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Abstract Continuous time Bayesian networks are used to diagnose cardiogenic

heart failure and to anticipate its likely evolution. The proposed model overcomes

the strong modeling and computational limitations of dynamic Bayesian networks.

It consists of both unobservable physiological variables, and clinically and instru-

mentally observable events which might support diagnosis like myocardial infarc-

tion and the future occurrence of shock. Three case studies related to cardiogenic

heart failure are presented. The model predicts the occurrence of complicating

diseases and the persistence of heart failure according to variations of the evidence

gathered from the patient. Predictions are shown to be consistent with current

pathophysiological medical understanding of clinical pictures.

Keywords Cardiogenic heart failure � Continuous time Bayesian networks �
Decision support system

1 Introduction

Recent technological developments in the field of Information and Communication

Technology have offered an extremely important opportunity to operational health

care management [1]. Because of this, decision support systems (DSSs) are

becoming increasingly attractive for physicians, as they can offer great benefits

without necessarily daring to replace human judgement [2–4]. The contribution of

DSSs in health care has been far-reaching and still evolving as evidenced by the
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large number of references that appear in PUBMED, a widely used health care

search engine. Increasingly, health care costs make it imperative for hospitals and

physicians to make optimal decisions to improve the quality and the efficiency of

health care delivery. Recent advances in DSSs have provided a prominent and

growing role of DSSs in improving clinical as well as administrative decision

making [5].

Bayesian networks (BNs) [6, 7] have become a popular representation in

Artificial Intelligence for encoding uncertain knowledge [8, 9]. As inferential

engines on even a large set of outcomes of interest, BNs often represent the core of

flexible DSSs, like influence diagrams or, more generally, decision graphs [7]. Their

task concerns the selection of decision options which are optimal in the light of both

the knowledge on the modelled domain and the observations collected in specific

cases, in which the user is offered a normative interpretation of an undetermined

state [10]. Even if not equipped with decision analysis operators, BNs may

nevertheless offer to the decision maker crucial information about the impact of

observations on a set of variables which influence the decision.

In medicine, causal explanations of patient manifestations and future outcomes can

be regarded as the main variables of interest, since they enable, respectively, diagnostic

and prognostic reasoning. Medical literature offers several examples of models used for

reasoning under uncertainty in different medical fields [11]. QMR-DT [12] was

proposed for internal medicine, Pathfinder and Intellipath [13] for pathology, Qualicon

[14], Localize [15], Myosys [16], Myolog [17], Electrodiagnostic Assistant, Neurop

[18], Kandid [19] and Munin [20] for neuromuscular disorders.

However, with many medical problems the time duration of events concerning

patient conditions cannot be dismissed like in the above static models. Partially

observable Markov decision processes (POMDPs) can in principle be exploited to

formalise the temporal planning of clinical management. However, their practical

application is hampered by their coarse representational granularity and complex

formulation. Graphical representations were advocated in order to improve both the

computational tractability and the representation of POMDPs [21]. Since then, the

use of temporal graphical models has appeared in the field of pediatric cardiology

[22], abdominal pain [23], insulin administration [24] and ventilator-associated

pneumonia [25]. Most of these applications are based on dynamic Bayesian

networks (DBNs) [26], which represent the standard extension of BNs when dealing

with dynamical systems.

DBNs discretize the time to model a dynamical system with several time slices.

Each time slice is associated with a BN fragment which models the transition from

the state at time t to the state at time t ? 1. DBNs describe the state of the dynamical

system at discrete time points, but do not model time explicitly. This makes it very

difficult to query a DBN for a distribution over the time at which a particular event

takes place. Furthermore, in the case where the system consists of processes which

evolve at different time granularities and/or the obtained observations are irregularly

spaced in time, the inference process may become computationally intractable.

In all cited dynamic models, different strategies were exploited to deal with the

computational burden imposed by the temporal dimension, such as narrowing the

temporal windows, including past observations [25], preliminary detection of
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critical time of change [23] and focusing on the most relevant variables as the

process evolves [22]. Each strategy seems appropriate for a specific task and domain

to represent, whereas no general solution emerged as appropriate for all domains.

In this paper continuous time Bayesian networks (CTBNs) [27] are used to

diagnose acute cardiogenic heart failure while overcoming the main limitations of

DBNs. In spite of the medical advances, cardiogenic heart failure remains one of the

most common, costly, disabling and deadly medical conditions encountered by a

wide range of physicians and surgeons in both primary and secondary health care.

