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Abstract Intermodal networks offer much flexibility in transport planning, and

have the potential to efficiently consolidate goods, even if these goods have distinct

pickup locations and destinations. Typically, there is an abundant amount of feasible

routes and consolidation opportunities, which makes it challenging to quickly

identify good solutions. We propose a planning algorithm for dynamic pickup- and

delivery problems in intermodal networks, where freight is consolidated by means

of reloads to reduce both costs and emissions. Based on an enumerative arc-ex-

pansion procedure, a large number of intermodal routes is generated for each order,

of which we store the k best. We subsequently evaluate consolidation opportunities

for the k best routes by applying a decision tree structure, taking into account reload

operations, timetables, and synchronization of departure windows. Compared to

direct road transport, numerical experiments on various virtual problem instances

show an average cost saving of 34 %, and an average reduction in CO2 emissions of

30 %. Furthermore, we test our algorithm on a real-life case of a leading logistics

service provider based in the Netherlands, which yields significant benefits as well,

both in terms of costs and environmental impact.
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1 Introduction

Intermodal transport is becoming an increasingly important alternative to road

transport. Developments in real-time information provisioning, planning systems,

governmental regulation, and more consideration to external costs (e.g., emissions,

congestion, noise hindrance), make intermodal transport both increasingly relevant

and competitive. In a typical intermodal setting, a load is placed in a container (or

another transportation unit, such as a trailer), picked up by a truck at the customer,

then transported via one or more railroad/waterway connections that are linked by

transfer hubs, and finally distributed by truck towards its destination location. The

transfer hubs allow for transshipments of containers from one modality to the other,

but also facilitate the unloading and reloading of goods on the level of the individual

container, i.e., splitting or merging loads if this yields consolidation benefits Crainic

and Kim (2006). Although intermodal networks are traditionally associated with

transporting full containers, transfer hubs that allow for reload operations could be

regarded as a step towards the Physical Internet Montreuil (2011). Reload

operations help to create a dynamic transport network, via which we can transport

small volumes by allocating them to the large load capacities of existing transport

flows.

From an environmental perspective, the potential benefits of increasing the share

of intermodal transport is twofold. First, the additional flexibility offered by such

networks allows for more efficient transport, thus requiring less transport

movements. Second, barges and trains have distinct advantages over trucks in

terms of emissions. A shift from road transport to other transport modes could

significantly reduce emissions and other external costs Janic (2007). However, for

fractional container loads, it is challenging to integrate these modes with road

transport while maintaining high container fill rates. To be a financially viable

alternative for direct road transport, the detour- and transshipment costs of

intermodal transport should be compensated by a reduction in transport costs

Konings (1996), Trip and Bontekoning (2002). For networks with reloads,

consolidating orders in a container results in lower transport costs and allows to

divide the transshipment costs per container over multiple loads, but it introduces

reload costs as well.

In this paper, we consider the case in which the logistics coordination in an

intermodal setting is in the hands of a 4PL service provider, i.e., a logistics service

provider that matches orders to the transport services of external carriers. The 4PL

matches incoming orders—specified by a volume, a pickup location, a delivery

location, and a corresponding time window—to contracted carriers. In an

intermodal setting, the 4PL can construct routes between a pickup location and a

delivery location by combining various route segments (arcs) that connect transfer

hubs, each arc being operated by a separate vehicle. We distinguish between two

sorts of arcs. Main arcs are fixed connections between two hubs, and are operated by

a specific type of modality (in this paper either barge, train, or truck). These

modalities may operate according to a timetable. Free arcs are connections between

any two points in the network, and are operated by trucks that can be commissioned
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at any desired time. The key distinction between both types is that there exist regular

transport flows on main arcs, while transport on free arcs must be rented for the

individual order.

Although intermodal networks have the potential to significantly improve

transport efficiency, attention for consolidation in networks with reloads remains

limited. In this paper, we aim to contribute to this knowledge domain, more

specifically the operational planning of consolidated routes in a dynamic environ-

ment. We present a scheduling algorithm that is able to efficiently identify and plan

consolidated routes for networks with reloads, and might serve as a decision support

system for 4PL planners. The 4PL can take into account multiple criteria to evaluate

routes, e.g., costs, CO2 emissions, and duration. As the transport market is

characterized by strong competition and low profit margins, cost minimization

remains the leading objective for most 4PLs. However, the resulting efficiency gains

in itself significantly contribute to a reduction in CO2 emissions; we measure this

reduction in our numerical experiments. We illustrate our algorithm using a case

study at a leading 4PL based in the Netherlands, which is active in the European

transport market. In this paper, we apply our algorithm on intermodal networks in

which containers are placed on and lifted from the transport modes at transfer hubs.

For the sake of completeness, we note that many transport modes are designed to

carry wheeled cargo. In common forms of waterway transport (RoRo) and railroad

transport (RoLa), lifting operations are not required. As the associated transship-

ment costs are lower and transshipment times are shorter, intermodal transport

becomes a more attractive alternative in this case. We therefore see applications of

our consolidation algorithm in this context as well.

The remainder of the paper is structured as follows. We provide a literature

review in Sect. 2, assessing studies on several topics that are relevant to our work.

In Sect. 3, we outline our problem setting, followed by a description of the

consolidation algorithm in Sect. 4. We conduct experiments on several networks,

measuring the performance of our algorithm—both with respect to costs and

emissions—under a variety of circumstances (Sect. 5). We finish with our

conclusions in Sect. 6.

2 Literature review

In this study, we assess the consolidation of goods in an intermodal transport setting.

Intermodal transport is formally defined as the transport of goods via at least two

arcs that are operated by distinct transport means, with transshipments taking place

at transfer hubs Crainic and Kim (2006), Dewitt and Clinger (2000). Examples of

such hubs are rail yards, harbors, and inland terminals Bektaş and Crainic (2008). A

common feature in intermodal transport is the use of fixed timetables, particularly in

railroad- and waterway transport Macharis and Bontekoning (2004). Despite the

increasing number of applications of intermodal networks, serious knowledge

deficits exist in the research fields of multi-modality, network design, and

operational planning Veenstra and Zuidwijk (2010).
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Macharis and Bontekoning (2004), Caris et al. (2008), and SteadieSeifi et al.

(2014) provide overviews of intermodal transport research, and all indicate that only

few studies have been performed on operational planning. Additional insights can

be obtained from the conceptually related ride-sharing problem. Some problems in

this field also consider the fixed schedules of public transport and transfers between

different transport means. An overview on the dynamic ride-sharing problem can be

found in Agatz et al. (2012).

Before assessing the studies that relate to our problem, we refer to a number of

studies that provide building blocks to construct routes in an intermodal setting. In a

full truckload setting, Boardman et al. (1997) use a k-shortest path algorithm to

perform intermodal planning, evaluating multiple routes before selecting the route

that best fits the established criteria. By coupling a vector of path length estimates to

each vertex and using these estimates as a criterion on whether to evaluate a route,

the authors keep computational time limited. Ziliaskopoulos and Wardell (2000)

explicitly take into account timetables and transfer times, making use of Bellmans

optimality principle while recursively updating time windows for every route

segment. Horn (2004) provides an arc-expansion approach for the problem with

timetables. He starts by generating routes consisting of only a single arc, and

gradually increases the number of arcs in a route while simultaneously establishing

upper bounds. He states that this procedure generally leads to an optimal schedule

quickly; good routes tend to contain only few arcs, as this keeps detour distance and

transshipment costs limited. Mes and Iacob (2016) use a comparable arc-extension

approach, generating a large number of routes, and storing the k best routes as

suitable planning options. To incorporate departure times based on timetables in an

operational planning problem, two main approaches exist. The first is to create a

time-expanded graph, where each arc is characterized by a time component Köhler

et al. (2002), e.g., every arc corresponds to a unique departure time. A more

compact representation is the time-dependent graph Delling and Wagner (2009),

Ding et al. (2008). Such a graph is defined only in space. Time-dependent arc

characteristics are taken into account by applying a mapping function, e.g., feasible

departure times are determined as a function of the arc, timetable, and departure

window.

We classify our problem as a dynamic pickup and delivery problem with reloads

and timetables. Amongst others, Chang (2008) and Masson et al. (2013), Oertel

(2000) address the static variant of this problem. Due to the complexity of the

problem, heuristics are used to solve it, mainly utilizing local search principles.

Literature on the dynamic variant of the problem is scarce. Bock (2010) describes a

local search algorithm for the dynamic variant, focusing on real-time applications.

Although providing a rich model, different modes operating on fixed routes and

their corresponding timetables are not addressed. Ferrucci and Bock (2015) provide

a tabu search heuristic that builds upon the framework provided by Bock (2010).

Another heuristic solution for the dynamic problem is described by Goel (2010).

