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Abstract. Evacuation models commonly employ pseudorandom sampling from dis-
tributions to represent the variability of human behaviour in the evacuation process,
otherwise referred to as ‘behavioural uncertainty’. This paper presents a method

based on functional analysis and inferential statistics to study the convergence of
probabilistic evacuation model results to inform deciding how many repeat simula-
tion runs are required for a given scenario. Compared to existing approaches which

typically focus on measuring variance in evacuation times, the proposed method uti-
lises multifactor variance to assess the convergence of a range of different evacuation
model outputs, referred to as factors. The factors include crowd density, flowrates,
occupant locations, exit usage, and queuing times. These factors were selected as they

represent a range of means to assess variance in evacuation dynamics between repeat
simulation runs and can be found in most evacuation models. The application of the
method (along with a tool developed for its implementation) is demonstrated through

two case studies. The first case study consists of an analysis of convergence in evacu-
ation simulation results for a building including 1855 occupants. The second case
study is a simple verification test aimed at demonstrating the capabilities of the

method. Results from the case studies suggest that multifactor variance assessment
provides a more holistic assessment of the variance in evacuation dynamics and
results provided by an evacuation model compared to existing methods which adopt
single factor analysis. This provides increased confidence in determining an appropri-

ate number of repeat simulation runs to ensure key evacuation dynamics and results
which may be influenced by pseudorandom sampling are represented.
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List of Symbols

ERD Euclidean relative difference

ERDconvj The convergence measure of the ERD of two

consecutive (j - 1 and j) aggregated vectors

EPC Euclidean projection coefficient

EPCconvj The convergence measure of the EPC of two

consecutive (j - 1 and j) aggregated vectors

KS-test The Kolmogorov–Smirnov test. A non-parametric

statistical test

MVA Multifactor variance assessment

OETC Occupant evacuation time curve

Occ Occupants

RSR Repeat simulation runs

SC Secant cosine

SCconvj The convergence measure of the SC of two

consecutive (j - 1 and j) aggregated vectors

SD Standard deviation

SD of U The standard deviation of a specific value in a data

set of particular interest

SD of Uconvj The convergence measure of the measure SD of U of

two consecutive (j - 1 and j) aggregated vectors

TET Total evacuation time

Tlim Maximum allowable assembly time

Tmax50
0;95 Maximum 95th percentile assembly time for the last 50 simulations

Tmean50
0;95 Mean 95th percentile assembly time for the last 50 simulations

Tmin50
0;95 Minimum 95th percentile assembly time for the last 50 simulations

U A specific value in a data set of particular interest

Uconvj The convergence measure of the measure U of two

consecutive (j - 1 and j) aggregated vectors

1. Introduction

During the evacuation process people make a variety of decisions about what they
will do. Previous research has shown that human behaviour in fire depends on
several factors, such as a person’s own past experience/perceptions [9, 11], the
environmental conditions, and social influence, etc. [8, 16]. This explains why
human behaviour can be highly varied during evacuations. Therefore, distribu-
tions are often used within evacuation models to reflect this variability [1]. The
uncertainty associated with the representation of variability of human behaviour
within an evacuation model is often referred to as ‘behavioural uncertainty’ [18,
21]. Unlike other types of uncertainty which are considered within evacuation
modelling, behavioural uncertainty reflects the current understanding of human
behaviour in fire. Current knowledge on evacuation behaviour is limited [2], thus
distributions and/or stochastic modelling is the only feasible approach to represent
evacuation behaviour without requiring a user to explicitly define each individual
behaviour. Both of these methods employ pseudorandom sampling whereby the
model uses pseudo randomly generated numbers to perform given tasks such as
sampling from a distribution or deciding if a given behaviour is adopted. The gen-
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eration of these pseudo randomly generated numbers varies between repeat simu-
lation runs (RSR). As a consequence, many evacuation models produce varying
results between RSR for the same evacuation scenario which introduce variability
in evacuation dynamics. The process of generating these RSR can be seen as a
type of ‘‘Monte-Carlo’’ simulation. Consequently, an evacuation model user must
decide how many RSR are required to represent the range of key evacuation
dynamics which influence results and subsequent decision-making process which
the evacuation modelling informs, e.g., assessing if a building design is acceptable.
The analysis of how many RSR are required then relies on the law of large num-
bers, specifying that the average of the results should be close to the expected
value, and will tend to become closer as more RSR are performed. In addition, it
is also possible to investigate the behavioural uncertainty associated with a given
number of RSR by comparing the current results to the expected value (the evacu-
ation model user would have to identify a method to estimate the expected value).

Previous work has been done in order to suggest methods to determine the
number of runs needed in relation to the acceptance criteria and scenario under
consideration [4, 5, 14, 21]. However, these methods have mainly focused on con-
sidering the overall evacuation time and evacuation curves (time series data) as
main output of evacuation models. Due to such methods only focusing on what
time people arrive at the final exits of a simulation, they do not explicitly consider
the underlying variability in evacuation dynamics which could vary significantly
more than that of the exit behaviour. Indeed, it may be possible for multiple
repeat runs to produce identical or very similar evacuation times/curve output but
exhibit very different evacuation dynamics. To address these issues, a method has
been developed which considers multifactor variance assessment (MVA) that anal-
yses a variety of evacuation simulation outputs (hereafter referred to as factors).
Such factors include not only static outputs/results such as the time people evacu-
ate, but also factors associated with spatial assessment to provide a more com-
plete assessment in variability of evacuation dynamics. This is deemed to provide
a more comprehensive assessment of behavioural uncertainty in a variety of rele-
vant factors which are currently used in fire safety engineering applications. An
example of such issues is that current assessment of space usage (i.e. occupant
density and congestion levels) are generally performed in the fire safety engineer-
ing practice by looking at the results of individual simulations (which are repre-
sentative only of one possible outcome). As such, the main contribution in this
work has been to include the set of key factors used in fire safety engineering
practice in the convergence assessment. Due to the inclusion of space-related fac-
tors, the MVA method is aimed towards usage of microscopic evacuation models
which represent people as individuals and explicitly represent the physical space
they occupy.