Indeed, from 1 to 2% of the adult population suffers from heart failure, but the

numbers are increasing due to the aging of the population, as the disorder mainly

affects people over 65 years old [28].

The proposed CTBN includes both unobservable variables and clinical manifesta-

tions which are directly accessible through medical investigation. Inference on

unobservable variables such as myocardial infarction and cardiac pump impairment is

the focus of diagnostic judgement as well as prognostic task related to the occurrence of

shock and heart failure persistence. Three scenarios serve the purpose to show how the

developed model can be used for both diagnosis and prediction of complicating

disorders. The described scenarios include point evidence, usually also available with

DBNs, and interval evidence, which is one of the main modelling advantages of CTBNs

over DBNs. The CTBN model represents the cardiovascular system at a level of detail

which appears appropriate to explain its main causes, specifically, an underlying chronic

weakness of the cardiac muscle and a large myocardial infarction.

The rest of the paper is organized as follows. Section 2 gives the basics of CTBNs. In

Sect. 3 the acute cardiogenic heart failure model is presented, and how it can be exploited

for reasoning under uncertainty over time is described. Three evidence scenarios show

the capability of the proposed model to assist the clinician in both diagnostic and

prognostic tasks. Section 4 discusses the proposed approach to cardiogenic heart failure,

while Sect. 5 draws conclusions and proposes further research directions.

2 Continuous time Bayesian networks

CTBNs explicitly represent temporal dynamics and allow us to recover the

probability distribution over time when specific events occur. CTBNs are based on

homogeneous Markov processes, while they exploit BNs to provide an intuitive

language to describe complex dynamical systems.

CTBNs have been used to model the presence of people at their computers

together with the specific application they are using (e.g., email, word processing,

web browsing, etc…) [29]. They have been successfully used for modeling and

analyzing the reliability of dynamical systems [30], for network intrusion detection

[31] and for modeling social networks [32].

2.1 Homogeneous and conditional Markov processes

CTBNs are based on finite state continuous time homogeneous Markov processes,

i.e. stochastic processes in which the transition intensities do not depend on time.
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Let X be a random variable whose state can take k discrete values

Val(X) = {x1, …, xk }. X changes its state continuously over time t. A homoge-

neous Markov process X(t) is described with its intensity matrix:

QX ¼

�q1 q12 . . . . . . q1k

q21 �q2 . . . . . . q2k

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
qk1 qk2 . . . . . . �qk

2
66664

3
77775
:

The matrix QX allows us to describe the transient behaviour of the random

variable X. If at time t = 0 the random variable is in state xi, then it stays there for

an amount of time which is a random variable exponentially distributed with

parameter qi. Therefore, the probability density function together with the

distribution function for X(t) to remain in state xi are as follows:

f tð Þ ¼ qi exp �qitð Þ
F tð Þ ¼ 1� exp �qitð Þ

where t C 0. It is worthwhile to mention that the expected time of transitioning from

state xi is 1
qi
; while when transitioning from state xi the random variable X shifts to

state xj with probability
qij

qi
:

However, the size of the intensity matrix QX, i.e. the state space of the Markov

process, grows exponentially with the number of variables and with their

cardinality. This makes the above representation infeasible for all but the smallest

spaces, i.e. models including a very small number of variables. Therefore, to

compose Markov processes in a larger CTBN model, the concept of conditional

Markov process must be introduced.

A conditional Markov process is a particular kind of inhomogeneous Markov

process, in the sense that, for any given random variable, the intensities are a

function of the current values of a particular set of other variables, which also

evolve as Markov processes. Therefore, intensities vary over time but not as a direct

function of it. To clarify how the conditional Markov process is described, let X be a

random variable whose domain is Val(X) = {x1, …, xk } and assume that it evolves

as a Markov process X(t). Furthermore, assume that the dynamics of X(t) are

conditionally dependent from a set V of random variables evolving over time. Then

the dynamics of X(t) can be fully described by means of a conditional intensity

matrix (CIM), which can be written as follows:

QXjV ¼

�q1 Vð Þ q12 Vð Þ . . . . . . q1k Vð Þ
q21 Vð Þ �q2 Vð Þ . . . . . . q2k Vð Þ

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
qk1 Vð Þ qk2 Vð Þ . . . . . . �qk Vð Þ

2
66664

3
77775
:

A CIM is a set of intensity matrices, one intensity matrix for each instance of values

v to the set of variables V. Using the BN’s terminology, the variables belonging to

the set V are called the parents of the random variable X. This set is usually denoted
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pa(X), while in the case where the parent set pa(X) is empty, the CIM is simply a

standard intensity matrix.

