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Abstract The aim of the present study was to

evaluate bioaccumulation of metals in various tissues

of the freshwater fish Cyprinus carpio L. exposed to

cadmium and copper (a xenobiotic and a microele-

ment). The fish were subjected to short-term (3 h, Cd-

S and Cu-S) or long-term (4 weeks, Cd-L and Cu-L)

exposures to 100 % 96hLC50 or 10 % 96hLC50,

respectively. Blood, gill, liver, head and trunk kidney

were isolated weekly from 5 fish of each group for

4 weeks (post-short-term exposure and during long-

term exposure). Atomic absorption spectrophotometry

technique was applied to measure concentrations of

metals (Cd and Cu) in fish tissues. Initial concentra-

tions of copper in fish tissues were higher than levels

of cadmium. Cadmium and copper levels increased in

all tissues of metal-exposed fish. After short-term

exposures (at higher concentration) and during long-

term exposures (at lower concentration), similar

changes in metal concentrations were observed. The

values of accumulation factor (ratio of final to initial

metal concentration) were higher for cadmium as

compared to copper. Comparison of metal levels and

accumulation factors in various tissues revealed that

cadmium and copper showed very high affinity to head

kidney of common carp (higher than to other tissues),

but accumulation factors for cadmium in trunk, head

kidney and liver were much higher than for copper.

The concentrations of copper in organs of Cu-exposed

fish increased only slightly and quickly returned to the

control level, which shows that fish organism easily

buffered metal level. On the other hand, concentra-

tions of cadmium considerably increased and

remained elevated for a long time which suggests that

activation of mechanisms of sequestration and elim-

ination of cadmium required more time.

Keywords Head kidney � Bioaccumulation �
Cadmium � Copper � Fish � Toxicity

Introduction

In clean natural waters, concentrations of cadmium

and copper are very low, but in contaminated waters,

they may increase as a result of human activities.

Copper-containing compounds are used in aquaculture

and agriculture: e.g., pesticides, fungicides, herbi-

cides, bactericides (Murray-Gulde et al. 2002; Carv-

alho and Fernandes 2006). Main source of Cd

pollution is industry: mines and foundries, phos-

phate fertilizer production and electroplating wastes

(Wittman and Hu 2002; Bonda et al. 2007).

Copper and cadmium are metals, which are highly

toxic to aquatic animals (Jezierska and Witeska 2001;

Mendez-Armenta and Rios 2007). Cadmium is a
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xenobiotic and does not play any known metabolic

role. It is genotoxic, mutagenic, carcinogenic and

teratogenic (Walker 2000; Gabbianelli et al. 2003;

Cavas et al. 2005). On the other hand, copper is an

important essential element involved in various met-

abolic processes, e.g., neurotransmitter function, iron

absorption from the intestine or synthesis of hemo-

globin—it plays an important role in production of red

blood cells (erythropoiesis), it is also a component of

many enzymes (Fedeli et al. 2010). Both copper

shortage and excess exert adverse effects on organ-

isms. However, the boundary between necessary and

toxic concentration of copper is difficult to determine,

because toxic potential of metals depends on many

factors: physiochemical properties of aquatic environ-

ment, fish health or age- and species-specific sensi-

tivity to intoxication (Bozhkov et al. 2010).

Metals get to fish organism different ways: directly

from water by gills and skin or by alimentary tract

(with food). Most of metal absorbed by fish organism

is transported within the body by blood (Pelgrom et al.

1995; Akahori et al. 1999; Bonda et al. 2007). The

largest quantities of cadmium and copper are accu-

mulated in metabolically active tissues (e.g., liver,

kidney, alimentary tract, spleen), where thay are

bound to metallothioneins—MT (Kito et al. 1982;

Roesijadi 1994, Roesijadi et al. 1996; Pelgrom et al.