The proposed solution evaluates routing and shipment decisions on a time-expanded

network that includes multiple modalities and timetables. However, the consolida-

tion role of transfer hubs is explicitly left out of his research scope.
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Our contribution to the intermodal planning literature is twofold. First, we

present an algorithm to schedule the transport of LTL freight via intermodal

networks, thereby contributing to the limited amount of dynamic planning studies in

this field. In particular, we deviate from existing studies by explicitly focusing on

constructing consolidated routes, rather than the more improvement-based heuristics

typically encountered in literature. In addition, we believe that our problem

description as a time-dependent intermodal network with reloads and timeta-

bles contributes to the formal definition of this problem class. Second, we present an

efficient method to identify and plan consolidation opportunities in a delimited

solution space, for which various parameters can be fixed to control the maximum

computational effort.

3 Problem definition

We study a dynamic planning problem with reloads and timetables. Orders are

tentatively planned once they become known. Our choice to consider dynamic

planning rather than static optimization (over a rolling horizon) is motivated by two

arguments encountered in practice. First, the time between pickup and delivery in an

intermodal setting spans several days, and volumes with the same order-destination

pairs are low. When modalities with low travel speed or low departure frequencies

are considered, a delay of the actual planning moment might result in exclusion of

routes with longer duration. This would eliminate certain opportunities for

consolidation. Second, we design our algorithm to be used as a decision support

tool for planners at a 4PL, allowing to directly reply to customers requests while

retaining flexibility to consolidate with future orders. For these reasons, we directly

plan orders when the shipper poses a request, while retaining the opportunity to alter

the plan at a later stage.

Our representation of the intermodal network is as follows. Let G ¼ fV;Ag be a
directed graph with V the set of vertices and A the set of arcs. VH � V represents

the set of transfer hubs in the network. The remaining vertices signify the subset of

order origins, VO � V n VH , and the subset of order destinations, VD � V n VH : The
set of arcs can be divided into a set of free arcs AF � A and a set of main arcs

AM ¼ A n AF . Every vertex pair in the graph is connected by a free arc, and

operated by vehicles without time schedules. Free arcs can therefore be used to link

origins and destinations either directly to each other or to transfer hubs, but may also

facilitate transport between hubs. The main arcs connect fixed vertex pairs of the

subset VH , and possibly operate on a timetable. A single hub pair can be connected

by multiple arcs, representing the availability of various modalities or carriers.

Each arc a 2 A is described by the tuple ðva; v0a; stra Þ, where va 2 V is the starting

vertex of the arc, v0a 2 V is the end vertex of the arc, and stra 2 Rþ is the

deterministic transport time (based on the transport means operating the arc). An arc

connects exactly one vertex pair, meaning that containers using this arc are not

reloaded or transshipped at intermediate hubs. Every arc has a corresponding

volume-dependent transport cost function Ctr
a : f 7!Rþ, with f being the order
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volume. We define a transshipment as moving a container from one mode to

another. We use ctmv to denote the costs of placing a container on a mode at hub v at

the start of the arc, and ctmv0 to denote the costs of lifting the container off the mode at

the end of the arc. We split the transshipment costs in two components to ease the

cost allocation to individual orders, since a reload may take place between lifting

and placing the container. We define a reload as unloading orders from one

container and subsequently loading them into another container; the corresponding

reload costs at hub v0 are given by crlv0 . Finally, s
tm
v denotes the transshipment times at

the hubs v 2 VH .
Let i 2 N and j 2 N be order indicators, with order i representing an order that

just became known, and order j an open order (i.e., an order that has not yet arrived

at its destination). Each order i can be described by a tuple ðvOi ; vDi ; tmini ; tmaxi ; fiÞ.
Here, vOi 2 VO is the origin vertex and vDi 2 VD the destination vertex. The order has

an earliest pickup time tmini ; from this time onwards the order can be retrieved from

the origin vOi . Furthermore, it has a strict deadline tmaxi ; the order must arrive at its

destination vDi at or before this time. Finally, we define the set of feasible order

sizes—expressed in terms of fractional container capacity—as F ¼ f1
y
; 2
y
; . . .; 1g,

with integer y� 1. The size of order i is fi 2 F .
We make a number of key assumptions in the definition of our problem.

First, we assume that consolidation is only possible on the main arcs. Free

arcs generally correspond to first-mile and last-mile transport; typically a 4PL

will outsource the task of constructing detailed tours to the carrier. Our

second assumption is that carriers utilize a concave and monotonically

increasing cost function with respect to volume, reflecting economies of scale.

This assumption is in line with general practice, and retains a large degree of

flexibility. Third, we assume that all travel times and transshipment times are

deterministic. Transshipment times are independent of whether reloads take

place; in practice the time required for a reload is often minor compared to

the full transshipment time. In case of disturbances, the algorithm could be

rerun with updated departure windows to alter routes during execution, yet

this aspect is beyond our research scope. A fourth assumption is that reload

costs are independent of the volume moved; a fixed fee is charged for every

reload operation. Also, we assume that reload costs are independent of the

time the orders are held at the transfer hub, i.e., no holding costs are charged.

Fifth, as we consider hard time windows, we assume that for every order a

time-feasible route exists. Sixth, we ignore capacity constraints on the main

arcs. We do this because we adopt the perspective of an individual 4PL; the

volumes handled by such actors typically only marginally contribute to the

total container capacity on trains and barges. However, we note that this

assumption can be relaxed in our problem, by simply removing the departure

of a completely filled mode from the timetable.
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4 Consolidation algorithm

In this section, we describe the consolidation algorithm. First, we briefly describe

our solution method in Sect. 4.1. Subsequently, we outline the three key steps of the

algorithm: planning k individual routes for an incoming order (Sect. 4.2),

constructing a decision tree with all consolidation actions (Sect. 4.3), and finally

evaluating and implementing consolidation actions (Sect. 4.4).

4.1 Solution method

We briefly explain the general idea behind the consolidation algorithm. The

algorithm is triggered by every new order arrival. First, a large preset number of

unconsolidated routes is generated for the new order, of which the k best routes are

stored. To generate the initial routes, we use an arc expansion approach comparable

to Horn (2004) and Mes and Iacob (2016). The key benefits of this method are that it

is efficient, takes into account the cost structure of routes (small numbers of arcs

generally yield the cheapest routes), and its computational effort can be controlled.

To incorporate timetables in our model, we use a time-dependent graph, with the

departure time being the only varying component. A time-dependent graph provides

a compact representation of the network, but is somewhat more difficult to evaluate

than a time-expanded graph. Especially when modes depart with high frequency,

time-dependent graphs have computational benefits compared to time-expanded

graphs; a physical route needs to be evaluated at most once. Furthermore, time-

dependent graphs provide high flexibility in adjusting departure times of existing

schedules.

After obtaining the k best routes, we construct an evaluation set for every main

arc in each of these routes that include all consolidation opportunities on the arc. Let

an open order be any order that has not yet arrived at its destination. A consolidation

opportunity exists if a route corresponding to an open order (or set of orders) has (1)

the same main arc incorporated in its route as the route of the current order, (2) a

mutually feasible departure time on the arc (with the departure time lying in the

future), and (3) sufficient capacity in the container to add the new order. To assess

the consolidation opportunities on the various main arcs in conjunction, we

construct a decision tree to compute the achievable savings and check whether the

consolidation action yields a time-feasible schedule for all orders involved. Note

that the opportunity refers to consolidation on a single arc, whereas the action refers

to a unique combination of opportunities. Consolidation divides the fixed

transshipment costs per container over the consolidated orders and typically

reduces transport costs, but also introduces reload costs. The savings should

compensate any higher costs for selecting routes that are non-optimal when

considering the individual orders.

After consolidating, we fix the routes of orders that are consolidated on at least

one arc of their respective routes, and update the departure schedules and container

fill rates. We fix the routes because (1) if not, replanning routes may undo existing

consolidation actions, therefore potentially requiring to re-solve the static problem
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at every order arrival, (2) it significantly reduces our solution space, and (3) it

requires to change the selection of modes at most once, which is preferable in most

practical settings. Although we geographically fix routes after consolidation, further

consolidation and the adjustment of departure windows remains possible on these

routes. The main structure of the algorithm is shown in the flowchart in Fig. 1.

Throughout this section, we use pseudo-code to describe the algorithm. We use a

running example to illustrate its working.

4.2 Generating k routes for an incoming order

For each incoming order i, we start by generating routes using a k-shortest path

procedure similar to Mes and Iacob (2016), based on iteratively expanding the

number of main arcs in a route. Free legs are added to ensure the route connects

the order origin to its destination. As good routes generally contain only a few

main legs, we expect to identify these routes and their costs early in the process.

Storing alternative routes with higher initial costs than the best individual route

provides more consolidation opportunities; their excess costs should be compen-

sated by the consolidation savings. Therefore we introduce a factor b[ 1. To set

a dynamic threshold, we multiply b with the cost of the cheapest route found so

Generate routes for
order i

Store k best routes
for order i

Construct evaluation
sets per main arc

with all
consolidation
opportunities

Construct decision
tree with all actions

(combinations of
consolidation
opportunities)

Feasible
solution?