2.2 The continuous time Bayesian network model

Conditional intensity matrices (CIMs) allows us to model local dependencies

between random variables, which is a fundamental aspect of both BNs, DBNs and

CTBNs. Given a set of CIMs they can be put together to obtain a single structured

model which fully describes the aspects of the evolution of a multivariate

probability distribution. A CTBN consists of two main components: (1) an initial

probability distribution and (2) the dynamics which rule the evolution over time of

the joint probability distribution associated with the CBTN.

Definition 1 [27] (Continuous Time Bayesian Network). Let X be a set of local

variables X1, …, Xn. Each Xi has a finite domain of values Val(Xi). A CTBN @ over

X consists of two components: The first is an initial distribution PX
0 , specified as a

Bayesian network B over X. The second is a continuous transition model, specified

as

• a directed (possibly cyclic) graph G whose nodes are X1, …, Xn; pa(Xi) denotes

the parents of Xi in G.

• a conditional intensity matrix, QXijpaðXiÞ, for each variable Xi 2 X:

CTBNs allow, differently from BNs and DBNs, cycles in the graph G. Therefore, arcs

directed from node X to node Y and directed from node Y to node X imply that the

dynamic of the random variable X depends on Y as well as the dynamic of the random

variable Y depends on X. This dependency is analogous to a DBN model where we have

an arc directed from X(t) to Y(t ? 1) and an arc directed from Y(t) to X(t ? 1).

2.3 Queries and inference

In [27] it has been shown that a CTBN @ is a factored representation of a

homogeneous Markov process described by the joint intensity matrix defined as

Q@ ¼
Y
X2X

QXjpa Xð Þ: ð1Þ

Therefore, the CTBN @ can be used to answer any query which can be answered by

using an explicit representation of a Markov process. Indeed, given the set of CIMs

QXjpa Xð Þ; X [ X associated with the nodes of the CTBN model @, it is always pos-

sible to form the joint intensity matrix Q@ to answer queries just as we do for any

homogeneous Markov process. Given the joint intensity matrix Q@ and the initial

distribution P0
@; many questions can be answered about the homogeneous Markov

process @(t).
The distribution over the value of @(t) is given by

P@ tð Þ ¼ P0
@ exp Q@tð Þ ð2Þ

while the joint distribution over any two time points can be computed as follows:
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P@ s; tð Þ ¼ P@ sð Þ exp Q@ t � sð Þð Þ; t� s: ð3Þ
Inference in CTBNs can be performed by exact and approximate algorithms. Full

amalgamation [27] is an exact algorithm that involves generating an exponentially-

large matrix representing the transition model over the entire state space (1). Exact

inference in CTBNs is NP-hard, and thus different approximate algorithms have

been proposed. Nodelman et al. [33] introduced the Expectation Propagation (EP)

algorithm which allows both point and interval evidence. It exploits message

passing in a cluster graph, where the clusters contain distributions over trajectories

of the variables through a duration. Saria et al. [34] presented a new EP-based

algorithm which uses a flexible cluster graph architecture that fully exploits the

natural time-granularity at which different sub-processes evolve. It also dynamically

chooses the appropriate level of granularity to use in each cluster at each point in

time. Alternatives are offered by sampling based inference algorithms. The

importance sampling algorithm [35] computes the expectation of any function of a

trajectory, conditioned on any evidence set constraining the values of subsets of the

variables over subsets of the timeline. El-Hay et al. [36] developed a Gibbs
sampling procedure for CTBNs which iteratively samples a trajectory for one of the

components given the remaining ones. This approach naturally exploits the structure

of the CTBN to optimize the computational cost of each step. This procedure is the

first that can provide asymptotically unbiased approximations in such processes.

In this paper the inference task has been performed by using a proprietary

software environment, designed and developed at the MAD laboratory. The CTBNs

framework, developed under the MATLAB environment, offers the following

functionalities:

• Load and compile; allows to load a CTBN model, to check its consistency and

to allocate the required data structures for its management.

• Query; gets both point and interval evidence and includes them in a previously

loaded and compiled CTBN model.

• Inference; offers the following algorithms; full amalgamation, EP and Gibbs

sampling.

• Reporting; reports on all the statistics, including posterior probabilities,

expected times to transition and expected number of transitions.

The correctness of approximate algorithms has been extensively tested exploiting

full amalgamation and the CTBN-LRE environment [37].