1995; Castano et al. 1998; Hermesz et al. 2001; Calta

and Canpolat 2006; Rose et al. 2006; Panchanathan

and Vattapparumbil 2006; Wu et al. 2007; Asagba

et al. 2008; Dang et al. 2009; Kovarova et al. 2009).

The MT plays an important role in the homeostasis of

essential metals such as Cu and Zn and the sequestra-

tion of nonessential metals, like Cd and Hg (Coyle

et al. 2002). MT containing about 25–35 % cysteine,

due to which they have high binding capacity for

metals. All SH-groups may bind a metal ion; however,

about 50 % of metal-binding sites are always saturated

with Zn. One MT molecule can sequester 6–7

cadmium molecules (Hamer 1986). Two MT isoforms

corresponding to classes MT-1 and MT-2 were

isolated from the kidney and hepatopancreas of the

common carp (Kito et al. 1986; Hermesz et al. 2001).

Metal accumulation depends on tissue metabolism and

other factors such as dose of metal, time of exposure,

chemical form of metal or species and age of fish

(Bielmyer et al. 2006; Bonda et al. 2007).

Accumulation of cadmium and copper in fish

tissues has been extensively studied by many authors

(e.g., De Conto Cinier et al. 1997; Kraemer et al. 2005;

Calta and Canpolat 2006; Celechovska et al. 2007;

Karaytug et al. 2007; Singh et al. 2008; Vinodhini and

Narayanan 2008; Rauf et al. 2009), but affinity of

metals to head kidney (pronephros) and their toxicity

to this organ are almost unknown (Garofano and

Hirshfield 1982; Ghosh et al. 2007; Som et al. 2009;

Kondera and Witeska 2012).

Head kidney plays an important role as main

hematopoietic organ in most teleost fishes (Fange

1994; Houston et al. 1996; Fijan 2002a, b; Romano

et al. 2002; Moritomo et al. 2004; Rombout et al. 2005;

Gangopadhyay and Homechaudhuri 2011). Pronephros

functions also as a secondary lymphoid organ in which

large numbers of antibody producing cells reside.

Moreover, production of corticosteroids and catechol-

amines (hormone participating in stress response) takes

place in head kidney (Wendelaar Bonga 1997; Hontela

1998). Therefore, hematopoietic, immune and endo-

crine functions are combined in pronephros (Wend-

elaar Bonga 1997; Weyts et al. 1999), thus cadmium

and copper accumulation in head kidney can produce

toxic effects on many important physiological pro-

cesses in fish. Subletalne concentrations of both metals

can change hormone levels (Hontela 1998; Lizardo-

Daudt et al. 2007; Ramesh et al. 2007; Dangre et al.

2010), immunological mechanisms (Petanova et al.

2000; Jelovcan et al. 2003; Lafuente et al. 2004) or

hematological parameters (Kondera and Witeska 2012;

Witeska et al. 2010, 2011).

The aim of the present study was to evaluate the

bioaccumulation of metals in the most important

tissues participating in uptake, transport, metabolism

and excretion of metals (blood, gill, liver and trunk

kidney), and the head kidney as a key hematopoietic

organ of the fresh water Cyprinus carpio L. exposed to

cadmium and copper.

Materials and methods

Six-month-old carp juveniles (C. carpio L.) of body

mass 21.6 ± 8.3 g were harvested in autumn from the

rearing pond of the Inland Fisheries Institute in
_Zabieniec. At the Department of Animal Physiology,

University of Natural Sciences and Humanities in

Siedlce the fish were acclimated for a month to the

laboratory conditions in the flow-through aerated

tank, at the temperature 17–18 �C (dissolved oxygen
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level 66–87 % of saturation, concentration of

NO2
- 0.02–0.06 mg/dm3 and NH4

? 4.6–7.1 mg/dm3).

The fish were fed Aller Classic 4 mm pellets (30 %

protein, 7 % fat, 43 % carbohydrate, 7 % ash, 5 %

fiber) once a day at the rate of 2 % of body mass/day.

