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Abstract. A new photometric measurement method for the determination of tempo-
rally and spatially resolved light extinction coefficients in laboratory fire tests was

recently presented. The approach relies on capturing the change in intensity of indi-
vidual light sources (LEDs) due to fire smoke using a commercially available digital
camera. Comparing the results for red light LEDs to measurements of the well-estab-

lished MIREX system indicates the model is capable of capturing the investigated
phenomena. However, a significant underestimation of this reference measurement
taken in the infrared range is inconsistent with the expected increase of the extinction

coefficients with lower wavelengths. In the context of new experimental investigations,
this deficiency was remedied by evaluating multible colour channels of RAW image
data instead of the previously used JPG files. Furthermore, extending the experimen-
tal setup by several LED strips as well as a second camera allows to verify the

hypothesis of a homogeneous smoke layering. The study covers eight experiments
including n-heptane fuel in style of the well documented EN 54 TF 5 testfire as well
as two additional experiments with an n-heptane-toluene mixture. Considering spatial

resolution as well as the high reproducibility of the results, the method appears to be
a convenient tool for the validation of numerical visibility models. Nevertheless, a
sensitivity analysis identified uncertainties that need to be addressed in upcoming

investigations to further improve the accuracy.
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1. Introduction

On the occurrence of a fire, smoke usually poses the greatest danger to the build-
ing’s occupants, as it can make it difficult or even impossible to escape to a safe
area. It affects both, the available safe escape time (ASET) and the time required
for a safe escape (RSET). The occupants’ movement speed and the capability of
wayfinding are impaired by the smokes irritating products and its optical opacity.
Likewise, the conditions for self-rescue become untenable when the exposure to
heat or toxic smoke products exceed a critical level [1]. When modelling escape
scenarios in performance-based safety designs within the ASET-RSET [2] concept,
corresponding threshold values are matched against the predicted exposures.The
FED (Fractional Effective Dose) model proposed by Hartzell and Emmons [3] is
commonly used to assess the hazardous effects of fire induced smoke. A time-de-
pendent incremental exposure dose is related to the total exposure dose required
to cause a toxicological effect. The time at which the continuously integrated frac-
tional effective dose for a person exceeds a certain limit indicates the time avail-
able until the person is incapable of escaping. An approach for applying both of
these concepts in numerical fire simulations is outlined in [4, 5].

In contrast, modelling visibility is much more complex. It has to be considered
as a spatial phenomenon rather than a local quantity. Numerical models like the
Fire Dynamics Simulator (FDS) [6] rely on the concept of Jin [7], defining visibil-
ity as the distance at which a visual target can still be recognized in a smoke laden
environment as the contrast to the background is sufficiently large. This approach,
see Eq. 1, is highly simplified, as it merely maps visibility V as a ratio of the local
extinction coefficient r to an empirical factor C for the contrast threshold.

V ¼ C
r

ð1Þ

Furthermore, considerable uncertainties within the modelling of visibility can arise
from the experimentally obtained input parameters, that are usually encapsulated
by the extinction coefficient. Gottuk et al. reported deviations by a factor of 4–5
of the optical density between large-scale experiments and simulations with FDS.
They primarily attributed this to scaling effects of the soot yield, as well as soot
loss due to deposition effects [8]. Similar discrepancies between experiments and
corresponding simulations with FDS have been reproduced in [9].

Computational fluid dynamics (CFD) models such as FDS allow for the predic-
tion of smoke propagation in turbulent systems on a spatial scale, which is a
major advantage over zone models and hand formulas. However, spatially and
temporally resolved measurements from experimental studies are in general needed
to validate such complex models. In order to obtain spatially and temporally
resolved extinction coefficients from the optical observation of a single LED strip
within laboratory experiments, a photometric method was recently presented [10].
It relies on capturing the smoke induced attenuation of light by a digital camera.
Local values of the extinction coefficient can be deduced by an inverse modelling
approach based on the Beer–Lambert law and simple geometrical optics. Besides
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the validation of numerical fire models, the method can contribute to the develop-
ment of photometric smoke detection systems. The presented study primarily
addresses the assessment of its general applicability as a photometric measurement
method in laboratory test fires. In this context, the adaptability to different experi-
mental setups, different types of fuels as well as the influence from the experimen-
tal boundary conditions are investigated. The goal of the study is to develop a
reliable measurement method for the comprehensive investigation of fire smoke
characteristics. A similar approach for analysing smoke density using video data
from conventional security cameras is presented in [11].

