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Abstract This study examined whether the aerobic 
swimming capacity of zebrafish juveniles is affected 
by the exposure of the yolk-sac larvae to sublethal 
concentration of Microcystis aeruginosa extract 
(200  mg dw  L−1). Critical swimming speed signifi-
cantly decreased in the pre-exposed fish (9.2 ± 1.0 
vs 11.3 ± 1.4 TL  s−1 in the control group). Exposure 
did not have any significant effects on the shape of 
the heart ventricle, rate of skeletal abnormalities, and 
growth or survival rates. Decreased swimming per-
formance due to the early and short exposure to M. 
aeruginosa could have negative impacts on fish in the 
wild.
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Introduction

Cyanobacterial harmful algal blooms (CyanoHABs) 
constitute a growing threat for ecosystems and pub-
lic health (Paerl 2014). Microcystis aeruginosa is 
one of the predominant species in CyanoHABs that 
produces the endotoxin microcystins (MCs), together 
with a variety of other biologically active com-
pounds (e.g., retinoids and oestrogenic compounds, 
Pipal et al. 2020; b-cyclocitral and b-Ionone, Li et al. 
2021). M. aeruginosa (MA) extracts have high acute 
toxicity to the early life stages (ELS) of fish, mainly 
in the form of reduced survival and elevated malfor-
mation rates (Ghazali et  al. 2009; Jonas et  al. 2015; 
Saraf et al. 2018). At sublethal exposure levels, MA 
extracts may have less severe but persistent effects 
on developing fish. Sergi et  al. (2022) demonstrated 
that exposure of zebrafish embryos (up to hatching, 
48 h post-fertilization, hpf) to MA extracts resulted in 
decreased swimming performance, rounder heart ven-
tricles, and elevated rates of vertebral abnormalities 
at later developmental stages.

Following our recent work on the prolonged effects 
of MA on zebrafish (Sergi et al. 2022), here, we hypoth-
esized that exposure to sublethal levels of MA during the 
yolk-sac larval stage (from hatching to swimbladder infla-
tion, 54–96 hpf) could also induce long-lasting effects 
in the swimming performance and anatomy (ventricular 
shape, skeleton abnormalities) of zebrafish juveniles.
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Materials and methods

Zebrafish culture and exposure to M. aeruginosa 
extracts

Yolk-sac larvae were exposed by immersion to MA 
extract (200 mg biomass dw  L−1), in glass beakers 
containing 150 larvae in 200  mL medium volume. 
Clean water was used for the control group. All tri-
als were performed in two independent replicates. 
Following a 42-h exposure period, first-feeding 
larvae were reared up to the metamorphosis stage 
(22 dpf, ca 12–13 mm total length) in clean water, 
following the methodology of Sergi et  al. (2022). 
In brief, larvae were reared into cubic net pens of 
4.5 L volume each (0.1 mm mesh size), at 28.0 °C 
(± 0.5  °C), 86–95% oxygen saturation, 14/10  h 
light–dark photoperiod, 520–620 μS  cm−1 conduc-
tivity, and 7.1–7.6 pH. To ensure common abiotic 
conditions for all experimental groups, pens were 
positioned into one common aquarium of 40 L vol-
ume, equipped with a biological filter. Larvae were 
fed five times daily with Artemia nauplii (Artemia 
AF, INVE, Determonde, Belgium) and commer-
cial dry microdiets (Zebrafeed, Sparos Lda, Olhao, 
Portugal).

The selection of the tested extract concentration 
was based on the results of previous studies show-
ing that 200 mg dw  L−1 is the higher level that does 
not affect the survival rate of zebrafish embryos 
(Sergi et  al. 2022). To test whether the selected 
level was not lethal for the early larval stage too, 
preliminary duplicated trials were performed by 
subjecting zebrafish yolk-sac larvae (54–96 hpf) to 
five extract concentrations (0, 50, 100, 200, 400 mg 
dw  L−1). Fifty newly hatched yolk-sac larvae were 
used for each replicate and condition.

