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Abstract. The modelling of common corridor smoke control systems in residential

buildings is one of the most frequently undertaken performance-based assessments by
fire engineers in the UK. However, there is limited understanding of how the deter-
ministic assumptions provided in modelling guidance are derived, and to what extent
these are representative of a range of possible outcomes. To place these assumptions

into context, the Monte Carlo method is applied using the zone modelling software
B-RISK for an exemplar residential arrangement. Distribution functions are adopted
to inform inputs for fire parameters, sprinkler performance, and occupant beha-

vioural characteristics. An output distribution for the corridor smoke clearance time
is determined and compared to the clearance time of an equivalent set of determinis-
tic simulations applying the assumptions of modelling guidance. The probabilistic

study indicates that modelling guidance assumptions typically result in a scenario
severity greater than the 99th percentile of possible outcomes. The work also consid-
ers the sensitivity of individual input parameters, ranking these based on their
impact. These sensitivity analyses highlight the importance of occupant behavioural

assumptions around the pre-evacuation time and door open time, and the significance
of fire parameters including the elevation of the fuel bed, soot yield, and fire growth
rate. Sprinkler parameters are shown to have a lesser impact on the corridor clear-

ance time. The work therefore provides practitioners with an indication of which
parameters are worth considering in greater detail when assessing scenario sensitivity.
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1. Background

1.1. Residential Corridor Smoke Control

UK fire safety guidance documents, including Approved Document B (ADB) vol.
1 [1], BS 9991:2015 [2], and the Building Standards Technical Handbook: Domes-
tic [3], recommend that the common corridor of multi-apartment residential build-
ings be afforded a means of smoke control. The performance objective for the
smoke control in this situation is to protect the stair enclosure so that it ‘‘re-
main[s] relatively smoke-free’’ [2]. Guidance also suggests ‘‘the amount of smoke
and other combustion products in the internal corridor or lobby [should be] kept
to a minimum by providing either cross-corridor fire doors and ventilation, or a
mechanical smoke ventilation system’’ [2]. However, as discussed by Hopkin et al.
[4, 5], the natural smoke control systems recommended in guidance are shown to
provide limited benefit to corridor smoke clearance and can result in prolonged
periods for the corridor to clear after it has become contaminated with smoke.
Hence, natural systems are usually only deemed sufficient when the corridor travel
distances are restricted. Mechanical smoke control systems are therefore often
adopted as an alternative when the corridor travel distances are greater than the
maximum bounds recommended in guidance (a design feature commonly referred
to as ‘extended travel distances’). Under these circumstances, guidance in BS
9991:2015 [2] notes that the primary objective of the system is to ‘‘return the
extended corridor and the associated stair enclosure to tenable conditions for
means of escape and rescue purposes’’. This expectation usually results in a corri-
dor smoke control system which incorporates both a means of exhaust and a
means of inlet, to assist in smoke clearance. An indicative example of this type of
system is presented in Fig. 1.

To determine whether a proposed corridor smoke control system can ade-
quately support a design which includes extended travel distances, a performance-
based, fire and smoke modelling assessment is usually undertaken [5]. This is one
of the most frequently performed fire and smoke modelling assessments by fire
safety practitioners in the UK. To undertake the assessment, typically the deter-
ministic modelling methods of the Smoke Control Association (SCA) guidance on
smoke control to common escape routes in apartment buildings (flats and maison-
ettes) [6] are followed, as referenced in BS 9991:2015 [2], although practitioners
are free to adopt alternative guidance or utilise tailored performance based meth-
ods [5]. The SCA is an organisation which includes members comprising of smoke
control system suppliers, and the organisation describes itself as ‘‘lead[ing] the way
in promoting and enhancing the design, manufacture, installation and mainte-
nance of life safety smoke ventilation systems…’’ [7]. It has previously been noted
that SCA guidance is largely initiated by smoke control system suppliers with sup-
port from fire engineers, fire and rescue service personnel, and approvers, and it
does not have standing equivalent to a guidance document published by the
Government or through a standards-making organisation. However, its regularity
of use within industry can cause stakeholders to place great importance on its
contents [8].

1712 Fire Technology 2022



In addition to guidance on residential smoke control, the SCA also provide
guidance for computational fluid dynamics (CFD) analysis for smoke control
design in buildings [9]. These documents are collectively referred to hereafter as
‘SCA guidance’. It is important to note that much of the SCA guidance and its
contents are not explicit and can be subject to differences in interpretation, and
therefore the discussion contained within this paper are representative of the
authors’ understanding of the guidance.

1.2. SCA Guidance

The SCA guidance describes itself as a document which ‘‘covers information and
requirements on the design, calculation methods, installation and testing of sys-
tems intended for smoke control within the common escape routes within apart-
ment buildings’’ [6]. It suggests that where travel distances are extended, ‘‘a
detailed engineering analysis is required on a deterministic basis’’ and suggests
that this could range from ‘hand calculations’ to ‘more sophisticated’ tools such
as zone or CFD modelling. As part of this recommended deterministic analysis,
the guidance provides a methodology and recommended fire parameters, timelines,
etc., for how to assess the performance of smoke control solutions to common
corridors.

The SCA guidance considers the impact of the smoke control system on occu-
pants during the means of escape phase, as well as the impact on firefighting oper-
ations later in the fire development timeline. For brevity, this paper focusses
exclusively on the means of escape phase from this point onwards. As summarised
by Hopkin et al. [5], a typical time-dependent modelling timeline for the means of
escape phase considers: (1) the development of a fire within an apartment; (2) the

Figure 1. An example common corridor arrangement incorporating
extended travel distances and a mechanical smoke control system.
Adapted from Hopkin et al. [5].
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occupants escaping from the fire-affected apartment, where the apartment door
opens, smoke flows into the corridor and the door then closes behind them; and
following this, (3) the corridor tenability is assessed and the smoke clearance time
is determined. The SCA guidance suggests that a maximum time of 2 min, albeit
with limited basis, for the corridor to return to tenable conditions (following the
apartment door closing) should be achieved, where this time is determined relative
to acceptance criteria for visibility, temperature, etc., discussed later. Thus, SCA
guidance places no expectation that untenable conditions within the corridor be
prevented, but instead that conditions are only untenable for up to a 2 min per-
iod.

