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Abstract. The paper is focused on the topic of smoke control in a confined, under-
ground cellar area of a historical building, that is undergoing conversion to a restau-

rant. Similar venues were host to some of the most devastating fires in history. We
have investigated the performance of a novel solution, ‘‘smart smoke control (SSC)’’,
and compared its performance with ‘‘traditional’’ smoke venting solution. The inves-

tigation was based on CFD simulations performed in a commercial code ANSYS
Fluent, modified with user-defined functions to include for the steering algorithm of
the SSC. The simulation results for a traditional system were unsatisfactory, while the

SSC removing substantially more smoke (approx. 50% more) has provided tenable
conditions over the whole course of the analysis. The results indicate that smoke con-
trol solutions based on the adaptive performance of the smoke exhaust fan, based on
the conditions within the protected premise, can be favourable for compartments

with the limited size of the smoke reservoir or limited space available for ducts.
These findings are also true for existing buildings, where it may be advantageous to
replace the existing smoke control solution with SSC. Future investigations should

include full-scale experiments, and improvements in the simple algorithms used so
far.
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1. Introduction

1.1. Challenges in Fire Safety of Cellars Converted to Utilities

Refurbishment and conversion of historic buildings is a popular trend in the
architecture. Old town buildings are favourably located in city centres, which pro-
motes the change of building occupation from residential and storage to hotels,
tourism and services. The cost of land and lack of available plots for new devel-
opment promote the use of every part of the historic buildings—including ones
that were located underground and primarily used for storage (in Poland primar-
ily for coal and wood storage). The new occupation of the underground venues
after conversion can include restaurants, pubs and music clubs. This is a radical
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change in the use of a premise—from a remote area without constant human pres-
ence into a crowded area with hundreds of occupants.

Enclosed nightclub type venues were house to some of the biggest fire disasters,
including The Cocoanut Grove Nightclub fire in Boston (1942, 492 deaths) [1],
The Station Nightclub fire in Warwick (2003, 100 deaths) [2] or KISS Nightclub
fire in Santa Maria (2013, 242 deaths) [3]. Limited ventilation, lack of windows,
complex compartmentation and possibly non-conforming users are key factors
influencing the high risk of fire in such enclosures.

1.2. Life Safety of Underground Club Venues

The provision of life safety for occupants in case of a fire of an underground club
venue is based on multiple technical and organisational solutions. These technical
requirements will differ depending on local building laws [4], and may include:
flammability requirements for wall/floor linings and the furnishings; provision of
multiple escape routes of limited length, with a certain width and height; protec-
tion of the evacuation stairwells against smoke (either smoke removal or pressur-
ization); automatic smoke detection and sound/voice alarm systems etc. In many
countries underground clubs must be protected with water-based fixed firefighting
systems (although, in case of the object presented in this study this was not obli-
gatory). Furthermore, in many building law systems, as in Poland [4], smoke con-
trol systems are required in such areas as one of its primary fire-safety features.
The design of the systems is performance-based, which means that tenability crite-
ria must not be exceeded on the evacuation routes during the evacuation time.
This approach is more commonly known as the Available and Required Safe
Evacuation Time (ASET/RSET) analysis [5, 6]. Finally, the technical requirements
are accompanied by organisational requirements, related to the fire-fighting equip-
ment, personnel training and safety procedures.

The list presented above is not exhaustive, and all of the mentioned elements
are critical for the provision of fire safety in the venue. In this paper, the focus is
put on the smoke control solutions and their ability to provide tenable conditions
on the evacuation routes, within the evacuation time (RSET).