3 Acute cardiogenic heart failure

3.1 The continuous time Bayesian network model

Heart failure is a disorder in which the heart pumps blood inadequately. Because the

heart pumps oxygenated blood into the arterial vessels while taking unoxygenated

blood from the veins, the consequences of heart failure are twofold. On one side, it

leads to a reduced blood flow with a lower delivered oxygen into the peripheral

tissues, which in turn induces a reduced exercise capacity level and fatigue, or even
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an irreversible condition known as shock, in which cells become unable to meet

their metabolic functional needs. On the other side, heart failure induces congestion

of blood both in the veins and lungs, leading to shortness of breath and the

enlargement of organs. The first major advance for understanding the functional role

of the heart, is due to William Harvey in 1628, who provided the first scientific

demonstration of the circulation theory in his Exercitatio Anatomica de Motu Cordis
et Sanguinis in Animalibus [38]. Since then, many authors have added fundamental

contributions to explain the effects of various impairments of the cardiocirculatory

system on human health. Figure 1 shows how these findings were given a graphical

representation in terms of causal graphs, i.e. the qualitative component of the

CTBN.

The meaning of nodes in Fig. 1, the information concerning their accessibility to

medical investigation, the associated unit measure as well as the meaning of their

states are listed in Tables 1 and 2.

The consistency of the qualitative component of the CTBN model, i.e. the set of

directed arcs, is ensured by the current medical knowledge as described in an

authoritative textbook in the field of cardiology [39]. The model includes both

variables accessible to medical investigation and variables whose role was studied

only within an experimental setting. Some of the contemplated observations (Fig. 1)

are always accessible in the medical practice, like heart frequency (HF), mean

arterial blood pressure (BP) or the occurrence of pedal edema (LPE). Others can be

investigated only with the application of simple diagnostic procedures (Table 2).

The strength of the heart in pumping blood into the vascular system is represented

by the node Pump ([39], p. 412). Together with HF, the cardiac pump influences

both the left and the right cardiac output (LCO and RCO) ([39], p. 413), as well as

the left and right cardiac input (LCI and RCI) ([39], pp. 394–399). However, the

amount of blood coming out from the ventricles is constrained by the availability of

blood arriving in the left cardiac chamber. Thus, LCO depends on the BP within the

tract between the pulmonary capillaries and the left ventricle (PCtoLVcirc) ([39],

pp. 405–407), likewise RCO depends on the BP within the tract between the

capillaries and the right ventricle (CBRVcirc) ([39], p. 408). The amount of blood

entering the left and right heart do influences the pressure within two circulatory

tracts, respectively, the vessels between the PctoLVcirc and the vessels between the

CBRVcirc. Two nodes represent the amount of fluid exchanged with the external

environment. The first is labelled blood volume (BV), being affected by the balance

between the water intake (WI) and the urinary output (UO). As such, it is supposed

to influence the pressure within the systemic venous tract (CBRVcirc) ([39],

pp. 561–562). The second is labelled UO ([39], p. 574), which in turn depends on

the BP occurring in the systemic arterial tract (LVtoCBcirc). Furthermore, some

physiological mechanisms by which the organism restores the corrupted blood flow

were contemplated. The model already accounts for a decrease in UO when the

arterial BP is dropped to restore the normal pressure within the systemic arteries

(LvtoCBcirc) ([39], p. 478). In addition, the neurovegetative control (SS) over both

heart beat frequency and the systemic arterial resistance (VR) was also represented

([39], pp. 414–416). The node SS is sensitive to arterial BP (BP is regarded as a

manifestation of LVtoCBcirc) and it has, in turn, an impact on both arterial vascular
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resistance (VR) and HF ([39], pp. 417–418). Arterial VR might increase the

systemic arterial pressure (LvtoCBcirc) ([39], p. 478). A node representing the

persistence of symphatic neurovegetative activation (SS-pers) was included to

account for the impairment of such a control mechanism when it lasts for too long

(see the down-regulation described in [39], p. 440). As such, SS-pers is influenced

by the SS node, while it influences the VR node. Some variables show the status

of the cardiovascular system to a medical observer, specifically, whether some of

its tract is stagnant. Pulmonary congestion (PulmCong) might be the result of

stagnation in the pulmonary venous tract (RvtoPCcirc), whereby peripheral

Fig. 1 CTBN model for the acute myocardial infarction
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congestion (PeriphCong) might be the result of stagnation in the systemic venous

tract (CBRVcirc) (see Right-Sided vs. Left-Sided Heart Failure in [39], p. 473).