2. Research Purpose

The deterministic assumptions of the SCA guidance are perhaps the most widely
adopted in the UK when it comes to the assessment of the as-built performance
of common corridor smoke control systems. These systems are a key fire safety
feature, particularly in the design of single stair high-rise residential buildings.
Given their significance and the potential consequences associated with failure, it
is important to understand the achieved level of safety. However, there is uncer-
tainty around how the recommended methods and parameters of the SCA guid-
ance have been derived, as highlighted in the work of Hopkin et al. [5] on door
open times. It is therefore beneficial to explore where these deterministic assump-
tions sit on a range of possible outcomes, and to broadly consider the extent that
the collective assumptions are representative of events which could be observed in
a real fire incident. To examine this topic, the paper details probabilistic simula-
tions of a single exemplar residential common corridor arrangement using the
zone modelling software B-RISK [10], where the Monte Carlo method has been
applied. Probabilistic distribution functions (PDFs) from previous research have
been adopted to inform the input parameters of the fire, including the growth rate
(t-squared) [11], maximum HRR [11], soot yield [12–16], etc., as well as for the
sprinkler performance in the apartment of fire origin (e.g., the reliability [17, 18]
and thermal sensitivity [19]), and the behavioural characteristics of building occu-
pants (the pre-evacuation time [20, 21] and the apartment door open time [5]).
From the Monte Carlo zone modelling simulations, an output distribution for the
smoke clearance time in the corridor is determined and then compared to the esti-
mated clearance time of an equivalent set of simulations undertaken using the
deterministic assumptions of SCA guidance. This serves to broadly observe the
severity of incident which these assumptions represent on the range of outcomes.
The paper also considers the sensitivity of the individual input parameters, and
ranks these parameters based on their impact on the observed corridor clearance
time.

In undertaking the assessment, the adopted exemplar (discussed in the next sec-
tion) is considered to represent an as-built situation and applies common guidance
assumptions that fire safety features of the building, such as fire doors and com-
partmentation, adequately perform their intended function. It is acknowledged
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that this does not necessarily capture the impact of potential failures in mainte-
nance and any degradation of features resulting from building use. However, this
topic would require careful investigation and is outside the scope of this paper.

3. Exemplar Arrangement

Mechanical common corridor smoke control with a corridor clearance capability
is typically introduced in residential building situations where there are extended
corridor travel distances, particularly in single stair buildings, where extended tra-
vel distances are more commonly observed. In England, extended travel in resi-
dential corridors (for single stair buildings) refers to situations where the distances
from an apartment exit to a stair (or associated stair lobby) exceed either 7.5 m or
15 m, depending on the adopted guidance document and the fire safety provisions
in the building. Therefore, the simplified exemplar adopted in this study includes a
common corridor which has a travel distance greater than 15 m. In this instance,
an 18 m long mechanically ventilated corridor has been considered, with an
arrangement and provisions adapted from the exemplar of Hopkin et al. [4],
where scenario uncertainty was previously considered in relation to mesh resolu-
tion in CFD modelling. The corridor has a width of 1.2 m and a floor to ceiling
height of 2.4 m, typical of apartment buildings across the UK. A diagram of the
corridor arrangement and the associated apartment of fire origin is presented in
Fig. 2.

The exemplar arrangement has a corridor which is ventilated with a mechanical
exhaust at one end, achieving a volumetric flow rate of 3 m3/s. Inlet is provided at
the opposite end of the corridor by a natural ventilator to external air, with an

Figure 2. Simplified exemplar arrangement considered in this study.
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area of 0.8 m wide by 1.2 m high. Both provisions activate upon smoke detection
within the corridor, and their arrangement and specification are representative of
systems that could be found in modern residential buildings. The apartment of fire
origin has been simulated as a one-bedroom apartment ‘with restricted travel’ (i.e.,
where internal travel distances do not exceed 9 m) [22], otherwise referred to as a
studio apartment, with dimensions of 6.5 m wide by 6.5 m long by 2.4 m high.
This results in an apartment area of 42.25 m2, which approximately aligns with
the average area of a one-bedroom apartment (44.9 m2) estimated by Hopkin
et al. [23] from English Housing Survey (EHS) data.

An automatic fire detection and alarm system is represented in the apartment,
in accordance with BS 5839-6:2019 [24]. The apartment is sprinkler protected with
a BS 9251:2021 [25] system, incorporating concealed residential sprinkler heads
tested to the thermal response room test detailed in BS EN 12259-14:2020 [26].
Four of these sprinkler heads are located in the apartment, spaced at 5.5 m from
each other (the maximum spacing specified in BS 9251:2021), as indicated in
Fig. 2. No sprinkler heads are located within the common corridor, as would be
typical of buildings of this nature. The apartment and corridor are connected by a
0.8 m wide by 2 m high door. The apartment includes 4 m2 of glazing (� 10% of
the total floor area) in the form of two windows, each with dimensions of 2 m
high by 1 m wide.

4. Methodology

4.1. Modelling Tool, Validation, the Monte Carlo Method, and Acceptance
Criteria

The fire and smoke modelling of the exemplar arrangement has been undertaken
using the B-RISK [10] fire zone modelling software, version 2021.2. B-RISK has
been developed by BRANZ with support from the University of Canterbury. B-
RISK incorporates an underlying zone model which is used to calculate fire
dynamics, smoke dispersion and temperature throughout enclosures, with each
enclosure divided into two (upper and lower) gas layers. The fundamental equa-
tions are implemented as a system of differential equations which are solved to
give outputs such as layer height, visibility, and layer temperature [19]. B-RISK
also has the capability to run multiple iterations of simulations based on proba-
bilistic inputs. The relative simplicity of a zone model means that B-RISK can run
simulations in a short timeframe, with the capability to run thousands of simula-
tions without any substantial reliance on computing power [19].