1.3. Smoke Control Systems

Smoke control systems are a wide group of technical solutions that, in principle,
aim to reduce the threats to occupants coming from smoke and combustion prod-
ucts. Klote [7] has defined five groups of physical mechanisms, on which the tech-
nical solutions for smoke control are based: (1) compartmentation, (2) dilution,
(3) pressurization, (4) airflow and (5) buoyancy. In this paper, we are discussing
mechanical Smoke and Heat Exhaust Ventilation Systems (SHEVS, [8]), which are
also referred to as venting systems. In this case study, the venting system acts as a
combination of (5) buoyancy and (4) airflow. The goal of the operation is to
maintain the stratified buoyant smoke layer underneath the ceiling of a protected
premise, that allows undisturbed evacuation conditions at the evacuation route
beneath.
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In this paper a novel hypothetical smoke control solution is used—the so-called
‘‘smart smoke control (SSC)’’, proposed for the first time in [9] and described in
[10]. The smart smoke control concept is based on the idea that the system may
adapt its momentary volumetric capacity dependant on the density of the removed
air (a mixture of air and smoke) so that the mass capacity of the exhaust is con-
stant in time. Contrary to SSC, standard smoke control solutions are designed for
a specified constant volumetric capacity of exhaust, designed for operating pres-
sure in ambient conditions. This means that the smoke exhaust points have a fixed
value of the volumetric capacity, which is constant independently of the smoke
temperature. This standard solution will be further referred to as ‘‘the traditional
solution’’. For the purpose of this work, both of the solutions are modelled with a
simplified ‘constant velocity’ boundary condition, that omits the effects of the tem-
perature on the fan-curve. In real world engineering additional complexity would
be introduced with the choice of the correct operation point of the fans, and the
change to that point with the increased temperature. However, based on previous
high-temperature testing [9] and conditions mentioned in EN 12101-3 [11], we
found this simplification to be justified for the purpose of illustrating the funda-
mental differences in tenability between SSC and traditional solution.

2. Challenges in Smoke Control of Historical
Underground Venues

The specific difficulties related to the design of an efficient smoke control in con-
verted historic cellars are (a) lack of space for the smoke reservoir; (b) lack of
space for horizontal and vertical exhaust ventilation ducts; (c) difficulties in provi-
sion of the make-up air.

2.1. A Limited Volume of the Smoke Reservoir

Fire smoke forms a buoyant layer underneath the ceilings of compartments. This
is a consequence of the differences in density between hot smoke and ambient.
The volume underneath the ceiling where the smoke is expected to gather is refer-
red to as the smoke reservoir. If the smoke produced by the fire overfills the
smoke reservoir, the smoke layer interface height will decrease, and eventually, fall
below the height that allows for occupant evacuation. In low and narrow com-
partments, the smoke reservoir volume is limited, and thus its capability to accu-
mulate smoke is hindered.

In an optimal scenario, the smoke exhaust rate from the smoke reservoir mat-
ches the smoke production, and the smoke layer interface height can be continu-
ously kept above evacuation routes, so it does not affect the evacuees (besides the
radiant heat from the layer) [8], Fig. 1. However, the smoke exhaust requires the
smoke layer of a certain depth to maintain efficient removal of the smoke. If
smoke exhaust velocity is too high or the smoke layer not deep enough, plughol-
ing phenomena may occur (Fig. 2a) [11]. In plugholing cold air is removed
through the layer of hot smoke by the exhaust point, making the smoke venting
inefficient. Thus, in compartments with low-ceiling, and consequently shallow
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smoke-reservoir height, low smoke exhaust velocity must be maintained to for effi-
cient removal of the smoke.

2.2. Location of Horizontal Ducts

Efficient smoke control requires uniform smoke exhaust from the whole smoke
reservoir. If the smoke reservoir has a complex architecture, the exhaust points
must be spread as evenly as possible, to provide similar exhaust performance in
any location of the protected compartment. This is obtained by distributing hori-

Figure 1. The hot smoke layer above an evacuation route in an open
plan office (in a hot smoke test).