The MVA method is based on existing approaches and further expanded to
address the specific issues associated with a wide list of outputs produced by evac-
uation models. In addition to the evacuation times (or arrival time/evacuation
time curves), the MVA method investigates behavioural uncertainty of factors
such as crowd density, flowrate, spatial location, exit usage and queuing time. The
use of the MVA method is here demonstrated through two separate case studies,
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each with a different aim. The first case study consisting of an evacuation simula-
tion of a seven stories building with the use of the evacuation model Pathfinder
(version 2018.3.0730) [25]. The first case study has been chosen as it represents a
range of evacuation dynamics and so benefits from the advantages of employing
the MVA method compared the existing methods for determining the number of
runs. The second simpler case study adopts a modified version of the IMO 1533
verification test 10 which represents people evacuating a series of rooms/cabins on
a single level. This is aimed at demonstrating the capabilities of the method
through the comparison with an estimated expected value represented by 10,000
RSR. The evacuation model Pathfinder within the study has been chosen since it
is a microscopic agent-based simulator, thus providing the granularity required for
the analysis. Any other model with such characteristics could have been used. As
part of the work, the method has been implemented in a tool which is freely avail-
able to aid practicing fire engineers in conducting convergence analysis in evacua-
tion modelling.

This paper initially presents an overview of random sampling variables com-
monly found in evacuation models. Next follows an overview of the current meth-
ods available to determine the number of RSR in evacuation models. This
overview provides context and basis of comparison with the proposed MVA
method. The issue of data formatting, in particular when addressing the use of
functional analysis for data series made of varying data points is also addressed.
A description of the MVA method is then provided along with two case studies of
its application. A discussion on the importance of addressing behavioural uncer-
tainty in fire safety engineering practice is then provided.

Table 1
Random Sampling Variables

Variable Description

Starting location The initial starting location of occupants in a simulation

Occupant characteristics The individual properties of an occupant (e.g. body size, comfort

distance)

Movement speed The assigned movement speed which occupants move whilst

traversing the geometry

Pre-evacuation time The delay time of occupants from the start of a simulation to

when they start evacuating

Weights for route selection/collision

avoidance algorithm

The definition of weights associated with route selection/collision

avoidance algorithms which use a cost-based (or similar) func-

tion to make routes more/less attractive and represent pedestrian

navigation

Exit attractiveness/availability The likelihood of an occupant being aware of a given (available)

exit

Influenced by toxic species The likelihood a person will be affected by toxic species from a

fire
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2. Random Sampling Variables

Pseudorandom sampling from distributions/ranges can be used for a range of
variables within evacuation modelling [12, 13, 20]. Table 1 presents a non-exhaus-
tive list of potential variables which use random sampling within evacuation mod-
elling. It is variation in such variables between RSR which cause differences in
output from an evacuation model: the greater the variation in these variables the
higher the likelihood of more RSR being required to achieve convergence in
results. It should be noted that not all of these variables may be represented using
pseudorandom sampling in an evacuation model, i.e., it is possible to represent
many of them using static or fixed values whereby there would be no variation
between RSR. In addition, where a model does use random sampling for a given
variable, the underlying algorithm implemented within an evacuation model will
influence the level of variation between RSR [17] which may give rise to variation
between different evacuation models of the same scenario, i.e., some evacuation
models might exhibit greater variation in evacuation modelling results. It should
also be noted that such variables may be represented in varying degrees within a
given evacuation modelling application, e.g., some may not be represented at all,
which will influence the number of RSR required to achieve convergence in
results.

3. Review of Current Methods

In order to highlight what is novel in the proposed MVA method, this section
presents a review and comparison of methods, both at a conceptual level, and by
reviewing previously developed methods.

Kinsey [10] has categorized possible methods to choose the number of RSR
within evacuation modelling into four types:

1. Brute force: By simulating all possible permutations of the stochastic variables,
it is ensured that the complete range of results has been obtained.

2. Fixed number: Setting a fixed number of RSR which is said to represent the
potential outcomes of human behaviour sufficiently, as is the case in the recom-
mendation to run the model 500 times in the IMO guidelines [6].

3. Qualitative visual assessment: Visually assessing the differences between runs to
assess the differences in results then decide if more runs are needed.

4. Dynamic assessment of variance in an output variable/series: Utilizing the results
from the simulation runs to assess whether or not convergence has been met
with the use of quantitative methods.

The level of sophistication in the above methods varies with the latter being
considered the most sophisticated as it considers a feedback process whereby out-
put from results influences the number of RSR. It should be noted that all meth-
ods described above have their advantages and disadvantages. A brute force
method will probably yield a theoretically infinitely large number of runs required,
making it impractical in engineering practice. Utilizing a fixed number of runs
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fails to evaluate if the number is too small or too large and assess convergence. A
visual assessment might not be reliable for many RSR and may be associated with
differences among different model users. The advantages and disadvantages of the
last method will be addressed in the discussion section, as this is the conceptual
model used in the proposed MVA method.

A number of methods have been proposed to determine the number of RSR of
evacuation modelling results by assessing the variance in results [4, 5, 14, 21] (see
Table 2). The method by Ronchi, Reneke and Peacock [21] is described as a
method for quantitatively analysing the variance in modelling results in evacua-
tion models. It is based on functional analysis concepts, which were previously
applied in the context of a comparison between fire simulation data and experi-
ments [19]. The method uses different operators (Euclidean relative difference
(ERD), Euclidean projection coefficient (EPC) and the Secant cosine (SC)) to
compare aggregated occupant-evacuation time curves. These operators are consid-
ered together with two additional outputs to assess variance between evacuation
times (looking at aggregated normalized arithmetic mean and standard deviation
of total evacuation time runs) [21]. The method then analyses the measure of the
relative difference between j and j - 1 runs to detect convergence in results. The
method by Lovreglio et al. [14] is an extension of the above mentioned method,
complemented with inferential statistical testing (i.e. KS-test) to assess the same
factors considered by Ronchi et al. [21] for the assessment of the variance between
aggregated repeat runs.

The IMO guidelines [6] proposes two methods for determining the number of
RSR: (1) To run at least 500 repeat runs randomizing the input variables, or (2)
To use an ‘‘appropriate method’’ to determine the number of repeat runs through
demonstrating convergence of results. The IMO guidelines provide one example of
such method for determining convergence [6]. The first method implies that results
may be acceptable according to the guidelines, even though they may not be con-
vergent, after 500 repeated runs.

The method proposed by Grandison et al. [5] uses the 95th percentile of the
total evacuation time (TET) for determining convergence. This means that only
one data point per simulation run is used in the analysis, in contrast to using time
series data. As such, the method does not consider the complete occupant/evacua-
tion time curve data, thus convergence is likely to mainly rely on the total evacua-
tion time. This method simplifies the analysis of data compared to time series data
analysis methods previously discussed and is deemed suitable for RSET/ASET
assessment. Nevertheless, it does not capture the variability of evacuation time
curves, which may in turn be very important in the assessment of the whole evac-
uation process. This issue can be very important in certain scenarios, e.g., when
studying phased evacuation procedures, assessment of the evolution of congestion
at exit doors, etc.

