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Abstract. Fire insurance is a crucial component of property insurance, and its rating
depends on the forecast of insurance loss claim data. Fire insurance loss claim data

have complicated characteristics such as skewness and heavy tail. The traditional lin-
ear mixed model is commonly difficult to accurately describe the distribution of loss.
Therefore, it is crucial to establish a scientific and reasonable distribution model of
fire insurance loss claim data. In this study, the random effects and random errors in

the linear mixed model are firstly assumed to obey the skew-normal distribution.
Then, a skew-normal linear mixed model is established using the Bayesian MCMC
method based on a set of U.S. property insurance loss claims data. Comparative

analysis is conducted with the linear mixed model of logarithmic transformation.
Afterward, a Bayesian skew-normal linear mixed model for Chinese fire insurance
loss claims data is designed. The posterior distribution of claim data parameters and

related parameter estimation are employed with the R language JAGS package to
obtain the predicted and simulated loss claim values. Finally, the optimization model
in this study is used to determine the insurance rate. The results demonstrate that the
model established by the Bayesian MCMC method can overcome data skewness, and

the fitting and correlation with the sample data are better than the log-normal linear
mixed model. Hence, it can be concluded that the distribution model proposed in this
paper is reasonable for describing insurance claims. This study innovates a new

approach for calculating the insurance premium rate and expands the application of
the Bayesian method in the fire insurance field.

Keywords: Fire insurance loss claim, Skew-normal distribution model, Optimization, Bayesian MCMC

method

1. Introduction

The impact of fire on the social environment and people’s lives should not be
underestimated, and major fire accidents occur frequently in the world, resulting
in severe casualties and property losses. Property insurance should be established
for compensating economic losses in fire accidents. Therefore, it is imperative to
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determine insurance rates scientifically and reasonably and forecast fire insurance
loss claim for insurance rate determination.

It is particularly complicated for setting insurance rates due to the heterogeneity
of insurance portfolios and different insurance risks in the fire insurance field.
Hence, a linear mixed model (LMM) is typically employed to handle this hetero-
geneity. Random effects and random errors are commonly assumed to follow a
normal distribution in the typical linear mixed model framework Zhang and
Davidian [1], Ghidey and Lesaffre [2], Frees and Young [3]. The typical distribu-
tion of fire insurance loss claims is characterized by asymmetry and a thick tail.
some researchers have changed the distribution to eliminate the complicated char-
acteristics of insurance. For example, the log-phase type (Log PH) distribution
was introduced to fit the heavy-tail distribution of fire losses in Ahn and Kim [4]
study. Huang and Meng [5] corrected the skewness and heavy tail problem of
insurance loss using a Bayesian nonparametric regression model based on Gaus-
sian distribution. Escobar and Pflug [6] determined the worst case of insurance
distribution with the distance variance of the probability model. These methods
can produce more appropriate empirical results. Nevertheless, data transformation
may reduce the information provided by the original data’s potential generation
mechanism, and only applies to a single individual and does not guarantee joint
normality, presenting some limitations. Furthermore, the accuracy of a normal
hypothesis is difficult to be verified, and accurate estimation of inter-subject varia-
tion cannot be guaranteed.

Consequently, the hypothesis method of skew distribution is gradually consid-
ered by many researchers. The linear mixed model could be expanded for a better
understanding of asymmetric insurance loss claim data, and one plausible modifi-
cation is to assume the random errors following a skewed distribution. Numerous
researchers Azzalini and Capitanio [7], Capitanio and Azzalini [8]; Sahu and Dey
[9]; Arellano-Valle and Bolfarine [10]; Huang et al. [11], Jung and Lee [12] have
explored linear regression models with skewed distribution, systematically intro-
duced the family of skew distribution, and established a method to obtain skew
distribution by symmetric distribution.

Some researchers have applied a skew linear mixed model to medical research
and the economic field Bandyopadhyay et al. [13], Huang and Chen [14], Leisen
and Marin [15]. They fitted different experimental data and achieved more robust
estimation results, while its application in insurance loss claims has caused little
attention. In the fire insurance actuarial, the Bayesian method is mainly used for
problems such as estimating loss distribution, adjusting rates, and corrections. De
Simone and Piangerelli [16] applied Bayesian procedures to quantify the impact of
COVID-19 epidemic cases in eight different countries and all regions of Italy on
determining effective reproduction numbers. Meanwhile, a considerable number of
researchers (Jara and Quintana [17]; Scollnik [18]; Bermúdez and Bermúdez [19];
Esmaeili and Klüppelberg [20]; Moreno and Jiménez et al. [21]) investigated the
application of the Markov Chain Monte Carlo (MCMC) Bayesian method to esti-
mate and fit insurance losses through different regression models. The correspond-
ing studies mentioned above demonstrate the potential of the Bayesian method in
insurance actuarial.
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This paper aims to investigate the use of a skew linear mixed model in the pre-
diction of fire insurance loss claims and propose a Bayesian skew-normal linear
mixed model to describe the relationship between covariates and response vari-
ables flexibly. The random errors and random effects are assumed to obey skew-
normal distribution in comparison to the traditional linear mixed model for elimi-
nating the influence of the loss distribution’s skewed characteristics. The MCMC
method makes Bayesian inference a viable alternative for this prediction model.
Regarding parameter estimation, the Bayesian method and the MCMC method
apply to the prior distribution and the posterior distribution, respectively. The
parameter posterior means are Gibbs sampling using the JAGS package in R lan-
guage. This approach can improve the flexibility of the Bayesian method.