Figure 2. (a) The phenomenon of plugholing—cold air is removed
through an exhaust point from below the layer of hot smoke; (b)
disturbed smoke layer—no sharp layer interface visible anymore,
smoke present in the whole height of the compartment.
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zontal ducts through the compartment, on which ventilation exhaust points are
located. The design airflow velocity (the Authors have experience with velocities
ranging between 5 m/s and 12 m/s) is chosen depending on the pressure point of
the fan, the complexity of the installation and the anticipated acoustic characteris-
tic of the system. As one horizontal duct may serve multiple exhaust points, it is
common to have large crossections that effectively cover large part of the ceiling
area, Fig. 3. Thus, the available space for horizontal ducts can become a limiting
factor for the smoke control design.

2.3. Location of Vertical Ducts

The smoke successfully removed from the compartment must be transported out-
side of the building, which usually is performed through vertical ducts and shafts.
Provision of new shafts usually requires intrusion to the antique structure of a his-
toric building. This may, however, be prohibited by the Historical Preservation
Authorities. In consequence, the building designer may be limited to pre-existing
shafts, which were not designed with smoke-control function in mind. Further-
more, construction of new vertical ducts takes some of the gross leasable area
(GLA) on all floors they cross, thus reducting the economic return from the
investment. The available exhaust ducts (or space of new ducts) may be another
limiting factor for the smoke control design.

2.4. Provision of Make-Up Air

Underground compartments may be considered as a sealed thermodynamic sys-
tems. If the air and hot smoke are mechanically removed from the compartment,
the same mass of air must be supplied to it. Otherwise, a significant change in
pressure will occur. In the latter case, the pressure-point of the exhaust fan will
quickly change, and therefore will stop removing the smoke from the compart-

Figure 3. Ductwork underneath a ceiling of a corridor (left) and
office space (right). A large amount of ducts reduces the available
space for the smoke reservoir. Due to physical limitations, the space
available for ducts may be a limiting factor for the design of a smoke
control system (Courtesy of R. Brzozowski).
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ment. Furthermore, a large difference in internal and external pressure may pro-
hibit opening the evacuation doors, effectively trapping the occupants in the
engulfed cellar. As illustrated by this example, the provision of supply air is as
important, as removal of the smoke.

Two distinct challenges emerge with the provision of air in underground,
enclosed compartments. Firstly, there are no natural openings that could fulfil this
role, or they are located near the ceiling (within the smoke reservoir). If the air
supply points are placed in a wrong location, the smoke in the reservoir may be
disturbed by forced air flows that cause turbulent mixing of the hot smoke and
ambient air. The consequence of mixing is the loss of buoyancy by the smoke,
which leads to accelerated decline of the smoke layer and may lead to obscuring
parts of the evacuation routes by dense, cold smoke (Fig. 2b). These problems are
amplified in narrow compartments, where air streams introduced by the points of
the air supply may rebound upwards on walls directly into the smoke reservoir
[12].

Secondly, the air must be supplied with low velocity (preferably< 1 m/s) not to
disturb the layer buoyancy [13, 14]. This low velocity requires use of large inlets,
which often becomes another limiting factor for the design of the smoke control
system.

3. Use of Smart Smoke Control in Historic Buildings

3.1. Smoke Exhaust Ventilation in Elevated Temperatures

An idea of smart smoke control system emerged from the realization that the per-
formance of the smoke exhaust system in ambient conditions (ones for which the
system is designed and commissioned) is considerably different than in elevated
temperature. Figure 4a illustrates a compartment, with a combination of natural
air supply inlets and mechanical air supply and traditional exhaust with constant
volumetric capacity. If one considers the fire development in this compartment in
the function of time, it is expected that the air temperature will change with the
change of the Heat Release Rate (Fig. 4b), Eq. 1.