The most recently proposed method [4] is also an extension of the first men-
tioned method. The method complements the method by Ronchi et al. [21] by
introducing confidence intervals (CIs). The method is recognized to be more com-
putationally costly than its predecessor, but provides a more standard interpreta-
tion of convergence through its use of well recognized statistical methods.
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A limitation of the above-mentioned methods is that only the evacuation time
and the occupant-evacuation time curves have been addressed in the behavioural
uncertainty analysis. However, it may be possible for RSR to have comparable
evacuation time curves, but variability in the underlying evacuation dynamics
between different repeat runs. To address this issue, the MVA method is here pro-
posed. The method takes into account several factors that may provide a more
accurate assessment of convergence of repeat evacuation simulation results.

4. Multifactor Variance Analysis (MVA) Method

The MVA method includes factors associated with spatial results (rather than
only time-related results), thus providing a more comprehensive assessment of
variance in evacuation dynamics. The factors included in the proposed method
are: crowd density, flowrate, queuing time, spatial location and exit usage. This
selection was made performing a review of the outputs produced by the most used
evacuation models [15] and prioritizing those deemed of key importance within
evacuation dynamics for fire safety engineering applications. Note that this list of
factors could be tailored for specific evacuation models or application domains
depending on the underlying evacuation dynamics and the extent each factor
occurs. For example, an evacuation scenario which does not involve large
amounts of queuing or large numbers of occupants simultaneously moving may
derive little benefit from assessing variation in flow rates as a factor between RSR.

The MVA method makes use of the assumption adopted in the method devel-
oped by Ronchi et al. [21], i.e., factors can be represented as vectors to calculate
convergence. Each vector represents the results from one simulation run. In other
words, the MVA method describe each factor as a multi-dimensional vector for
which functional analysis operators can be calculated.

4.1. Factors

The factors included in this work (crowd density, flowrate, queuing time, spatial
location and exit usage) are described, along with the unit of measures considered
in their analysis (see Table 3).

Crowd Density (here referred to as local density) is an important factor to con-
sider in evacuation dynamics since high densities may lead to issues such as crowd
crush, congestions and other comfort and safety risks. In the context of pedestrian
dynamics, local density can be calculated in several manners, but it is often mea-
sured in terms of the number of occupants per unit of floor area [3]. A more gen-
eral definition of density in the evacuation modelling context relates to the
number of simulated occupants in a 2D space, called a referenced area or space.
Density is a concept derived from an analogy with fluid dynamics in which there
are situations with a seemingly infinite number of particles [23]. In the context of
evacuation, the number of occupants is discrete, which in turns makes the density
concept more difficult to apply.

The issue that arises when the number of occupants is discrete, or when the ref-
erence area is small, is that large fluctuations may occur when occupants pass in
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and out of the reference area. These fluctuations may be treated by averaging over
space and/or time, with the cost of lower resolution [23]. Another solution may be
the use of Voronoi diagrams which is often referred as an appropriate method to
maintain high resolution [23]. The MVA method does not depend on the use of
Voronoi diagrams but the analysis of density based on this approach may yield
more accurate results since the scatter is limited. In the case studies presented in
this paper, Voronoi diagrams are used for the density estimations.

The MVA method includes the spatial location of the occupants since it pro-
vides insights into how the building is used in the evacuation. In large scenarios,
to compare the exact locations of individual occupants would be too computa-
tional expensive. It could also be argued that an extremely high level of detail
may not be necessary in fire safety engineering applications, while the location of
the ‘‘mass’’ of occupants would be sufficient. This issue could be considered by
counting the number of occupants in specific spaces, e.g., rooms or hallways (i.e.,
global density). This factor shows a high degree of similarity with the measure-
ment of crowd density, with the difference that this would not be divided by the
reference area and that the reference area of interest is generally larger than the
reference area when measuring crowd density. In the MVA method, spatial loca-
tion refers to the number of occupants in a specific area or room at a specific
time.

Flowrate was included because it provides essential information about the evac-
uation process: at what rate occupants are evacuating, thus providing information
about evacuation efficiency. Optimizing flowrates also enables the possibility of
achieving lower evacuation times and higher safety levels. Flowrate is, just as den-
sity, a concept derived from fluid dynamics. In the context of pedestrian dynam-
ics, it is often measured as the number of occupants which have passed through a
doorframe or similar during a specific time interval. It is possible also in this case
to apply Voronoi diagrams to maintain a high level of resolution while minimizing
scatter. Similar to crowd density, the MVA method does not rely on the use of
Voronoi diagrams for measuring flowrate.

Table 3
Description of Factors Considered in the MVA Method

Factor Description

Unit of mea-

surement

Crowd

density

The number of occupants occupying a reference area at a certain time Occupants/m2

Spatial

location

The number of occupants occupying a room or area at a certain time Number of

occupants

Flowrate The number of occupants passing a door over a set time Occupants/s

Queuing

time

The amount of time spent moving at a velocity lower than a certain

threshold for the duration of the evacuation

s

Exit usage The cumulative number of occupants which has used an exit Number of

occupants
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Queuing time is a measure of the delay in the evacuation time. In addition, long
queuing times may cause distress for the occupants, thus potentially affecting
comfort and safety. Fruin [3] gives this definition of queuing: ‘‘Queuing may be
broadly defined as any form of pedestrian waiting that requires standing in a rela-
tively stationary position for some period of time’’. It is important to note that
queuing does not necessarily mean that the occupants stand in line. As occupants
move towards an exit, they may try to maximize their chances of exiting yet allow-
ing occupants in front to exit first. This phenomenon is called dislocable queue and
has been observed in experiments [27]. Queuing may be measured in different
ways: the congestion near the exits, the number of occupants in a queue, etc. Nev-
ertheless, since queuing delays the evacuation, it is important to assess to which
extent the queuing time is related to the evacuation process efficiency. Queuing
causes occupants to slow down, which means that it is possible to measure the
total time during the evacuation in which an evacuee moves at a slower pace (ve-
locity) than desired, which is also the definition used in the MVA method.

The inclusion of the factor exit usage allows the increase of the level of under-
standing of the evacuation process, as it can be used to include a key underlying
behaviour in the analysis. By considering the exit usage, it is possible to optimize
the design of a building (i.e. placement and width of exits). For the purpose of the
proposed method, exit usage will be defined as exit-specific occupant-evacuation-
time-curves (OETCs), i.e. which exit is used by each occupant. It is noted that exit
usage and flowrate describe the same behaviour or phenomena for the same exit to
a certain extent. However, the concept of functional analysis, which the proposed
method is based upon, is simply a way of calculating differences between two data
sets by appearance. This means that the results from such a calculation may dif-
fer, even though the behaviour or phenomena is the same.