The above-mentioned photometric method provides some substantial advan-
tages, since it is easily applicable with small technical effort. Moreover, smoke
propagation is not disturbed by air ducts or filters as part of a measuring appara-
tus. Comparison of the computed extinction coefficients within an n-heptane test
fire in style of the EN 54 TF 5 with measurements of the well-established MIREX
system shows that the method is reasonably capable of capturing the light obscur-
ing phenomenon of the smoke. However, the observation of the results being sig-
nificantly lower than the MIREX measurement does not agree with expected
behaviour of the extinction coefficient increasing with decreasing wavelengths.
Examining those issues is an essential part of this work.

The next section will first discuss the characteristics and properties of fire
smoke, and the associated effects on light obscuration. Hereafter, the setup and
procedure of the conducted experiments will be presented. An outline on the data
acquisition and the methodology is provided, although it is primarily limited to
the enhancements of the original approach. The subsequent section addresses the
application of the method to experimental data, as well as its validation by refer-
ence measurements. Here, the focus is on investigating the temporal and spatial
resolution of the computed extinction coefficients for light at different wave-
lengths. Finally, the uncertainties of the model and the experiments are assessed
by means of a sensitivity analysis. The article closes with a conclusion and an out-
look on future work.

2. Light Obscuring Effects of Fire Smoke

Investigating the effects of fire induced smoke on visibility requires an understand-
ing of its characteristics along with the associated light obscuring properties. Mul-
holland provides a convenient definition of smoke as the condensed phase
component of the combustion products that widely varies in appearance and
structure [12]. Light-coloured aerosols, essentially containing droplets, produced
by smouldering fires and pyrolysis have a strong scattering effect on light. Dark
and solid carbonaceous soot particles produced by flaming combustion from fuels
such as n-heptane, on the other hand, are highly absorbent [13]. Both effects are
induced by the particle size distribution of the aerosol, mainly related to the geo-
metric mean volume to surface diameter of the particles [14]. For post-flame
smoke particles, the absorbing effect can be expressed in terms of an almost fuel
type independent, mass-specific extinction coefficient, subsequently denoted Km.
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This simplification assumes that soot essentially comprises spherical carbonaceous
particles significantly smaller than the wavelength of light so that scattering effects
are negligible [15]. The light obscuring effect of smoke therefore is proportional to
the smoke density qs. Both quantities can be summarized into the extinction coef-
ficient r. It can be obtained by applying Beer–Lambert’s law, see Eq. 2, to optical
measurements of the light transmission T along a known path length l. However,
this only accounts for the damping effect on the initial light intensity I0 to the
intensity I in the presence of smoke due to absorption and scattering, since both
effects can not easily be separated.

T ¼ I
I0

¼ exp �Km � qs � lð Þ ¼ exp �r � lð Þ ð2Þ

Mulholland and Croarkin estimated Km to be 8700m2 kg�1 with an extended

uncertainty of 1100m2 kg�1 as a mean value from the analysis of seven studies
involving 29 fuels in flaming fires [15]. It is frequently referenced as a default
quantity in various numerical fire models, such as FDS [16]. Optical measure-
ments each were performed at a wavelength of k ¼ 633 nm in post-flame generated
smoke from stoichiometric or over-ventilated combustion. For smoulder and
pyrolysis generated smoke, the value is reported to be much lower and more vari-
able. A similar study was conducted by Widmann based on a literature review of
data from stoichiometric and over-ventilated combustion [17]. He deduced a cor-
relation of Km with wavelength k, based on the least square fit of measurements
mainly in the visible spectrum and in the near infrared range, described by Eq. 3.

Km ¼ 4:8081 � k�1:0088 ð3Þ

The value of Km can change over time caused by ageing processes of the aerosol.
Due to agglomeration, the particle concentration decreases while the size distribu-
tion shifts towards a larger mean particle diameter [18]. The difference in scatter-
ing and absorption characteristics of particles at different wavelengths can be used
to estimate the mean particle size diameter. A potential approach relying on a
combination of optical measurements and theoretical calculations based on Mie
scattering theory is presented in [19, 20]. These procedures follow a correlation of
the logarithms of the measured light transmission at different wavelengths with
the calculated extinction efficiency as a function of the particle diameter. Węgr-
zyński et al. have examined several multi-wavelength densitometers following a
similar approach in a literature study [21]. They summarized that most of the
apparatus are connected to bench-scale experimental setups like cone calorimeters,
while only few devices exist that are meant to be used in compartment scale fires.
Still, such investigations are even more important in terms of modelling visibility,
since scaling effects regarding the extinction coefficient can not be precluded.
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3. Experimental Setup and Procedure