DT ¼
_Q

_mpcp
ð1Þ

where DT is the temperature rise (K), _Q is the heat release rate (kW), _mp is the
mass flow of smoke (kg/s) and cp is the specific heat of air at s constant pressure

(1.01 kJ/kgK).
In the traditional system, the volumetric capacity of the exhaust will reach a

specific value, and will remain constant for the time of operation, Fig. 4c. As the
air changes its density with the rise of temperature (Eq. 2), the mass flow of this
exhaust point will decrease (Eq. 3), Fig. 4d.
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q ¼ qamb
Tamb

DT þ Tamb

� �
ð2Þ

_mmech ¼ _Vmech � q ð3Þ

where q is the density of air (kg/m3), qamb is the ambient air density (kg/m3), Tamb
is ambient temperature (K), _mmech is the mass flow at mechanical exhaust (kg/s)

and _Vmech is the volumetric flow of the mechanical exhaust (m3/s).
The amount of air (mass and volume) delivered through mechanical air supply

points can be considered as constant in time, while the amount of air supplied
through natural air supply will be the difference between the mass flow rate at the
exhaust and at the mechanical inlets, Eq. 4.

_mmech ¼ _min;mech þ _min;n ð4Þ

The observed decrease of mass flow rate at exhaust points with the increase of the
smoke temperature (Fig. 4d) was interpreted as a potential ‘‘reserve’’ of the sys-
tem. Lower mass flow rate at elevated temperatures results in lower operating
pressure, lower operating power and lower strain on the system elements. It means
that in elevated temperature, the system operates below the operating parameters,
for which it was designed.

Figure 4. (a) Schematic representation of the flow of air within an
enclosed compartment with mechanical venting and a fire; (b) Heat
Release Rate (Q) and temperature evolution in the function of time;
(c) volumetric flow rate at exhaust and inlet points; (d) mass flow rate
at exhaust and inlet points.
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3.2. The Idea of Smart Smoke Control

In the Smart Smoke Control solution (Fig. 5a), the volumetric operating capacity
of a system is determined based on the measured temperature of the exhausted
smoke, so that the mass flow rate of exhaust points is maintained as constant in
the operation of the system, Fig. 5b, c.

To maintain the mass flow rate as constant, the volumetric capacity of the sys-
tem must increase (Fig. 5c), following the increase of the temperature of the
smoke (Fig. 4b). This results in maintaining close to a constant value of operating
pressure (Fig. 5d) and shaft power of the fan (Fig. 5e), indicating that the system
operates with a similar strain in elevated temperatures as in ambient.

To implement this solution in practice (in our case in the CFD analyses), a fol-
lowing simple steering algorithm was developed, Fig. 6. In every time step of the
analysis, and in the real world in continuous time, the system decides on the opti-
mal volumetric exhaust capacity of the system. The regulation curve is defined
before the analysis, based on the expected change of the air density with the tem-
perature. To prevent oscillatory behaviour, the temperature used in the calculation
is a moving average; in our case averaged over the last 5 s. A more detailed expla-
nation of the idea of the operation of the SSC and explanation of the User
Defined Function that represents it in ANSYS Fluent simulations was given in [9].

3.3. Expected Benefits of the Smart Smoke Control

The SSC should allow for an increase of the volumetric flow of smoke removed from
the cellar as the fire grows. This is a direct consequence of increased volumetric flow
rate of the fan unit, compared to a traditional solution. However, contrary to tradi-
tional solution, in SSC this increased volumetric flow may be obtained with smaller
ducts, as due to change in air density with the change of temperature, the air may be
transported with higher velocity through ducts. If the available space for ducts is the
limiting factor for the system (as in the case study), the smart smoke control system
can remove more smoke compared to a traditional solution with the same ductwork.

Figure 5. (a) Schematic representation of the smart smoke control
system idea; (b) mass flow rate at the exhaust point; (c) volumetric
flow rate at the exhaust point; (d) operating pressure; (e) shaft
power.
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In a car park ventilation case study [9] the increase of the performance was between
25% and 41% of the traditional system capacity.