The enclosure dimensions and simulated heat release rates (HRRs, discussed
later) for the study are within the suggested bounds of BRANZ report TR17 [27],
suggesting that zone modelling is an appropriate assessment tool for the given fire
and enclosure sizes [28]. The B-RISK study report SR292 [29] includes examples
of benchmarking cases for multi-room scenarios incorporating corridors, indicat-
ing reasonable agreement between experimental data and B-RISK estimations.
Similarly, Harrison et al. [30] demonstrate B-RISK’s capability to adequately esti-
mate the layer height for spill plumes spreading into both naturally and mechani-
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cally ventilated spaces. B-RISK includes well-validated sub-models for estimating
the time of sprinkler activation, including the NIST/JET ceiling jet model [31].
Work by both Wade et al. [32] and Hopkin and Spearpoint [33] demonstrate that
B-RISK provides a reasonable estimation of sprinkler activation times in simple
rectilinear enclosures.

For the probabilistic modelling, the Monte Carlo method has been applied. The
Monte Carlo method uses pseudo-random number generators and repeated sam-
pling of input distribution functions to generate an output sample distribution,
where this distribution is intended to provide a reasonable estimation of the range
of possible outcomes under study [34]. B-RISK adopts a stratified sampling
method [10] for Monte Carlo simulations (MCS), where the distribution is strati-
fied into different regions and samples are taken from each region so that values
are more efficiently selected across the distribution [35].

The modelling of the exemplar arrangement focusses on the time it takes for a
corridor to ‘clear’ once it becomes compromised with smoke following initial
occupant escape, using probabilistic modelling to generate a range of possible cor-
ridor ‘clearance’ times. The resultant output distribution for the corridor clearance
time is then compared to a single deterministic simulation applying the modelling
recommendations of the SCA guidance. In this instance, the corridor clearance
time (i.e., the time for the corridor to return to tenable conditions) has been esti-
mated as a function of typical acceptance criteria outlined in SCA guidance and
PD 7974-6:2019 [36]. Namely, the corridor is considered tenable when visibility
returns to 10 m or greater and temperatures are below 60�C, both at a height of
2 m from floor level.

By default, B-RISK has the capability to include four different distribution
types of normal, lognormal, triangular, and uniform (as well as discrete probabili-
ties for parameters such as sprinkler reliability). Therefore, all distribution func-
tions have been adapted from referenced literature to best align with one of these
four distribution types. These distributions and discrete probabilities are detailed
in the following sections, along with comparisons to SCA guidance recommenda-
tions.

4.2. Fire Properties

The distribution functions and SCA guidance recommendations for the fire prop-
erties are summarised and presented in Table 1. In some instances, the distribu-
tion functions are taken directly from the referenced literature, such as for the fire
growth rate, maximum HRR, heat release rate per unit area (HRRPUA), and the
elevation of the fuel bed. Albeit the last of those is described by Hopkin et al. [28]
as being ‘‘arbitrarily selected (with no known literature available to the authors)’’.
Other distribution functions have been estimated from previous experimental stud-
ies and data. These include: the effective heat of combustion, where a truncated
normal distribution has been estimated from 13 experiments of upholstered furni-
ture fires by Babrauskas et al. [37]; and the radiative fraction, which uses a uni-
form distribution for a range of cellulosic and non-cellulosic fuel types detailed in
PD 7974-1:2019 [38].
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Table 1
Fire Properties for Probabilistic Modelling Compared to SCA Guidance
Assumptions

Parameter Distribution function Refs

SCA guidance determin-

istic assumption or rec-

ommendationa

Percentile of SCA value

relative to distribution

function [%]

Fire growth

rate (a)
[kW/s2]

Lognormal

mean = 0.0062, std

dev = 0.0140

[11] 0.0117 [Medium] 88

Soot yield

[kg/kg]

Lognormal

mean = 0.034, std

dev = 0.036

[12–

16]

0.100 95

HRRPUA

[kW/m2]

Uniform

min = 320,

max = 570

[39] 320b 0

Maximum

HRRc [kW]

Lognormal

mean = 1600, std

dev = 3000c

[11] 1000 and 635d 60 and 45

Effective heat

of combus-

tion [MJ/kg]

Truncated normal

mean = 18.3, std

dev = 5.4, min =

11.9, max = 35.1

[37] 20.0 68

Radiative frac-

tion [–]

Uniform

min = 0.31,

max = 0.59

[38] 0.35e 14

Elevation of

fuel bed [m]

Truncated normal

mean = 0.5, std

dev = 0.6,

min = 0.0,

max = 2.2

[28] 0.0f 0

aThis includes both SCA guidance on smoke control to common escape routes in apartment buildings (flats and

maisonettes) [6] and SCA guidance for computational fluid dynamics (CFD) analysis for smoke control design in

buildings [9]. Where neither document provides an explicit recommendation, previous revisions of SCA guidance have

been considered [40, 41]
bSCA guidance does not provide a recommendation for HRRPUA, and therefore the lowest value from PD 7974-