The presented experiments were conducted in the Heinz-Luck fire detection labo-
ratory at the university of Duisburg-Essen, Germany. The study is based on the
concept introduced in [10] and therefore features a similar design and procedure.
A fundamental assumption of the model is the extinction coefficient being homo-
geneous within horizontal layers. To investigate this hypothesis, seven of the same
type as the previously used LED strips were installed vertically (three strips) and
diagonally (four strips) in the laboratory, see Figure 1. The assembly roughly
spans a plane, tangent to a circle with a 3 m radius around the fire source. It
extends from a height of 1 m above the floor to the ceiling at 3.37 m. Each of the
strips measures an equal length of approximately 2.35 m and contains 141 RGB
LEDs. The experimental setup features two DSLR cameras facing the LEDs from
different locations and heights. Within two setups, the position of the second cam-
era is varied. In setup 1, camera 1 and camera 2 are positioned on opposite sides
of the room to the left and right in front of the LEDs. In setup 2, the position of
camera 1 remains constant, while camera 2 is placed directly next to it, but at a
slightly elevated position. Since it covers a similar distance to both cameras in
setup 1, the centre LED strip serves as a reference for investigating symmetry
effects. Three MIREX devices are located behind it at heights of 1.52 m, 2.3 m
and 3.3 m above the floor. The MIREX apparatus measures the smoke density on
a 2 9 1 m reflected path length according to the light transmission in the infrared
regime, with a maximum intensity at a wavelength of kIR ¼ 880 nm [22].

Data acquisition by the cameras as well as the MIREX covers a period of
about 20 min and is performed at a 1 Hz sampling rate. In order to investigate
the reproducibility of the experiments, all measurement sequences are evaluated

a

b

Figure 1. Experimental setup in style of EN 54. (a) Floor plan of the
experimental setup. Three MIREX devices are located behind the
centre LED strip. The position of the second camera varies within two
setups. (b) Experimental setup before ignition of the fuel. Two
cameras facing the LEDs are located left and right of the pool fire
(setup 1).
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starting with the time of the fuel ignition. The laboratory ventilation system is
activated 6 min after that time.

3.1. Heat Release Rate

The test fires of the EN 54 standard [23] form the basis for the classification of
smoke detectors and therefore should be easily reproducible. A total of eight n-
heptane fires in style of the TF 5 test fire were investigated within the scope of the
experiments. In each case, 500 g of n-heptane fuel were burned in a
335mm� 335mm fuel pan, resulting in an average burning duration of approxi-
mately 225 s. Compared to the EN 54 standard, the amount of fuel was reduced
from 650 g to account for the reduced ceiling height. The mass loss rate was
determined from continuous weighing so that the Heat Release Rate (HRR) could

be derived from 44:6MJ kg�1 for the effective heat of combustion [24]. Another
series of two experiments was performed, adding 15 g of toluene to the fuel, yield-
ing similar heat release rates.

Figure 2 shows the mass loss and the corresponding HRR as mean values from
eight experiments with n-heptane fuel. All data were smoothed by a 5 s moving
average. The narrow standard deviation confirms the good reproducibility in
terms of the burning progression.

Figure 2. Mass loss and HRR for the 500 g n-heptane pool fires in
style of the TF 5 according to EN 54. Solid lines indicate mean values,
while shaded areas depict the standard deviation. The maximum HRR
of approx. 159 kW is reached at about 145 s.
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4. Methodology

4.1. Raw Data Acquisition

The photometric measurement method described in [10] is based on the time-re-
solved acquisition of LED intensities from images series. The original approach
followed the procedure outlined subsequently.

Using a reference image taken before the start of the experiment, all visible
LEDs are detected that exceed a certain threshold in luminosity. Iteratively, the
pixel with the highest value including a peripheral area is excluded from the fur-
ther search. The width of these regions of interest, further denoted ROI, is chosen
to be uniform and sufficiently large. It must be ensured that the relevant pixels do
not shift outside these areas due to refraction of the incident light. An image
model of each LED is fitted to the experimentally obtained pixel values by means
of an algebraic model. The approach allows determining the position and magni-
tude of the amplitude from the shape of the modelled LED. Acquiring these
quantities potentially allows for the consideration of extensive phenomena, such
as refraction. However, since this process has to be repeated for all images and
LEDs, it requires an enormous computational effort.

As the focus of the current study is on the acquisition of significant amounts of
data, a simplified approach to determine the LED intensities is used for that pur-
pose. At each time step, the LED intensity is calculated separately for all three
colour channels (CH) as the sum of all pixel values within the respective ROI.

The camera exposure is primarily determined by shutter speed, aperture, and
the sensor sensitivity (ISO). For photometric measurement, it therefore is essential
to operate the camera in manual mode (see Table 1) and to deactivate any inter-
nal image optimization.

Nevertheless, luminosity measurements based on JPG images is inevitably
biased by camera-internal preprocessing. For example, a correction function (e.g.,
gamma correction) is usually applied to scale linear sensor data according to the
logarithmic light sensitivity of human perception. However, high-quality CCD or
CMOS cameras do allow direct access to the unprocessed sensor data via RAW
image files.