Linear mixed models (LMM) are often used to analyze repeated measurement data
because they are more flexible in modeling intra-subject correlations, which are usually
present in such data. The most popular continuous response LMM assumes that both
the random effects and the internal errors of the subjects are normally distributed,
which may be an unrealistic assumption that conceals important features of changes
within and between units (or groups). In this work, a skew normal linear mixed model
(SNLMM) is proposed, which relaxes the normality assumption by using multivariate
skew normal distribution, including normal distribution as a special case, and is suit-
able for the structure of repeated measurement data and clustering data analysis. The
Bayesian skew-normal linear mixed model proposed in this study outperforms the log-
linear mixed model and the regression model on two fire insurance real loss datasets,
expanding the method’s application in the fire insurance business.

2. Data Sources

The correctness of the Bayesian skew-normal linear mixed model is verified on
two different property insurance datasets. The first dataset is the U.S. employer
liability insurance loss claims data from Klugman [22], which is originally sourced
from the National Council on Compensation Insurance and contains a large sam-
ple and small categorical covariates. The second dataset consists of a significant
number of continuous covariates by introducing mainland China property insur-
ance claims data, sourced from the China Statistics Bureau and the China Insur-
ance Regulatory Commission (CIRC) website (http://www.stats.gov.cn/tjsj/ndsj/).

Employer liability insurance, classified as property insurance, is mainly used to
manage claims for permanent or partial incapacity of employees. A total of 121
risk categories are included in the longitudinal dataset, and 847 data are collected
in seven observation years, including occupational categories, income, and com-
pensation. The applicability of the model is verified by exploring the data charac-
teristics of the pure premium (PP) (PP=claim amount/income) data features.

Property insurance in mainland China is majorly employed to handle fire losses
claims. The property insurance loss claims data and the gross regional product
(GRP) dataset of various regions for 2011–2020 in mainland China are cited in
this study. The panel data contains 340 data items for 34 regional categories over
10 observation years and are adopted in the study owing to the strong regional
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characteristics of property insurance business size and claims. The model is
applied for this dataset to investigate and estimate the association between prop-
erty premium loss claims and GRP.

Figure 1 illustrates the histograms of frequency distributions of pure premiums
of employer liability insurance and property insurance loss claims. As observed in
Figure 1, both insurance datasets exhibit remarkable right skew and heavy tail
characteristics. Thus, it is difficult for them to accurately apply to the traditional
actuarial model. Fortunately, the application of the skewness distribution pro-
posed in this study can better tackle this problem.

3. Methodology

3.1. Bayesian Skew-Normal Linear Mixed Model

The skew-normal distribution is a further extension of the normal distribution.
The Bayesian method is primarily applied to parameter estimation of the loss dis-
tribution. The traditional linear mixed model is generally insufficient to describe
the insurance loss claim due to the complicated characteristics of skewness, heavy
tail, and multimodality. As a result, the mature application of the Bayesian
method and skewness distribution is required. Bayesian skew-normal linear mixed
model (SNLMM) can better handle this type of panel data. Sahu et al. [9], Arel-
lano-Valle and Genton [10], Arellano-Valle et al. [23], Bernardi and Petrella [26],
Miljkovic and Grün [27], and other researchers have conducted correlation studies
on the Bayesian skew-normal linear mixed model. In this section, the expression
function studied by the previous researchers is introduced to define the Bayesian
skew-normal linear mixed model (SNLMM).

3.1.1. Skew-Normal Linear Mixed Model Firstly, multivariate skew-normal distri-
bution is introduced to define the proposed SNLMM. According to the multivari-
ate skew-normal distribution studied by Arellano-Valle and Genton [10], the

The U.S. Employer liability insurance data China property insurance data
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Figure 1. Frequency distribution histogram of two different datasets.
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density function of e-element skew-normal distribution of random variable X=
(X1,…,Xe)

T at point x is defined as

fSN ðxjl;R; aÞ ¼ 2weðx� l;RÞW aTr�1ðx� lÞ� � ð1Þ

where Σ denotes the positive definite covariance matrix, σ represents the diagonal

matrix
P ¼ r

P
r formed by the standard deviation in Σ, and R indicates the cor-

relation matrix. The density function of e-element normal distribution Ne (μ, Σ) at
point x is expressed as ψe (x-μ; Σ), and the corresponding distribution function is
expressed as Ψe (x-μ; Σ).

The most commonly used linear mixed model (LMM) was proposed by Laird
and Ware [28] for a continuous response. Assuming that the loss data come from
m different individual risks, there are ki (i=1,2,…,m) observations at different
stages for each risk. Additionally, Yi represents the ki dimension vector of the
continuous measurement of individual i. Then, the linear mixed model of Yi is
expressed as

Yi ¼ Xibþ Zibi þ ei; i ¼ 1; 2; . . . ;m ð2Þ

where Xi (ki p) indicates the explanatory variable matrix corresponding to the
fixed effect vector β, and Zi (ki q) denotes the explanatory variable matrix corre-
sponding to the random effect vector bi. The random effect bi and the random
error εi are independent of each other and obey the mean value of 0. The normal
distribution of the covariance matrix is determined by Σb and σe

2: bi�Nq (0, Σb)
and εi�N (0,σe

2). Covariance matrixes Σb and σe
2 represent the variance between

individuals and within individuals, respectively.
Generally, the parameter estimation of skew distribution is complicated. The

skew-normal distribution linear mixing model proposed in this study extends the
general linear mixed model, defined based on the linear model in Eq. (2). Assum-
ing that the random effects and random errors obey the skew-normal distribution,
the specific distribution is expressed as

bi �iid SNq 0;R; abð Þ; ei �ind SNki 0;Ri; aeið Þ; i ¼ 1; . . . ;m: ð3Þ

The assumptions of random effects and random errors are independent of each
other, contributing to the following hierarchical structure.