These two phenomena manifest themselves respectively with shortness of breath

(Dispn) ([39], pp. 475–477) and pleural effusion (PleuEff) on one side (see

hydrothorax in [39], p. 480), and pedal edema (LPE) on the other side (see edema in

[39], p. 480). The first scenario can be revealed directly by a low partial pressure of

arterial oxygen (O2pa) (see forward failure [39], p. 472), whereas a severe reduction

of blood perfusion gives rise to a fatal complicating condition known as shock

Table 1 Meaning of the nodes of the acute myocardial infarction CTBN

Node Meaning

AMI Acute episode of heart disease marked by the death or heart muscle damage

Angor Paroxysmal attacks of chest pain

BP Pressure exerted by the blood upon the walls of the radial arteries

BV Blood volume

CardEnz Enzymes delivered into the blood stream by damaged cardiac tissue

CBRVcirc Pressure exerted by the blood on the walls of veins from the capillary bed to the right

heart ventricle

CorObstr Reduction of blood flow through coronary arteries to the heart muscle

Dispn Difficult or laboured respiration

HF Number of heart beats per minute

LCI End volume that stretches the left heart ventricle to its greatest dimension

LCO Volume of blood ejected from the left heart ventricle

LPE Accumulation of excess fluid in the lower limbs fluid compartment

LVtoCBcirc Pressure exerted by the blood on the walls of the arteries from the left heart ventricle

bed to the capillary bed

PCtoLVcirc Pressure exerted by the blood on the walls of the veins from the pulmonary capillaries

to the left heart ventricle

PeriphCong Excess fluid in the peripheral fluid compartment

PleuEff Excess fluid in the pleural cavity

PulmCong Excess fluid in the pulmonary fluid compartment

Pump Cardiac muscle adequacy to eject blood from the left ventricle to support systemic

perfusion pressure

RCI End volume that stretches the right heart ventricle to its greatest dimension

RCO Volume of blood ejected from the right heart ventricle

RVtoPCcirc Pressure exerted by the blood on the walls of the arteries from the right heart ventricle

bed to the pulmonary capillary bed

O2pa Arterial blood partial pressure of oxygen

Shock Inadequate perfusion of tissues which is insufficient to meet cellular metabolic needs

SS Sympathetic nervous system activity

SS-pers Persistence of sympathetic nervous system activity

UO Urinary output

VR Resistance to flow that must be overcome to push blood through the arterial

circulatory system

WI Water intake

504 E. Gatti et al.

123



(Shock) ([39], pp. 561–563). Heart failure is said to be cardiogenic when the cardiac

muscle (Pump) is the organ from which the circulatory failure was triggered. In turn,

acute myocardial infarction (AMI) might be the cause of cardiac impairment,

although in most instances it is not. As any other infarction, AMI is due to lack of

Table 2 Accessibility, unit measures and state meaning for the nodes of the acute myocardial infarction

CTBN

Node Accessible MU 1 2 3

AMI No Absent Present

Angor Yes (history taking) Absent Present

BP Yes (sphygmoma-

nometry)

mmHg Low [\80] Mid [80–106] High [[106]

BV No mL Low [\4.41] Mid [4.41–5.39] High [[5.39]

CardEnz Yes (blood sample

analysis)

Absent Present

CBRVcirc No mmHg Low [\2] Mid [2–8] High [[8]

CorObstr No Normal Low Very low

Dispn Yes (history taking) Absent Present

HF Yes (physical

examination)

beat/min Low [\60] Mid [60–90] High [[90]

LCI No mL/min Low [\4.2] Mid [4.2–6.3] High [[6.3]

LCO No mL/min Low [\4.2] Mid [4.2–6.3] High [[6.3]

LPE Yes (physical

examination)

Absent Present

LVtoCBcirc No mmHg Low [\80] Mid [80–106] High [[106]

PCtoLVcirc No mmHg Low [\11] Mid [11–23] High [[23]

PeriphCong No Absent Present

PleuEff Yes (chest

radiography)

Absent Present

PulmCong No Absent Present

Pump No Normal Reduced

RCI No mL/min Low [\4.2] Mid [4.2–6.3] High [[6.3]

RCO No mL/min Low [\4.2] Mid [4.2–6.3] High [[6.3]

RVtoPCcirc No mmHg Low [\12] Mid [12–16] High [[16]

O2pa Yes (blood

gas-analysis)

mmHg Very low [\60] Low [60–80] Normal [[80]

Shock No Absent Present

SS No Parasymphatic Normal Symphatic

SS-pers No Inactive Active

UO Yes (daily urinary

output collection)

um Low [\500] Mid [500–2,000] High [[2,000]