The camera sensor is covered with a spectrally sensitive colour filter array
(CFA) arranged according to a particular mosaic pattern, of which each element
only samples a single colour. The resulting intermediate greyscale image can be
converted to a true-colour image by various interpolation techniques referred to
as ‘demosaicing’, in which each pixel typically maps independent levels for red
(R), green (G), and blue (B) [25]. The most common CFA is the Bayer filter

Table 1
Manual Settings of the Used Cameras

Camera Model ISO Shutter speed Aperture Focal length

1 Canon 80D 100 1/500 s f/16 18 mm

2 Canon 70D 100 1/250 s f/22 18 mm

Remote Sensing of the Light-Obscuring Smoke Properties in Real-Scale Fires 25



array, which is also used in the employed cameras. A regularly repeating 4� 4
pixel section of this pattern is shown in Figure 3. Like most CFAs, it contains
twice as many green-sensitive filters, which is supposed to match human percep-
tion in terms of higher resolution for green light.

4.2. Determining the LED Intensities

Since the unprocessed RAW images are encoded in a native camera file format,
the embedded data is accessed by a Python wrapper for the LibRaw library [26].
The obtained sensor readings can be represented as a matrix S(x, y) of elements
with positions x, y, that has the same resolution as the visible part of the sensor.
In order to convert this matrix into a greyscale image with pixels P(x, y), the indi-
vidual elements must be mapped to a fixed tonal range [27] by Eq. 4.

P ðx; yÞ ¼ ðSðx; yÞ � BÞ � 2b�1

W � B
ð4Þ

B and W indicate the black level and the saturation point of the sensor. The black
level is measured using masked pixels, i.e., pixels which are not illuminated by
construction, and thus serves as a calibration point for the sensor noise, e.g., due
to temperature influences. After linearizing the sensor readings within those
bounds, they are scaled back to integer values according to the target tonal range
b. JPG images usually feature a tonal range of 8 bit, allowing each colour channel
to be shaded in 256 increments. The sensor data, on the other hand, are typically
recorded at a 14-bit resolution. However, the higher dynamic range of RAW ima-
ges is also relevant for accurate brightness measurement. It prevents details in
regions with particularly high or low exposure from being irreversibly clipped by
the camera’s post-processing.

According to their position in the CFA, the three colour channels (RGB) can
be separated as independent pixel arrays:

Figure 3. Bayer filter array is the most common CFA used in modern
digital cameras. Red (R), green (G) and blue (B) filters are placed on
the sensor by a 4 3 4 repeating pattern (Color figure online).
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PRðx; yÞ ¼
Pðx; yÞ if x is odd and y is even

0 otherwise

(

PGðx; yÞ ¼
P ðx; yÞ ðif x is odd and y is oddÞ or ðif x is even and y is evenÞ

0 otherwise

(

PBðx; yÞ ¼
P ðx; yÞ if x is even and y is odd

0 otherwise

(

ð5Þ

Figure 4 shows an example of the pixel values within the ROI of a single LED,
separated for the three colour channels of the camera.

For the individual colour channels, the experimental intensity Ie simply results
as the sum of the pixel values within the respective ROIs, see Eq. 6, normalized to
their initial values.

Ie ¼
X

all pixels x;y

P ðx; yÞ ð6Þ

The initial intensity I0 of each LED indicates the mean value from 10 images
taken before the fuel is ignited. It is assumed to be constant throughout the exper-
iment and therefore serves as a reference according to Eq. 2. The influence of the
variability of I0 due to intrinsic as well as extrinsic influences by, e.g., temperature
on the computation of extinction coefficients is discussed in Sect. 5.2.

Splitting the greyscale image into the individual colour channels implies that,
unlike the JPG image, much fewer pixels are involved in determining the LED
intensities. This can slightly increase noise. Especially within the blue and red col-
our channel, individual peaks of luminosity may not be detected due to a refrac-
tion induced shift of the incident light.

An instantaneous comparison of the measured intensities from a single RAW
image and the corresponding JPG is given in Figure 5. It depicts the intensities for
all LEDs of the centre strip about 300 s after the ignition, scaled to their initial

Figure 4. ROI of a greyscale image and RGB components according to
the Bayer filter pattern (Color figure online).
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value. The intensities from the RAW data show considerably higher attenuation
than those from the corresponding JPGs, with the relative deviation in the drop
of intensities increasing towards lower regions. This results in a significant under-
estimation of the computed extinction coefficients based on JPG images. It also
entails that the wavelength influence on light obscuration can be detected exclu-
sively in high smoke density regions. The main reason for these errors is likely to
be the nonlinear scaling of the pixel values by the gamma correction.

Unlike the original approach, the experiments presented in this study are
entirely analysed on the basis of RAW image files.