Check feasibility of
solution

Select best
consolidation action

from the decision
tree

Delete infeasible
solution from
decision tree

New order i arrives

Store best solution

Yes

No

No

Yes

Generating k routes for a new order Constructing a decision tree Verifying and updating the solution

All k routes
evaluated?

Select a non-
evaluated route

Remove actions
with negative

savings or invalid
route combinations Update tentative

solution, remove
corresponding
consolidation
opportunities.Tree contains

actions?
YesNo

Fig. 1 Flowchart with the main steps of the consolidation algorithm. The algorithmic procedure for each
column is outlined in the subsequent sections
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far; we do not store a route if its costs exceed the threshold. Hence, we should set

b such that we can reasonably expect a route to contribute to improving solutions

(e.g., b ¼ 1:2 implies no route is allowed to be over 20 % more expensive than

the best route). Also for partially constructed routes, we can use b to check

whether we can discard them, thereby considerably speeding up the procedure. In

Theorem 1 (Appendix 1), we provide a theoretical upper bound on b that

guarantees that the optimal solution can be found within the routes having costs

lower than the threshold resulting from b. Finally, we also discard routes that are

not time-feasible.

After generating a large number of routes, we store the k least expensive routes

for the individual order, not yet taking into account consolidation opportunities. The

order is tentatively scheduled to follow the least expensive route. Timetables may

result in slack in the schedule; departure policies—setting a tentative departure

time—determine where in the schedule this slack will be allocated. The chosen

departure policy impacts the consolidation opportunities on the route, given that we

continue to seek for consolidation opportunities while the route is being executed

Powell (1987).

To formally describe the properties of a route, we introduce some mathemat-

ical notation. Let Ri denote the set of all k stored routes for order i. A route

ri;n 2 Ri, with n 2 f1; . . .; kg consists of an ordered set of arcs—both main arcs

and free arcs—connecting vOi to vDi . We define an indicator z 2 f1; 2; . . .; jri;njg to
specify the arc sequence of a route. We refer to the zth arc incorporated in ri;n as

ai;n;z 2 ri;n; a route is formally defined by the ordered set ri;n ¼
Sjri;nj

z¼1 ai;n;z. Each

arc ai;n;z 2 ri;n has an associated departure window ½tedi;n;z; tldi;n;z�; departing at any

point in time within this window ensures that the destination can be reached

before the delivery deadline. Let T i;n;z be the set of feasible departure times on

arc ai;n;z. We define a function Ta that maps the departure window to a set of

feasible departure times, i.e., Ta : ðtedi;n;z; tldi;n;zÞ7!T i;n;z. If no timetable exists for the

arc (e.g., a free arc), every departure time within the window is feasible,

otherwise T i;n;z contains a finite number of departure times. Finally, we introduce

a number of counters used in our algorithm: M is the number of main arcs in a

route, Mmax the maximum number of main arcs that we allow in a route,

#RoutesM an indicator for the number of routes generated, and #RoutesmaxM the

maximum number of routes that we generate containing M main arcs. We

describe the route-generating procedure in Algorithm 1. For more details on the

procedure, we refer to Mes and Iacob (2016). In Algorithm 2, we calculate the

departure windows for all arcs; the same algorithm is also used to update the

departure windows after consolidation. In the latter case, we can input a mutually

feasible departure window ½t̂edi;n;z; t̂ldi;n;z� of two orders to synchronize their departure

windows.
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Example 1 Route structure for incoming orders

Consider the network as described in Fig. 2, where order 1 has a load size f1 ¼ 0:3,
pickup location 1, and delivery location 10. Suppose k ¼ 4. We denote each route

r1;n 2 Ri as an ordered set of arcs; every free arc is referred to as 0. In this example,

suppose that route r1;2 is the least expensive solution, such that this route is set as the

initial solution.

Order 1 has an earliest pickup time of 11.40 and a latest delivery time of 20.00 on

the same day. Assume that vehicles traverse main arc 1 with an hourly departure,

that traversing this arc takes two hours, and that the reload time is always half an

hour. In Fig. 3, the corresponding time schedule for the route is provided, given a

latest departure policy. In this figure, window 1 indicates the time interval in which

departure on main arc 1 yields a feasible schedule.

4.3 Construction of a decision tree

After generating and storing k routes for the new order i, we look for consolidation

opportunities to reduce the system-wide costs (Table 1). Let j 2 N refer to an open

order, i.e., an order that has not reached its destination yet. Let J be the set of all

open orders, excluding the current order i. For an open order j, we use the route

Fig. 2 Initial solution for order 1, utilizing only main arc 1

Free arc Main arc 1 Free arc

13.00 14.00 15.00 16.00

Travel time Transshipment timeSlack
12.00 17.00 18.00 19.00 20.00

Window 1
11.40

Fig. 3 Gantt chart for route r1;2 under a latest departure policy; window 1 indicates the feasible departure

window
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index m 2 f1; . . .; kg. Consolidation opportunities are arcs found in both ri;n 2 Ri

and rj;m 2 Rj; 8j 2 J , for which (1) a mutually feasible departure time exists and (2)

container capacity is sufficient to consolidate the orders. We note that order j may

already have been consolidated with other orders at a preceding decision moment.

To retain flexibility and account for possible future consolidation opportunities,

we assign orders to a container to be transported via the main arc, rather than to a

transport means departing at a fixed time. Let q; q0 2 N; q 6¼ q0 be container indices.
We define a consolidation opportunity Xq;a as the set of order- and route indices

representing the orders (and their corresponding routes) currently assigned to

container q on arc a. We may always decide not to consolidate on an arc; we define

the corresponding opportunity as Xq;a ¼ fð0; 0Þg. The remaining feasible consol-

idation opportunities with order j on arc a in route m are denoted by Xq;a 3 ðj;mÞ.
We also keep track of the orders that are consolidated with order i on arc a in route n

during the consolidation process; we describe the corresponding set as X̂q0;a. Before

consolidating on route n, we have X̂q0;a ¼ fði; nÞg. After a consolidation action x

takes place—described in more detail later on—we update the set of consolidated

orders and obtain X̂x
q;a ¼ X̂q0;a [ Xq;a; subsequently we update X̂q0;a and Xq;a as well.

Note that we move goods from container q0 to q, requiring a reload.

After we confirm that consolidating order sets X̂q0;a and Xq;ai;n;z is feasible, we can

store Xq;ai;n;z in the evaluation set Si;n;z. As the opportunity to not consolidate always

exists, it is guaranteed that jSi;n;zj � 1. To keep the evaluation set as small as

possible, we can use the upper bound on attainable savings as described in

Theorem 2. A set Xq;a 3 ðj;mÞ is not included in Si;n;z if this bound is negative.

When route ri;n contains multiple main arcs, we might consolidate with distinct

order sets on the various main arcs. We define our action space for route ri;n as

X i;n ¼
Qjri;nj

z¼1 Si;n;z.
A consolidation action x 2 X i;n represents a unique combination of consolidation

opportunities, i.e., x ¼
Sjri;nj

z¼1 Xq;ai;n;z . We assess all actions to (1) compute their

corresponding savings (reload costs can only be computed when assessing

consolidation on all main arcs simultaneously) and (2) check whether actions are

time-feasible (as consolidation actions alter the departure windows of the entire

schedule). To this end, we construct a decision tree for every ri;n 2 Ri, with every

path representing an action. As we show in Theorem 3, the number of actions may

increase exponentially with the number of main arcs in the route. In a practical

setting, routes rarely contain more than two main arcs, keeping the decision tree at a

Table 1 Characteristics and

k routes for order 1

The routes marked in bold

highlight the routes that are used

in the example

Order 1

f1 0.3

r1;1 0

r1;2 0-1-0

r1;3 0-1-2-0

r1;4 0-1-3-0
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well-manageable size. We assess consolidation opportunities per main arc with one

order set Xq;a at a time; simultaneously evaluating all possible combinations of

orders may result in an unfeasibly large decision tree. Instead, after selecting the

best action from the tree, we update the order sets and departure windows, and use

them as input to construct an new decision tree. We repeat this procedure until no

more feasible cost-saving actions can be found. In Algorithm 3, we outline the

procedure to create evaluation sets and decision trees.

The costs of a route ri;n 2 Ri of order i—taking into account possible

consolidation actions—consist of three components, (1) the transport costs

Ctrði; nÞ, (2) the transshipment costs Ctmði; nÞ, and (3) the reload costs Crlði; nÞ.
We give detailed descriptions of these functions in Appendix 2; for a general

understanding of the algorithm we only need the aggregate cost function

Cði; nÞ ¼ Ctrði; nÞ þ Ctmði; nÞ þ Crlði; nÞ. In our experiments, we also demonstrate

a multi-objective cost function, in which we monetize emissions, delays, and hub

risk (representing, e.g., missed connections and damage during handling). This

extension shows how planners may embed non-financial objectives into the cost

function.