Then, the fish were transferred to 100 dm3 aerated

aquaria (10 fish in each) and fed Aller Aqua Classic

4 mm (1 % of stock mass/day, once a day before water

renewal). Every day three-fourth of water was

renewed without disturbing fish. Prior to the experi-

ment, 96-h survival tests were performed, and

96hLC50 values were calculated using the probit

method for both metals. Concentrations used in the

experiment were based on 96hLC50 values to ensure

the same toxic power of both metals. The fish were

subjected to short-term exposures (3-h exposure to

6.5 mg/dm3 cadmium or 0.75 mg/dm3 copper—

100 % of 96hLC50—groups Cd-S and Cu–S) and

long-term exposures (4-week exposure to 0.65 mg/dm3

cadmium or 0.075 mg/dm3 copper—10 % of

96hLC50—groups Cd-L and Cu-L). Experimental

solutions were made using CdCl2 9 2�H2O and

CuSO4 9 5H2O. Control group was kept in clean

tap water (0.3–1 lg/dm3 of Cd, 2–33 lg/dm3 of Cu,

pH 7.5–7.6, hardness 179–198 mg/dm3 CaCO3).

Blood (1 cm3), main hematopoietic organ—head

kidney and the most important organs participating in

uptake, transport, metabolism and excretion of metals

(gill, liver and trunk kidney) were sampled weekly for

1 month from 5 fish from each metal-exposed group

(total number of fish = 80), and 10 fish in control

group. The separated tissues were weighed (the

laboratory weight Radwag the wax 40/160

No. 103440) and dried for 48 h at 70 �C. Dried tissues

were manually ground in the mortar, transferred to

beakers and dissolved in 2 cm3 of 69 % HNO3 (the

Trace the Pur, Merck). After 24 h, 1 cm3 of 33 % H2O2

(Trace Pur, Merck) was added, and the samples were

heated for 1 h to boiling in water baths to complete

mineralization of tissues. Then, the concentrations of

copper (using AAS flame method) and cadmium (using

ETAAS method with electrothermal atomization)

were measured in all samples in the atomic absorption

spectrophotometer (the AAS-30 the Zeiss) in the

Institute of Chemistry of Siedlce University of Natural

Sciences and Humanities (Oprządek et al. 2006, 2010).

Concentrations of metals in fish tissues were calculated

according to calibration curves (0.001–0.1 lg Cd/ml

and 0.1–0.25 lg Cu/ml). For copper, 1–2 replicates of

each sample were analyzed, while for cadmium 3–5.

Accuracy and precision of methods applied were

evaluated using prawn certified reference materials

(GBW 08572). The results showed good accordance

with the certified values (93–103 %). Concentrations

of metals in fish tissues were calculated per 1 g of fresh

mass of each organ, and the results were given as

lg/g wet weight. Cadmium and copper accumulation

factors—A (the ratio of final to initial metal concen-

tration) were also calculated.

The obtained results were subjected to statistical

analysis using the nonparametric U Mann–Whitney

test, assuming that differences were significant at

p B 0.05.

The study obtained agreement of the III Local

Ethical Committee at the Warsaw University of Life

Sciences (No. 41/2008).

Results

In tissues of fish from the control group, the level of

copper was 3.1–38.7 lg/g, while concentrations of

cadmium were much lower: 0.1–3.6 lg/g. Concentra-

tions of both metals in the control group were the

highest in head kidney, while the lowest levels were

observed in trunk kidney (Cd) and gill (Cu).

In head kidney, the level of cadmium (Table 1)

considerably increased in 1 week after short-term

exposure and reached the maximum level: 461.7 lg/g

(A = 127.2), then gradually decreased and in 4 weeks

the value was similar as in the control (Fig. 1). In fish

subjected to long-term Cd-exposure cadmium con-

centration increased until the 2 weeks (A = 37.4), and

then decreased, but remained elevated above the

control level until the end of experiment. A significant

increase in level of copper (Table 2) was noted only in

4 weeks after short-term exposure (A = 2.5) and in

2 weeks of long-term exposure (A = 1.9).