In all the trials, during the exposure period, oxy-
gen saturation levels were controlled at normal 
levels by a gentle aeration of the medium, through 
pipette tips. The exposure medium was renewed 
twice daily. Before every medium renewal, dead 
embryos were removed, and oxygen levels, water 
temperature, and pH were measured. The effect of 
MA extract concentration on the measured abiotic 
conditions and fish survival rate was tested by means 
of the Kruskal–Wallis and Mann–Whitney U tests.

Extract preparation

Cell-free crude MA extracts of lyophilized mass of 
M. aeruginosa (PCC 7806) culture were prepared 
as described in Sergi et  al. (2022). Lyophilised MA 
mass was diluted in nanopure water and submitted 
to ultrasonic treatment on ice. The suspensions of 
broken cells were centrifuged, and the supernatants 
were stored at − 20 °C. Crude MA extracts contained 
1.15 mg MCs  L−1 at 200 mg biomass dw  L−1 (Sergi 
et al. 2022).

Swimming performance assay and heart morphology

Relative critical swimming speed (RUcrit) was esti-
mated by conducting incremental swimming tests, 
in a swimming apparatus composed of a swimming 
tunnel (70 cm length, 10 cm depth, 5 cm width) and 
two holding tanks (Koumoundouros et  al. 2009). 
Different flow regimes were obtained using external 
magnetic pumps with adjustable valves. An electro-
magnetic flow meter (Valeport, Model 801) was used 
to calibrate water speed in the tunnel. After a 5-min 
acclimation period in static water, fish were exposed 
to an increasing water velocity (2 TL  s−1 raise every 
15 min), at 28 °C, until each individual was fatigued 
and unable to swim. After the swimming tests, fish 
were anesthetized (MS222), measured for TL, and 
fixed in buffered formalin. From each experimental 
group and replicate, 10–12 (22–24 in total) fish were 
tested for RUcrit.

Fig. 1  The effect of yolk-sac larval exposure to sublethal lev-
els of Microcystis aeruginosa extracts on fish mean survival 
rate at the end of the exposure period (96 hpf). Error bars are 
equal to 1 SD. n = 2
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After swimming tests, formalin-fixed specimens 
(4–5 per experimental replicate, 9–10 per treatment) 
were stained with phosphomolybdic acid and exam-
ined for cardiac ventricle shape, by micro-CT imaging 
(SkyScan 1172, 2.0–2.5 μm pixel size, 50 kV voltage, 
199 μA, 650  ms exposure time, 0.4° rotation step, 
180° total rotation). Obtained projection images were 
then reconstructed to cross-sections and imported in 
the Amira v.5.2 software (Visage Imaging, Burling-
ton USA). Ventricle morphometry was performed on 
the sagittal plane, as it was defined by the 1st verte-
bra, the ventral tip of cleithra, and the posterior of 
bulbus arteriosus. The ventricle length-to-depth ratio 
(VL/VD) was used for the measurement of ventricle 
roundness (Sergi et al. 2022).

The effect of MA exposure on the RUcrit and ven-
tricle roundness was tested using the Mann–Whitney 
U test.

Skeletal abnormalities and fish growth

Fish total length (TL) was measured at 22 dpf (days 
post-fertilization), on a random sample of 46–56 
fish per replicate, individually anesthetized (2-phe-
noxyethanol, 0.2–0.3  mL  L−1) and photographed. 
Fish samples were then stained for bone and carti-
lage (Walker and Kimmel 2007) and microscopically 

examined for the presence of skeletal abnormalities 
(e.g., deformations, missing elements, fusions). The 
effect of MA exposure on fish TL was tested using 
the Mann–Whitney U test. Differences in abnormality 
rates between the exposed and control groups were 
tested using G-test (Sokal and Rolhf 1981).