The savings S(x) for an action x 2 X i;n are given by the difference between the

total costs before and after consolidation. Savings are composed by (1) the reduction

in transport cost, plus (2) the reduction in transshipment costs, minus (3) the

additional reload costs, minus (4) the cost differences between the best routes and

the evaluated routes of the orders involved. Again, we provide the formal definition

of the savings S(x) in Appendix 2.

464 W. J. A. van Heeswijk et al.

123



Example 1 [Continued] Construction of a decision tree

Cycling through all k routes for order 1, assume we now arrived at route r1;3, with

trajectory 0-1-2-0. Suppose three open orders (2,3 and 4) have main arcs in common

with this route, that are feasible in departure time and capacity, and therefore

included in the evaluation set. Orders 2 and 3 were already consolidated in an earlier

stage, hence only one route remains for both of these orders. Order 4 still has four

available routes, Fig. 4 shows the current schedule, Table 2 shows all available

routes for the orders.

In Table 3, the timetable corresponding to the relevant main arcs is presented,

giving the departure timeswith the routes that are eligible for leaving at each departure

time between parentheses. The transshipment times at the transfer hubs are 30 min.

When constructing the evaluation set, we see that consolidation at main arc 1 is

feasible for three routes of order 4, corresponding to two nodes in the decision tree.

On main arc 2, consolidation is possible with r2;1, r3;1, and r4;3. Observe that since

orders 2 and 3 utilize the same container on main arc 2, this consolidation

opportunity needs to be assessed only once. Finally, on both arcs we can also choose

not to consolidate, leaving the original time window intact. With five opportunities

on main arc 1 and three on main arc 2 (including not consolidating), we have fifteen

1

2

3 4'

1'

3'2'

2 34

1

Fig. 4 Current routes for orders 1, 2, 3, and 4

Table 2 Order properties for orders 1, 2, 3, and 4

Order 1 2 3 4

Fill quantity 0.3 0.4 0.3 0.5

Route(s) r1;1: 0 r2;1: 0-1-2-0 r3;1: 0-2-0 r4;1: 0

r1;2: 0-1-0 r4;2: 0-1-0

r1;3: 0-1-2-0 r4;3: 0-1-2-0

r1;4: 0-1-3-0 r4;4: 0-1-3-0

The routes marked in bold highlight the routes that are used in the example
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combinations to assess. However, not all of them are feasible. It is not possible to

combine different routes for order 4 in the same schedule, while it is not possible

either to consolidate both on main arc 1 with r2;1 and on main arc 2 with r4;3 due to

time constraints. As shown in Algorithm 3, such infeasible combinations are

identified and discarded. The decision tree in Fig. 5 shows all combinations. By

calculating the savings corresponding to each path, the decision maker can

determine the consolidation opportunity with the largest feasible saving.

4.4 Verifying actions and updating the solution

In the previous sections, we showed how to generate routes and how to construct the

corresponding decision trees. The next step is to identify the consolidation actions

that yield the largest savings. We evaluate the consolidation actions for every

ri;n 2 Ri. The procedure to evaluate these actions consists of (1) generating a

decision tree corresponding to ri;n, (2) selecting the feasible action that yields the

largest savings, (3) updating the schedules. Attempting to fill up the remaining

container capacity, we recursively execute these three steps until no cost-saving

actions can be identified, and store the obtained savings Si;n. After performing this

evaluation for all ri;n 2 Ri, we select the solution (e.g., the set of actions for a certain

route) that yields the largest savings, thereby also taking into account the cost

differences between routes. In Algorithm 4, we describe the evaluation procedure.

Table 3 Timetable on main arcs 1 and 2, showing the feasible departure times for orders 1, 2, 3 and 4

Main arc Feasible departure time with corresponding route sets Travel time (h)

1 13.00 fr1;3g, fr4;2g, fr4;3g, fr4;4g 2

14.00 fr1;3g, fr4;2g, fr4;4g
15.00 fr1;3g, fr2;1g, fr4;2g, fr4;4g

2 15.30 fr1;3g, fr4;3g 1

16.30 fr1;3g, fr2;1; r3;1g
17.30 fr1;3g

r4,2 r4,3 r4,4

r4,3

Main arc 1

Main arc 2 r2,1r2,1r2,1 r4,3r2,1r4,3 r4,3

r2,1

r2,1 r4,3

Fig. 5 Decision tree containing all feasible combinations of consolidation opportunities for route r1;3.

The empty nodes represent the action where we do not consolidate. The dotted nodes represent infeasible
actions
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After identifying and fixing the best set of actions x�i;n, we must update our

schedules accordingly. As we may consolidate with distinct order sets on the various

main arcs in a route, this could also affect the departure schedules of orders that we

do not consolidate with. As an example, suppose that we consolidate orders i and j

on a given main arc. Further suppose that on a subsequent main leg in its route,

order j was already consolidated with order j0. Then the departure time of order j0

may be affected by consolidating order i, even though orders i and j0 are not

consolidated. We therefore distinguish between consolidated and interrelated

orders. The latter refers to every order for which departure times may need to be

adjusted due to a consolidation action. Formally, we denote the set of orders

interrelated to order j according to Eq. (1), where we combine all existing sets of

consolidated orders corresponding to the current action. To ensure that our planning

is updated consistently after a consolidation action, we must update the schedules

for all order-route pairs ðj0;m0Þ 2 ~Xj. We outline this procedure in Algorithm 5.

~Xj ¼
[jrj;mj

z¼1

[

ðj0;m0Þ2Xq;a
j0 ;m0 ;z

[jrj0 ;m0 j

z0¼1
Xq;aj0 ;m0 ;z0 ð1Þ

Example 1 [Continued] Updating the departure windows after consolidation

Based on the decision tree as constructed in the preceding section, we decide to

consolidate r1;3 on main arc 1 with r4;4 and on main arc 2 with fr2;1; r3;1g. In this

example, we describe how the departure windows are updated for consolidation, and

how updating affects the rest of the schedule. We again assume that departures are

tentatively scheduled as late as possible; however, earlier departure times can be

selected to facilitate consolidation. From Fig. 6, the mutually feasible departure

times on both arcs can be observed.

It can be seen that 13.00, 14.00 and 15.00 are feasible departure times for both

order 1 and 4. However, when selecting 15.00, consolidation at main arc 2 would no

longer be possible. Hence, 13.00 and 14.00 are the only feasible departure times for

Free arc Main arc 1 Free arc

Travel time Transshipment timeSlack

Main arc 2

13.00 14.00 15.00

Free arc Main arc 1 Free arcMain arc 3

Main arc 2

Main arc 2

Free arc

Free arc

Free arc

Free arc

3,1r

4,4r

1,2r

1,3r
Main arc 1

Window 1

12.00

Window 2

Window 1

16.00 17.00 18.00 19.00 20.00

Fig. 6 Gantt charts of routes before consolidation. A mutually feasible departure time must exist for
consolidation
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this particular combination. The departure window is therefore narrowed, causing

scheduled slack after the second main arc. The schedule after consolidation for

order 1 is shown in Fig. 7.

Free arc Main arc 1 Free arcMain arc 2
13.00 14.00 15.00 16.00 17.00

3,1r
12.00 18.00 19.00 20.00

Window 1

Fig. 7 Gantt chart on route r1;3 after consolidation on both main arcs
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5 Numerical experiments

In this section, we describe the experiments to test the performance of our

algorithm. In Sect. 5.1, we identify three key design choices of our algorithm, and

describe alternative solution methods as a benchmark to test the impact of these

choices. Section 5.2 describes our experimental settings and instances, consisting of

both virtual networks and a real-life case of a Dutch 4PL. In Sect. 5.3 we provide

the numerical results of our simulation study, providing insights in the cost

performance, impact on CO2 emissions, and computational times.

5.1 Solution methods for benchmarks

Three key design choices for our algorithm are that (a) our search space for

consolidation opportunities is limited to k routes per order, (b) routes are

geographically fixed after consolidating, and (c) orders are planned dynamically.

Although these choices greatly reduce the computational effort, they may also

prematurely eliminate fruitful consolidation opportunities. In Table 4, we propose a

number of alternative solution methods (denoted by p) as benchmarks to evaluate

the impact of these design choices.

Table 4 Solution methods used as benchmarks

Solution method Description

pdir Shortest route (single free arc), direct transport from origin to destination

pint Cheapest (possibly intermodal) route, not allowing for consolidation

pk¼k
0

Consolidation algorithm with various settings k 2 N

ptim Re-solve static problem at order arrival, orders sorted on latest delivery time

prnd Re-solve static problem at order arrival r times, using r 2 N random sequences

popt Solve static problem with perfect foresight to optimality
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To assess the impact of (a), we use various settings for k to evaluate the marginal

contributions of storing an extra route (pk¼k
0
). The rationale is that as routes become

more expensive, they have lower potential for savings, hence their marginal

contribution to the solution quality will decrease. To quantify the impact, we compute

multiple comparison metrics, using the basic solution methods pdir and pint. Here, pdir

always directly transports orders from origin to destination by road transport, and pint

uses the cheapest (possibly intermodal) route for each individual order.