Yijbi; b;Ri; aei �ind Nki Xibþ Zibi;Ri; aeið Þ
:

ð4Þ

bijR; ab �ind SNq 0;R; abð Þ; i ¼ 1; . . . ;m: ð5Þ

where αei and αb are vectors, containing shape parameters αei1,…, αeini and αb1,…,
αbq, respectively. It is assumed that Σi=σe

2Ini and αei=αe1ni, i=1,…, m, where 1 g

denotes the g-dimensional vector of ones. The standard diagonal matrix of matrix
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Σi is σi=σeIki, where σe a real number. According to the characteristics of skew
normal distribution, the expectation and variance of response variable Yi are
obtained as follows.

E Yijbi; b; r2e ; dei
� � ¼ Xibþ Zibi þ redeið2=pÞ1=21ki ð6Þ

Var Yijbi; b; r2e ; dei
� � ¼ r2e Iki � deid

T
eið2=pÞ

� �
: ð7Þ

where бei=(1+αei
T·αei)

−1/2αei; the observation value y=(y1
T,…, ym

T)T is condi-
tionally distributed for a given random effect b=(b1

T,…, bm
T)T; other parameters

are shown as

f ðyjb; b; r2e ; deÞ ¼
Ym
i¼1

2kiwki yi � Xib� Zibi; r2eIki
� �

W aTe r
�1
e yi � Xib� Zibið Þ� �

:

ð8Þ

The model mainly infers parameter vector θ=(βT, σe
T, αT)T, α=(αe, αb

T)T, αb=
(αb1, …, αbq)

T. This model is based on the distribution of response variable Yi.
Random effects and random errors are not limited to the normal distribution and
can be used to evaluate asymmetric data.

3.1.2. Bayesian Estimation of SNLMM The loss distribution is estimated using
the Bayesian method by specifying the prior distribution of unknown parameters
to determine the posterior distribution of parameters. The prior distribution of the
fixed effect vector β is usually taken as multivariate Gaussian distribution N (β |
μβ, σβ

2), with density function given by

p bjlb; r2b
� �

/ exp � 1

2
b� lb
� �

r�2
b b� lb
� �� 	

ð9Þ

The prior covariance structure of scale parameter σe
2 is the inverse Wishart distri-

bution IG (σe
2 | τe, Te) of matrix Tb, with density function given by

p r2e


se; Te� � ¼ Teð Þse

C seð Þ
1

r2e

� � seð Þþ1

exp � Te
r2e

� 	
ð10Þ

The prior distribution of scale matrix Σ with random effect is τb degrees of free-
dom and the variable covariance structure is inverse Wishart distribution IW (Σ |
Tb) of matrix Tb. The prior distribution of skewness parameters αe and αb is a
normal distribution N (αe | μe, γe

2) I {αe>0} and a multivariate truncated Gaus-
sian distribution Nq (αb | μb, γb

2) I {αb>0}, respectively, where γb
2 denotes a posi-

tive definite matrix, and I{A} represents the indicative value of dataset A, with
density function given by
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p aejle; c2e
� � / exp � 1

2c2e
ae � leð Þ2

� 	
I ae > 0f g ð11Þ

and

p abjlb; cbð Þ / exp � 1

2
ab � lbð ÞT c�1

b ab � lbð Þ
� 	

I ab > 0f g ð12Þ

Assuming that the prior distribution of the above parameters is independent of
each other, according to the conditional distribution of the parameters, the poste-
rior distribution of all relevant parameters can be obtained by

pðh; b;RjyÞ /
Ym
i¼1

SNni yijXibþ Zibi; r2eIni ; ae
� ��Ym

i¼1

SNq bij0;R; abð Þ

�N bjlb; r2b
� �

� IG r2e jse;Te
� �

� IWsb RjTbð Þ � N aejle; c2e
� �

I ae > 0f g

�Nq abjlb; c2b
� �

I ab > 0f g ð13Þ

However, it is quite complicated a to obtain the marginal distribution of the
amount of interest involved in Eq. (13) from an analytical perspective. The
MCMC method is adopted in this study to perform Bayesian analysis, considering
that the traditional Bayesian method is difficult to conduct on such models. In
this study, the MCMC method is used to simulate the posterior distribution of
each parameter, and Gibbs sampling is applied to the conditional posterior distri-
bution of each parameter to simplify its sophisticated formula.

3.2. MCMC Simulation Analysis

The MCMC method involves the skew-normal distribution function, which is dif-
ficult to establish the model. The hierarchical structure studied by Arellano-Valle
et al. [23] is employed in this paper to solve the complicated skew problem. The
skew-normal linear mixed model is expressed in the equivalent form of simple
normal distribution, making it convenient to use Gibbs sampling for posterior dis-
tribution. The complete layered structure of the model is expressed as

Yijbi; b; r2e ; ae;wei � Nni Xibþ Zibi þ aewei; r
2
eIni

� �
; i ¼ 1; . . . ;m:n ð14Þ

wei � Nnið0; IÞI wei > 0f g ð15Þ
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bijR; ab;wbi � Nq abwbi;Rð Þ ð16Þ

wbi � Nqð0; IÞI wbi > 0f g ð17Þ

b � Np lb; r
2
b

� �
ð18Þ

r2e � IG se;Teð Þ ð19Þ

R � IWsb Tbð Þ ð20Þ

ae � N le; c
2
e

� �
I ae > 0f g ð21Þ

ab � Nq lb; c
2
b

� �
I ab > 0f g ð22Þ

The corresponding programming code can be easily obtained according to the lay-
ered expressions. According to Eqs. (14)–(22), the complete conditional distribu-
tion required to realize the Gibbs sampler can be directly derived and sampled.
The algorithm starts from the initial value and cycle of all variables mentioned,
which generates samples from the above conditional distribution until conver-
gence. The method mentioned by Gelman and Rubin [24] is utilized to verify the
conditions, such as running several parallel chains. Regarding unbalanced data-
sets, existing statistical software, such as MATLAB, can be used to easily calcu-
late the above equations. For balanced datasets, the Gibbs sampler can be
implemented by OpenBUGS or JAGS software. Besides, the R language jags pro-
gramming is employed to perform Gibbs sampling in this study.