4.3. Computation of Extinction Coefficients

The conducted experiments are analysed by an enhanced version of the method
introduced in [10]. The software LEDSA (LED Smoke Analysis) used for data
analysis is written in Python [28]. An inverse modelling approach based on geo-
metrical optics and the Beer–Lambert law is applied to obtain temporally and
spatial resolved extinction coefficients r. Therefore, a model for the intensities of
individual LEDs is formulated as a line of sight integral corresponding to a spa-
tial discretization as horizontal layers. The underlying assumption of the model is
that r is homogeneous within horizontal layers. A non-linear system of equations
comprising the model intensities Im;j and the experimental intensities Ie;j for all

LEDs then is to be solved to find the best matching set of the extinction coeffi-
cients for each time step. Ie;j corresponds to the accumulated pixel values accord-

ing to Eq. 6 as a mean value of two consecutive images. The computation is
performed separately for the three colour channels of the camera, as well as the
seven LED strips.

Figure 5. Normalized intensities of all 141 LEDs from the centre
strip, acquired from RAW and JPG image data at t = 300 s. The
relative deviation in the drop of intensities increases towards the
lower regions.
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By means of a cost function Xr, see Eq. 7, additional boundary conditions
besides the L2-norm between Ie; j and Im; j can be considered.

Xr ¼
XNLEDs

j¼1

ðIm; j � Ie; jÞ2 þ /s

XNlayers�1

i¼2

ðri�1 � 2ri þ riþ1Þ þ /a

XNlayers

i¼1

ri ð7Þ

The factor /s weights the requirement of a smoothness of the solution as a
numerical approximation of the second derivative. Furthermore, an upper or
lower limit can be defined via /a, so that either large or small values for the
extinction coefficient are preferred when there is little impact of the L2-norm. This
is crucial in the boundary layers, which are only crossed by few light beams. Here
the information used in the optimization procedure is sparse, which leads to a
weak solution, i.e., a not unique solution. By using the weighting factors, /a the
solution is stressed towards bounding limits of possible values. In layers which are
crossed by many light beams the solution is rigid, thus a stressing by the /a leads
to same solutions. Figure 6 depicts the impact of featuring high or low values and
no preference for the extinction coefficient using data from the centre LED strip.
As the whole study, the analysis is based on a model with 20 equally sized layers
extending from 0.99 m above the floor to the ceiling at 3.37 m height.

The extinction coefficients obtained at different wavelengths may finally serve
for the remote estimation of the mean particle size. Techniques as described in
[14, 19] rely on the log ratios of extinction coefficients and therefore are highly
sensitive to uncertainties, e.g., from numerical artefacts. The major impact of /a

as well as the significant differences among the individual colour channels in the
top layers indicate that the obtained data may not be used unrestricted for this
purpose.

5. Results

5.1. Extinction Coefficients

Eight experiments were performed with n-heptane fuel and two more with an n-
heptane toluene mixture. The location of the second camera was varied among the
experiments according to Figure 1. Therefore, the following experiments, given an
identical setup, were aggregated within the evaluation:

1. Four experiments with n-heptane fuel in setup 1
2. Four experiments with n-heptane fuel in setup 2
3. Two experiments with n-heptane toluene mixture in setup 2

Figure 7 shows the extinction coefficients for the centre LED strip based on the
photometric measurements from both cameras in setup 1. The results for layers 0,
8 and 15 correspond to the respective heights above the floor at which the refer-
ence measurements were acquired by the MIREX devices (3.30 m, 2.30 m, 1.52
m).
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Figure 6. Influence of the weighting factor / on the temporal
evolution of the extinction coefficient for the three colour channels on
the layers 0 to 3 (from top down). The investigation was carried out
for /a = 2 1 3 102 6 (low values), /a = 1 3 102 6 (high values) and
/a = 0 (no preference). Scattered dots show the computed extinction
coefficients based on the average intensities of two consecutive
images each. Lines represent the smoothed data by a 10 s moving
average over 5 time steps each.
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The LEDSA results as well as the MIREX reference measurements confirm a
good reproducibility of the experiments, which has already been shown for the
mass loss. Results from both cameras are in the same order of magnitude. As
expected, the extinction coefficients from LEDSA are much higher than those
from the MIREX, which can be attributed to the difference in wavelengths. A
strong wavelength dependence is also evident in the colour channels of the cam-
eras. The phenomenon of increasing light obscuration with decreasing wavelength,
as described by Widmann, can be observed for all data sets. According to Eq. 3, a
rough estimate of the expected ratio of extinction coefficients can be established
based on the peak wavelengths of the LEDs. Referring to the red LED at
kR ¼ 630 nm, the expected ratios are 1.24 for the green (kG ¼ 510 nm), 1.37 for
the blue LEDs (kB ¼ 462 nm) and 0.71 for the MIREX (kIR ¼ 880 nm) which is a
good approximation especially for the eighth layer. It must be noted, however,
that the light sources used are not perfectly monochromatic and the LEDs in par-
ticular have a relatively broad spectrum, which may bias this correlation. In layer
0, there is a significantly smaller discrepancy between LEDSA and the MIREX,
although a distinct wavelength dependency remains evident. Potential reasons for
this may be attributed to, e.g., different particle sizes of the smoke or an inhomo-
geneous smoke layering that effects the LEDSA layer model. However, the exact
causes for this are not yet understood and will be the subject of future research.

