times 
as well as dynamic requests are one direction for future research.

To cover the main advantages of the proposed cargo bikes—especially their lack 
of local emissions and of noise—future research should also take into account the 
evaluation of emissions, like greenhouse gases, particulate matters and nitrogen 
oxides, as well as the evaluation of other external factors, like noise, side-effects of 
congestion and accidents within the optimization process.
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Appendix

Description of columns

Inst: Instance
Qz : Bike capacity level
Synchs: Number of synchronizations
Succs: Average number of successors 

� Time: Difference in total time required between deterministic and reoptimized 
solution
� Dist: Difference in total distance required between deterministic and reopti-
mized solution

𝛥Cstoch =
C̄∗
stoch

− C̄stoch

C̄stoch

𝛥Cdet =
C∗
det

− Cdet

Cdet

http://creativecommons.org/licenses/by/4.0/
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Table 3  Detailed results for instance ’Vienna’

Inst Qz Synchs Succs �Cstoch [%] �Cdet [%] � Time [%] � Dist [%]

Vienna 1 10.2 32.9 − 7.52 0.99 2.16 5.52
2 6.0 28.3 − 3.46 1.15 1.74 6.82
3 5.0 26.6 − 3.04 1.32 3.23 6.67
4 4.0 25.7 − 5.07 1.26 3.82 6.70
5 3.0 24.4 − 3.50 0.58 1.03 5.63
6 3.0 23.4 − 3.33 0.85 4.82 3.74
7 2.0 20.2 − 0.67 0.25 0.20 1.55
8 2.0 20.9 − 0.58 0.68 1.08 4.96
9 2.0 20.5 − 0.96 1.13 1.90 6.95

Table 4  Detailed results for instances ’n100*’

Inst Qz Synchs Succs �Cstoch [%] �Cdet [%] � Time [%] � Dist [%]

n100_c1 1 9.6 22.9 − 6.08 1.32 0.53 8.52
2 6.4 19.4 − 4.44 0.38 0.11 3.15
3 4.0 17.7 − 2.07 0.83 2.39 3.87
4 3.0 16.2 − 3.23 1.11 2.74 4.94
5 3.0 16.7 − 1.09 0.75 0.14 4.95
6 3.0 16.9 − 2.78 1.06 0.97 5.89
7 2.2 15.9 − 0.75 0.72 1.91 3.06
8 2.0 15.6 − 0.28 1.04 3.15 3.77
9 2.0 15.7 − 0.81 0.33 0.34 1.59

n100_c2 1 12.0 25.5 − 5.12 0.42 0.10 2.81
2 7.4 20.9 − 5.35 0.45 0.35 3.33
3 5.0 18.9 − 1.14 0.18 0.40 1.22
4 4.0 17.8 − 1.48 0.98 3.85 3.91
5 3.2 16.3 − 1.45 0.49 1.47 1.70
6 3.0 16.3 − 2.12 1.00 2.71 3.80
7 3.0 16.4 − 2.01 1.09 1.40 6.01
8 2.0 14.8 − 0.83 0.80 0.82 4.71
9 2.0 14.5 − 2.19 0.72 2.07 3.39

n100_r1 1 7.0 18.8 − 5.58 1.14 1.83 6.16
2 5.2 17.6 − 2.35 1.20 0.38 7.60
3 3.8 17.2 − 0.75 1.14 1.24 6.67
4 3.0 16.4 − 0.98 0.75 2.27 3.75
5 2.0 16.2 − 2.25 1.64 5.89 6.57
6 2.0 15.4 − 4.01 1.02 2.80 5.07
7 2.0 15.2 − 0.22 1.37 4.54 5.73
8 2.0 15.4 − 2.53 1.58 5.60 6.32
9 2.0 15.6 − 0.58 0.76 2.38 3.49
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Table 4  (continued)

Inst Qz Synchs Succs �Cstoch [%] �Cdet [%] � Time [%] � Dist [%]

n100_r2 1 4.8 18.4 − 3.33 1.08 1.84 5.48
2 3.0 17.6 − 1.30 0.66 2.04 2.78
3 2.0 16.1 − 0.46 0.87 0.63 5.16
4 2.0 15.7 − 0.81 0.38 0.05 2.93
5 2.0 15.6 − 2.71 0.63 0.99 3.39
6 1.0 15.0 − 0.63 0.56 2.10 2.43
7 1.0 14.6 − 2.12 0.44 0.66 2.36
8 1.0 14.8 − 0.54 0.86 3.61 3.24
9 1.0 15.0 − 0.88 1.52 6.20 5.44

n100_rc1 1 7.0 23.2 − 3.55 0.98 0.90 5.91
2 5.0 21.6 − 1.38 0.72 2.71 2.79
3 3.4 20.3 − 3.05 0.55 1.81 2.27
4 3.0 20.0 − 1.74 0.94 2.64 4.54
5 2.0 17.9 − 2.12 0.69 2.33 2.64
6 2.0 17.8 − 1.51 2.39 10.53 7.48
7 2.0 18.2 − 0.55 1.63 5.18 6.82
8 2.0 17.6 − 2.93 1.21 4.65 4.86
9 2.0 17.5 − 2.53 0.82 1.80 4.19