To test the effect of design choice (b), we use a solution method where we

completely replan all orders that are not yet shipped. We do this by replanning all

open orders at each new order arrival, thereby essentially solving the static problem

at every arrival. The orders are planned one-by-one according to a given sequence.

We consider two forms of sequences, (1) sorted based on the latest delivery time

(ptim), and (2) random planning sequence prnd. The first sequence form gives priority

to urgent orders, granting them more opportunities to be consolidated. With the

random sequence benchmark, we test multiple random sequences, and select the

cheapest solution. Evaluating all possible sequences would solve the static variant

of our problem to optimality, but this is computationally unmanageable for larger

instances.

Finally, we define our benchmark for design choice (c). The optimal solution can

only be achieved by having perfect foresight for all orders to come (i.e., the static

problem rather than the dynamic problem), and solve the associated scheduling

problem to optimality with popt. We define ‘optimality’ here within the constraint

that a finite number of routes is available. The acquired solution is always at least as

good as solving the dynamic problem to optimality (the same is not true without

perfect foresight). Due to the high computational effort, this solution method can

only be applied to instances containing a small number of orders.

5.2 Experimental settings

We perform simulation experiments on four virtual networks, each one representing

generalizations of common consolidation scenarios. In Fig. 8, panel a) shows a

cluster with pickup locations, a cluster with delivery locations, transfer hubs in the

center of both clusters, and a single main arc connecting these two hubs (STR).

Panel b) shows a split network, consisting of a single origin cluster and two distant

destination clusters (SPL). Panel c) shows a triangular network (TRI), where making

a detour could yield additional consolidation opportunities. Finally, panel d) shows

a scaled-down version of a semi-random network (RND). The pickup points and

distributions are uniformly generated within a distance of 1000 km
#hubs

from the nearest

hub, based on the notion that hubs tend to be positioned within areas of high demand

and vice versa. Orders generated have a preset minimum distance of 250 km

between origin and destination, and always move to the right. The random networks

vary in the number of hubs and the number of main arcs—denoted as RND(# hubs/#

main arcs)—namely RND(15/30), RND(20/40), and RND(20/100). For all virtual

networks, we consider variants where all main legs are either trucks, electric trains,

diesel trains, or barges. Furthermore, we perform experiments on the 4PL case. We
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study their operations on the Rhine-Alpine corridor, which connects a variety of

economic regions in the Netherlands, Germany, Austria, Switzerland and Italy. The

4PL ships orders (with an average volume of 0.33 container) from several locations

in the Netherlands to a variety of locations within this corridor. To facilitate this

transport, the 4PL utilizes a network operated by various contracted carriers. This

dedicated network consists of 37 hubs, which are connected by 110 waterway and

railroad arcs. We use the real timetables and travel times for these arcs.

The mode characteristics used in our experiments are shown in Table 5. We

obtain container volume data and the CO2 emission per modality (calculated by

2020 engine standards) from Boer et al. (2011). Emissions are computed on a well-

to-wheel basis, including both exhaust emission and upstream emission (i.e.,

electricity production and refinement). We consider containerized average density

goods; for these goods container volume is more restrictive than weight.

Extrapolating the figures for twenty-feet containers to forty-feet containers Boer

et al. (2011), we set a full container load equal to 21 ton.

For trucks, we take into account the load factor when computing CO2 emissions.

Emissions strongly depends on whether the truck drives in an urban area, non-urban

area, or on a motorway; we take the average emissions over the road shares

corresponding to a truck trailer. The obtained bounds on CO2 emission are 589 g/km

(empty truck) and 897 g/km (full truck); Boer et al. (2011) assume that between

these bounds emission increases linearly with the transported weight. For trains and

2

1 2'

1'

4

4'

3

3'

1000 km

25
0

km

2

1 2'1'
4
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3

3'
500 km
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24

3
1

2'

4'
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1'

400 km

20
0

km

400 km

24

3

3' 2'

1 1' 4'

500 km

(a) (b)

(c) (d)

Fig. 8 Graphical representation of the four virtual networks used in the experiments. Four order-
destination pairs are shown for each network, in the actual experiments many orders are available at the
same time. a Straight network, b split network, c triangular network, d semi-random network

Table 5 Mode characteristics used in the numerical experiments

Mode Costs per km (normalized) Speed km/hour CO2 g/ton/km CO2 g/container/km

Truck 1.00 68 – 589–897

Train (electric) 0.51 55 12 252

Train (diesel) 0.51 55 31 651

Barge 0.33 15 31 651
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barges, we use the average container weight to compute CO2 emissions, as container

consolidation by the 4PL only marginally affects the total weights of these modes.

Our standard cost functions (shown in Table 5) are based on the case of the

Dutch 4PL; costs are normalized for confidentiality reasons. For our experiments on

virtual networks, all modes have a fixed rate per container. For the real-life case, the

barges and trains on the main arcs use the same fixed rate, but the trucks on the free

arcs have a capped linear cost function of the form minð1; 0:31þ 0:78 � f Þ. Travel
speeds per mode are also obtained from the Dutch 4PL, averaging over often-used

train- and barge connections. Finally, we set the costs for a single transshipment

operation (container lift or placement) at 22 (hence 44 for a full transshipment) and

for a reload (per order, including both unloading and loading) at 35.

To demonstrate how our algorithm could handle multiple criteria, we test an

extension in which we monetize various additional objectives. We add the following

costs to the original objective function: 40 per ton CO2 emission (based on 2020

standards, see Maibach et al. 2008), 0.10 per hour of additional transport time

(compared to direct transport), and 20 per order transfer to represent hub risk.

For the virtual networks, orders are randomly generated, with their origin,

destination and volume—selected from the range [0.04–1.00]—being drawn from

uniform distributions. The times between order arrivals follow a Poisson distribu-

tion with a mean of 3 h. We make use of common random numbers, thus excluding

the influence of stochastic fluctuation when comparing performances. Orders can be

picked up directly after becoming known; the latest delivery time is 5 days ahead.

Modes operating on the main arcs depart every 6 h. For our case study, we use an

order set of the Dutch 4PL, consisting of 1006 orders transported over a quartile in

2013. Their actual locations, order volumes, pickup- and delivery times are used.

The operating modes are subject to the real timetables and travel speeds. The case

study shows to some extent how our algorithm performs under non-uniform

distributions. Future research may further explore the impact of such distributions.

We conclude this section with the key simulation settings. Unless specified

otherwise, we use 6 replications with instances of 650 orders—setting both the warm-

up and cool-down periods to 25—to achieve a relative cost error of at most 5 % for the

95 % confidence intervals. Based on preliminary tests, we use k ¼ 2 for the straight

and split networks, k ¼ 3 for the triangular network, k ¼ 31 for the random networks,

and k ¼ 40 for the 4PL network. Furthermore, we set b ¼ 2, meaning that we store

routes being up to twice as expensive as the cheapest route found. Settings for b[ 2

did not show any performance improvement. Some other values 1\b\2 yielded

comparable results, while requiring less computational effort. However, as b ¼ 2

already yields reasonable computational times for our simulation study, we did not

attempt to fine-tune this setting. Finally, preliminary tests indicated that a latest

departure policy clearly and consistently outperformed an earliest departure policy

due to offering more flexibility and consolidation opportunities. We stress that we

assume deterministic travel times in our experiments; in practical applications we

might add some safety margin to account for disturbances. In our experiments, every

order therefore leaves its route vertices as late as the corresponding departure

windows allow. The algorithm was coded in Plant Simulation 11, and ran on a

computer with 8GB RAM and a 2.90GHz Intel Core i7 processor.
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5.3 Numerical results

We divide the presentation of our numerical experiments in two parts: (i) the

performance of the algorithm under various network settings and (ii) the

performance of our algorithm compared to several alternative solution methods.

We start by presenting the performance for a variety of networks. First, we describe

the results for the experiments on the virtual networks, using the standard settings.