Figure 8 shows the extinction coefficients for another series of four experiments
on the setup 2. The experimental boundary conditions as well as the analysis
match the one from the first setup, except that both cameras were placed side by
side with a difference in height of 25 cm.

Both cameras show similar results to the first setup, but still match closer, espe-
cially in the range between 200 s and 400 s. This suggests that the discrepancies
are related to the viewing angle as well as local variations in smoke density rather
than intrinsic camera characteristics.

In setup 2, an additional series of two experiments was performed with toluene
added to the n-heptane fuel (see Figure 9). The computed extinction coefficients as
well as the MIREX measurements are significantly higher than for the pure n-hep-
tane fire. Although the recorded dynamics of both methods match well again, it
can be seen that the wavelength related ratio is not consistent with Eq. 3. The
computed extinction coefficients for the red channel are of the same order of mag-
nitude as the corresponding MIREX 1 and MIREX 2 measurements after about
300 s. A possible contribution to this may be related to a much larger mean parti-
cle diameters reported for smoke of toluene fires [29]. Jin concluded from his
experiments that the dependence on wavelength vanishes or reverses for particles
larger than 1 lm [30]. However, this effect was not further investigated in this
study.

Figure 10 depicts the layer wise extinction coefficients for both of the outer and
the centre LED strip at 300 s as a 10 s average. For reference, the extinction coef-
ficients were computed considering all the 987 LEDs in the setup, referred to as
’merged strips’ in the plot. The minimization procedure requires the weighting of
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the smoothness condition to be reduced via /s ¼ 1� 10�7 in order to compute
reasonable results.

The extinction coefficients of all LED strips follow a similar profile over the
height. Especially, the results from the centre strip are in a good agreement with
those from the merged strips. It should be noted that the extinction coefficients
each increase with shorter distance between the reference point and the camera.

Figure 7. MIREX and LEDSA (Camera 1 and Camera 2) extinction
coefficients in setup 1. The plot shows mean values (solid lines) and
standard deviation (shaded areas) from four experiments with the n-
heptane fuel.
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The effect is significantly larger for the red than for the green and blue camera
channel.

The phenomenon also occurs in reverse for the second camera, as can be seen
from the aggregated results of all strips in Figure 11. This cannot be attributed
exclusively to an inhomogeneity of the smoke layering, since the influence on all
colour channels would be equivalent. A change in particle size distribution could
have a different effect on light opacity at various wavelengths, but this cannot be
accounted for the dependence on the distance between the camera and the light
source.

The observations suggest that the photometric measurement could be biased by
a change in the initial luminosity of the individual light sources. A potential tem-
perature-related effect on the emitted intensity is discussed in the following sec-
tion.

Plots of the spatially resolved extinction coefficients corresponding to Figure 11
are provided in appendix A for the other colour channels.

5.2. A Study on Experimental Parameters

The Beer–Lambert law imposes some limitations that involve certain simplifica-
tions and inaccuracies for the present model. No distinction is made between
effects from absorption and scattering by smoke particles, since it only describes
the attenuation of a single light beam. This approach can be considered suffi-
ciently accurate for point light sources as long as the absorbing influence is domi-
nant over the scattering effect. For most smoke products, this assumption is valid,
as the particle diameter is usually well below the wavelength of the light [15].

Another simplification of the applied method results from how the interaction
between the light source and the detector is processed. For simplicity, the
employed RGB LEDs are considered as three independent light sources each,
which are detected solely in the respective colour channels of the camera. Since a
real light source is not perfectly monochromatic and r is a function of the wave-
length, the total transmission T would be obtained by integration over its spectral
bandwidth [31]:

T ¼ I
I0

¼

Z k2

k1

I0ðkÞe�rldk

Z k2

k1

I0ðkÞdk
ð8Þ

Furthermore, it is assumed that the sensor’s colour filters have a perfectly flat
spectral response. The related error is difficult to quantify as it results from vari-
ous influences:

1. Due to the broad response spectra of the colour filters, contributions from all
three colour components of the LEDs are detected in all colour channels of the
camera.
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2. Temperature-related influences may cause the emitted spectrum to vary in
intensity as well as in bandwidth and peak wavelength.