1:2019 [38] for residential buildings has been used. A lower HRRPUA for a given HRR would result in a greater fire

area and thus a greater estimation of perimeter entrainment [42]
cThe initial input distribution for the maximum HRR is specified assuming an absence of sprinkler involvement,

with the performance of sprinklers being dependent on the discrete probabilities (i.e., likelihood of operation and

extinguishment), which are discussed later
dThe modelling for the SCA guidance case considers both a 1 MW and 635 kW maximum HRR. The former has

been selected based on the statement that a 1 MW HRR ‘‘might be considered appropriate at the time the occupants

of the fire apartment make their escape’’. The latter has been selected for a fire controlled by sprinklers. Further

discussions on this, as well as assumptions related to sprinkler performance, are included later
eSCA guidance does not provide a recommendation for the radiative fraction. A value of 0.35 has been used, which

aligns with the default Fire Dynamics Simulator (FDS) [43] value for ‘all other species’. It is also the recommended

pre-flashover design fire value from C/VM2 [44] for general building contents and is considered representative of

standard industry practice from the anecdotal observations of the authors
fSCA guidance does not provide a recommendation for the elevation of the fuel bed. A minimum value of 0.0 m

has been used (i.e., a fire at floor level), considered representative of standard industry practice from the anecdotal

observations of the authors
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The adopted soot yield distribution function expands on previous work by Rob-
bins and Wade [12] for soot yields of residential occupancies. Robbins and Wade
referred to the ‘combustion behaviour of upholstered furniture’ (CBUF) research
programme [13], which included soot yield data for 27 different furniture fire
experiments. From this, a soot yield design value of 0.07 kg/kg was proposed,
equivalent to a 95th percentile of the CBUF data. However, to determine this
value, Robbins and Wade excluded a single ‘high’ yield outlier. It is proposed in
this paper that the outlier should be included to represent the full range of data.
The dataset has also been expanded to include experimental data for 14 furniture
fires from Babrauskas and Krasny [14], 14 furniture fires from Gann et al. [15],
and soot yield estimations from 11 residential room fires detailed by Fang and
Breese [16]. This has resulted in 66 datapoints in total, and these are considered to
be broadly representative of the types of fuels observed in apartments. The major-
ity of the collated experimental data is representative of free-burn or room experi-
ments in which conditions were considered well-ventilated. The exception to this is
the experiments of Fang and Breese [16], where it is reported fires were frequently
controlled at different stages as a result of ventilation available to the enclosure.

The adopted PDF for the soot yield is presented in Fig. 3, equated to a lognor-
mal distribution with a mean of 0.034 kg/kg and a standard deviation of 0.036 kg/
kg. The 95th percentile in this amended distribution is 0.1 kg/kg. For clarity of
presentation, the x-axis of Fig. 3 is capped at 0.205 kg/kg due to low probabilities
observed in the distribution function beyond this point. However, data points
used to estimate the distribution function exist beyond this range, such as the
0.37 kg/kg outlier previously excluded by Robbins and Wade.

Figure 3. PDF for soot yield presented with 0.005 kg/kg bins.
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The soot yield distribution function has been specified in B-RISK as a pre-flash-
over yield as part of the fire item specification. In the rare event that flashover is
estimated to occur, then a default value of 0.14 kg/kg is applied. Should ventila-
tion-controlled conditions be estimated, then the impact this may have on the soot
yield has not been captured in the modelling.

4.3. Sprinkler Properties

The distribution functions for the probabilistic sprinkler properties are presented
in Table 2. Uniform distributions have been used for the response time index
(RTI) and conductivity factor (C factor). These distributions have been estimated
from the work of Hopkin and Spearpoint [19], who used probabilistic modelling
to estimate the relationship needed between RTI and C factor to pass the BS
9252:2011 [45]/BS EN 12259-14:2020 [26] thermal response room test for con-
cealed residential sprinkler heads. This was then compared to previous experimen-
tal data for concealed sprinkler heads from Annable [46] and Yu [47]. Figure 4
provides an indication of the relationship estimated by Hopkin and Spearpoint in
relation to the experimental data, with the highlighted region representing the
adopted uniform distributions for the RTI and C factor. The dashed line indicates
the relationship needed to pass the thermal response room test for concealed
sprinkler heads, as estimated by Hopkin and Spearpoint [19], while the solid black
line indicates the RTI and C factor values needed to pass the plunge and ramp
tests (described in BS EN 12259-14:2020) typically used for exposed pendent
heads.

The radial distance (r, m) between the centreline of the fire plume and the
sprinkler head has been determined using the principles given by Fraser-Mitchell
and Williams [48], by applying the Pythagorean theorem:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

ð1Þ

where x (m) and y (m) are the distance of the flame centreline to the sprinkler
head in the x and y directions, assuming randomly distributed values between a
lower bound of 0 m and an upper bound of 2.75 m, for an equidistant maximum
sprinkler spacing of 5.5 m, as per BS 9251:2021 [49]. This relationship has been

Table 2
Sprinkler Properties for Probabilistic Modelling

Parameter Distribution function References

RTI [m½ s½] Uniform min = 50, max = 300 [19]

C factor [m½ s-½] Uniform min = 0.4, max = 1.0 [19]

Radial distance [m] Triangular min = 0.00, max = 3.89, mode = 2.65 [-]

Control likelihood [–] Discrete p = 0.89 [17]

Suppression likelihood [–] Discrete p = 0.69 [18]
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approximated to a triangular distribution, with a minimum of 0 m, a mode of
2.65 m and a maximum of 3.9 m.

Where sprinklers successfully actuate but ‘fire suppression’ does not occur, B-
RISK adopts a method where, upon actuation, the fire is capped at a constant
HRR (i.e., it is ‘controlled’). When applying a value for suppression reliability, B-
RISK can also simulate the impact of suppression on HRR using an algorithm
developed by Evans [19] for unshielded furniture fires. Both methods have been
represented in the modelling depending upon the discrete probabilities for sprin-
kler reliability and suppression. For reliability, PD 7974-7:2019 [17] refers to US
sprinkler reliability data where, for residential occupancies, 89% of relevant inci-
dents resulted in sprinklers ‘operating effectively’. With respect to the likelihood of
suppression, Ikehata et al. [18] determined that, for office and shop fire reports
collated in Japan, the probability that a fire is successfully extinguished by sprin-
klers is 69%. While this data is not directly applicable to residential buildings,
estimates of operation reliability by Bukowski et al. [50] indicate that there is lim-
ited information on the reliability of modern-day residential sprinkler systems. In
the absence of available data, the Ikehata et al. suppression probability has been
adopted in this paper.