Both short- and long-term exposures of fish in

cadmium-contaminated water (Table 1) caused a strong

increase in the level of this metal in liver in 1 week of

the experiment: Cd-S1 (A = 22.8) and Cd-L1 (A

= 33.1) group. Despite a downward tendency, ele-

vated levels of Cd were observed until the end of the

experiment (Fig. 2). The increase in copper concen-

tration took place in 2 last weeks of short-term

exposure (A = 1.8 in Cu-S3 and A = 1.3 in Cu-S4)—

Table 2.
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In trunk kidney (Fig. 3) cadmium concentration

increased till 2 weeks when it reached a maximum in

Cd-S2 (A = 129.8) and Cd-L2 (A = 91.5). In 3 weeks, a

decrease was noted, though Cd concentration was still

considerably higher than in the control group (2.5 lg/g

in Cd-S3 and 0.9 lg/g in Cd-L3). In the last week of the

experiment, concentrations of cadmium in trunk kidney

increased again (Cd-S4—5.3 lg/g, Cd-L4—4.0 lg/g).

In case of copper, only the long-term exposure caused

significant increase in metal level in trunk kidneys in 3

and 4 weeks (to 11.7 lg/g in Cu-L4).

The maximum cadmium levels in fish gills were

observed in the first week of the experiment (in Cd-S1

and Cd-L1, respectively: A = 8.7 and A = 5.8)—Table 1.

Then cadmium content in gills decreased, but only in

Cd-L4 group returned to the control level, while in Cd-

S4 remained elevated (Fig. 4). Significant increase in

Cu level was noted in fish subjected to long-term

exposure to this metal (A= 2.3–3.2)—Table 2.

Short-term as well as long-term cadmium exposures

caused significant increase in concentrations of this

metal in peripheral blood in 1 week (A = 19.4 in

Cd-S1, A = 18.6 in Cd-L1)—Table 1. In the subsequent

weeks, Cd concentrations gradually decreased and

returned to initial level in 4 weeks (Cd-S4, Cd-L4).

Blood of fish subjected to copper concentrations of this

metal did not significantly increase (A= 0.8–1.1), and

even a significant drop of Cu concentration (to 2.5 lg/g)

was observed in Cd-S4 group (Fig. 5).

Discussion

The obtained results show that initial concentrations of

copper in fish tissues were higher than the levels of

cadmium. According to various authors, cadmium

concentration in freshwater fish tissues (intestine,

muscles, kidney, gill, skin, spleen, brain, liver) usually

does not exceed 2 lg/g (Kraal et al. 1995; Hollis et al.

1999; Panchanathan and Vattapparumbil 2006; Wu

et al. 2007; Singh et al. 2008; Tao et al. 2008;

Vinodhini and Narayanan 2008; Dang et al. 2009;