The expected consequences of increased volumetric flow rate (that allows for
maintaining constant mass flow rate at different smoke temperatures) include pro-
longed RSET time, lower smoke temperaure and improved environmental condi-
tions over evacuation routes. This working hypothesis was verified with use of
Computational Fluid Dynamics (CFD) modelling in a case study based on real
project of conversion of a historical cellar into a music-club type venue.

3.4. Smart Smoke Control and Sprinkler Systems

The performance of SSC is reliant on the decrease of the smoke density, which is
a consequence of heat release in the fire. If the building is protected with water-
based fixed firefighting systems (such as sprinklers), the average smoke tempera-
ture may be expected to be lower, than the sprinkler activation temperature [8]. In
this case, the main advantage of the SSC over traditional systems (ability to
remove substantially more air) is hindered, and as the benefits of using this solu-
tion are questionable. However, in Authors opinion, the use of sprinklers in
underground venues combined with the traditional solutions for smoke con-
trol may provide better life safety, than the use of SSC in an unsprinklered setup.

4. Case Study

4.1. The Building

An example of an unsprinklerred historical cellar to be converted into a music-
club type venue is shown on Fig. 7. This underground space consists of connected
cellars of two buildings, with an overall size of 16 m 9 35 m. The building con-
sists of 10 compartments for guests, and 5 other additional compartments, con-
nected together by multiple corridors. The total area of the cellar was approx.

Figure 6. Flowchart of the smart smoke control steering algorithm
(simplified).
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440 m2. The height of compartments varies from 3.60 m to 4.60 m in the western
wing, and from 2.50 m to 3.40 m in the eastern wing.

The evacuation from the underground level is possible through two evacuation
staircases (one in each wing). Total number of planned occupants (personell and
guests) was 190 people. The evacuation time was estimated by means of computer
modelling with buildingExodus model and PD 7974-6 guidelines [15]. Dependant
on the scenario and chosen pre-evacuation delay the calculated evacuation time
was 4 to 6 min. Applying a margin of safety of 1 min, the resulting RSET was 5
to 7 min. The details of the evacuation analyses are not in the scope of this paper.

4.2. Assumptions for the Smoke Ventilation Systems

The smoke exhaust in the building was possible only through a vertical shaft in
the central part (the area between the buildings, exhaust duct #1) and a shaft near
the western end of the cellar (future bar area, exhaust duct #2). The air was
removed from the evacuation corridors, and to some extent directly from com-
partments. The air supply was possible through small windows on the southern
façade, which are connected with ducts to the supply points near the compartment
floors. The cellar has different floor and ceiling heights, which were represented in
detail in the numerical model, as shown in Fig. 8.

Figure 7. General scheme (simplified) of a cellar of historic building
undergoing conversion to a restaurant and a music club. Green arrows
indicate main evacuation paths (dashed lines indicate alternative
paths).
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Both traditional and smart smoke control systems were designed based on the
architectural constrains of the building, Table 1. Both of the systems had ambient
temperature exhaust capacity of 10.4 m3/s (2 9 5.2 m3/s). However, the SSC was
programmed to be able to reach up to 23.90 m3/s (2 9 11.85 m3/s) at the maxi-
mum temperature of the smoke of 400�C. The steering function of the SSC was
defined as linear in the function of the average smoke temperature, separately for
each smoke exhaust duct, as in [9]. The values presented are the capacities of an
idealized system—in real world engineering during the MEP design a designer has
to find a fan, that for calculated pressure losses in the system will provide this
required capacity. The operating point of the fan is chosen at the ambient temper-
ature, and will change with the change of temperature and operating pressure.
Here we assume, that the shaft power of the fan will change along with the tem-
perature and pressure. In consequence, the change of mechanical performance
(volume flow) of the fan in the new operation point is negligible, compared to the
effects of the introduction of the SSC. This simplification is based on practical

Figure 8. The numerical model of the cellar area, with the location of
exhaust ducts, air supply and the fire used in the numerical analyses.