In Table 6, we provide key insights on the performance of the algorithm. We assess

the reduction in costs and CO2 emissions, as well as the increase in container fill

rate, compared to the benchmarks pdir, pint, and pk¼1. The first two policies (which

do not consider consolidation) are clearly outperformed. Compared to road

transport, electric train networks yield the greatest reduction in CO2 emissions, as

the CO2 emission of electric trains is significantly lower than the emission

associated with trucks. Similarly, the low costs of barges translate in the greatest

reduction in terms of costs. Diesel train networks perform worst in terms of

emission. For the semi-random networks, direct road transport even outperforms

diesel train transport. For the first three network configurations, comparison to pk¼1

indicates that storing k[ 1 routes has virtually no effect. Due to the small diversity

in routes for these networks, the algorithm is generally able to use the best routes of

orders when consolidating, such that storing more than one route has a negligible

impact. However, for the random networks we see that the added flexibility of

storing more routes can yield 3–17 % reduction in CO2 emissions, 3–12 % cost

savings, and a 14–50 % improvement in fill rates. Furthermore, we show the results

for the multi-objective extension in Table 6 as well; the tests are performed on the

semi-random truck networks. We see that while average savings decrease,

intermodal transport is still financially attractive. The impact on emissions and

fill rates is negligible. Hence, the solutions appear to be fairly robust when taking

into account non-financial objectives of the planner. We conclude our analysis with

some notes on how typical solutions look like. The use of two or more main arcs

within one route is exceptional. Compared to direct transport, the average increase

in travel time is 22 %. Of the consolidated solutions, the average drayage distance

comprises 32 % of the route. The average volume of consolidated orders is 0.41

container load; orders with a volume over 0.60 are notably more difficult to

consolidate.

Next, we discuss the results of our experiment with the real-life 4PL case. Orders

transported from the Netherlands to Germany do not favor the use of the intermodal

network; for distances below 200km intermodal transport is not beneficial. For

distances over 500km we see the most use of the intermodal network. Therefore,

without considering consolidation, only 21 % of orders is transported via the

intermodal network. When considering only the best routes, the 215 intermodal

routes use 28 distinct main arcs. Consequently, when we only consider the best

routes (k ¼ 1), only few consolidation opportunities exist. As indicated by the

results in Table 6, increasing planning flexibility by storing multiple routes notably

increases the performance, illustrating the added value of our algorithm. Compared
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to pk¼1, costs are reduced with 6 %, CO2 emissions drops by 20 %, and container

fill rates are increased by 28 %.

We continue with the results regarding our evaluation of the design choices,

comparing to the benchmark methods. First, we assess the impact of storing k

routes. Figure 9 shows the outcomes for applying k ¼ f1; 2; . . .; 40g on three semi-

random truck networks; 15 hubs with 30 main arcs, 20 hubs with 40 main arcs, and

Table 6 Key results from the numerical experiments

Network Cost reduction CO2 reduction Increase fill rate

pdir

(%)

pint

(%)
pk¼1

(%)

pdir

(%)

pint

(%)
pk¼1

(%)

pdir

(%)

pint

(%)
pk¼1

(%)

STR-Truck 28 28 0 28 28 0 73 73 0

STR-Train (electric) 52 28 0 74 36 0 74 74 0

STR-Train (diesel) 52 28 0 32 92 0 74 74 0

STR-Barge 62 23 0 43 40 0 73 73 0

SPL-Truck 13 13 13 15 15 15 36 36 36

SPL-Train (electric) 52 30 0 74 35 0 72 72 0

SPL-Train (diesel) 52 30 0 33 92 0 72 72 0

SPL-Barge 62 25 0 42 38 0 68 68 0

TRI-Truck 20 20 20 22 22 22 62 62 62

TRI-Train (electric) 49 26 0 71 33 1 71 71 1

TRI-Train (diesel) 49 26 0 25 86 3 71 71 1

TRI-Barge 59 20 0 40 38 2 69 69 2

RND(15/30)-Truck 12 12 12 17 17 17 50 50 50

RND(15/30)-Train (electric) 31 14 5 54 18 5 54 54 17

RND(15/30)-Train (diesel) 31 14 5 -20 46 12 54 54 17

RND(15/30)-Barge 42 9 3 26 27 8 51 51 14

RND(20/40)-Truck 12 12 12 17 17 17 49 49 49

RND(20/40)-Train (electric) 32 13 5 54 17 4 54 54 18

RND(20/40)-Train (diesel) 32 13 5 -19 43 9 54 54 18

RND(20/40)-Barge 43 9 3 27 27 9 52 52 16

RND(20/100)-Truck 12 12 12 17 17 17 47 47 47

RND(20/100)-Train (electric) 35 13 8 57 15 3 54 54 24

RND(20/100)-Train (diesel) 35 13 8 -10 39 9 54 54 24

RND(20/100)-Barge 46 8 5 29 28 16 50 50 25

RND(15/30)-Truck (MO) 8 8 8 17 17 17 46 46 46

RND(20/40)-Truck (MO 9 9 9 17 17 17 45 45 45

RND(20/100)-Truck (MO) 7 7 7 17 17 17 43 43 43

Real-life 4PL case 15 6 6 31 20 20 28 28 28

Average 34 17 5 30 33 9 57 57 21

The percentages show the improvement in performance of the algorithm, relative to the results obtained

with the benchmark policies. The abbreviation (MO) indicates that the instance was solved with a multi-

objective function
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20 hubs with 100 main arcs. The same procedure is applied to the real-life network.

The added value of storing more alternative routes is significant, yielding savings up

to 12 % compared to pk¼1. Note that the saving potential for the 4PL case are lower

due to the larger amount of short-distance orders. Marginal savings decrease with

increasing settings of k; the lower quality of the stored routes decrease the savings

potential. As illustrated in Fig. 9, the marginal savings decrease, such that at a

certain point storing additional routes no longer significantly impacts the solution

quality. This implies that we can fix k at some level, such that higher values for

k would not yield additional benefits. Furthermore, we note that a higher setting for

k does not guarantee a higher saving. This may seem counter-intuitive at first.

However, a higher k results in a higher probability to identify and fix opportunities

with minor savings, thus reducing consolidation opportunities at a later point in

time.

We proceed with the benchmark results of fixing routes after consolidating. Our

instances are the 20/40 semi-random networks for truck, train, and barge. To keep

the experiment computationally manageable, we use the relatively small setting of

k ¼ 5; recall that the benchmarks policies re-solve the static problem at every order

arrival. Whereas our algorithm takes less than 1s to plan in an order, prnd takes close
to 10 s per order. Also, it is not scalable to larger instances, making this benchmark

method unfit as an online solution method. The policy ptim outperforms our

algorithm 0.4 % on average. In Fig. 10, we show the performance gap between our

algorithm and prnd. Testing up to 50 random sequences, we see that the performance

gap remains below 3 %, seemingly converging to a stable performance gap.

The last design choice that we test is that of planning orders dynamically,

comparing performance to popt. As the benchmark policy is computationally
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Fig. 9 Average cost reduction compared to k ¼ 1 for three semi-random networks and the real-life 4PL
network, measured for k ¼ f1; 2; . . .; 40g
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intensive, we require a small and simplistic instance for this experiment. We run

1,000 instances on a straight truck network, each consisting of 7 orders. Solving

these toy-sized instances takes 15 s per instance, compared to a fraction of a second

for the k-path algorithm. We emphasize that popt yields a strong upper bound due to

perfect foresight, as the dynamic planning problem does not entail future

information. In Fig. 11, we show the average deviation. In 38 % of the instances,

we obtain the optimal solution with our algorithm; the average deviation in terms of

costs is 4.7 %.
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6 Conclusions

A shift from road transport to barge- and train transport has the potential to

significantly reduce the environmental impact of transport. However, the required

transshipments introduce a financial barrier for this shift. For intermodal transport to

compete with road transport of LTL goods, it is essential that freight is consolidated

as much as possible. We therefore proposed an algorithm to dynamically plan routes

in intermodal networks with transshipments and reloads. Timetables of the modes

are captured in a time-dependent graph. We used an intuitive arc-expansion

approach to efficiently construct intermodal routes. The best k routes for every order

are stored, yielding a controlled solution space to search for consolidation

opportunities. To facilitate consolidation, we created flexibility in both space and

time, by (i) storing multiple geographically distinct routes for every order, and (ii)

using departure windows rather than fixed departure times. The algorithm is

designed as a decision support tool for human planners at 4PLs, allowing to plan

orders using multiple modes and to provide a direct reply to their customers.

To make the algorithm suitable for online planning, we introduced three key

design choices to restrict the search space. We experimentally tested the impact of

these design choices by introducing alternative solution methods as benchmarks.

First, we assessed the effect of storing only k routes. We showed that due to

decreasing marginal savings, a relatively small number of stored routes already

captures the savings potential. Second, we assessed the impact of fixing routes once

they contain consolidated orders. We compared our algorithm to a policy in which

we solve the static problem at every order arrival. The cost reduction compared to

our algorithm remained below 3 %. These results give a feeling for the

improvements that could be achieved by, e.g., extending our algorithm with local

search techniques. Finally, we tested the impact of considering dynamic planning

rather than static planning, e.g., the effect of directly planning incoming orders

rather than periodically re-optimizing the schedule. For this purpose, we solved

small instances to optimality, yielding an average performance gap of 4.7 %. As we

assumed perfect foresight for this benchmark, this provides an upper bound for our

results.