4. Case Study

In this section, the Bayesian skew-normal linear mixed model is established and
compared with Frees et al. [3] model to verify the accuracy of SNLMM model
based on the US employer liability insurance loss claim data Klugman [22]). Then,
the SNLMM model is applied to China’s mainland property insurance statistics
[29] (http://www.stats.gov.cn/tjsj/ndsj/) to explore the relationship between the rel-
evant variables. Additionally, the premium claims are estimated to determine the
premium rate based on variance analysis to determine the premium rate.
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4.1. U.S. Employer Liability Insurance Claims Data

Pure premium (PP) is defined as the loss of income per dollar due to permanent,
partial disability. Frees selected the logarithm of pure premium (LnPP) as the
response variable Y; other explanatory variables were the observation year t and
the occupation category w. Frees established a logarithmic normal linear mixed
model, which used logarithmic transformation to explain heteroscedasticity. Fig-
ure 1 demonstrates that the pure premium claim data are panel data with right
deviation and heavy tail. The correlation between the same set of data needs to be
considered, and the logarithmic transformation exhibits data information loss and
increase errors. In this study, the model is optimized by establishing a Bayesian
skew-normal linear mixed model, so as to improve the reliability of data predic-
tion.

4.1.1. Model Analysis Frees conducted logarithmic transformation of pure premi-
ums under the consideration of the right-deviation characteristics of data. After
logarithmic transformation, the right-deviation of the data was offset. The distri-
bution map of logarithmic pure premium data presented symmetry. The estab-
lished logarithmic linear mixed Model I was

log PPwtð Þ ¼ c1 þ d1w þ d2wYeart þ ewt

w ¼ 1; . . . ; 121; t ¼ 1; . . . ; 7: ð23Þ

where w denotes the occupational category and t represents the observation
year. Since the pure premium does not change with the observation year, the
model only contains a constant term γ1 as a fixed effect variable. The value of
the observation year is (Year-4) /8. Additionally, the model is a general linear
mixed model. The random effect dw and the random error term ewt are subject
to the normal distribution with the mean value of zero, and the random effect
dw follows the binary normal distribution. Frees used t statistics and likelihood
statistics to judge the adequacy of the model, which fitted the panel data model
with the data to create a credibility predictor to solve the skew problem of the
model.

Logarithmic transformation reduces the correlation of the same group of data.
After the establishment of the linear mixed model, there are some defects in the
internal structure, and the prediction data lacks certain authenticity. This study
uses the proposed Bayesian skew-normal linear mixed model to analyze pure pre-
mium data. Normal distribution is a special case of skew normal distribution.
Therefore, the skewed normal linear mixed model can process both skewed data
and symmetric distribution data.

According to the evaluation results of the Bayesian model, DIC statistics
Spiegelhalter et al. [29] and BIC criterion Yuan and Lu [30] are employed in this
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paper to analyze the accuracy of the three models. The expressions of DIC and
BIC are

DIC ¼ 2D hð Þ � D hð Þ ¼ D hð Þ þ 2k ð24Þ

BIC ¼ lnðnÞk � 2 lnðLÞ ð25Þ

where D (θ) is equal to the logarithmic likelihood function of negative twice, k
denotes the number of effective parameters of the model, and L indicates the like-
lihood function. As suggested in the previous studies, smaller DIC and BIC were
better in fitting and prediction effects of the model.

In this paper, the partial normal distribution is used to define the random effect
dw and the random error term ewt to form a partial normal linear mixed model.
This paper will compare and analyze the two models, and the response variables
are pure premium logarithm. The first model is a general linear mixed model, and
the random effects and random errors obey the normal distribution. The second
model introduces skew normal distribution, assuming that both random errors
and random effects obey skew normal distribution. Suppose that the random error
term obeys the normal distribution, that is, the Frees model.

In order to facilitate the comparison of the same parameters of the two models,
the same prior distribution is given. In each simulation,100 Monte Carlo data sets
are simulated from Eq. (23) according to additional specification described below,
and Eq. (23) is fit to each data set via the strategy in Proposition 1 (see Appendix)
using the R software jointly with the R2WinBUGS package and the following
prior specifications. The prior distribution of the fixed effect is regarded as a nor-
mal distribution γ0�N (0,102). The prior distribution of the scale parameter of the
error distribution is assumed to obey inverse gamma distribution σe

2�IG
(0.01,0.01). The prior distribution of the scale matrix of the random effect prior
distribution dw is inverse Wishart distribution ∑�IW2 (I2). The skewness parame-
ter is αe�N (0,102) I{αe>0}, αw�N (0,102) I{ab>0}. The prior distributions of
parameters ωe and ωw are assumed as ωe�N (0,1) I{ωe>0}, ωd�N (0,1) I{ωd>

0}. The prior distribution considered is close to the non-informative distribution,
that is, the prior distribution with large variance is considered. The parameter esti-
mates and standard deviations of various models are shown in Table 1.

Σ11 is the variance of the random effect d1w, Σ12 is the covariance of the ran-
dom effects d1w and d2w, Σ22 is the variance of the random effect d2w. The last two
lines are negative twice the log-likelihood function value and DIC information for
comparative analysis of the model.