Table 1
Parameters of the smoke control systems compared in the case study

Parameter Traditional system Smart smoke control system

Volumetric capacity (at 20�C) 10.4 m3/s 10.4 m3/s

Mass flow rate (at 20�C) 12.48 kg/s 12.48 kg/s

Volumetric capacity (at 400�C) 10.4 m3/s 23.90 m3/s

Mass flow rate (at 400�C) 5.42 kg/s 12.48 kg/s
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experience with commercial testing of high-temperature fans [9] and is also a part
of requirements of EN 12101-3 standard [11].

To illustrate this concept, a commercial fan selector tool was used to draw
example curves of the same fan (900 mm diameter, 1440 rpm, 9 blades, 28� blade
angle) at 20�C (air density 1.20 kg/m3) and 300�C (air density 0.62 kg/m3), Fig. 9.
With the increase of the temperature the pressure changes from 600 Pa to 306 Pa,
shaft power from 9.69 kW to 4.97 kW, but the volumetric flow remains almost
unchanged. The curves presented on Fig. 9 were not used in the modelling, and
the velocity inlet boundary condition for the exhaust fan is described in Chap-
ter 4.4.

4.3. Numerical Model

Computational Fluid Dynamics (CFD) analysis was performed with a well-known
commercial code ANSYS� Fluent�. Both traditional and Smoke Smart Control sys-
tems were investigated. CFD method is widely used in Fire Safety Engineering [16–
18] in the determination of smoke control performance in fire conditions. Among
available CFD codes, a low-Mach implicit solver with LES turbulence model dedi-
cated to fire-related phenomena exists—the Fire Dynamics Simulator (FDS) [19,
20]. This is a CFD model used in many fire and smoke-related analysis, with the best
available validation documents [21, 22]. However, similar to the work presented in
[9] an active control over the exhaust fan boundary condition was required. Such
control is possible in ANSYS� Fluent� [23]. ANSYS allows dynamic alteration of
boundary conditions through User Defined Functions (UDF) written in C language.

Figure 9. Example curves for the same fan, but at different
temperatures (20�C and 300�C). Operating pressure at 20�C was
600 Pa. Drawing based on results from online commercial Fan
Selector tool (https://fanselector.flaktgroup.com).
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The use of this approach to model smart smoke control systems was described in [9].
Furthermore, ANSYS allows for almost unconstrained creation of complex geome-
try with unstructured meshes (tetrahedral, polyhedral) and efficient parallelization of
the solution. Validation cases exist for ANSYS� Fluent� software in fire conditions
and operation of fire ventilation systems [24–27] and it is mentioned as a viable too-
l in some of smoke control standards [28].

The simulations were performed with a double-precision 3D solver in a segre-
gate numerical scheme (second-order). The simulation was transient, and the tur-
bulence was resolved with Realizable k - e RANS model (in this case unsteady-
RANS or URANS), modified for enhanced wall functions (shear stress in the
near-wall region) and modified to account for buoyant forces. The radiative heat
transfer was modelled with Discrete Ordinates model (162 discrete angles), and the
heat transfer to the walls was modelled as a combination of convection and radia-
tion (referred to as the third type boundary condition). The heat transfer within
walls was modelled with the implementation of the Fourier law.

4.4. Boundary Conditions

The building walls were simplified and modelled as concrete, with a density of
2200 kg/m3, the specific heat of 820 J/kg * K and thermal conductivity of 1.20 J/
m2 * K. The roughness constant of walls (also in the shaft) was 0.05 and the
mean roughness height of 0.01 m.