For multiple networks, we showed the potential of our solution method to

significantly and consistently reduce costs and CO2 emissions, while improving

container fill rates. First, we performed numerical experiments on a variety of

virtual networks. Compared to direct road transport, on average we save 34 % in

costs, reduce CO2 emissions by 30 %, and improve the container fill rate by 57 %.

Compared to the case in which we consolidate on the best routes only, the additional

flexibility yields 5 % cost savings, 9 % CO2 reduction, and a 21 % increase in fill

rate. Furthermore, we performed a numerical experiment on a real-life 4PL network.

For orders transported from the Netherlands to Austria and Italy, consolidated

planning notably improved performance. Compared to consolidation on the best

route only (i.e., k ¼ 1), our solution method saves 6 % in costs, 20 % in CO2

emissions, and 28 % in container fill rate. The results indicate that the flexibility

introduced by our solution method has the potential to significantly reduce both
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costs and CO2 emissions, thus being a promising planning tool for 4PLs active in

intermodal transport.

We conclude with some managerial insights, which may aid in service network

design and the pursue of horizontal collaboration in intermodal transport. The

numerical results show that consolidated trips typically contain only one main arc,

with drayage operations on average comprising 1=3rd of the total travel distance.

Detours of over 20 % are common, implying that intermodal networks not

necessarily need to offer perfect connections between origin and destination to

facilitate consolidated trips. The orders that are most viable for consolidated trips

require no more than 40 % container volume, and have an origin-destination

distance of at least 250km. Barge transport is the most cost-efficient mode, whereas

electric trains are most beneficial in terms of emission reduction. In the present

work, we focused on applications in which lifting operations are required. A sizable

proportion of transport takes place with rolling cargo, allowing for transshipments

on vessels and trains against minimal transshipment costs and -times. This lower

barrier renders intermodal transsport a more attractive alternative to road transport,

making it an interesting environment to explore in future research.
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Appendix 1: Runtime and upper bound analysis

We provide three theorems and their corresponding proofs. Theorem 1 gives an

upper bound on the savings for a given route; this result can be used to set b such

that optimal solutions are guaranteed to be in the search space. Theorem 2 provides

an upper bound on the savings achievable by consolidating with a given order,

which allows to exclude certain orders from the decision tree up front. Finally,

Theorem 3 gives the computational complexity of evaluating the decision tree

(Algorithm 4).

Theorem 1 Let Ctr
a be a concave monotonically increasing cost function of the fill

rate f 2 ð0; 1� on arc a. There exists a finite threshold factor b 2 R� 1, which

guarantees that ri;n will never yield an improving solution if b � Cðr�i;n0 Þ\CðRi;n0 Þ.

Proof Suppose that
P

ði0;n0Þ2X̂q0 ;a

fi0\1. From the inequality posed in Equation (2), we

see that 9X̂x
q;a ¼ X̂q0;a [ Xq;a such that
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Ctr
a

X

ði0;n0Þ2X̂q0 ;a

fi0 þ
X

ðj0;m0Þ2Xq;a

fj0

0

@

1

A�Ctr
a

X

ði0;n0Þ2X̂q0 ;a

fi0

0

@

1

Aþ Ctr
a

X

ðj0;m0Þ2Xq;a

fj0

0

@

1

A:

Hence, maximum savings on transport costs are obtained by consolidating to f ¼ 1.

Let f min ¼ minðFÞ be the smallest possible order size. Recall that with every action

x 2 X i;n, we consolidate with at most one order set per arc. It follows that before

Algorithm 4 terminates, we can consolidate with up to 1
f min

orders per arc. By means

of deduction, the following inequality holds

Ctr
a

1

f min
� f min

� �

�Ctr
a

1

f min
� 1

� �

� f min
� �

þ Ctr
a f min
� �

�Ctr
a

1

f min
� 2

� �

� f min
� �

þ 2 � Ctr
a f min
� �

� . . .

� 1

f min
� Ctr

a f min
� �

:

As every f 2 F is a multiplier of f min, the maximum savings are

1
f min
� Ctr

a f minð Þ � Ctr
a

1
f min
� f min

� �
, achieved by consolidating with 1

f min
orders of size

f min.

Next, we show that for any consolidation action x and any a 2 AM , the savings

on transshipment costs are ctmv þ ctmv0 :

X

ði0;n0Þ2Xx
q;a

ctmv

jX̂x
q;aj
þ ctmv0

jX̂x
q;aj

 !

¼ ctmv þ ctmv0

� 2 � ctmv þ ctmv0
� �

¼
X

ði0;n0Þ2X̂q0 ;a

ctmv

jX̂q0;aj
þ ctmv0

jX̂q0;aj

 !

þ
X

ðj0;m0Þ2Xq;a

ctmv
jXq;aj

þ ctmv0

jXq;aj

� �

:

It readily follows that we maximize savings on transshipment costs by consolidating

with as many orders as possible, i.e., we again only consolidate with orders of size

f min, thereby saving 1
f min
� 1

� �
� ctmv þ ctmv0
� �

.

Theorem 1 states that an upper bound on savings is found by consolidation on all

main arcs in a route. LetMmax  N be the maximum number of main arcs we allow

in a route, and let a� 2 AM be the arc that yields the highest upper bound on savings,

obtained by solving
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a�  argmaxa2AM

1

f min

� �

�Ctr
a f min
� �

�Ctr
a

1

f min
� f min

� �

þ 1

f min
�1

� �

� ctmv þ ctmv0
� �

� �

:

We denote the corresponding savings (representing the upper bound on savings for

any route) as

�S� ¼ Mmax � 1

f min
� Ctr

a f min
� �

� Ctr
a

1

f min

� �

� f min
� �

þ 1

f min
� 1

� �

� ðctmv þ ctmv0 Þ:

Let Cðri;n0 Þ � Cðr�i;nÞ be the cost difference between the best route found so far and

the current route. Based on the maximum attainable savings �S�, it follows 9b 2 R� 1

that satisfies

Cðr�i;nÞ þ Si;n ¼ bCðr�i;nÞ:

Hence, if bCðr�i;n0 Þ\Cðri;nÞ, then ri;n cannot contribute to improving solutions. h

Theorem 2 For all a 2 A, let Ctr
a be a concave, monotonically increasing cost

function of the fill rate f 2 ð0; 1�. Let i be an order which we seek to consolidate with
j 2 J . Let x be the action were we consolidate on all a 2 ri;n \ rj;m. The upper

bound on savings by consolidating on the routes ri;n and rj;m is given by

�Sj;m ¼
X

a2ri;n\rj;m
Ctr
a

X

ði0;n0Þ2X̂q0 ;a

fi0

0

@

1

AþCtr
a

X

ðj0;m0Þ2Xq;a

fj0

0

@

1

A�Ctr
a

X

ði0;n0Þ2X̂x
q;a

fi0

0

@

1

A

0

@

1

A

þ
X

a2ri;n

ctmv

jX̂q;aj
þ ctmv0

jX̂q;aj
þ ctmv
jXq;aj

þ ctmv0

jXq;aj
� ctmv

jX̂x
q;aj
� ctmv0

jX̂x
q;aj

 !

�
X

ðj0;m0Þ2x
Cðrj0;m0 Þ �Cðr�j0;m00 Þ
� �

�
X

ðj0;m0Þ2x

1

jXq;aj � jri;n \AM j
Cðri;nÞ�Cðr�i;n0 Þ
� �

� min
a2ri;n\rj;m

2 �CrlðaÞ:

Proof We first show that maximum savings in transshipment costs are attained

when consolidating on all mutual arcs a 2 ri;n \ rj;m0 . Depending on possible pre-

vious consolidations of order j, for all mutual arcs we have a set of consolidated

orders Xq;a, with ðj;mÞ 2 Xq;a. To define the set of orders currently consolidated

with order i on arc a, we have X̂q0;a. Finally, we denote the set of orders after

consolidating orders i and j as X̂x
q;a ¼ X̂q0;a [ Xq;a. Clearly, jX̂q0;aj � jX̂x

q;aj. Given
that ctmv � 0; 8v 2 VH , the following inequality holds 8a 2 ri;n \ rj;m, such that

overall transshipment costs are minimized by consolidating on all mutual arcs:
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ctmv

jX̂x
q;aj
þ ctmv0

jX̂x
q;aj

� ctmv

jX̂q;aj
þ ctmv0

jX̂q;aj

� ctmv

jX̂q0;aj
þ ctmv0

jX̂q0;aj
þ ctmv
jXq;aj

þ ctmv0

jXq;aj
:

We show that the lowest transport costs are also achieved by consolidating on all

mutual arcs. To show this, we make use of the fact that the function Ctr
a ðf Þ; 8a 2 A

is concave and monotonically increasing. Given these properties, the following

inequality is satisfied when substituting the fill rates of all orders involved (before

and after consolidation) into Eq. (3):