It can be seen from Table 1 that when the random error term obeys the partial
normal distribution, the DIC value of the model is obviously the smallest, indicat-
ing that the model has the best fitting effect on the pure premium logarithm.
However, comparing the fitting values of the models with the actual values, it can
be found that the fitting values of these models for the logarithm of pure premi-
ums are not much different. See Figures 2 and 3, this is mainly because the loga-
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rithm of pure premiums presents an approximate symmetrical shape, so the supe-
riority of skewed distribution is not fully reflected.

4.1.2. Model Optimization Logarithmic transformation reduces the correlation of
the same group of data. After the establishment of the linear mixed model, there
are some defects in the internal structure, and the prediction data lacks certain
authenticity. This study uses the proposed Bayesian skew-normal linear mixed
model to analyze the pure premium observation data directly.

The skew-normal linear mixed model for the pure premium claim dataset is
established directly in this study, and the explanatory variables mentioned above
are the same as Model II. Therefore, the Bayesian skew-normal linear mixed
Model III can be obtained as

Normal linear mixed model (b)(a) A skew normal linear mixed model
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Figure 2. Scatter plot of pure premium and fitting value.

Table 1
The Posterior Mean of Parameters with the Logarithm of Net Premium
as the Response Variable

Parameter

Normal Skew-normal

Mean SD Mean SD

γ1 −4.35 0.08 −4.59 0.16

σ2 0.35 0.02 0.31 0.043

∑11 0.7 0.1 0.70 0.096

∑12 −0.11 0.09 −0.1 0.082

∑22 0.36 0.13 0.36 0.13

αe – – 0.38 0.017

αd1 – – 0.23 0.066

αd2 – – 0.078 0.053

−2log- likelihood 2515 1868

DIC 2665 2162

Study on Bayesian Skew-Normal Linear Mixed Model... 2465



PPtn ¼ !o þ don þ d1nYearn þ etn: ð26Þ

In this model, the random effects and random errors are assumed to follow the
skew-normal distribution, and the pure premium is considered the response variable.

The skew-normal linear mixed model does not need to transform the data and
can directly calculate the pure premium data on the right. In this way, the
explanatory ability of the model to the data is significantly improved, and the
influence of the correlation of the same set of data caused by the transformation
is avoided. For the convenience of comparison, the same meaning parameters give
the same prior distribution.

The prior distribution of parameters is obtained based on the Bayesian method,
and the hierarchical expression of the model is acquired using the equivalent form
of the skew-normal linear mixed model. In this paper, the hierarchical expression
operation code is programmed by JAGS in R language through Gibbs sampling
of MCMC method, with 30,000 iterations. The first 10,000 iterations are aban-
doned until the sample converges. Then, the parameter posterior distribution sam-
ple value is obtained. Meanwhile, the lag value is set as 4 to avoid related
problems in the generated Markov chain. The mean value and standard deviation
of the estimated values of each parameter are obtained using the sample values of
the posterior distribution, as listed in Table 2.

Table 2 implies that the posterior distribution mean of the skewness parameter
is close to 0.5, and the variance interval of the error parameter is relatively nar-
row. The dotted line in Figure 4 represents the median of the skewness parameter
and error parameter. The median of skewness parameter is close to 0.5, and the
median of error parameter is close to the mean, suggesting that the established
skew-normal linear mixed model is more suitable for this dataset.

4.1.3. Comparative Analysis Since the response variables used in Tables 2 and 1
are completely different, one is the pure premium and the other is the logarithm
of the pure premium, their DIC values cannot be directly compared, but the fit-

Normal linear mixed model (b)(a) A skew normal linear mixed model
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Figure 3. Residual and compensation scatter plot.
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ting values and model residuals of different models can be compared and ana-
lyzed.

Figure 5 is a scatter plot between the observed values of the residuals and pure
premiums of the partial slash linear mixed model and their fitted values. It can be
seen that the fitted value and the observed value of the model III with the pure
premium as the response variable are closer to the diagonal, and the fitting effect
is better than that of the Figure 2. It can be seen that the fitted values and
observed values of the partial slash linear mixed model are closer to the diagonal,
and the residual fluctuation range is smaller. The residuals are concentrated near
the zero value, and the fitting effect is significantly better than the normal linear
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Figure 4. The posterior distribution frequency distribution curve of
parameters. (a) The posterior distribution frequency curve of the
skewness parameter αd1. (b) The posterior distribution frequency
curve of the error parameter σe

2.

Table 2
A Posteriori Mean of Parameters with Pure Premium as Response
Variable

Parameter

Skew-normal

Mean SD 2.5% 97.5%

γ0 −0.0395 0.0365 −0.1257 0.1104

αd1 0.4772 0.0318 0.3421 0.5090

αe 0.3800 0.0547 0.0685 0.4140

σe
2 0.0240 0.0016 0.0114 0.0530

Σ11 0.05397 0.0321 0.0440 0.1711

Σ12 0.0605 0.0243 −0.0099 0.0861

−2log- likelihood −3899
BIC −2.225
DIC −3359
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mixed model shown in Figures 3 and 4, which further indicates that the model has
a better fitting effect on the pure premium data.

Figure 6 represents the scatter plot of residuals. From the graph, it can be seen
that the residual fluctuation range is small and gathers near the zero value. The
fitting effect is obviously better than the model I and model II shown in Figure 3,
which further shows that the model III fitting of pure premium data greatly
improves the model’s ability to interpret data.

4.2. Mainland China Property Insurance Statistics

Property insurance business scale and loss claims have strong regional characteris-
tics. In this study, the relationship between regional property insurance loss claims
and regional economy GRP is mainly discussed. The data of the two over the
years are fitted and analyzed. The claims for property insurance losses in the next
3 years are further predicted.