4.2. Methodology

The MVA method consists of a number of different steps in order to calculate
and assess convergence. The flowchart in Fig. 1 is a modified version of the
method flowchart proposed by Ronchi et al. [21], designed to fit the purpose of
this work. The MVA method consists of an iterative process where acceptance cri-
teria are specified and compared to the results from an arbitrarily defined number
of repeat runs. If the acceptance criteria are not met, additional runs are required.
The additional runs are then added to the existing batch of repeat runs. The
results from this larger batch of repeat runs are then compared to the acceptance
criteria again. This iteration is continued until the acceptance criteria are fulfilled
and the analysis is concluded.

4.3. Mathematical Representation

The description of each individual factor in the form of multi-dimensional vectors
can be found in the report associated with this paper [22]. In this paper, we only
include the general mathematical description of the vectors. The MVA method
relies on the representation of factors as vectors since it is based on a combination
of functional analysis and inferential statistics. Factors are first defined as multi-
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dimensional vectors consisting of several data points (each of them representing a
dimension). The data points may be either occupants or time steps, depending on
what is applicable for the specific factor.

Consider a simulation consisting of q number of data points. The vector that
describes the generic factor x would then be denoted as in Eq. 1:

xi
* ¼ x1; x2; . . . ; xq�1; xq

� �

ð1Þ

where i denotes a specific data point, x1 corresponds to the first data point of x,
x2 to the second data point of x and so on. If we were to simulate n runs of the

same scenario, n vectors x
*

ij
would be obtained, where n is the total number of runs

and j denotes a specific run (see Eq. 2).

Figure 1. Schematic representation of the evaluation process.
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x
*

ij
¼ x1j; x2j; . . . ; x q�1ð Þj; xqj

� �

ð2Þ

The next step is to present a variable which is associated with the arithmetic mean
of the values of the runs. This means that the factors represent the arithmetic
mean of the previous runs and not only the values for the specific run. If the total
number of data points is still denoted q, and a specific run is denoted j, then the

jth average curve, X
*

j
, is described by the following vector, presented in Eq. 3:

X
*

j
¼ X1;X2; . . . ;Xq�1;Xq

� �

ð3Þ

where

X1 ¼
1

j

X1�j�n

j¼1

x1j;X2 ¼
1

j

X1�j�n

j¼1

x2j; . . . ;Xq ¼
1

j

X1�j�n

j¼1

xqj

For example, if j = 1, then X
*

j
would correspond to the values of the first run, i.e.

x
*

i1
. If j = 4, then X

*

j
would correspond to the arithmetic mean of the values of four

consecutive runs, i.e. the arithmetic mean of x
*

i1
, x
*

i2
, x
*

i3
and x

*

i4
.

The method proposed includes the use of six different convergence measures,
five of which are included in the original method proposed by Ronchi et al. [21]:
Uconvj, SD of Uconvj, ERDconvj, EPCconvj, SCconvj. Note that in the method by
Ronchi et al. [21], U was denoted TET since this was the only factor included. U
represents a specific value (the largest or most interesting) of each factor. The defi-
nition of U for each factor is presented in Table 4. Note that there is one value of
U for each factor and RSR.

The additional convergence measure is the application of a non-parametric sta-
tistical test, the Kolmogorov–Smirnov (KS) test. This test has previously been
used for the study of convergence evacuation model results, see Lovreglio et al.
[14]. The KS-test was chosen in this application since it is a non-parametric test,

Table 4
The Definition of U for the Different Factors

Factor Definition of U

Crowd density The maximum crowd density measurement

Spatial location The maximum number of occupants occupying a room or area at the same time

Flowrate The maximum flowrate measured for the specified exit

Queuing time The maximum queuing time measured for an occupant

Exit usage The maximum number of occupants using the specified exit
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i.e. no assumptions are made on the distribution type. This is deemed appropriate
given the fact that the methodology should be applicable for different sample
sizes.

The KS-test is used here to determine if two samples come from the same
underlying distribution. In this case, the test will be applied on the aggregated val-

ues of two consecutive runs, i.e. between the curves X
*

j
and X

*

j�1
. This is achieved

using the significance value a, and a number of consecutive runs the test needs to
be passed, denoted k.

To conduct the test, the values need to be presented in the form of a cumulative
distribution function, named Fj;q Xð Þ, where q is the number of data points and j is

the number of the run. To use TET as an example, the y axis on the graph of the
function would represent the percentage of the occupants that have evacuated at
that time (the x-axis value).

After the calculation of the convergence measures has been performed, they
need to be compared to the user specified acceptance criteria. This includes both

the absolute value of the acceptance criteria of the measures (e.g. 1% between X
*

j

and X
*

j�1
) as well as the arbitrarily set number of runs which the acceptance criteria

must be fulfilled (e.g. 10 runs). Note that the proposed method does not provide
any guidance on how to set these criteria, which will be discussed in Sect. 6.

4.4. Data Formatting

In the original method proposed by Ronchi et al. [21] the analysis was based on
the number of occupants, which meant that the number of data points were the
same between different runs. This could be done since the factor (evacuation time)
is connected to the individual occupants, i.e. each occupant evacuates at a certain
time. For some of the factors included in this work, the number of data-points
have been identified based on a constant time interval, dt. This is because not all
factors can be ascribed to individual occupants. Crowd density (at a specific place)
for example is an emergent property which is the outcome of collective behaviour
and can vary between runs. To solve this issue, the data set is divided into data
points using time intervals as a delimiter. It could also be argued that the time
aspect is important when measuring crowd density (or other factors) since it could
provide useful insights into the evacuation process. The definition of the time step
size is done prior to introducing the data sets to the MVA method. The method
has currently been tested on a time step size of 1 s, as this is the default time step
in the Pathfinder version used in the case studies presented in Sect. 5.

A possible issue when making the separation based on the constant time inter-
val dt is that the number of time steps, q, will vary when the TET does, i.e. the
number of time steps is smaller when the TET is shorter and vice versa. Different
solutions can be adopted to solve this issue. A solution for this could be to let the
simulation run with the most time steps, i.e. the simulation with the largest TET,
set the number of time steps for all simulation runs. The rest of the simulation
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runs are then filled out with time steps with a set value of zero or similar. How-
ever, this approach might yield unrealistic differences when comparing the curves
since the factors do not necessarily approach the set value (i.e. zero or similar)
when the simulation is completed. Doing the opposite, i.e. letting the simulation
run with the smallest amount of time steps decide the number of time steps to
include might yield more realistic results, but it will also mean that important data
might be disregarded. Alternatively, the use of the average number of data points
corresponds to a combination of the two above methods, thus carrying both their
limitations.