Isani et al. 2009). According to Calta and Canpolat

(2006), natural level of copper in the tissues of

cyprinid fishes (C. carpio, Acanthobrama marmit,

Chondrostoma regium) were in muscles below 5 lg/g,

Table 1 Cadmium accumulation factors—A (ratio of final to

initial metal concentration) in tissues of common carp over

4 weeks post 3-hour exposure to 6.5 mg/dm3 of cadmium

(96hLC50)—Cd-S1, Cd-S2, Cd-S3, Cd-S4 and during 4-week

exposure to 0.65 mg/dm3 of cadmium (10 % 96hLC50)—Cd-

L1, Cd-L2, Cd-L3, Cd-L4

Tissues Experimental groups

Cd-S1 Cd-S2 Cd-S3 Cd-S4 Cd-L1 Cd-L2 Cd-L3 Cd-L4

Head kidney 127.2 20.2 1.7 1.1 25.6 37.4 4.4 2.2

Liver 22.8 13.4 2.3 1.3 33.1 14.7 2.3 1.5

Trunk kidney 78.5 129.8 25.1 52.8 73.1 91.5 8.9 40.4

Gill 8.7 6.8 2.2 1.2 5.8 4.6 1.5 1.1

Blood 19.4 17.9 4.4 1.1 18.6 12.6 2.5 1.5

Table 2 Copper accumulation factors—A (ratio of final to

initial metal concentration) in tissues of common carp over

4 weeks post 3-hour exposure to 0.75 mg/dm3 of copper

(96hLC50)—Cu-S1, Cu-S2, Cu-S3, Cu-S4 and 4-week expo-

sure to 0.075 mg/dm3 of copper (10 % 96hLC50)—Cu-L1, Cu-

L2, Cu-L3, Cu-L4

Tissues Experimental groups

Cu-S1 Cu-S2 Cu-S3 Cu-S4 Cu-L1 Cu-L2 Cu-L3 Cu-L4

Head kidney 1.2 1.5 2.5 2.5 1.8 1.9 1.8 1.5

Liver 0.6 0.9 1.8 1.3 1.0 1.4 1.3 1.3

Trunk kidney 0.8 1.0 1.1 1.2 0.9 1.0 1.3 1.4

Gill 0.8 0.9 1.2 1.1 2.3 2.3 2.4 3.2

Blood 0.8 0.9 0.9 0.6 0.8 1.1 1.1 1.1
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in gill 5–10 lg/g, in skin near 10 lg/g, in gonads

5–20 lg/g, and in liver 15–30 lg/g. Higher natural

level of copper in fish in comparison with cadmium

obviously results from the fact that Cu is a microel-

ement and thus—natural component of body involved

in metabolic processes, while cadmium is a xenobiotic

(Ghedira et al. 2010).

Both, after short-term and long-term exposures in

water contaminated with cadmium and copper, the

levels of metals in carp tissues were considerably

higher than their concentration in water which indi-

cates bioaccumulation of these elements in fish

organism. Also Radhakrishnan (2010) observed that

levels of metals (Fe, Cu, Zn, Mn, Cr) in Heteropn-

eustes fossilis gill, liver and muscle were higher than

in water. Olowoyo et al. (2011) reported that concen-

trations of Zn, Fe, Mn, Cr, Ni, Cu, Pb in C. carpio and

Clarias gariepinus liver, gill, muscle, bone were

higher compared to the levels of these metals in water

and concluded that it was a result of bioaccumulation.

In the present work, both metals showed very high

affinity to carp head kidney. Almost no data concern-

ing concentrations of metals in this organ are available

in the literature. Garofano and Hirshfield (1982)

observed accumulation of cadmium in spleen and

head kidney of Ictalurus nebulosus. However,
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Fig. 1 Cadmium (A) and copper (B) concentrations in head

kidney of common carp (lg/g) over 4 weeks post 3-hour

exposure to 6.5 mg/dm3 of cadmium or 0.75 mg/dm3 of copper

(96hLC50) and 4-week exposure to 0.65 mg/dm3 of cadmium or

0.075 mg/dm3 of copper and (10 % 96hLC50), *values

significantly different from the control (short-term exposures),

^values significantly different from the control (long-term

exposures), test U, p B 0.05, n = 5
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Woodling et al. (2001) observed that cadmium and

copper were accumulated mainly in fish trunk kidney,

while their concentrations in head kidney were

considerably lower.

High affinity to head kidney can be source of metal-

induced alterations in fish hematopoietic system.

Garofano and Hirshfield (1982) reported destruction

or elimination of all hematopoietic elements (except for

mature erythrocytes) in pronephros of cadmium-intox-

icated Ictalurus nebulosus. Also Saxena et al. (1992)

mentioned damage of Heteropneustis fossilis hemato-

poietic tissue caused by this metal. Cadmium was found

to downregulate Hb and Epo expression in Cyprinodon

variegatus larvae under hypoxic conditions (Dangre

et al. 2010) which indicates inhibitory effect on

erythropoiesis. Changes in hematopoietic activity were

also observed in Cu-exposed Labeo rohita (Som et al.