4.2.1. Variable Assumptions Figure 7 illustrates the relationship between total
property insurance losses with GDP and economic growth over the past decade.
The total insurance loss claims and GDP increase with time; the total amount of
insurance loss claims grows faster when GDP grows faster; the growth rate of
total insurance loss claims decreases when GDP growth slows down, implying a
linear relationship between the two parameters. In recent years, China has entered
a transitional period, with a large GDP base and rapid growth of per capita
GDP, while the growth rate has declined.

Figure 8 exhibits the time series of claims for property insurance losses in the
regions over the past decade with the observation year. Figure 8 reveals that the
level of insurance loss claims increases with the increasing observation years for
most regions, while there are significant differences in the level of insurance loss
claims among regions with different economic levels.

According to the property insurance loss claim data in China Statistical Year-
book and China Fire Yearbook, these data variables are summarized in Table 3.
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(a) Residual and net premium scatter plot (b)Residual and claim value cost scatter plot
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Figure 7. Comparison and growth of premium claim with GDP.
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As suggested in Table 3, the trend of insurance loss claims and regional economy
with time is somewhat consistent, and their variances are relatively large.

A preliminary analysis indicates that it is somewhat similar to the linear trend
of regional economies GRP with time, though the level of claims for property
insurance losses may depend on the complicated characteristics of different
regions. Moreover, the dataset demonstrates the distribution characteristics of
right deviation, thick tail, and asymmetry. In this study, regional property insur-
ance loss claim is designated as response variable Y (billion). Random variables
include observation year t, regional economy GRP (billion), observation area cat-
egory n, explanatory variable n=34, and t=10 (2011,…, 2020). Different letters
instead of region names are used to protect data sources and information security.
Meanwhile, no more information about the region category is provided.

4.2.2. Model Establishment The above analysis implies a certain linear trend
between the amount of property insurance loss compensation and the observation
year, as well as a correlation between the amount of property insurance loss com-
pensation and the regional economy GRP. Furthermore, the residual error of the
amount of property insurance loss compensation fitted from a single region does
not exhibit a special trend. Then, the following skew-normal linear mixed model
expression is obtained by

Ytn ¼ bo þ b1GRPtn þ bon þ b1nTn þ etn ð27Þ

n ¼ 1; . . . ; 31; t ¼ 1; . . . ; 10: ð28Þ

where, Ytn represents the claim for property insurance loss with time t and regio-
nal category change n, and the constant term β0 denotes the fixed effect variable.
The random effects include the constant term bon, the observation year b1n and the
regression coefficient β1 of the observation region. It mainly manages the correla-
tion between different observation years and the observation regions. The value of
the observation year is (Year-5) /10, which is convenient for calculation and statis-
tics. Three different distribution models of random effects and random errors are
adopted in this study to make a comparative analysis.

Model 1: The random error term en=(e1n,…, e10n)
T and the random effect are

assumed to obey the multivariate skew-normal distribution model;
Model 2: A model with the random error term en=(e1n,…, e10n)

T for a multi-
variate normal distribution, and the random effect for the multivariate skew-nor-
mal distribution model;

Model 3: The response variable is the logarithm of premium claims, random
effects and random errors obey the Gaussian distribution model.

The prior distributions of the same parameters of the three models are assumed
to be the same to perform comparative analysis. This study is based on a large
variance. The prior distribution of the fixed effect is set to independent distribu-
tion γ0�N (0,102), and the prior distribution of the scale parameter of the error
distribution is set to σe

2�IG (0.01,0.01). Hence, the mean value of the distribution
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is 2. The prior distribution of the scale matrix of the prior distribution dn of ran-
dom effects is considered inverse Wishart distribution ∑�IW2 (I2); the skewness
parameter is assumed to αe�N (0,102) I{αe>0}, αb0�N (0,102) I{ab0>0}, and
αb1�N (0,102) I{ab1>0}. It is demonstrated that the results of the analysis are
quite robust since all previous considerations are based on large variances.

4.2.3. Data Analysis The 40,000 iterations were conducted after the previous
10,000 iterations were abandoned, so as to analyze the data. The lag value is set
as 5 to avoid the related problems in the generation chain. The JAGS program-
ming code in Model 1 is provided in the appendix, and the posterior estimation
average of model parameters are presented in Table 4.

The results of parameter estimation (posterior mean) are listed in Table 4. Fol-
lowing the analysis of the Table 4, BIC and DIC criteria suggest that model 1 is
most suitable for data.

Figure 9 provides the Markov data chain and posterior distribution sample fre-
quency histogram of some parameters in Model 1. As observed in Figure 9, the
skewness parameter is closer to 0.5, and the error confidence interval is relatively
narrow. It can be seen from the figure that there is no convergence problem in the

Table 3
Summary Statistics of Insurance Claim Data and Regional Economy
GRP, by Year

Variable

Year

(t) Mean Median

Standard

Deviation Minimum Maximum

Insurance claim data

(billion)