The fourth option is to manipulate the data sets so that they all contain the
same number of data points. This would mean that the division into data points
would not be done with the use of a constant time interval (e.g. 1 s) but instead
based upon how much of the simulation has been completed, i.e. a relative time
difference, (e.g. 0.1%). This would mean that two data points may not represent
the value at the exact same time in the simulation but rather how much of the
evacuation process that is completed. As long as the TET does not vary signifi-
cantly between runs, this approach is deemed useful to make the different curves
comparable. In the current implementation of the MVA method, this option is
implemented by modifying the number of time steps to be the same as the simula-
tion run with the largest number of time steps through the use of linear interpola-
tion.

4.5. Factor Averaging

The amount of variation in results is expected to be high depending on the
assumptions used by the model to generate the factors (e.g., models make use of
different approaches to estimate densities, flows, etc.). To compensate for this
issue, where possible, a moving average approach is adopted to smooth vectors,
thus making the method less sensitive to localised peaks caused by differences in
calculation methods. This means that if the moving average interval is defined to
be ± 10 s, then the value at the central data point is an average of the 10 previ-
ous, the central and the 10 sequent data points. Near the ends of the data sets,
where data to conduct the moving average calculations does not exist, the data is
cropped out.

4.6. Tool Implementation

This section describes how the MVA method was implemented in a spreadsheet
tool which can be downloaded for free [22]. The MVA tool was developed using
Visual Basic for Applications (VBA) and was made to read output files from the
Pathfinder evacuation model version 2018.3.0730 [25] though could be adapted for
other evacuation models with machine readable output files. In order to use the
developed tool with other simulation software, an additional piece of code may be
required to alter the format of the output data to be used as factors in the
method. For example, the tool has been used in a validation study performed with
the software FDS + Evac (version 2.5.2) [26].
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The MVA tool reads the output data from the simulator and places them into
vectors. The tool then proceeds in calculating the convergence measures described.
For these calculations to be conducted, the user needs to define acceptance criteria
and insert them as input into the tool. The user can also select the approach to be
used for the varying number of data points discussed in Sect. 4.4. The user is also
provided with the option to calculate and use a moving average in the conver-
gence assessment to minimize the scatter in the data.

The output from the tool includes the descriptive statistics from the simulation
runs analysed. The user is also presented with a graph containing the simulation
results from all RSR, as well as a graph containing the aggregated runs. The
results of the convergence assessment measures are also presented in a table for-
mat (i.e., individually for all factors).

5. Case Studies

Two separate case studies were conducted in order to demonstrate the functionali-
ties/capabilities and limitations of the MVA method. The input/output values are
purely exemplary in scope and no conclusion of the fire safety of the building
under consideration should be drawn. The first case study (Case study 1) is used
to demonstrate the MVA method on a realistic and comprehensive case. The sec-
ond case study is used to investigate the performance and predictive capabilities
on a simpler case (Case study 2), but where the results are also compared to the
expected value (i.e. the value to which the sample is deemed to converge to), here
represented by 10,000 simulation runs. In both cases, the simulation software
Pathfinder version 2018.3.0730 [25] was used. The Pathfinder ‘‘Steering Mode’’
was used in both cases.

5.1. Case Study 1

The building used in the first case study is a hypothetical university building, con-
sisting of seven stories, with two of them located below ground level. The building
was equipped with three staircases between the floors. A total of five exits was
present, all located on the ground floor. Two of them are to be regarded as main
exits (see Fig. 2). The total occupancy is 1855 occupants distributed between the
floors for the purpose of the case study. An overview of the geometry can be seen
in Fig. 2.

A practical example is used as a case study rather than adopting a mathemati-
cal fictitious case, as done in previous studies [4, 21]. This is deemed appropriate
given the fact that the factors included are of varying character (rather than only
referring to evacuation times). The benefits of displaying the methodology using
values obtained mathematically with a pseudorandom number generator (general-
izability, lower computational cost, etc.) are however recognized by the authors.

The different factors to be analysed were measured at various points in the
building, denoted here as points of interest (see Fig. 2). It should be noted that
the factors which are not related to space (evacuation time and queuing time) do
not require a point of interest to be measured. The selection of points of interest
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should be evaluated based on the specific case under consideration. To address
this issue, the user may run a pilot study identifying potentially interesting areas
(e.g. where congestion is present, etc.). A summary over the points of interest cho-
sen can be found in Table 5. In order to minimize the scatter in results a moving
average approach was utilized for Crowd density (± 15 s), Flowrate (± 30 s) and
Spatial location (± 5 s). This was chosen after visually analysing the results from
a pilot test.

Table 5
Points of Interest Chosen for the Case Study

Point of inter-

est Description Factor

Main exit 1 One of the two main exits. Width = 2.0 m Flowrate

Main exit 2 One of the two main exits. Width = 2.0 m Exit usage

Secondary exit

1

Emergency exit adjacent to one of the staircases. Width = 2.0 m Flowrate

Secondary exit

2

Emergency exit adjacent to one of the staircases. Width = 2.0 m Exit usage

Last set of

stairs

Density measurement region at the last set of stairs in the central

staircase

Crowd density

Below stairs Density measurement region at the bottom of the central staircase Crowd density

Atrium The main escape route on the ground floor Spatial loca-

tion

Figure 2. Screenshot from Pathfinder of the school building
considered in the case study. Left: Overview of the model. Right:
Ground floor with points of interest marked.
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In order to obtain different results from the repeat runs of the simulation
model, distributions/variables need to be included in the model to represent the
variable nature of human behaviour. The inputs regarding occupant characteris-
tics (i.e., walking speed and pre-evacuation time) were introduced as distributions.
The horizontal walking speed follows a truncated normal distribution with the
mean value of 1.5 m/s, standard deviation of 0.5 m/s, minimum value of 0.5 m/s
and maximum value of 2.0 m/s. The pre-evacuation time is represented through a
truncated log-normal distribution with l = 4.5 and r = 1.0. This results in a
median value of 90 s. The distribution was truncated at 5 and 300 s. No more
user-defined inputs were made apart from these, i.e. the default values present in
Pathfinder were utilized.

For each individual run, occupant characteristics have been randomly sampled
and assigned to the occupants. Similarly, for each run, the initial occupant loca-
tion within the domain has been randomized. Due to the algorithms present in
Pathfinder (the locally quickest path algorithm [24]), route choice will also vary
between runs as a result of occupant characteristics and positioning.