2009). Sublethal exposure induced an increase in

frequency of erythropoietic and leukopoietic precursor

cells, while at lethal conditions, a decrease occurred at

the beginning of exposure and was followed by an

increase. Som et al. (2009) also reported an increase in

frequency of blast cells in copper-exposed Labeo

rohita, and an increase in apoptotic rate of hematopoi-

etic precursors, while proliferation rate was elevated

under sublethal conditions and reduced in fish subjected

to lethal exposure. Cadmium and copper can also

induce endocrine disruption in head kidney. According
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Fig. 2 Cadmium (A) and copper (B) concentrations in liver of

common carp (lg/g) over 4 weeks post 3-hour exposure to

6.5 mg/dm3 of cadmium or 0.75 mg/dm3 of copper (96hLC50)

and 4-week exposure to 0.65 mg/dm3 of cadmium or

0.075 mg/dm3 of copper (10 % 96hLC50), *values significantly

different from the control (short-term exposures), ^values

significantly different from the control (long-term exposures),

test U, p B 0.05, n = 5
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to Lizardo-Daudt et al. (2007), a significant drop of

cortisol concentration was observed in Oncorhynchus

mykiss head kidney exposed in vitro to CdCl2. Also

Hontela (1998) noted a decrease in plasma cortisol level

of Perca flavescens exposed to cadmium. Significant

increase in plasma cortisol and prolactin level of

C. carpio subjected to acute and sublethal copper

treatments was reported by Ramesh et al. (2007).

This study revealed also that copper content in

tissues of fish exposed to this metal increased less than

cadmium (taking into consideration the difference

between concentrations of both metals in water),

which indicates that the organism efficiently buffered

the level of copper. On the contrary, concentration of

cadmium considerably increased, in most cases

reaching the maximum in 1 week of tests (similarly,

after short-term exposure and during long-term expo-

sure). In subsequent weeks, concentrations of cad-

mium decreased, but in head kidney, trunk kidney and

liver, they remained elevated compared to the control

until the end of the experiment. This suggests that

activation of mechanisms of sequestration and elim-

ination of cadmium required some time. The maxi-

mum concentrations and accumulation factors of

cadmium were higher in comparison with copper

particularly in head kidney, liver and blood, while in

gill and trunk kidney, the levels of both metals were

similar.
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Fig. 3 Cadmium (A) and copper (B) concentrations in trunk

kidney of common carp (lg/g) over 4 weeks post 3-hour

exposure to 6.5 mg/dm3 of cadmium or 0.75 mg/dm3 of copper

(96hLC50) and 4-week exposure to 0.65 mg/dm3 of cadmium or

0.075 mg/dm3 of copper (10 % 96hLC50), *values significantly

different from the control (short-term exposures), ^values

significantly different from the control (long-term exposures),

test U, p B 0.05, n = 5
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Al-Nagaawy (2008) reported that accumulation of

essential metals (Cu) in Oreochromis niloticus gills and

muscles was lesser in comparison with xenobiotics (Pb).

Considerably higher cadmium concentration compared

to copper in gills of Odontesthes bonariensis after

16-day exposures was observed by Carriquiriborde and

Ronco (2008). Romeo et al. (2000) obtained similar

results: After 48 h from injections of cadmium and

copper solutions, they noted that the level of cadmium in

tissues of Dicentrarchus labrax was considerably higher

in comparison with the control, while concentration of

copper remained unchanged. According to these

authors, copper activates detoxification mechanisms of

organism more efficiently than cadmium. Kraemer et al.

(2005) reported higher Cd accumulation in comparison

with Cu as a result of less effective elimination of this

element from organism. According to Kalay and Canli

(2000), lower accumulation of microelements (Cu, Zn)

in relation to xenobiotics (Cd, Pb) can result from better

control mechanisms of level and shorter time of half-life

in organism and from lower affinity of natural compo-

nents to tissues.