1 59.51528 46.09033 47.845 178.49 2.96

2 77.30833 60.07841 61.83 240.08 3.36

3 102.2619 87.83932 79.055 352.56 4.02

4 104.6056 79.86177 80.46 336.3 4.1

5 117.0072 91.7645 87.01 403.04 5.82

6 130.4622 99.15416 94.695 437.64 6.97

7 140.2003 106.9386 107.28 455.63 8.72

8 162.9508 126.851 113.46 516.78 12.6

9 179.4919 136.3548 135.57 542.23 16.25

10 191.9178 147.7201 147.145 642.28 17.47

Total 1265.721 982.653 954.35 4105.03 82.27

GRP (billion) 1 16,166.90 12,391.30 13,365.89 605.83 52,673.59

2 18,598.43 14,454.00 14,325.90 701.00 57,068.00

3 20,345.67 16,045.00 15,613.31 802.00 62,164.00

4 22,073.14 17,689.94 16,986.30 920.83 67,792.24

5 23,315.09 17,831.51 18,218.96 1026.39 72,812.55

6 25,163.55 18,499.00 20,103.05 1151.41 80,854.91

7 27,596.12 20,818.50 22,213.03 1310.63 89,879.23

8 29,506.69 21,984.80 23,905.15 1477.63 97,277.77

9 31,784.95 24,757.50 25,949.29 1697.82 107,671.07

10 32,658.55 25,115.00 26,661.81 1902.70 110,760.90

Total 247,209.09 189,586.55 197,342.69 11,596.24 798,954.26
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chain generated by the parameters. Figure 10 exhibits the comparison curve
between the estimated value and the real value of each region. The analysis results
in Figure 10 reveal that the values of the two curves are very close, and the
changing trends are consistent. Hence, Model 1 has a high fitting degree.

Figure 11 demonstrates the prediction values of regional property insurance loss
claims in the following 3 years. The previous analysis implied that the insurance
loss claims significantly varied in different regions, and the insurance loss claims
generally changed little in small regions, otherwise changed dramatically. The
development trend of insurance loss claims in Figure 9 meets this result analysis.

In summary, the proposed Bayesian SNLMM model has superior performance
in intra-sample fitting and sample prediction and provides a reasonable model to
analyze the influence of covariates.

Table 4
A Posteriori Average of Three Model Parameters

Parameters αb0 αb1 β1 αe β0 Σ11 Σ12 σe
2

Model 1

Mean 0.6055 0.5865 0.0541 0.6052 −0.1531 1.1140 1.3680 0.4770

SD 0.4895 0.4310 0.0422 0.5311 0.3295 7.7110 2.4520 0.3890

2.5% 0.0213 0.0211 0.0001 0.0177 −0.7321 0.4822 3.0200 0.1700

97.5% 1.8610 0.4105 0.0970 2.0100 0.5553 1.6010 9.5630 0.4100

−2log- likelihood −1004.2
BIC −0.843
DIC −275.5
Model 2

Mean 0.6080 0.6610 0.1482 – 0.1228 0.9156 8.32603 0.6500

SD 0.5053 0.5329 0.1142 – 0.2620 0.3150 1.26403 0.4990

2.5% 0.0310 0.0224 0.0021 – −0.4841 0.4864 9.73700 0.2000

97.5% 1.9190 1.8650 0.1350 – 0.5365 1.5580 1.67403 0.4710

−2log- likelihood −977.2
BIC −0.356
DIC −173.3
Model 3

Mean – – 0.2123 – 0.1386 3.6730 2.2747 1.7800

SD – – 0.1459 – 0.3468 7.6431 1.1849 1.1480

2.5% – – 0.0021 – 0.3237 0.0777 2.4103 4.6200

97.5% – – 0.1782 – 1.7390 1.2230 1.9238 9.6600

−2log- likelihood 1150.5

BIC 1.348

DIC 270.2
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5. Discussions

An essential aspect of analyzing insurance loss claim data is that they tend to fol-
low a skew distribution, because extreme events are not uncommon and exhibit a
heavy tail. A Bayesian linear mixed model is proposed in this paper. Its random
effects and random errors belong to skew-normal distribution. This model can
identify non-normal and asymmetric behaviors that may occur in the random
errors or effects. Firstly, the methods used and the Bayesian skew-normal linear
mixed model are introduced. Secondly, the data fitting results of logarithmic linear
mixed model and Bayesian skew-normal linear mixed model are compared based
on the dataset of American Employers liability industrial insurance to empirically
tests the superiority of the Bayesian skew-normal linear mixed model (Pure pre-
mium is the response variable). Finally, the Bayesian SNLMM model is applied to
the property insurance loss dataset in mainland China to explore the relationship
between insurance claims and the regional economy GRP and predict insurance
loss claims.

bFigure 9. Sample chain of simulated data (left image) and histogram
of posterior distribution of parameters (right image). a is Identified
as σe

2 Sample chain, b is Identified as σe
2 posterior distribution

histogram, c is Identified as β0 Sample chain, d is Identified as β0
posterior distribution histogram, e is Identified as D11 Sample chain,
f is Identified as D11 posterior distribution histogram, g is Identified
as αb0 Sample chain, h is Identified as αb0 posterior distribution
histogram.
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The results of this study suggest that both the US employer liability insurance
claim dataset and the Chinese mainland property insurance loss dataset have com-
plicated characteristics of right deviation and heavy tail. As revealed by asymmet-
ric pure premium panel data analysis, the Bayesian skew-normal linear mixed
model has a more accurate fitting effect and higher data accuracy compared with
the logarithmic linear mixed model. The research based on property insurance loss
claim datasets demonstrates a certain linear relationship between regional econ-
omy and insurance claims, and the trend is consistent. It is assumed that the first
model simulation is more advantageous among the three different linear mixed
models. Then, the insurance loss claims in different regions in the next 3 years
present a trend of first decreasing and then increasing. This flexibility that other
linear models cannot achieve highlights the advantages of Bayesian methods over
existing actuarial models.

In previous linear mixed model research, a robust reasoning method using
heavy tail distribution is proposed. For example, Pinheiro and Vidakovic [31] used
maximum likelihood to describe the robust Gaussian LMM model proposed by
Laird and Ware [28]. They assumed that the distribution of errors had the same
degree of freedom as the distribution of random effects, and the random effects
were independent. Two different stochastic processes are difficult to be controlled
by the same degree of freedom parameters. The method designed in this paper can
solve this problem by allocating different parameters. Modeling by modifying the
known distribution is a hot topic. Many alternative structures of Arellano-Valle
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et al. [23] are based on Genton [10]. In this study, the structure proposed by Arel-
lano-Valle et al. [23] is selected mainly for simple calculation.