In order to conduct the analysis, acceptance criteria need to be defined and pre-
sented to the tool. The acceptance criteria used in the case study are presented in
Table 6. These have been arbitrarily set in this example to show the application of
the MVA method, i.e., they are purely for demonstration purpose.

A total of 80 simulation runs was arbitrarily chosen as the starting number of
repeated simulations. This assumption is here arbitrary to show how a possible
application of the MVA method would work. Table 7 provides the user with a
description of the results from the 80 simulation runs used in the case study, as
well as some description about its variation.

The results presented in Table 8 contain information about whether or not con-
vergence was detected for the specific factor and, if so, at what run. Table 8 shows
the results from the case study when utilizing the option to normalize the number
of data points in the analysis.

The row titled ‘‘All (Max)’’ summarizes all convergence units for the factors
studied. The highest value in this row determines when convergence has been met
for all factors and convergence units. The results show that convergence has been
met at the 58th run for all factors and convergence units studied. This implies that
the user could have started with a lower number of runs and iteratively incre-
mented this number until all criteria are met. The results are only presented for

Table 6
Acceptance Criteria Chosen for the Case Study

Factor\criteria TRU (%) TRSD of U (%) TRERD (%) TREPC (%) TRSC (%) b a (%) k

Evacuation time 0.1 1.0 0.1 1.0 0.1 10 5 5

Queuing time 1.0 1.0 1.0 1.5 0.5 10 5 5

Crowd density 1.0 1.0 1.0 1.5 0.5 10 5 5

Flowrate 0.5 1.0 0.5 1.0 0.5 10 5 5

Spatial location 0.5 1.0 0.5 1.0 0.5 10 5 5

Used exit 0.5 1.0 0.5 1.0 0.5 10 5 5
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the option to normalize the number of data points since this was shown to be the
most effective [22].

5.2. Case Study 2

For the more simple case study, the IMO 1533 verification test 10 [6] was adopted
which represents an evacuation scenario comprising 12 rooms/cabins connected
via a corridor with a main exit and a secondary exit (see Fig. 3). Unlike in the
IMO guidelines which suggest assigning an instant pre-evacuation time to all peo-

Table 7
A Description of the Results from the 80 Simulation Runs Used in the
Case Study

Max Min Standard deviation Average

Last set of stairs, Max density [occ/m2] 3.04 1.43 0.48 2.17

Below stairs, Max density [occ/m2] 2.62 0.72 0.51 1.58

Main exit 1, Max flowrate [occ/s] 2.61 1.95 0.13 2.39

Secondary exit 1, Max flowrate [occ/s] 1.75 1.07 0.13 1.43

TET [s] 860 578 43 637

Max queuing time [s] 589 293 44 364

Atrium, Max occupancy [occ] 181 123 11 151

Main exit 2, Max usage [occ] 380 287 20 347

Secondary exit 2, Max usage [occ] 419 328 20 382

Table 8
Results Provided by the MVA for the Case Study Under Consideration.
The table reports if the acceptance criteria are met and if so after how
many runs

Has convergence been met (Yes/No)? At what run?

Last

set of

stair

Below

stairs

Main

Exit 1

Se-

cond-

ary

Exit 1 TET

Queu-

ing

time

Atriu-

m

Main

Exit 2

Se-

cond-

ary

Exit 2

u Y 45 Y 58 Y 28 Y 28 Y 44 Y 30 Y 38 Y 42 Y 28

SD Y 30 Y 30 Y 17 Y 19 Y 19 Y 30 Y 18 Y 21 Y 18

ERD Y 19 Y 42 Y 34 Y 17 Y 43 Y 33 Y 35 Y 31 Y 23

EPC Y 46 Y 47 Y 19 Y 18 Y 13 Y 34 Y 29 Y 31 Y 20

SC Y 28 Y 19 Y 15 Y 15 Y 12 Y 12 Y 15 Y 15 Y 13

KS-test Y 15 Y 14 Y 13 Y 15 Y 6 Y 6 Y 8 Y 9 Y 14

All (max) Y 46 Y 58 Y 34 Y 28 Y 44 Y 34 Y 38 Y 42 Y 28

All (min) – 15 – 14 – 13 – 15 - 6 – 6 – 8 – 9 – 13

All (range) – 31 – 44 – 21 – 13 - 38 – 28 – 30 – 33 – 15
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ple, the pre-evacuation times were assigned from a normal distribution with mean
(l) = 15 s, standard deviation (r) = 10 s, maximum = 30 s and minimum = 0
s. This is intended to introduce added variance to the case study and can be con-
sidered more realistic than all people responding at the same time. People were
also assigned a walking speed from the same distribution as in Case study 1. The
default exit choice algorithm of the evacuation model was used. The purpose of
the IMO test is to demonstrate that agents use their assigned exit, however, only
the geometric layout of the test is here used as a base to demonstrate the MVA
method. The total number of people prescribed in IMO test is 24, however, this
has been changed to 50 for the case study to increase levels of congestion along
with associated contraflow. The 50 people were randomly positioned between the
rooms at the start of the simulation. This was made as it was likely to generate
larger variations in the results.

All factors included in the method were analysed in this case study. The num-
ber of people which used each exit and the exit flowrates were measured. Density
was measured at areas in front of each exit. Spatial location was measured in the
corridor connecting the rooms/cabins with the exits. As with Case study 1, occu-
pant characteristics and occupant locations were randomly sampled between simu-
lation runs.

A total of 10,000 RSR was conducted. The choice of this number of runs is
arbitrary, but it was made to obtain a large sample of results which was likely to
be convergent. This was done to represent the hypothetical expected value, which
the results from a lower number of runs could then be compared to. This also
means that acceptance criteria were not defined beforehand. Instead, the accep-
tance criteria are here seen as the results of the analysis for different number of
runs. Given the scope of the analysis, the KS-test was not performed for this case
study.

To demonstrate the trend of convergence of the results, a graph representing
the change in average TET is shown in Fig. 4. The figure shows that the average
TET broadly converges as the number of RSR increases, indicating that 10,000
RSR was a reasonable estimate of the expected value in this case.

Figure 3. IMO 1533 verification test 10 [6].
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Whilst all factors are considered in the analysis of results, the results of only
two factors (TET and Crowd density for the main exit) are shown below. These
are deemed to be broadly representative of the other factors. From the 10,000
runs analysed, the maximum TET was 59 s. After visually analysing the results,
this was deemed to be caused by one single occupant being assigned a location far
away from an exit, a long pre-evacuation time, as well as a slow walking speed.
This occupant exited 14 s after the next last occupant. The shortest TET was
found to be 36 s, resulting from a fast but also well-distributed pre-evacuation
time, and an even utilization of both exits. Similarly, for crowd density measure-
ments at the main exit, the maximum density was found to be 1.66 occ/m2, and
the minimum density was 0.41 occ/m2. This was found to be caused by the lack of
crowding around the exit. The results are presented as the acceptance criteria, for

Figure 4. The evolution of Average TET from 1 to 10,000 RSR.