3. The light attenuation caused by smoke depends on the wavelength.

The response spectrum as well as the sensitivity of the camera can be assumed to
be invariable, since they are shielded from thermal exposure.

Figure 8. MIREX and LEDSA (Camera 1 and Camera 2) extinction
coefficients in setup 2. The plot shows mean values (solid lines) and
standard deviation (shaded areas) from four experiments with the n-
heptane fuel.
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To better understand the above influences, the LEDs used in the experiment
were spectrally analysed. Figure 12 shows an example of the mean emitted spec-
trum of eleven RGB LEDs from three repetitive measurements with a BTS256-
LED spectroradiometer device from Gigahertz-Optik [32]. All measurements were
performed at ambient temperature after a ten-minute warm-up period with all
three colour components turned on.

Figure 9. MIREX and LEDSA (Camera 1 and Camera 2) extinction
coefficients in setup 2. The plot shows mean values (solid lines) and
standard deviation (shaded areas) from two experiments with a
mixed fuel from n-heptane and toluene.
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Figure 10. Computed extinction coefficients at t = 300 s of a single
experiment for camera 1 as a function of height. The results of all
three colour channels are shown for the two outer (1, 7) and the
middle (4) LED strip as well as a merged computation from all strips.
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Figure 11. 2D spatial resolution of the computed extinction
coefficients for the red camera channel (Channel 0) at different times
for both cameras. The computed values from both cameras show a
roughly point-symmetric behaviour around the centre LED strip. This
phenomenon can be attributed to temperature-related influences on
the LEDs as well as to a slightly homogeneous smoke layering (Color
figure online).
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The standard deviation of the peak wavelength is relatively small, although signif-
icantly larger for the red (1.36 nm) and blue (1.37 nm) than for the green (0.37 nm)
LEDs. The coefficient of variation (CV) denotes the relative standard deviation and
thus serves as a reference value that is independent of the absolute intensity. It is
likewise higher for red (CV = 11.6%) and blue (CV = 15.9%) than for green (CV
= 3.5%) LEDs. The RGB light sources of the individual LEDs were each analysed
simultaneously, so that uncertainties in the measurements can be excluded from
being a potential cause for the magnitude of deviations. Since the LED intensities
are scaled to towards their initial values in the experiments, those deviations do not
pose a fundamental issue for the photometric measurement. However, an uncer-
tainty arises from the captured light in a colour channel of the camera being com-
posed of varying contributions from the LED colour components.

Thermal exposure of the LEDs due to convective heat transfer and radiation
from the plume could pose a significant error on the measured intensities. An
empirical correlation between ambient temperature T and the relative emission
intensity I for red AlGaInP/GaAs, green GaInN/GaN and blue GaInN/GaN
LEDs from data of the Toyoda Gosei Corporation is reported in [33]:

I ¼ I300K � exp � T � 300K

T1

� �
ð9Þ

I300K is the initial intensity at room temperature, here 300 K, and T1 is the character-
istic temperature. The latter is an empirical quantity characterizing the temperature
dependence of the LED. Reported characteristic temperatures of T1 ¼ 199K for red
(kR ¼ 625 nm), T1 ¼ 341K for green (kG ¼ 525 nm) and T1 ¼ 1600K for blue
(kB ¼ 460 nm) LEDs imply a much higher temperature dependence for red than for
green and blue LEDs. The exact specifications of the LEDs used in the presented
experiments are not known. However, it can be assumed that these are the same
types as in the reported study, since they are the most commonly used today.

Temperature measurements taken close to the ceiling during the experiments
allow a rough estimate of the influence on the emitted intensity based on these
correlations. Maximum temperatures between 60�C and 75�C would estimate
attenuation against room temperature according to Eq. 9 as follows:

� Red: 85%–79%
� Green: 91%–87%
� Blue: 98%–97%

The actual error with respect to the measurement of light transmission is likely to
be smaller due to the inherent heating of the LEDs themselves, which sets in even
before the external temperature exposure.

Based on this thermally induced reduction of the initial intensity I0, a geometric
influence on the measurement of the extinction coefficient occurs. Beer–Lambert’s
law assumes I0 of the emitted light to remain constant over the entire course of
the experiment. A shift of this reference thus also has an effect on the extinction
coefficients computed by LEDSA. The initial intensity I0 of an LED may be
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reduced to a fraction a due to thermal exposure. Following Eq. 2 the measured
intensity Ia can be expressed as a function of a and l:

Ia ¼ expð�rr � lÞ � I0 � a ð10Þ

Here rr denotes the ’real’ extinction coefficient that would result from a measure-
ment with an undisturbed reference quantity I0. Substituting Eq. 10 into Eq. 2
and solving for r provides the distorted extinction coefficient computed by the
model, subsequently referred to as rm, see Eq. 11. In case a< 1, rm increases
against the real value rr with decreasing path length l through the smoke layer.

rm ¼ rr �
ln a
l

ð11Þ

Equation 11 potentially allows determining the attenuation a of the initial inten-
sity using the extinction coefficient calculated with LEDSA at different path
lengths. However, this would require rr to be perfectly uniform along both mea-
surement paths.