The fourth section analyzes the Frees data case. When the data is converted,
some information may be lost. The fitting results between the models are not
much different, and the superiority of the skewed distribution model is not fully
reflected. When analyzing data directly, the fitting results and residual values of
the SNLMM model are more accurate. Although the related density function is
difficult to handle, the MCMC method can easily fit the model. This method can
be implemented on computing by using simple and accessible software (such as R
language, WinBUGS). Other skewed distribution variants currently available are
not so easy to implement. The MCMC method and standard information stan-
dards are very effective in identifying correct normal asymmetric models, as shown
in simulation studies. A relatively large advantage of this model is that it can give
more flexible assumptions about the random effects and random errors of the
model. However, when applying the SNLMM model to analyze the data, the
prior distribution of the parameters considered is close to the non-informative dis-
tribution, that is, the prior distribution with large variance is considered, and the
model is suitable for asymmetric longitudinal data.

To sum up, the same method can also be applied to other types of data, and
these data have similar skewness characteristics. In other words, the Bayesian
SNLMM model for objective Bayesian analysis of data, including parameter dis-
tribution and prior, is applicable to other disciplines, such as engineering and
environmental science.

6. Conclusions

Forecasting fire insurance loss claims is a critical part of rate determination analy-
sis. However, the insurance rates calculation is still in the exploring stage for fire
insurance loss claim data, which usually has a characteristic of right skew and
heavy tail and is difficult to be described by the traditional normal distribution
linear mixed model.

In this paper, an asymmetric fire insurance loss claim prediction model is pro-
posed by combining the Bayesian method with the skew-normal linear mixed
model. Based on the traditional linear mixed model, it is assumed that the random
effects and random errors obey the skew-normal distribution. Then, it can
describe the complicated characteristics of skewness and the heavy tail of insur-
ance loss claim data. Moreover, the Bayesian MCMC method is adopted to esti-
mate the model parameters, and the posterior parameter mean estimation is
obtained using Gibbs sampling, contributing to addressing complicated opera-
tional problems. These improvements have achieved better results compared to the
normal linear mixed model in theory and practice.

Additionally, the proposed Bayesian SNLMM model has been validated on two
property insurance loss claims datasets, including the latest insurance data statis-
tics. Firstly, this model demonstrates better goodness of fitting for pure premium
data, better data interpretation ability, and lower DIC compared with the log lin-
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ear mixed model. Secondly, in the process of predicting the number of fire insur-
ance claims, the accuracy of the model is high, and the influence of different data
characteristics is small. Finally, the method estimates parameter samples by simple
and easy-to-use software (such as R language, WinBUGS). The Bayesian skew-
normal linear mixed model can describe the specific form of claim data in differ-
ent categories by identifying skew patterns. This model has great flexibility and is
suitable for modeling and analysis in various complicated situations.

In addition, the estimation model proposed in this paper also has shortcomings
and needs further study. Firstly, the random model of different factors in MCMC
simulation is explored to reduce the influence of variable weight structure and
improve the accuracy. Secondly, when the model is applied to the prediction of
fire insurance loss claim data, it is necessary to directly model and analyze the
original longitudinal data to improve the accuracy of data prediction.
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Appendix

To obtain the marginal distribution of Yj, we drop the subscript j, corresponding
to the j the group (or individual) to simplify notation. From Eqs. (5, 6) and the
definition of skew-normal multivariate distribution in Eq. (3) with k=n and D=
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diag (δ), it follows that the marginal density of Y is obtained by computing the
following integral:

fYðyjh; kÞ ¼
Z
Rq

f yjb; b; r2e ; de
� �

f bja; dbð Þdb

¼
Z
Rq

2nþq/n yjXbþ Zb; d2e þ r2e
� �

In
� �

�/q bj0;D2
b þD

� �
Uq Db D2

b þD
� ��1

bj0; Iq þ DbD
�1Db

� ��1
� �

�Un
deffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2e d2e þ r2e
� �q ðy� Xb� ZbÞj0; In

0
B@

1
CAdb ðA� 1Þ

For which the following proposition will be used.
The values of standard information standards in the SNLMM model can be

used to detect deviations from normal conditions, which will be seen in the simu-
lation study. The specific algorithm is as follows.

Let Yi ¼ Xibþ Zibi þ �i,where bi �iid SNq 0;R; abð Þ and ei �ind SNki 0;Ri; aeið Þ are inde-
pendent. Then, the marginal distribution of Yi is given by

fYi yijh; kð Þ ¼ 2niþq/ni yijXib;Rið ÞUniþq l2i � Cil1ij0;Ri þ CiKiC
T
i

� �
where

Ri ¼ d2e þ r2e
� �

Ini þ Zi D
2
b þD

� �
ZT

i ; l1i ¼
KiZ

T
i yi � Xibð Þ
d2e þ r2e
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l2i ¼
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;

i ¼ 1; . . . ;m:n:

Thus, denoting the log-likelihood function for θ and λ given the observed sample
y=(y1

T,…, ym
T) T by ‘ðh; kjyÞ, it can be written as
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‘ðh; kjyÞ / � 1

2

Xm
i¼1

log Rij j � 1

2

Xm
i¼1

yi � Xibð ÞT
X �1

i yi � Xibð Þ
n o

þ
Xm
i¼1

logUniþq l2i � Cil1ij0;Ri þ CiKiC
T
i

� �
:

The results are important because it allows to find values of standard information
criteria which may be used to detect departures from normality, as shown in the
simulation study. Besides, a closing form of this likelihood may be used to carry
out classical inference with standard optimization techniques. For instance, in the
R software, the mvtnorm package and the optim routine.
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