Table 9
Results for TET from Analysing 10,000 RSR

Number of RSRs

25 50 100 250 500 1000 2500 5000 10,000

Average TET [s] 44.92 44.59 44.82 44.78 44.81 44.9 44.94 44.93 44.9

Difference [s] 0.02 - 0.31 - 0.08 - 0.12 - 0.09 0 0.04 0.03 –

Difference [%] 0.03 - 0.7 - 0.18 - 0.26 - 0.21 - 0.01 0.09 0.08 –

TRU [%] 0.48 0.66 0.13 0.05 0.03 0.01 0.01 0 –

TRSD of U [%] 0.39 0.37 0.07 0.03 0.01 0 0 0 –

TRERD [%] 0.36 0.37 0.12 0.04 0.01 0.01 0 0 –

TREPC [%] 0.63 0.57 0.2 0.06 0.04 0.02 0.01 0 –

TRSC [%] 0 0 0 0 0 0 0 0 –
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different number of RSR. It should be noted that the minimum number of consec-
utive runs for which the criteria needs to be fulfilled (b) was set to 10. The differ-
ence between the expected value, i.e. 10,000 runs and the current value at a given
number of RSR, are presented for the value U as a demonstration of the adher-
ence to convergence (no data is reported in the last column of Tables 9 and 10 for
the differences and acceptance criteria as they would mean comparing the case of
10,000 runs against itself). This is denoted as ‘‘Difference’’ in the table. The results
are presented in Tables 9 and 10.

As it can be seen in Tables 9 and 10, the values of the acceptance criteria nee-
ded to detect convergence decreases as the number of runs are increased. In some
instances, the criteria increase temporarily when increasing the number of runs.
This could indicate that the value of b in use, i.e. 10, might need to be increased
to avoid this phenomenon.

6. Discussion

This work demonstrates the ability of the MVA method to analyse convergence
for factors previously not included in this type of analysis. The analysed factors
can represent a range of different metrics of the evacuation dynamics within the
simulations. It was also shown that the method was able to detect convergence in
cases where different numbers of data points between RSR were present.

The evacuation modelling Case study 1 required a total of 58 RSR to be con-
ducted to reach the convergence based on the acceptance criteria in use. This
number was due to the ‘below stairs’ crowd density assessment requiring 58 RSR.
The factor which required the second most RSR was the ‘last stair’ crowd density
assessment (requiring 46 runs). It is highlighted that users should be cautious in
comparing the required number of RSR between factors due to inherent charac-

Table 10
Results for Crowd Density at the Main Exit from Analysing 10,000
RSR

Number of RSRs

25 50 100 250 500 1000 2500 5000 10,000

Average Max Density [occ/m2] 0.99 0.97 0.94 0.91 0.91 0.92 0.93 0.93 0.93

Difference [occ/m2] 0.06 0.04 0.01 - 0.02 - 0.02 - 0.01 0 0 0

Difference [%] 6.43 4.01 0.77 - 1.63 - 1.95 - 0.61 0.09 0.19 0

TRU [%] 1.55 1.2 0.36 0.14 0.06 0.04 0.02 0.01 0

TRSD of U [%] 0.7 0.63 0.19 0.07 0.03 0.02 0.01 0.01 0

TRERD [%] 1.36 0.72 0.25 0.05 0.1 0.04 0.01 0.01 0

TREPC [%] 1.9 1.16 0.78 0.2 0.11 0.06 0.02 0.01 0

TRSC [%] 0.06 0.02 0 0 0 0 0 0 0
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teristics of the functional analysis concept used, as well as the arbitrarily defined
acceptance criteria. Nevertheless, the crowd density factor was the one who
reached convergence last despite relatively non strict acceptance criteria (see
Table 6). This together with a larger standard deviation (approximately 20% and
30% of the mean) suggest that crowd density is one of the factors showcasing a
higher degree of variation in this case study. The results obtained can be used to
interpret the scenarios. For instance, in case study 1, the variation in the crowd
density factor is due to small differences in contributing factors such as movement
speeds, arrival rates, pre-evacuation times, occupant starting location, all of which
are defined according to random sampling. It should be noted that for Case study
1, the TET varied at most 35% from the average. As stated previously, the option
to normalize the number of data points can be performed when there is not a sig-
nificant change in TET. The results from the case study showed that the method
was able to detect convergence despite this seemingly large variation in TET. This
could be seen as guidance for future users of the method when evaluating the pos-
sibility to normalize the number of data points. In Case Study 1, a decision was
made to start with 80 RSR, which was later proven to be larger than needed since
convergence was detected after 58 RSR for all factors studied. However, as shown
in Fig. 1, it is also possible to start with a smaller number of runs and iterate for-
ward with batches of extra RSR until convergence is reached.

The evacuation modelling Case study 2 included a total of 10,000 RSR to esti-
mate the expected value and then presented an assessment of variance at different
numbers of RSR. After 25 RSR the average TET did not vary by more than one
second. Similarly, the average maximum crowd density at the main exit did not
vary by more than 0.1 occ/m2 after 25 runs. This reflects the simplicity of the sce-
nario being a small geometry with small numbers of people causing a reduction in
variability in evacuation dynamics between RSR. This exemplifies that the users
should evaluate the trade-offs between the complexity of the evacuation scenario
and the required number of RSR. In addition, the evacuation model user would
be required to represent the range of evacuation dynamics which are impacted by
pseudorandom sampling. As with Case Study 1 the crowd density factor has the
widest variation between RSR and the lowest level of variation between RSR
were in the TET. Case Study 2 could be used to provide some guidance when
selecting appropriate acceptance criteria. By comparing the difference from the ex-
pected value (i.e. 10,000 RSR) and the values of the acceptance criteria needed to
detect convergence, a user can determine what to use. Nevertheless, it should be
noted that this is only one case study, and another case study with different inputs
would produce different results. Users of the method should also be aware that
there is no use in comparing acceptance criteria for different factors or application
domains. The concept of functional analysis simply compares curves by shape,
and curves that look in a given manner (e.g. OETC or Flowrate) may be more or
less easily detected as similar. One factor converging faster than another (given
the same acceptance criteria) does not mean that any conclusions can be drawn
when comparing different factors. In this application, functional analysis is simply
used as a method to calculate similarities between time series data.
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7. Limitations and Further Work

It should be highlighted that the MVA method relies on the selection of appropri-
ate acceptance criteria (those have been arbitrarily chosen in the first case study).
Further work is required to define what acceptance criteria could reliably be used
or a method which allows an evacuation modelling user to calculate them. Con-
sidering the level of variation will be heavily influenced by the number and type of
pseudorandom sampling method used by a model, it is contended that it be
advantageous to use the range/distribution of these defined factors to inform the
selection of suitable acceptance criteria.