The boundary condition on the exhaust fans was a velocity inlet, which means
their velocity was independent of operating pressure, and dependant only on the
UDF model (for the SSC). The smart smoke control UDF was written in C lan-
guage [9] and was the representation of the flowchart shown on Fig. 7. Use of
velocity inlet condition can be considered as a simplification of the fan modelling,
as with this approach one cannot represent the changes to the fan curve with the
change of temperature. Other approaches to fan modelling in ANSYS were sum-
marized in [27]. Based on the requirements of EN 12101-3 [29] we can assume that
the change in volumetric capacity of fan (due to change of curve) is not greater
than - 10%/+ 25%. Based on the results of preliminary fan selection (Fig. 9,
Chapter 4.2), this change may be even smaller, and considered insignificant com-
pared to the change we introduce with SSC approach. Furthermore, this simplifi-
cation is justified as the scope of the paper is to identify if a hypothetical SSC
system (with a dynamic increase of volumetric flow rate) can improve the tenabil-
ity in an underground venue. The choice of a fan that meets these requirements is
an engineering task, outside of the scope of this paper.

Air supply points were defined as a pressure-inlet boundary condition, which
means that the static pressure determines the volumetric flow through the inlet in
the proximity of the opening. A UDF was used to account for hydrostatic pres-
sure at the openings.

The domain was discretised with an unstructured tetrahedral mesh. The size of
the element was 10 cm in the proximity of the exhaust and inlet points, 15 cm at
the seat of the fire and up to 30 cm in the remote areas of the domain. A growth
function coefficient for the mesh was 1.15. This type of mesh was verified in an in-
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depth mesh sensitivity study for a fire of a similar size in a similar compartment in
[30] and described in some good practice guidelines [31].

The fire was defined as a volumetric source of heat and mass. The evolution of
the Heat Release Rate was defined with a usual ‘‘at2’’ relation, with the value of
a = 46.70 W/s2, commonly known as the fast fire [11]. The Heat Release Rate
was limited to 2,50 MW, and potential fire spread beyond the compartment of
origin was not investigated. Conservative soot yield value of Ysoot = 0.1 g/g was
assumed [32].

For qualitative assessment, the performance of systems was compared with ten-
ability criteria, among them: visibility of light-reflecting evacuation signs [33], the
temperature of the smoke and the smoke layer height [34]. The Required Safe
Evacuation Time (RSET) for this venue was calculated using computer evacuation
model (buildingExodus) as explained in Sect. 4.1.

5. Results and Discussion

5.1. Simulation Results for the Traditional Smoke Control

In the case of the traditional solution, the performance of the smoke control sys-
tem was generally not satisfactory, and would not be approved for project execu-
tion. As the limiting factors for the design were the available shaft space and a
limited amount of air inlet points, further increase in the smoke exhaust capacity
while complying with the requirements for the historical buildings was not possi-
ble. As shown in Fig. 10, the smoke has quickly filled a significant part of the cel-
lar. Within the first 3 min of the simulation, the smoke fills compartments

Figure 10. Visibility (0–20 m) for light reflecting signs (K = 3)
measured at the height 1,80 m above the floor of each of the
compartments of the cellar after 180 s, 240 s, 300 s and 600 s. The
traditional smoke control system.
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neighbouring to the one with the fire, as well the vestibule located between the
buildings. This means that the second evacuation route (through the other build-
ing) was cut off at this point. Within the next minute, the whole eastern wing of
the building was filled with smoke, and in another minute the smoke fills part of
the western wing. The smoke was penetrating the staircases. After 10 min steady
state was achieved, with more than 75% of the cellar area filled with smoke.
There was no smoke-free path to the source of the fire, so it can be assumed that
the firefighting operations in these conditions are not possible.

Figure 11 presents the temperature plots in the same scenario. Due to quick
development of the fire, the temperature of the smoke layer in the compartment
of origin exceeds 290�C (radiant flux > 5 kW/m2 at e = 0.9) in the compartment
of origin within first 3 min, and in the neighbouring compartment after 4 min.
Temperature exceeding 200�C (radiant flux > 2.5 kW/m2 at e = 0.9) was
observed in the third compartment after 4th minute, and in the fourth compart-
ment and the evacuation routes after 5th minute. The thermal conditions indicate
that the fire can spread to the second compartment and that the evacuation was
not possible in these conditions after 5 min. The average temperature of the
smoke removed through duct #2 was approximately 461�C.