After short exposures, the levels of metals in some

tissues still increased in several weeks after transfer of

fish to clean water: The maximum Cu concentration in

head kidney and liver was has noted in group Cu-S3
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Fig. 4 Cadmium (A) and copper (B) concentrations in gill of

common carp (lg/g) over 4 weeks post 3-hour exposure to

6.5 mg/dm3 of cadmium or 0.75 mg/dm3 of copper (96hLC50) and

4-week exposure to 0.65 mg/dm3 of cadmium or 0.075 mg/dm3 of

copper (10 % 96hLC50), *values significantly different from

the control (short-term exposures), ^values significantly differ-

ent from the control (long-term exposures), test U, p B 0.05,

n = 5
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and in trunk kidney in Cu-S4, while the highest level

of Cd in trunk kidney was in group Cu-S2. It shows

that metals taken up from water were not immediately

excreted but were translocated inside the organism.

Various dynamics of changes of cadmium and copper

levels in the tissues probably resulted from different

ways of transportation and accumulation, and path-

ways of metabolism of each metal.

According to Kraemer et al. (2005), copper and

cadmium first show affinity to gill which is main

uptake site of waterborne elements, then they are

transported via blood to liver and kidney. Metal ions

usually accumulated less in gills since they are a

temporary target organ of accumulation, and then Cd

is transferred to other organs (Wu et al. 2007). Various

authors (e.g., Kraal et al. 1995; Jacobson and Reim-

schuessel 1998; McGeer et al. 2000; Celechovska

et al. 2007; Ghedira et al. 2010; Radhakrishnan 2010;

Shao et al. 2010) showed that the highest concentra-

tions of copper were noted in fish liver. Liver being

main detoxification site in organism is also an organ

that bioaccumulates toxic substances, and thus, it

usually shows higher concentrations of metals than

another tissues (Allen 1995; Olowoyo et al. 2011).

Couture and Kumar (2003) suggested that copper and

cadmium concentration led to an up-regulation of liver

protein metabolism, presumably at least in part for the

purpose of metals detoxification. In Oncorhynchus
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mykiss, active regulation of internal Cu levels in

response to sublethal waterborne copper, specifically

an up-regulation of hepatic turnover and enhanced

elimination of Cu via the bile, has been demonstrated

by Grosell et al. (1997, 1998). Cadmium is known to

disrupt hepatic carbohydrate metabolism, which leads

to a decrease in glycogen storage and increased plasma

glucose (Soengas et al. 1996).

Cadmium accumulates in tissues of fish easily,

showing high affinity to liver and kidneys (e.g.,

Bentley 1991; Kock et al. 1996; Schultz et al. 1996;

Dallinger et al. 1997; De Smet and Blust 2001;

Thophon et al. 2003; Reynders et al. 2006; Shalaby

2007; Wu et al. 2007; Ghedira et al. 2010; Cao et al.

2012). De Conto Cinier et al. (1997) observed that Cd

reached high concentration in liver earlier than in

kidney in carps exposed to this metal. Similar results

were obtained in the present study, both after short-

term and during long-term exposure. Bonda et al.

(2007) reported that after single short exposure to high

concentration of cadmium metal was accumulated

mainly in liver, but long-term exposures to low

concentration of this metal-induced disfunction of

kidneys caused by increased accumulation of element

in this organ.

A lot of pollutants dissolved in water (also metals)

enter to fish organism mainly by gills (Evans et al.