Due to increased sensitivity in variation of certain factors (e.g. crowd density) it
may be advantageous to adopt a smoothing process in the calculation of such fac-
tors whereby it is measured in larger time intervals in order to make the factor
less sensitive to small differences in densities between RSR. Further work would
be required to determine what time interval would be suitable in order to reflect
significant differences in evacuation dynamics in sufficient granularity for a given
area. In addition, careful selection is clearly required regarding which and how
many areas within a geometry should be included for assessing crowd density.
Such a process may benefit from a user initially running a model to identify key
area of congestion to inform which areas are considered in the assessment.

By comparison to the MVA, if only the TET factor was considered when deter-
mining the number of RSR as adopted in past studies [21], the convergence for
the case study would have been reached in 44 RSR, representing a 24.1% decrease
compared to the number of RSR being required using the MVA given the chosen
acceptance criteria. This is expected as the larger the number of factors considered
in an assessment, the greater the likelihood of one of the factors taking longer to
converge. The user is therefore required to balance the number and type of factors
assessed required in relation to their need to suitably capture any key differences
in evacuation dynamics in a given application. This may vary between different
evacuation modelling applications so it is expected there may not necessarily be a
‘one size fits all’ list of factors to consider for all evacuation modelling applica-
tions.

The factors included in this paper are exemplary and should not be seen as an
exhaustive representation of the evacuation process. The MVA method proposed
in this paper could be applied to even more factors (e.g. mean walking speed, ele-
vator usage, etc.) if necessary, since all factors included in this work were analysed
efficiently and that they represent the variety of factors possible to measure in an
evacuation scenario.

The proposed MVA method may also be used in validating simulation software
against real world experiments (similarly to what has been done by Lovreglio
et al. [14]. The factors implemented in the method could be measured during an
evacuation trial rather than coming from an evacuation simulator. The benefits of
the application of the MVA method are linked to the opportunity to assess how
many repeated experiments are needed in a given condition to identify conver-
gence of observations. From a modelling perspective, this would lead to a more
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rigid validation procedure as more factors would be included and the behavioural
uncertainty would be evaluated in the experimental data.

A limitation of the MVA method that was discovered through the case studies
is that it is not efficient in analysing convergence when there is limited or no
change in the data. This typically occurs at the start or end of the calculation for
the following factors: flowrate, crowd density, exit usage and spatial location. This
issue relates to the calculation of ERD. Even where there is a very limited change
in the data, there may still be a constant (but small) difference between two aggre-
gated data sets. This difference is then picked up by the ERD. A possible solution
could be to crop the data set so that only the parts that is subject to regular
change in the factor values would be included. This was however not tested in this
work.

An alternative application of the proposed MVA method could be based on a
bottom-up perspective, meaning that the user determines (visually and/or by
descriptive statistics) when the results have converged enough for the given appli-
cation of interest. This means that the user would present the acceptance criteria
that would detect convergence at that point. This removes the daunting task of
choosing appropriate acceptance criteria. If this approach were to be used by
many users and for many different cases, a database of acceptance criteria could
be developed, informing the community on what criteria are deemed appropriate
for given scenarios.

The study of convergence is motivated by the concept of behavioural uncer-
tainty. Therefore, it is important to note that the MVA method, along with previ-
ous methods, analyse the uncertainty implemented in the model, i.e. it is not a
method to analyse behavioural uncertainty per se. Despite advances in under-
standing about human behaviour in fire, there is clearly a large amount of uncer-
tainty regarding the subject matter and why variation in behaviour occurs [7]. As
understanding regarding how people behave in fire progresses, evacuation models
will extend in complexity and accuracy.

The MVA method uses a simple calculation of convergence as presented in the
method developed by Ronchi et al. [21]. The work by Grandison [4] provides a
novel extension to the method by Ronchi et al. [21] by using the concept of CI.
Future work could attempt applying Grandison’s [4] approach to multiple factors,
in a similar fashion to what has been performed in this paper with the MVA
method. The main limitation of the MVA method is the selection of suitable ac-
ceptance criteria. To date, there is little/no guidance on how these acceptance cri-
teria should be set. It is beyond the scope of the paper and the topic for future
work to investigate the methods for determining associated acceptance criteria.
However, preferably, a statistical method would be applied in determining these
criteria, possibly with the use of empirical data. This has been addressed by Gran-
dison [4] but further work is needed in order to merge the methods. The focus of
this paper is to highlight the importance of considering a range of factors for
assessing variance in results between repeat simulation runs and thereby facilitate
determining an appropriate number of repeat simulation runs.

Lastly, the associated evacuation modelling results from RSR will be used to
inform a given decision within the building design process. It is therefore of
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importance to appreciate that whilst variations may occur in the results of an
evacuation model, consideration must also be given to the consequence of those
variations for informing a decision within the wider building design process.
Indeed, it should be highlighted that there may be circumstances where results
vary in evacuation modelling output between RSR; however, this may not impact
the wider decision-making process for a given building design process.

8. Conclusion

The proposed MVA method is designed to allow an analysis of evacuation model
output convergence for a wide range of factors (not only for evacuation time rela-
ted factors, as currently done by existing methodologies). This enables an analysis
which is more comprehensive and at a greater level of detail than existing meth-
ods. This ensures that the underlying behaviours that govern TET also have con-
verged, i.e. the problem that different behaviours may produce the same TET has
been addressed.

By conducting this analysis, the user increases the likelihood that the possible
types human behaviour represented in the model (influenced by pseudorandom
sampling) have been simulated and that the range of results therefore represents
the range of results which may take place in real life. When comparing evacuation
model results to the ASET, this implies that the building under consideration is
assessed taking the variability in human behaviour into account.

It is important to note that this type of analysis is dependent on the inputs
defined by the user (e.g., distributions). The proposed MVA method does not
analyse behavioural uncertainty per se but only the effect of the distributions and
algorithms implemented in the model which is supposed to represent behavioural
uncertainty.

A tool which implements the MVA method is freely released to fire safety engi-
neers. This is deemed to increase the number of evacuation model users perform-
ing this type of analysis which may require a higher work load if conducted
manually.
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