X

ði0;n0Þ2X̂x
q;a

fi0P

ði00;n00Þ2X̂x
q;a

fi00
Ctr
a

X

ði00;n00Þ2X̂x
q;a

fi00

0

@

1

A

¼ 1 � Ctr
a

X

ði00;n00Þ2X̂x
q;a

fi00

0

@

1

A

� 1 � Ctr
a

X

ði00;n00Þ2X̂q0 ;a

fi00

0

@

1

Aþ 1 � Ctr
a

X

ðj00;m00Þ2Xq;a

fj00

0

@

1

A

¼
X

ði0;n0Þ2X̂q0 ;a

fi0P

ði00;n00Þ2X̂q0 ;a

fi00
Ctr
a

X

ði00;n00Þ2X̂q0 ;a

fi00

0

@

1

A

þ
X

ðj0;m0Þ2Xq;a

fj0P

ði00;n00Þ2Xq;a

fj00
Ctr
a

X

ðj00;m00Þ2Xq;a

fj00

0

@

1

A:

ð2Þ

We showed that both transport costs and transshipment costs are minimized by

consolidating on all a 2 ri;n \ rj;m. By substituting the corresponding action into

Eq. (6), we would get an upper bound that deducts the cost differences Cðrj;mÞ �
Cðr�j;m0 Þ and Cðri;nÞ � Cðr�i;n0 Þ from the maximum savings. However, the latter term

cannot be fully allocated to �Sj;m. Let wj0;m0 2 ½0; 1�; 8ðj0;m0Þ 2 x be an allocation

weight, subject to
P
ðj0;m0Þ2x wj0;m0 � 1. We show that this allocation constraint is

necessary to guarantee that SðxÞ�
P
ðj0;m0Þ2x

�Sj0;m0 for any action x. For the sake of

our proof by contradiction, suppose that
P
ðj0;m0Þ2x wj0;m0 [ 1, and that Xq;a \ Xq0;a0 ¼

;; 8a; a0 2 ri;n; a 6¼ a0 (i.e., we consolidate with a unique order set on every main arc

in ri;n). The following inequality then holds—implying that the sum of upper bounds

on savings are lower than the actual savings obtained by solving Eq. (6)—which is a

contradiction.
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X

ðj0;m0Þ2x

�Sj0;m0

¼
X

a2ri;n
Ctr
a

X

ði0;n0Þ2X̂q0 ;a

fi0

0

@

1

Aþ Ctr
a

X

ðj0;m0Þ2Xq;a

fj0

0

@

1

A� Ctr
a

X

ði0;n0Þ2X̂x
q;a

fi0

0

@

1

A

0

@

1

A

þ
X

a2ri;n

ctmv

jX̂q0;aj
þ ctmv0

jX̂q0;aj
þ ctmv
jXq;aj

þ ctmv0

jXq;aj
� ctmv

jX̂x
q;aj
� ctmv0

jX̂x
q;aj

 !

�
X

ðj0;m0Þ2x
Cðrj0;m0 Þ � Cðr�j0;m00 Þ
� �

�
X

ðj0;m0Þ2x
wj0;m0 Cðri;nÞ � Cðr�i;n0 Þ

� �

� SðxÞ:

We have established that
P
ðj0;m0Þ2x wj0;m0 � 1 must hold to establish a feasible upper

bound. In theory, we could freely allocate the weights wj0;m0 , as long as this property

is satisfied. However, to guarantee that the sum of wj0;m0 for independently estab-

lished upper bounds never exceeds 1, we set wj;m ¼ 1
jXq;aj�jri;n\AM j. From this defini-

tion, it follows that for any x, SðxÞ�
P
ðj0;m0Þ2x

�Sj0;m0 holds.

Finally, we relax the assumption that reload costs are 0. If we have Crlðri;nÞ� 0, it

is no longer guaranteed that maximum savings are attained by consolidating on all

mutual main arcs. However, we know that for any x with ðj;mÞ 2 x, at least two

reloads are required, such that the minimum reload costs are given by

argmina2ri;n\rj;m2 � CrlðaÞ. Hence, when including reload costs, we obtain the upper

bound. With this proof, we establish an upper bound on the maximum savings that

can be attained by consolidating orders i and j using routes ri;n 2 Ri and rj;m 2 Rj. h

Theorem 3 Let Ri be the route set corresponding to order i which we seek to

consolidate, J be the set of open orders, k be the number of routes stored per order,

and f min 2 ð0; 1� be the smallest possible load size. Take ri;n 2 Ri such that

jri;nj � jri;n0 j; 8ri;n0 2 Ri. Algorithm 4 has a worst-case complexity of

O k � 1
f min
� ðjJ j � kÞjri;nj

� �
.

Proof Recall that the set of actions is defined as X i;n ¼
Qjri;nj

z¼1 Si;n;z, with Si;n;z being
the evaluation set for arc ai;n;z. Clearly an order cannot be allocated to more than one

container on an arc, such that for every order-route combination per arc, there exists

at most one Xq;a 3 ðj;mÞ. As we have an open order set of size jJ j and up to k

routes per order, it follows that there are at most jJ j � k�Si;n;z opportunities per arc
ai;n;z 2 ri;n to consolidate order i with some order j 2 J . As route ri;n contains jri;nj
arcs, a decision tree contains up to ðjJ j � kÞjri;nj actions. For every decision tree, we

consolidate with at most one order set per arc, hence we must evaluate up to 1
f min

decision trees per route ri;n0 2 Ri. The same procedure is repeated for all ri;n0 2 Ri,

hence computational effort increases linearly with the number of routes jRij ¼ k.
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Hence, the worst-case complexity for Algorithm 4 is given by

O k � 1
f min
� ðjJ j � kÞjri;nj

� �
. h

Appendix 2: Cost functions and savings

In this appendix, we provide detailed cost functions for a route ri;n, adopting a

generic notation that handles both consolidated and unconsolidated orders. The

transport costs are given by

Ctrði; nÞ ¼
X

ai;n;z2ri;n

fiP

ði0;n0Þ2X̂x
q;ai;n;z

fi0
Ctr
a

X

ði0;n0Þ2X̂x
q;ai;n;z

fi0

0

B
@

1

C
A: ð3Þ

Transshipment costs are shared by all orders in the same container. From a system

point of view, transshipment costs can be arbitrarily allocated to orders transported

in the same container. We therefore equally distribute them over all orders in a

container:

Ctmði; nÞ ¼
Xjri;nj

z¼1

ctmv

jX̂x
q;ai;n;z
j
þ ctmv0

jX̂x
q;ai;n;z
j
:

To ease the notation of the reload costs, we first provide the cost formula per

ai;n;z 2 ri;n; z\jri;nj:

Crl
a ðai;n;zÞ ¼

crlv0 if jX̂x
q;ai;n;z

\ X̂x
q;ai;n;zþ1

j ¼ 1;maxðjX̂x
q;ai;n;zþ1

j; jX̂x
q;ai;n;zþ1

jÞ[ 1;

0 if jX̂x
q;ai;n;z

\ X̂x
q;ai;n;zþ1

j ¼ 1;maxðjX̂x
q;ai;n;z
j; jX̂x

q;ai;n;zþ1
jÞ ¼ 1;

0 if jX̂x
q;ai;n;z

\ X̂x
q;ai;n;zþ1

j[ 1:

8
>><

>>:

ð4Þ

The total reload costs for order i are given by

Crlði; nÞ ¼
X

ai;n;z2ri;n;z\jri;nj
Crl
a ðai;n;zÞ: ð5Þ

Finally, we define S(x) as the savings of an action x 2 X i;n. To account for the cost

differences between routes for the same order, let r�i;n0 2 Ri; r
�
j;m0 2 Rj; be such that

Cðr�i;n0 Þ �Cðri;nÞ; 8ri;n 2 Ri and Cðr�j;m0 Þ �Cðrj;mÞ; 8rj;m 2 Rj. The savings for an

action x 2 X i;n are defined as
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SðxÞ

¼
X

ai;n;z2ri;n
Ctr
a

X

ði0;nÞ2X̂q0 ;ai;n;z

fi0

0

B
@

1

C
Aþ Ctr

a

X

ðj0;mÞ2Xq;ai;n;z

fj0

0

@

1

A� Ctr
a

X

ði0;nÞ2X̂x
q;ai;n;z

fi0

0

B
@

1

C
A

0

B
@

1

C
A

þ
X

ai;n;z2ri;n

ctmv

jX̂q0;ai;n;z j
þ ctmv0

jX̂q0;ai;n;z j
þ ctmv
jXq;ai;n;z j

þ ctmv0

jXq;ai;n;z j
� ctmv

jX̂x
q;ai;n;z
j
� ctmv0

jX̂x
q;ai;n;z
j

 !

� Crlðri;nÞ � Cðri;nÞ � Cðr�i;n0 Þ
� �

�
X

ðj;mÞ2x
Cðrj;mÞ � Cðr�j;m0 Þ
� �

:

ð6Þ
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