1987; Leguen et al. 2007), across ion channels of

respiratory epithelium or protein complex of the

chloride cells in gills (Thophon et al. 2003; Galvez

et al. 2007). Cadmium uptake involves competition

with Ca, Fe and Zn and takes place via their transport

systems. According to Verbost et al. (1989), the

pivotal mechanism in the cytotoxic action of Cd2? is

the inhibition of Ca2? extrusion and disturbance of

intracellular Ca2? homeostasis which results in an

increase in cytosolic Ca2? to toxic levels. Copper is

known to cause osmotic imbalance by reduction of

Na?/K? ATPase activity (Pelgrom et al. 1995).

Large fraction of copper absorbed by fish organism

is transported within the body by blood plasma bound

to albumin, histidine, threonine and glutathione

(Bettger et al. 1987; Pelgrom et al. 1995) and then is

deposited in liver. This gland plays essential role in

copper metabolism. In liver, copper is attached to

ceruloplasmin. Also metallothioneins (MT) play

important role in binding this metal in vertebrates.

They protect against toxic action of metals by reducing

the concentration of free metal ions to physiological

values in the tissues (Roesijadi et al. 1996). MT-

complexes play primary function in homeostasis of

copper in organism. Due to MT binding Cu accumu-

lated in fish can be eliminated from blood circulation

across liver quickly and efficiently. Carbonell and

Trazona (1992) suggest that long-term exposures to

cooper sulfate do not increase Cu concentrations in

fish tissues but modify the relationship between cooper

and other essential metals such as iron or zinc. When

excess copper penetrate into cells, they are able to

displace zinc from thioneins (normally present in

cytosol). Copper may also bind to the sulfhydryl

groups of several enzymes (e.g., glucose-6-phospha-

tase, glutathione reductase) thus interfering with their

protection of cells from free radical damage. Depend-

ing on the level and organism’s demand, copper can be

stored, distributed to various tissues or eliminated

(Pelgrom et al. 1995).

After absorption, ions of toxic cadmium in circu-

lating blood are mainly absorbed by erythrocytes (they

bind to proteins of cells membrane or to hemoglobin).

Only a small quantity of Cd in blood is transported

bound to albumin, cysteine or glutathione (Bonda et al.

2007). Upon entry into blood plasma, it is distributed

throughout the body, with the greatest burdens in the

liver and kidneys. At this time, organism activates

mechanisms of detoxification (Jonsson and Part 1998).

In the liver, Cd not bound to MT induces synthesis of

new MT (Pelgrom et al. 1995; De Conto Cinier et al.

1997; Rose et al. 2006; Huang et al. 2007; Wu et al.

2007, Dang et al. 2009; Kovarova et al. 2009; Bozhkov

et al. 2010). Riggio et al. (2003) reported that after

exposure of Danio rerio to cadmium the MT content

increased around 30-fold. Wangsongsak et al. (2007)

showed that hepatic expression of MT-mRNA

increased significantly after Cd exposure of Pontius

gonionotusto. This operation (synthesis of MT)

reduces toxic influence of cadmium on organism and

makes possible excretion. According to Roesijadi

(1994) and Asagba et al. (2008), cadmium binds with

MT (displacing zinc and copper) and easily forms

CdMT complexes. Following release from the liver,

CdMT reenters the blood stream, is filtered and

reabsorbed by the renal proximal tubules. CdMT is

transported into lysosomes where the complex is

catabolized. This releases cadmium from the complex

and free cadmium induces MT synthesis in the kidney

(Klaassen and Liu 1997; Brzóska et al. 2003). Then

liberated Cd ions are eliminated in the urine. The
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ability of tissues to synthesize MT protects organism

against direct toxicity of metal; however, it causes

accumulation of cadmium in organs, which results in

its long half-life in organism (Bonda et al. 2007).

In conclusion, comparison of metal levels in

various tissues revealed that cadmium and copper

showed very high affinity to head kidney of common

carp. In organs of fish exposed to copper, the content

of this metal increased slightly and quickly returned to

the control level, which shows that fish organism

easily buffered metal level. However, concentrations

of cadmium considerably increased and remained

elevated for a long time which suggests that activation

of mechanisms of sequestration and elimination of

cadmium required more time.
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