VR No dyn�s
cm5

Low [\900] Mid [900–1,200] High [[1,200]

WI Yes (daily drunken

liquid recording)

mL Low [\500] Mid [500–2,000] High [[2,000]
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arterial perfusion of the organ tissues. In case of AMI, obstruction of coronary

arteries (CorObstr) occurs, whose blood supply comes from the main arterial

system (LvtoCBcirc) (see ischemic heart disease [39], p. 435). One well known

manifestation of coronary obstruction (CorObstr) is an intense chest pain ([39],

pp. 1226–1228), called angina pectoris (Angor) ([39], p. 1235). Only when

obstruction is both severe and lasting is there infarction, it manifests with the

increase of cardiac enzymes (CardEnz) in the blood stream ([39], pp. 1239–1240)

and, in functional terms, the impairment of the cardiac pump (Pump) ([39],

p. 1230). In turn, intense pain stimulates the neurovegetative system with an

increment of sympathetic activity and, therefore, of BP ([39], p. 1237) and HF

([39], p. 1238).

The quantitative component of the CTBN model, i.e. the CIM parameters, were

elicited on the basis of the medical expertise of one of the authors (DL). Since each

CIM includes a large number of parameters, whose interpretation is also far from

being trivial, the attention was diverted on the parameters of the conditional

probability tables (CPTs) that within a time interval of 10 s represent the impact of

the parents on each node as their correspondent CIMs would do in continuous time.

To further reduce the number of quantities to elicit, this task was accomplished in

two steps. The first concerned the elicitation for each node of a conditional

probability distribution based on a small number of parameters. The second

addressed the quantification of the parameters. The time-interval of 10 s was

deemed short enough to capture interesting dynamics, whereby the periodical

changes of some physiological variables like cardiac alternation of the systole and

diastole phases could be neglected. The distribution probabilities over all the

parents’ combinations for each node were parameterized in terms of well-known

functions (Noisy-Or-Gate and multivariate Gaussian), according to the type of

variable (discrete, binary, continuous) and considering whether an interaction

among the parents was known to occur. Whenever the assumptions underlying a

parametric distribution were found to be not consistent with medical knowledge on

a specific node-parents relationship, the CPT was generated by a mixture of

parametric distributions, each defined by a specialized set of parameters conditioned

by combinations of the parents. The whole procedure from the Noisy-Or-Gate to the

corresponding CIM for the node Pump is depicted in Fig. 2.

3.2 Inference

To validate the model, we enter it with a set of patient observations whose

explanations and consequences do generally appear straightforward to the medical

profession. The current analysis encompasses the impact of clinical manifestations,

i.e. BP, Dispn, HF, Angor and LPE, whereas associated laboratory or imaging

observations, like CardEnz, O2pa, PulmCong and PleuEff, were only predicted

along with other relevant outcomes, like the potential occurrence of shock (Shock).

Since manifestations are derived from patient monitoring, they are referred to a time

interval. For the purpose of our analysis, all cases are assumed to be normally

hydrated cases, so WI was always kept to the normal state (mid).
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In light of the above consideration, the following three scenarios should provide

some evidence on the ability of the model to explain the simulated observation and

to predict their potential consequences.

3.2.1 Scenario 1

The patient shows low BP (BP = low), an increased HF (HF = high), no chest pain

(Angor = absent), pedal edema (LPE = present) together with shortness of breath

(Dispn = present). All these manifestations last for 5 h. Therefore, the CTBN

model is queried with the following interval evidence;

½BP ¼ low;HF ¼ high;Angor ¼ absent; LPE ¼ present;Dispn ¼ present;WI
¼ mid�;

for the time interval from 0 to 5 h, and with the interval evidence [WI = mid], for

the time interval from 5 to 6 h.

The occurrence of pedal edema (LPE = present) and shortness of breath

(Disp = present) would make the doctor keen on the diagnosis of congestive heart

failure, involving both the right and the left heart side. The absence of angor

(Angor = absent) would make a diagnosis of AMI very unlikely. The doctor is aware

that such a condition, if left untreated, could lead to shock. Conditionally on the above

Fig. 2 Pump, from Noisy-Or-Gate to CPT to CIM
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interval evidence, the posterior probability of shock (Shock = present) attains the

highest peak at the end of the observations, reaching a posterior probability value equal

to 0.59. A node belonging to the body internal state of the CTBN model for the AMI

(Fig. 1), i.e. the node Pump shows a reduced pump strength. Indeed, the posterior

probability value associated with Pump = reduced is equal to 0.97 one hour after the

initial observations (Fig. 3). Instead, the posterior probability value associated with

the AMI (AMI = present) remains low (\0.01) during the whole period of interest

(Fig. 4). This means that the patient is affected by primary congestive heart failure,

whereas the adjective primary refers to a disease that is not the secondary result of

another disease. The increased probability value of the low UO (UO = low) (0.22

at the end of the observations) and the likely absence of cardiac enzymes

(CardEnz = present) (\0.015) reinforces the above diagnosis.