Results and discussion

Within the tested range, results indicated that MA 
extract concentration did not significantly affect fish 

Fig. 2  The effect of yolk-sac larval exposure to M. aeruginosa 
extract (200 mg dw  L−.1) on the swimming performance and 
anatomy of zebrafish juveniles. A Critical swimming speed 
(RUcrit), separately for each experimental replicate (RepA, 
RepB), or pooled. B Mean frequency of vertebral defects 
(arrows in B’). C Ventricle shape (VL/VD). C’ Oblique slice 

showing the distance measurements taken (ven, ventricle; 
ba, bulbus arteriosus). One, ventriculo-bulbar valve. Two, 
apex. Three and 4 define the maximum ventricle depth (VD), 
perpendicularly to ventricle length (VL). Error bars = 1 SD. 
Numbers in parentheses (A, C) give the size of the samples. 
***p < 0.001

Table 1  Comparative responses (% change with respect to 
control) of zebrafish metamorphosing larvae to embryonic or 
yolk-sac larval exposure to M. aeruginosa crude extracts

1 Sergi et al. (2022)
2 Present study

Embryonic 
 exposure1

Yolk-sac 
larval 
 exposure2

Exposure period (hpf, 28 °C) 1–48 54–96
Swimming performance  − 14.3%  − 17.9%
Ventricle roundness  + 13.8% ns
Vertebral abnormalities  + 1071% ns
Survival rate ns ns
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survival (p > 0.05, Fig.  1), water oxygen concentra-
tion, and pH (Table S1).

Consistent with our initial hypothesis, pre-expo-
sure to MA extract had a significant effect on fish 
swimming performance at late metamorphosis 
(p < 0.001). Compared with controls, MA-exposed 
fish presented a 17.9% decrease of the mean RUcrit 
(9.2 ± 1.0 in the pre-exposed vs 11.3 ± 1.4 TL  s−1 
in the control group, mean ± SD of the pooled data) 
(Fig. 2A). No significant differences existed in fish TL 
between the control and the exposed fish which were 
tested for RUcrit (Table  S2). The observed decrease 
in RUcrit (present study) is similar to that reported 
by Sergi et al. (2022, 14.3%) to result from zebrafish 
exposure to MA during the embryonic stage.

Our initial hypothesis was rejected in the case of 
abnormalities frequency (Fig. 2B, B’) and ventricle shape 
(Fig. 2C, C’), which presented no significant differences 
between the pre-exposed and control fish (p > 0.05). 
Detected abnormalities appeared mainly in the form of 
abnormal haemal and neural processes of the vertebral 
column (Fig. 2B’). Contrarily to our results, Sergi et al. 
(2022) showed that MA exposure during the embryonic 
stage resulted to an increased (by 11 times) abnormality 
rate and ventricle roundness (by 13.8%) (Table 1). Simi-
larly to findings by Sergi et al. (2022), at the end of meta-
morphosis, no significant differences in survival rate and 
fish size were observed between the pre-exposed and the 
control groups (p > 0.05, Fig. 3A, B).

To conclude, yolk-sac larval exposure to MA 
induced similar long-lasting effects on zebrafish 
swimming performance as in Sergi et  al. (2022), 
but did not affect the ventricle shape and vertebral 
formation (Table  1). Despite the protective role of 

chorion, the sensitivity of zebrafish embryos to MA 
extracts (Table 1) might be linked to alterations of 
critical developmental processes, that take place 
before hatching and define fish development in the 
following stages. Somitogenesis and notochord dif-
ferentiation in zebrafish take place before hatching 
(9–22 hpf, Kimmel et  al. 1995), and, when defec-
tive, they result in the development of vertebral 
abnormalities during the following larval and juve-
nile period (Fleming et al. 2004; Lleras Forero et al. 
2018). Similarly, long-lasting changes in ventricle 
shape (Sergi et al. 2022) might be linked with MA-
induced changes of prior-to-hatching cardiac devel-
opment events (e.g., chamber emergence, valvulo-
genesis, Glickman and Yelon 2002; Kalogirou et al. 
2014). In the current study, RUcrit decrease in the 
MA pre-exposed fish was not linked to any cardiac-
shape alterations or vertebral defects. Future studies 
could benefit from examining whether this decrease 
in RUcrit is linked to alterations of other features 
that are known to control aerobic swimming speed 
in fish (muscle physiology and/or functionality, 
mitochondria number, gill’s structure).
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