6. Conclusions

Experiments in style of EN 54 were conducted in order to investigate the light
obscuring effects of fire smoke using a photometric method. This involves capturing
the light attenuation of individual RGB LEDs on seven strips by two cameras from
different perspectives. Comparing the results with local measurements of the well-
established MIREX system reveals that the method is capable of computing spa-

Figure 12. Mean emitted spectra of 11 RGB LEDs at ambient
temperature from three repetitive measurements after a 10 min
warm-up period. Furthermore, the measurement range and the
standard deviation are shown. The blue line indicates the relative
standard deviation (coefficient of variation (CV)) of the measured LED
intensity (Color figure online).
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tially and temporally resolved extinction coefficients. The LEDSA extinction coeffi-
cient values show higher fluctuations than the MIREX, which may be related to a
longer measurement distance as well as the numerical optimisation procedure. How-
ever, there is no information about an internal smoothing of the raw data by the
MIREX. Due to the different wavelengths of the light sources, the LEDSA extinc-
tion coefficient values are generally higher than the MIREX values at the respective
measurement locations. For the MIREX at heights 1.52 m and 2.3 m, the discrepan-
cies approximately correspond to the expected ratio according to Widmann’s empir-
ical law. For the MIREX at 3.3 m, the results of LEDSA and the MIREX are closer
than expected, given the different wavelengths. A reasonable reproducibility can be
verified by data from 10 experiments with n-heptane fuel and a mixture of n-heptane
and toluene. Furthermore, the experimental setup allows verifying the hypothesis of
homogeneous smoke properties within horizontal layers.

Significant improvements of the previously introduced photometric approach
could be achieved in particular by evaluating RAW image data instead of com-
mon JPG files. The luminosity can thus be determined separately for three colour
channels of a common digital camera without being corrupted by camera-internal
postprocessing. However, a sensitivity analysis involving experimental data indi-
cates that the measurement may still be biased due to a considerable temperature
dependence of the LEDs.

The experimental uncertainties, especially with respect to the intrinsic properties
of the LEDs, are still too large at the present stage to derive further conclusions
about smoke properties such as particle size. Nevertheless, the method can be con-
sidered as a promising approach for the validation of numerical fire simulation
models due to the temporal and spatial resolution. Simulations with FDS have
already shown that the method is able to roughly capture the local dynamics of
the smoke density. However, the results still show significant deviation, indicating
the choice of unsuitable input quantities, e.g., the mass-specific extinction coeffi-
cient or the soot yield for the simulation model.

The software LEDSA which is used for data analysis was written in Python and
is made freely available by the authors [28]. Additionally, all data associated with
the presented experiments are publicly accessible in a Zenodo repository [34]. This
involves both image files and input files comprising the geometric parameters of
the setup and the boundary conditions of the model.

7. Outlook

As stated above, the applied method can be generally validated within the scope
of the conducted experiments. Nevertheless, both the experimental setup and the
data analysis reveal a considerable potential for improvement. To enhance the
accuracy of the photometric measurement, it is essential to minimize the tempera-
ture related influences on the light sources. Higher quality LED strips with ther-
mal insulation may therefore be used in upcoming experiments. It has been found
that the latter usually also show smaller deviations in the spectrum of the individ-
ual colour sources.

40 Fire Technology 2024



The experimental setup is to be extended by further measuring devices for local
detection of temperatures, light transmission and particle size distribution in order
to validate the spatial resolution of the model.

Along with the data analysis from several LED strips, the employed layer
model is capable to confirm the assumption of an adequate homogeneous smoke
stratification. Nevertheless, it can be expected that by extending the model to a
true three-dimensional scale, based on data from multiple cameras and viewpoints,
local variations in smoke density can be detected. The development of such a
model will include the use of synthetic measurement data from CFD simulations.

The results from the experiments with an n-heptane toluene mixture indicate
that the fuel-specific properties affecting the particle size distribution have a mea-
surable influence, being accounted for by this approach. Further experiments will
be conducted to investigate such effects, taking into account additional test fires in
accordance with EN 54, including smouldering fires and pyrolysis.
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Appendix: A Spatiotemporal Extinction Coefficients

Figure 13. 2D spatial resolution of calculated extinction coefficients
for the green camera channel (Channel 1) at different times for both
cameras (Color figure online).

42 Fire Technology 2024



Figure 14. 2D spatial resolution of calculated extinction coefficients
for the blue camera channel (Channel 2) at different times for both
cameras (Color figure online).
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