3.2.2 Scenario 2

The patient shows normal BP (BP = mid), increased HF (HF = high) and

substernal chest pain (Angor = present). The patient does not show pedal edema

(LPE = absent), nor shortness of breath (Dispn = absent). These manifestations

are supposed to last for 45 min. Therefore, the CTBN model is queried with the

following interval evidence:

½BP ¼ mid;HF ¼ high;Angor ¼ present; LPE ¼ absent;Dispn ¼ absent;WI
¼ mid�;

for the time interval from 0 to 45 min ([0, 0.75)), and with the following interval

evidence [WI = mid], for the time interval from 45 min to 6 h ([0.75, 6)).
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Angor persisting (Angor = present) for more than half an hour, is a classical

marker of AMI. Therefore, the pump strength is expected to be unaffected, since

there are no signs of heart failure (LPE = absent and Disp = absent). The model

predicts, even after 1 h, a very low probability value (0.0052) of shock being present

(Shock = present) (Fig. 5). The probability of AMI (AMI = present) becomes as

high as 0.45 after half an hour of persisting angor, but it decreases after the end of

chest pain (from 0.49 to \0.02 after 15 min) (Fig. 5). Cardiac enzymes follow a

similar evolution. The probability of a reduced pump strength (Pump = reduced)

remains low (\0.10) (Fig. 5) during the time interval, likewise the probability of its

associated manifestations, e.g. UO.

3.2.3 Scenario 3

The patient shows normal BP (BP = mid), with increased HF (HF = high) and

chest pain (Angor = present). Like in scenario 2, the patient does not show

shortness of breath (Dispn = absent) nor pedal edema (LPE = absent). However,

the manifestations last only for 15 min. After this interval, the angina disappears

(Angor = absent) for the next 15 min. Therefore, the CTBN model is queried with

the following interval evidence;

½BP ¼ mid;HF ¼ high;Angor ¼ present; LPE ¼ absent;Dispn ¼ absent;WI
¼ mid�;

for the time interval from 0 to 15 min ([0, 0.25)), with the following interval

evidence
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½BP ¼ mid;HF ¼ high;Angor ¼ absent; LPE ¼ absent;Dispn ¼ absent;WI
¼ mid�;

for the time interval from 15 to 30 min ([0.25, 0.50)), and with the interval evidence

[WI = mid], for the time interval from 30 min to 6 h ([0.50, 6)).

Physicians regard the occurrence of angor as a threatening condition because of

its association with coronary obstruction, the cause of myocardial infarction.

However, from a clinical point of view, when the chest pain does not persist for at

least half an hour, the occurrence of AMI is unlikely. According to the model, heart

failure and shock are unlikely events. In the following hour, the posterior probability

of shock (Shock = present) remains low (\0.005), likewise the probability of any

other abnormal state (Fig. 6).

4 Discussion

The temporal dimension is an essential feature of medical reasoning and decision

making. The diagnosis may take advantage from knowing the persistence of

observations, and therapy may be optimized in light of the likely future evolution of

the medical disorder by anticipating complicating diseases. The epidemiological

relevance of heart failure and the usefulness of accurate predictions in the correct

management of such an evolving disorder is confirmed by other contributions

addressed to the formal representation of the disorder. Although methodologically

different, they are all attempts to provide the problem with a quantitative analysis to

be exploited in the medical practice. For instance, the Seattle Heart Failure Model
is based on a survival model [40] and is probably the first computer-based
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application to translate medications and devices that a heart failure patient receives

in predicted years of survival. However, this model does not represent the process

by which the outcomes are affected and, like most multivariate statistical analysis, it

is focused on the evolution of chronic heart failure, not on episodes of its

reacutization [41].

Bayesian reasoning and inference procedures have gained popularity in the

fusion of information obtained from different sources. Perhaps their greatest

potential in the clinical setting is to provide a pathophysiological interpretation of

events that might be variably accessible to observations. An influence diagram has

been proposed to predict heart contractility dysfunctions reflected in the condition of

systolic heart failure [42]. Although the model is already structured as a decision

support system, it is based on a static BN representation; this way it skips the

complexity of inference along the temporal dimension. In spite of the prevalence of

proportional hazard models as prognostic models in medicine, DBNs have been also

proposed to take advantage of the causal and temporal nature of medical domain

knowledge as elicited from domain experts [43].