In addition to the distribution functions and discrete probabilities, fixed values
have been used for several other sprinkler parameters. A water spray density of
4 mm/min has been adopted, using the single head operation minimum discharge
density for a Category 4 residential sprinkler system, as specified in BS 9251:2021
[49]. A sprinkler offset of 50 mm (relative to the ceiling) has been adopted, based

Figure 4. Performance of concealed sprinkler heads in relation to
test methods. Adapted from Hopkin and Spearpoint [19].
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on previous model calibration studies carried out by Hopkin and Spearpoint [19]
for concealed residential sprinkler heads.

The bulb of each sprinkler head is assumed to achieve a rated temperature of
68�C, equivalent to a red bulb specified in BS EN 12259-14:2020 [26]. For simplic-
ity, an indoor ambient temperature of 20�C and an outdoor temperature of 15�C
have been adopted for all simulations, although in practice indoor and outdoor
temperatures may change depending on building use and seasonal variations.

SCA guidance suggests that a 1 MW HRR ‘‘might be considered appropriate at
the time the occupants of the fire apartment make their escape’’ but goes on to
say, ‘‘Where water suppression is to be considered, it might be appropriate to
assume that the fire grows until the suppression activates and then remains fixed
at this size’’. With respect to sprinkler activation time, the B-RISK zone model
estimates that the sprinklers would activate at 233 s with a maximum HRR of
635 kW when assuming a medium fire growth rate and using the Hopkin
and Spearpoint [19] recommended deterministic thermal sensitivity parameters
for concealed residential sprinkler heads (i.e., RTI = 290 m½ s½, C fac-
tor = 0.5 m½ s-½), with a maximum radial distance to a sprinkler head of
3.89 m. The deterministic modelling has therefore been undertaken for two maxi-
mum HRR values, i.e., in two separate simulations. The first uses a 1 MW maxi-
mum HRR which excludes the potential for sprinkler involvement during the
means of escape phase, and the second uses a 625 kW maximum HRR which has
been estimated from the sprinkler activation time.

4.4. Geometric and Surface Properties

Table 3 provides the surface properties adopted for the modelling geometry. All
wall, ceiling and object construction has been modelled as 15 mm thick gypsum
plasterboard surfaces based on properties defined by Hopkin et al. [51] and slabs
have been simulated with concrete properties estimated from BS EN 1992-1-
2:2004 [52]. The SCA guidance does not make explicit recommendations on what
surface properties should be considered for the modelling and, therefore, proper-
ties consistent with Table 3 have been adopted for this study.

Table 3
Surface properties adopted for the room and corridor enclosures,
based on BS EN 1992-1-2:2004 [52] Hopkin et al. [51]

Parameter Concrete Gypsum plasterboard

Surface [-] Slabs Walls and ceilings

Thickness [mm] 100 15

Density [kg/m3] 2300 780

Specific heat [kJ/kg/K] 0.90 0.95

Thermal conductivity [W/m/K] 1.40 0.25

Emissivity [-] 0.7 0.7
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The B-RISK software provides an idealised representation of air flow within the
domain, i.e., it considers that the enclosure is perfectly sealed aside from any user
specified openings. In practice, the enclosures will incorporate natural air flow
resulting from factors such as leakages through wall and ceiling construction,
around window gaps (and through any open windows), through door gaps, etc.
Therefore, to represent this, an opening has been included within the probabilistic
simulations to support the onset of combustion prior to any fire-induced glazing
failure. This initial opening is positioned at low-level, with dimensions of 2 m
wide by 1 m high (2 m2), to allow for enough oxygen to reach the fuel bed to sus-
tain the HRR development while minimising the estimated smoke and heat losses
from the apartment. These vent dimensions represent approximately 1/20th of the
room of fire origin floor area, which is consistent with the recommendations of
Approved Document F [53] for purge vent to apartments, e.g., the free area avail-
able from openable windows or external balcony doors. This broadly aligns with
the recommendations of the SCA guidance [9], which indicatively suggests a
1.25 m by 1.25 m (� 1.6 m2) low-level vent for a 1 MW HRR, and a 1.5 m by
1.5 m vent (� 2.3 m2) for a 2.5 MW HRR.

The potential for windows in the apartment to break has been integrated into
the probabilistic simulations using the glass fracture model available within B-
RISK, which is based on the work of Parry et al. [54].

The SCA guidance [9] provides what might be considered conflicting advice on
whether window breakage in apartments should be captured in common corridor
modelling assessments. One the one hand, it suggests that an ‘‘artificial vent’’
should be ‘‘conservatively set as low as possible without having a significant
impact of the airflow dynamics’’ and that ‘‘high level vents are not desirable for
assessment’’, although it is not clear whether this latter statement is referring to
window openings. Elsewhere it suggests ‘‘Using artificial opening [sic] requires
careful consideration. Actual window openings provide more accurate assessment’’
and ‘‘The low-level vent is not physically realistic but can give an upper bound on
the smoke control systems [sic] air flow rates needed.’’ Given the lack of clarity,
this study adopts the more ‘conservative’ assumption, where the potential for win-
dow failure has been excluded in the deterministic simulation corresponding to the
SCA guidance, and only a low-level opening is incorporated. For the probabilistic
simulations, the potential for fire-induced glazing failure has been captured, as
noted above.

4.5. Behavioural Properties, Evacuation Timeline, and Smoke Control
System Activation

A traditional means of escape modelling timeline detailed in the SCA guidance
assumes that, at a given time during fire development, occupants collectively
escape from the fire-affected apartment. In this process, the apartment door
opens, smoke from the apartment flows into the corridor, and then the door clo-
ses behind the occupants. After this occurs, the smoke control system in the corri-
dor activates, the corridor tenability is assessed, and the smoke clearance time is
determined (measured from the period that the apartment door closes). As this
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assessment focusses exclusively on the corridor clearance time in the initial means
of escape phase, consideration of both the use of the stair and firefighting opera-
tions have been excluded. A representation of the timeline is provided in Fig. 5,
along with the distribution functions adopted in the probabilistic modelling.