n100_rc2 1 7.4 21.9 − 4.29 0.64 1.71 3.87
2 4.4 18.1 − 2.95 0.59 1.82 3.49
3 3.0 16.6 − 2.22 0.58 2.39 2.33
4 3.0 16.2 − 0.23 0.73 0.77 4.78
5 2.8 16.6 − 1.41 0.92 1.40 5.17
6 2.0 15.2 − 1.56 1.32 3.75 6.34
7 2.0 14.9 − 1.87 0.68 2.11 3.06
8 2.0 15.0 − 0.77 1.93 7.84 7.47
9 2.0 15.2 − 1.04 0.91 2.67 3.85

Table 5  Detailed results for instances ’n125*’

Inst Qz Synchs Succs �Cstoch [%] �Cdet [%] � Time [%] � Dist [%]

n125_c1 1 17.6 31.3 − 8.93 0.04 4.50 − 1.99
2 11.8 31.8 − 6.72 0.81 0.86 4.44
3 8.0 25.2 − 2.85 0.92 1.35 4.94
4 6.4 23.7 − 3.25 1.23 2.45 7.24
5 5.4 22.8 − 0.64 0.21 0.56 2.63
6 4.0 20.6 − 1.80 0.33 1.46 0.60
7 4.2 20.2 − 0.15 0.24 1.11 2.01
8 3.6 20.5 − 1.42 0.31 1.69 1.51
9 3.0 19.1 − 0.05 0.04 3.40 − 1.33
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Table 5  (continued)

Inst Qz Synchs Succs �Cstoch [%] �Cdet [%] � Time [%] � Dist [%]

n125_c2 1 12.4 31.7 − 3.18 0.91 2.52 5.19
2 7.8 24.6 − 4.21 1.19 1.59 6.66
3 5.4 23.3 − 1.07 0.60 1.91 3.21
4 4.2 22.5 − 0.17 0.50 1.61 2.17
5 3.8 21.3 − 0.89 0.71 0.66 4.08
6 3.0 20.7 − 0.41 0.97 0.99 5.41
7 3.0 20.5 − 1.97 0.51 1.99 2.68
8 2.2 18.9 − 0.46 0.87 3.04 3.59
9 2.0 18.6 − 0.70 1.37 5.65 4.85

n125_r1 1 4.2 21.3 − 2.42 0.88 3.04 3.97
2 3.0 19.8 − 1.65 1.10 2.62 5.98
3 2.0 19.2 − 0.09 1.53 6.40 5.98
4 2.0 18.8 − 2.28 1.53 5.95 6.42
5 1.0 18.0 − 0.67 1.58 6.84 6.06
6 1.0 17.6 − 1.48 1.56 6.76 5.59
7 1.0 17.8 − 0.31 1.20 5.16 4.67
8 1.0 18.3 − 1.24 1.32 6.24 4.78
9 1.0 18.1 − 0.41 2.38 12.35 7.94

n125_r2 1 9.8 27.9 − 2.55 0.91 1.88 5.74
2 5.8 23.8 − 2.15 0.94 2.31 5.61
3 4.4 22.4 − 3.31 1.65 5.72 7.86
4 3.0 21.0 − 3.52 1.76 6.61 7.22
5 3.0 21.0 − 1.89 0.82 1.26 3.83
6 3.0 20.7 − 0.33 1.37 5.50 5.68
7 2.8 19.8 − 1.42 0.60 1.47 2.65
8 2.0 18.7 − 0.77 0.80 1.97 4.04
9 2.0 18.8 − 0.14 1.90 9.85 6.23

n125_rc1 1 6.2 24.1 − 2.44 0.82 0.63 4.85
2 4.0 21.3 − 2.56 1.07 2.99 5.34
3 3.0 20.9 − 2.66 0.46 0.95 2.70
4 2.0 19.5 − 0.91 1.27 3.93 5.42
5 2.0 19.2 − 1.97 1.36 4.33 5.89
6 2.0 19.0 − 1.59 1.34 4.71 5.44
7 2.0 18.7 − 1.90 1.43 4.56 6.24
8 1.0 17.5 − 0.58 1.39 5.85 4.96
9 1.0 17.7 − 1.81 0.35 1.59 1.68

n125_rc2 1 6.4 23.7 − 2.80 0.73 0.76 4.01
2 4.0 23.5 − 3.43 1.00 2.93 4.60
3 3.0 20.5 − 2.57 1.12 3.69 4.60
4 2.0 19.6 − 0.66 0.61 0.22 3.83
5 2.0 19.3 − 2.59 0.80 1.94 3.43
6 2.0 19.4 − 0.11 0.35 0.50 1.84
7 2.0 18.6 − 2.25 1.50 5.04 5.94
8 1.0 18.4 − 0.69 0.36 1.79 1.12
9 1.0 18.5 − 1.89 2.38 11.71 7.24
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