To the best of the authors’ knowledge, there has been only one attempt to model

the evolution of heart failure by means of DBNs [8]. The network is based on a time

granularity of minutes, rather than seconds like in our application. While this

interval can offer a summarised picture on how the disorder evolves, it is also likely

to affect the consistency of the dynamic to represent. On the other hand, BNs do not

provide direct mechanisms for representing temporal dependencies, so any DBN

representation, resulting from the assemblage of several BNs for each time of

interest, tends to become rapidly intractable when applied to large but realistic

domains [44]. The CTBNs framework overcomes most of the difficulties presented
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above, making it possible to elaborate inference on medical problems where the

temporal information about a set of manifestations is available from clinical reports

or monitoring instrumentation. As such, it might represent a significant improve-

ment over DBNs.

The validity of the qualitative component of the proposed model was addressed

by showing the consistency of the graphical structure of the CTBN with a medical

textbook of cardiology [39]. Medical expertise was exploited to define the

quantitative component, the elicitation of which took advantage of the preliminary

reduction in the parameters underlying the CIMs. Further research is needed to

provide a quantitative assessment of the predicted probabilities, a task which has

been proven to be challenging for any probabilistic expert systems, given that data

on large domains are generally lacking [45]. Notwithstanding, the clinical scenario

offers several clues on the validity of quantitative predictions in the light of what

medical doctors would expect given the selected patient manifestations. Of note,

those predictions were achieved by means of ordinary hardware resources.

The comparison of Scenario 2 and Scenario 3 allows us to appreciate the impact

of evidence known to be relevant for the occurrence of heart failure, although the

reason of failure could be different. The first case study shows the typical

consequences of a congestive heart failure, whereby the second patient shows

symptoms of one potential cause of heart failure, i.e. AMI. In Scenario 1, the model

correctly detects a primitive pump deficit as the cause of heart failure, anticipating

shock as a likely future complication. Instead, there are no reasons to hypothesize a

pump deficit as a secondary consequence of AMI. In Scenario 2, because the

probability of heart failure is low and there are no symptoms of heart failure, the

model correctly shows an uncomplicated AMI as the most likely diagnosis. Scenario

2 and Scenario 3 show the same set of manifestations, but their comparison allows

us to appreciate the impact of duration of pathological events. Physicians are aware

that substernal chest pain is a symptom of coronary obstruction, whose impact on

the myocardial tissue depends on the persistence of obstruction. Since an interval of

30 min is generally regarded as the trade off over which the occurrence of infarction

becomes more likely than a simple angina episode, the model correctly discrim-

inates the underlying diagnostic explanations of the two cases.

Finally, at the current stage of their development, CTBNs do not encompass an

explicit decision analysis. Optimal options in temporal domains are particularly

complex to compute. Even if the problem encompasses the selection of a single

decision, the latter can nevertheless be affected by the future candidate decisions

[7]. Like in [25], we rest on the inferential ability to compute the uncertainties on

the main clinical variables, leaving to the doctor the choice of making the most

appropriate decision in light of the quantitative updating of both diagnostic and

prognostic judgements.

5 Conclusions

In this paper the authors have described the first clinical application of

developments in the research area of continuous time graphical models. This
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approach allows a direct representation of time and offers a valid computational

machinery for medical inference.

The predictions emerging from the three scenarios have confirmed the heuristic

power of the proposed framework and have allowed a quantitative evaluation of the

expected time before each variable changes its state. The proposed model has then

the potential to be used for diagnostic purposes, as well as to develop a strategic

plan to reduce the risk associated with each patient treatment.

Additional improvements are needed to turn the CTBN on cardiogenic heart

failure into a practical medical tool. Quantitative parameters might be further tuned

to achieve posterior probabilities that better fit with expectations derived from

pathophysiological knowledge. This could be achieved by learning the CIMs

directly from clinical data.

The usefulness of the CTBN could be further increased with the embedding of

the CTBN model into a DSS which assists the clinician to choose and to apply the

correct therapy. However, a decision analysis would preliminarily call for the

computability of posterior probabilities of models at least as complex as the one

presented. Thus, we anticipate the usefulness of CTBNs in clinical domains where,

like in the case of heart failure, there is growing interest in quantitative predictions.
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