It may be reasonably hypothesised that the initial time for the door to open
from the apartment into the corridor is largely linked to the occupants’ pre-evacu-
ation time, although it will also be influenced by the conditions within the apart-
ment itself. For the purposes of this study, the pre-evacuation process has been
heavily simplified, where it is assumed that all physical movement and information
or action tasks, such as occupant seeking, providing or exchanging information
concerning the fire, investigating the incident, etc. [55], are collectively undertaken
within the apartment. It is also assumed that occupants successfully make their
escape irrespective of the conditions observed within the apartment, and that the
process of making their escape is not affected by these conditions. In addition, the
detection and alarm time is not considered, although this will be small relative to
the pre-evacuation time. As a result, the time that the apartment door opens is
directly equated to the pre-evacuation time. There are a number of different pre-
evacuation time distributions which could be considered, many of which are
detailed by Lovreglio et al. [20, 21], Gwynne and Boyce [56], as well as the distri-
bution functions recommended in PD 7974-6:2019 [36]. In this instance, as the
apartment is a studio arrangement, occupants would be expected to be in the
room of fire origin and would have an increased awareness of the fire compared
to a situation where occupants are remote from a fire. The apartment is also pro-
vided with an automatic detection and alarm system. Therefore, a distribution
function has been adopted for the recommended ‘cluster 1’ parameters detailed by
Lovreglio et al. [20, 21] (i.e., the cluster of cases where ‘poor alarm performance’
was not observed), using a lognormal distribution with a mean of 165 s (2.8 min)

Figure 5. Evacuation timeline and behavioural properties for
probabilistic modelling compared to SCA guidance assumptions.
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and a standard deviation of 431 s (7.2 min). This dataset represents a combined
seven case studies across the US, Canada, and the UK, including data for univer-
sity residences and residential care homes. The resultant distribution function
therefore encapsulates a wide range of potential pre-evacuation times, with the
99th percentile resulting in a pre-evacuation time of nearly 28 min. In comparison,
SCA guidance [9] suggests ‘‘If a medium growing t-squared fire is assumed, then
after 5 min the heat release rate will be approximately 1 MW. This size of fire
might be considered as appropriate at the time the occupants of the fire apartment
make their escape.’’ This 5 min (300 s) time is equivalent to the 87th percentile of
the pre-evacuation distribution function.

The time for the door to remain open during occupant escape has been esti-
mated previously by Hopkin et al. [5]. A simple calculation method was consid-
ered, using probabilistic input functions from previous data recorded by Frank
[57] and Hopkin et al. [23], to estimate an output distribution of potential door
open times for occupants escaping from apartments. For a one-bedroom apart-
ment, it was proposed that the door open time could be represented using a log-
normal distribution with a mean of 6.6 s and a standard deviation of 1.7 s. In
comparison, SCA guidance recommends a door open time of 20 s. Hopkin et al.
[5] noted that this represented the 96th up to greater than the 99th percentile,
depending on the number of beds / bedrooms in the apartment. Hopkin et al. also
demonstrated the importance of this parameter on the estimated quantity of
smoke entering the corridor. Therefore, to assess the sensitivity of the door open
time, simulations have also been run using a door open time distribution for a
three-bedroom apartment, with a mean of 11.1 s and a standard deviation of
4.7 s.

The corridor smoke control system is assumed to activate immediately upon
smoke detection within the corridor, after the apartment door opens for occupant
escape. This approach has been taken for simplification of the modelling,
although in practice there may be a nominal ramp-up time following detection for
the system to activate and reach maximum capacity (as noted in SCA guidance).

4.6. Number of Simulation Iterations and Simulation Time

For the probabilistic modelling, a total of 1000 iterations have been simulated.
For each iteration, the simulation time has been capped at 1800s (30 min). An
appropriate number of iterations has been verified based on observations of con-
vergence for the smoke clearance time, with a particular focus on the convergence
of the mean and standard deviation. These values, as a function of the number of
iterations, are presented in Fig. 6. From this, it appears that the mean smoke
clearance time and the standard deviation have both effectively converged (re-
maining within 1% of the ‘final’ average value) after approximately 750 iterations,
indicating that the adopted number of iterations is adequate for the outcome to
be considered independent of the sample size.
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5. A Summary of Study Limitations

In undertaking probabilistic modelling to present what is intended to be a full
range of potential outcomes, it must be acknowledged that this approach does not
eliminate all uncertainty and a lesser degree of uncertainty will remain within the
selected distribution functions, the adopted methodology, the interaction of input
parameters, the model uncertainties, the ability of the model to reflect reality, etc.
[28]. Several major limitations of the methodology are listed below, although there
will be more that have not been mentioned for reasons of brevity. Limitations
include:

� A certain degree of confidence is placed in B-RISK’s capability to appropriately
capture the fire and smoke phenomena under scrutiny, with reference to previ-
ous benchmarking studies. B-RISK is a relatively simple, two-zone model and
does not achieve the fidelity of other fire and smoke modelling tools, such as
computational fluid dynamics (CFD) based tools. However, a counter-argument
to this is that simpler models can be adopted to maintain a ‘consistent level of
crudeness’, where the level of detail in a process should be governed by the
crudest part of that process [58] which, in this instance, includes many simpli-
fied input assumptions. In addition, high-fidelity tools might be considered less
suited to extensive sensitivity studies due to the computational resources
required, and may therefore require more detailed consideration of sampling
methods to reduce the number of iterations [4].

Figure 6. The mean and standard deviation for the estimated
corridor clearance time with increasing iterations.
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� Certain distribution functions are derived from a limited amount of experimen-
tal data or information, such as the effective heat of combustion and radiative
fraction. In addition, one of the distribution functions, the elevation of the fuel
bed, has been arbitrarily defined and is not based on real data.

� The modelling applies historical data for sprinkler reliability. Although it is dif-
ficult to identify, it is expected that the data is largely derived from incidents for
exposed pendent heads. It is therefore unlikely to capture complications associ-
ated with concealed heads, such as the potential for occupants to ‘paint-over’ or
obstruct the concealer plate.

� Aside from incorporating sprinkler reliability parameters, the modelling other-
wise assumes an as-built system reliability and performance for other fire safety
systems, such as fire doors (and closers), compartmentation, and the smoke
control system itself. Thus, any issues associated with an absence of expected
performance, or from poor building maintenance, are not captured.

� Given the distribution functions are generally derived from past experiments or
historical incident data, their veracity can always be brought into question, i.e.,
to what extent can these functions be considered representative of a range of
real fire incidents occurring under present day conditions? For example, the
applicability of the soot yield data for furniture fires, some of which dates as far
back as the 1980s, could be questioned on whether it is truly representative of
modern-day residential fuel loads.

� The modelling assumes that the interaction of input parameters is broadly inde-
pendent. That is, the sampling of one distribution function is not influenced by
the sampling of another. An example of this limitation is the relationship
between the HRR and the soot yield, where typically flaming and well-venti-
lated fires with large HRRs might have lower soot yields (kg/kg) than under-
ventilated fires with lower HRRs [38].

� The assumed low-level vent, incorporated into the modelling to sustain the
HRR, has been specified independently of the window area of the apartment.
This vent area could have an impact on the estimated conditions within the
apartment, which could subsequently impact the smoke clearance time.

� The modelling applies a distribution function for pre-flashover soot yields, lar-
gely derived from experimental data for free-burn or well-ventilated conditions,
without assessing the impact ventilation-controlled conditions could have on
this parameter.

� The modelling does not consider the impact wind could have on the apartment
of fire origin or the ventilation system. Depending on wind direction and speed,
and resultant external pressures, this could either have a detrimental or benefi-
cial impact on smoke movement within the building.

� The behavioural timeline, and the representation of occupants within the apart-
ment, has been heavily simplified to focus solely on the time that the apartment
door opens and closes during escape. As part of this, the interaction between
the development of fire and smoke in the apartment, and the behaviour of
occupants within the apartment, has not been represented.
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6. Simulation Results

Figure 7 presents the cumulative density functions (CDFs) for the corridor clear-
ance time, which is the time for the corridor to return to tenable conditions (visi-
bility above 10 m and temperature below 60�C) at a height of 2 m from floor
level. This time is measured from the point that the apartment door closes follow-
ing escape. Two different CDFs are presented, as the sensitivity of the selected
door open time distribution has been considered: a CDF assuming a one-bedroom
apartment door open time, representative of the exemplar; and a CDF assuming a
three-bedroom apartment door open time. From the CDFs it can be observed
that in 83% (one-bedroom) and 79% (three-bedroom) of cases, the clearance time
is shown to be zero, indicating that an insufficient quantity of smoke spreads from
the apartment of fire origin into the corridor to result in untenable conditions
within the corridor at any stage. After this point, the clearance time increases
reaching a 100th percentile within 84 s. Comparing these distributions to the
deterministic simulations undertaken using the recommendations of SCA guidance
for a 1 MW design fire suggests that the SCA guidance approach results in greater
than the 99th percentile (both one-bedroom and three-bedroom). For a 635 kW
sprinkler-controlled design fire, the percentiles are approximately the 99th per-
centile for both the one-bedroom and three-bedroom CDF.

The CDF for the estimated maximum HRR in the apartment of fire origin is
shown in Fig. 8. This figure indicates that the 1 MW design fire represents a 96th

Figure 7. CDFs for corridor clearance time for two different door
open time distribution assumptions.
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percentile, with the 635 kW sprinkler-controlled fire equating to the 94th per-
centile.

To assess the relative sensitivity of the individual parameters, a series of simula-
tions have been run where each distribution function has been individually consid-
ered from a 1st percentile and 99th percentile. When the individual parameter is
being assessed for either the 1st or 99th percentile, all other parameters are set to
the recommended parameters provided in the SCA guidance (excluding any con-
sideration of window failure). The sensitivity of the parameters is presented using
a tornado plot, as shown in Fig. 9. The plot ranks the parameters from the widest
(top) to the narrowest (bottom) range based on their impact on the estimated cor-
ridor clearance time, i.e., the top represents the ‘most sensitive’ parameter on the
corridor clearance time while the bottom represents the ‘least sensitive’. Colour
coding has been used to differentiate fire (red), sprinkler (blue) and behavioural
(grey) parameters.

The results presented in Fig. 9 highlight the importance of behavioural assump-
tions within a common corridor model, with the pre-evacuation time (i.e., the time
the apartment door is first opened) and the door open time representing the 1st
and 3rd most sensitive parameter, respectively. The pre-evacuation time is shown
to produce a range of 58 s in the corridor clearance time, and the door open time
a range of 42 s. After this, the most sensitive parameters are fire-related parame-
ters, including the elevation of the fuel bed (2nd, 57 s), the soot yield (4th, 41 s),
the fire growth rate (5th, 40 s), and the effective heat of combustion (6th, 14 s).
However, it must be reiterated that the distribution function for the elevation of
the fuel bed has been arbitrarily defined. Less impactful fire parameters are the

Figure 8. CDF for the maximum HRR.
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maximum HRR (= 8th, 9 s), radiative fraction (11th, 2 s), and the HRRPUA
(= 12th, 1 s). It is important to note that the maximum HRR’s limited impact
demonstrated in the tornado plot is in part due to the fixed nature of the beha-
vioural parameters (pre-evacuation time and door open time) along with the fixed
growth rate. Even when the fire can grow larger (e.g., larger than 1 MW), this
increased HRR does not impact the quantity of smoke entering the corridor
because occupant escape has often already occurred before this point in time,
whereas a change in the fire growth rate will directly impact the HRR at the time
that the apartment door opens.

The tornado plot appears to indicate that, collectively, the assumptions around
sprinkler performance are less sensitive, with the radial distance (7th, 12 s) and
RTI (= 8th, 9 s) having the greatest impact of these parameters. The control like-
lihood (10th, 3 s), suppression likelihood (= 12th, 1 s), and C factor (= 12th, 1 s)
are shown to be less impactful.

By assuming fixed values for all other parameters when varying a single param-
eter, the approach to producing the tornado plot comes with limitations in how it
assesses sensitivity. It is possible that certain parameters can become more or less
sensitive in relation to other parameters when those parameters are also changed.
For example, as mentioned above, the sensitivity of the maximum HRR is shown
to be less when the behavioural parameters and fire growth rate are fixed in a way

Figure 9. Tornado plot of the impact of parameter sensitivity on
estimated corridor clearance time.
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that the maximum HRR cannot be met before occupants make their escape. Simi-
larly, the soot yield may be expected to have less sensitivity for higher assumed
values of effective heat of combustion, due to the relative reduction on the esti-
mated production of soot. Given these limitations, although a useful exercise, the
outcome of the tornado plot should be observed with a degree of caution.

7. Discussion and Conclusions

Multi-apartment residential buildings in the UK typically incorporate a smoke
control system within the common corridor. Under certain circumstances, this sys-
tem can be used to support the design of buildings where extended corridor travel
distances are observed, by facilitating the smoke clearance of the corridor should
it ever become compromised. When proposing a smoke control system to support
extended travel distances, a fire and smoke modelling assessment is usually under-
taken, often applying the recommendations of SCA guidance. However, it is not
always clear how the recommendations and assumptions of this modelling guid-
ance have been derived, nor is it clear the severity of fire scenario they can collec-
tively be considered to represent on a range of possible outcomes. Therefore,
probabilistic zone modelling, using MCS in B-RISK and distribution functions
from past literature, has been undertaken for a single exemplar residential build-
ing arrangement. The purpose of this modelling is to examine where the determin-
istic assumptions of SCA guidance sit on a distribution of outputs, with a focus
on the time for the corridor to return to tenable conditions after becoming com-
promised with smoke (i.e., the corridor clearance time). The exemplar considers a
single ventilation arrangement with a fixed volumetric flow rate of 3 m3/s, consid-
ered to be broadly representative of a system design which might be observed in
practice. It is acknowledged that the selected ventilation provisions will have a
substantial effect on the observed corridor clearance time. The sensitivity of this
has not been assessed herein, instead focussing on inputs which are intended to
represent the potential range of fire and evacuation scenarios.

The probabilistic modelling indicates that the application of SCA guidance
assumptions produces a scenario severity which is equal to or greater than the
99th percentile of possible outcomes for the estimated corridor clearance time,
depending on the selected distribution function for the door open time. From this,
it may be postulated that the recommendations contained within the SCA guid-
ance are representative of an upper bound, and its application would not result in
an inadequate level of demonstrated fire safety performance. Hopkin et al. [28]
previously suggested, when considering safety factors, that ‘‘Some engineers may
contend that this is a reasonable approach to take as, particularly in fire engineer-
ing design, ‘more conservative’ is often be equated with ‘better’.’’ However, the
point is made that the intent in the fire engineering design of buildings is not one
of achieving absolute safety and zero residual risk, but instead to achieve an ‘ade-
quate level’ of safety. Hopkin et al. refer to the ‘as low as is reasonably practica-
ble’ (ALARP) concept, as embedded in health and safety law [59], and the ethical
obligations of engineers to maximise societal welfare under the constraint of finite
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resources. It is this concept that allows for failure likelihoods to be adopted in
design, such as structural fire resistance ratings provided in BS 9999:2017 [60] (for
given ventilated conditions). These ratings are calibrated on the basis of a 20%
failure likelihood for an 18 m tall office building exemplar [61], in the event of a
structurally significant fire. There may therefore be a reasonable argument for
revisiting SCA guidance input parameter assumptions in future to address accept-
able failure likelihoods in the context of failure consequence, rather than the cur-
rent approach where it appears an upper bound is uniformly considered for all
building situations. However, it is important to acknowledge that the modelling
methodology is based on common fire safety design assumptions and comes with
a number of limitations in how it considers certain factors, such as only assessing
the as-built system reliability (with the exception of sprinkler performance) and
not capturing the impact of potential failures in maintenance. In defining any
acceptable failure likelihoods in future, the potential for the in-use compromise of
as-built system reliability would need to be carefully investigated.

In addition to the probabilistic modelling, the sensitivity of individual input
parameters has been observed (by simulating the 1st and 99th percentile), and
these parameters are ranked based on their demonstrated influence on the esti-
mated corridor smoke clearance time. The sensitivity analyses highlight the impor-
tance of behavioural assumptions around the pre-evacuation time (producing a
58 s range in the clearance time) and door open time (42 s), and the significance
of fire parameters including the elevation of the fuel bed (57 s), soot yield (41 s),
and fire growth rate (40 s). Sprinkler parameters are shown to have a lesser
impact on the corridor clearance time, with the most sensitive parameter being the
radial distance (12 s). Consequently, if practitioners were to assess the sensitivity
of certain parameters on the demonstrated smoke control system performance in
relation to SCA guidance assumptions, then it may be pertinent to consider beha-
vioural assumptions (pre-evacuation time and door open time), elevation of the
fuel bed, fire growth rate, and soot yield ahead of others, although caution should
be exercised when considering the potential interaction between parameters. The
work also indicates that further investigation of an appropriate distribution func-
tion for the elevation of the fuel bed is likely warranted.
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