Dependant on the acceptance criteria chosen, the Available Safe Evacuation
Time (ASET) for this building was between 3 min and 5 min, which is generally
an unacceptable value compared to the RSET value of 5 min to 7 min.

Figure 11. Temperature (20–400�C) measured at the height of
1,80 m above the floor of each of the compartments of the cellar
after 180 s, 240 s, 300 s and 600 s. The traditional smoke control
system.
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5.2. Simulation Results for the Smart Smoke Control

Because of the signigicantly higher smoke exhaust rate (Table 1), the conditions
observed in the smart smoke control scenario are improved compared to the tra-
ditional system. For SSC case, the visibility in smoke tenability criterion (< 10 m)
was exceeded only in the compartment of origin and the room next to it (in first
3 min) and partially in the vestibule between buildings (after 4 min), Fig. 12. The
smoke spread was limited to this area, and steady-state was obtained in the 5th

minute. Even though the smoke did penetrate the ceiling area (smoke reservoir) of
the eastern wing, the layer interface height was maintained sufficiently above the
evacuation route. The passage between buildings was not accessible. However, at
least one evacuation path was maintained in each of the wings. The smoke did
not ventilate through staircases. In terms of the smoke layer temperature, the
290�C was exceeded only in the compartment of origin, and the temperature at
the evacuation routes was maintained below 60�C, Fig. 13. It is worth noting that
only a small amount of smoke did move to the western wing of the cellar. Based
on the accessibility of at least one evacuation route from each of the wings, low
temperature of the smoke and the height at which the smoke layer was main-
tained, the Available Safe Evacuation Time in this scenario was above 10 min.

The average temperature of the removed smoke of the Smart Smoke Control
(measured in the duct #2) was 380�C, and the average density of the removed
smoke was 0.45 kg/m3.

Figure 12. Visibility (0–20 m) for light reflecting signs (K = 3)
measured at the height 1,80 m above the floor of each of the
compartments of the cellar after 180 s, 240 s, 300 s and 600 s. The
Smart Smoke Control system.
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6. Discussion

The implementation of the SSC has resulted in the increase of the ASET from
3 min to 5 min, to above 10 min. The primary reason for this change is the
increased exhaust capacity of the smart smoke control system in the eastern wing,
which allowed to maintain the smoke in the smoke reservoir in a layer with inter-
face high above the floor of the compartment, Fig. 14. For the traditional solu-
tion, the smoke generation was higher than the capacity of the system, and the
smoke layer declined to a height between 1.20 m and 1.50 m (after 5 min, in the
most of the eastern wing). In the case of the SSC, the layer height is maintained
at 2.00–2.30 m, even 10 min into the analysis.

6.1. Traditional System Smart Smoke Control System

Measurements of the exhaust capacity are shown in Fig. 15, where the sharp
increase of the volumetric flow in duct #2 is clearly visible. In the case of the tra-
ditional solution, the volumetric exhaust rate at this duct is maintained as con-
stant, and the mass flow rate decreases as the fire evolve. In the case of SSC, the
mass flow rate is maintained as constant, and the volumetric flow rate is increased
as the fire evolves. The increase of the volumetric capacity at this duct is 90%
compared to the traditional solution. As in the SSC scenario, the smoke does not
penetrate the western wing, the capacity of duct #1 is unchanged with the evolu-
tion of the fire. This means that the overall increase in the volumetric capacity of
the whole system is approx. 50% higher than for the traditional solution. This
increase is significantly higher than previously reported in a car park case study
(25–41%) [9].

Figure 13. Temperature (20–400�C) measured at the height of
1,80 m above the floor of each of the compartments of the cellar
after 180 s, 240 s, 300 s and 600 s. The Smart Smoke Control
system.
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Figure 15. Volumetric and mass flow rate at chosen exhaust points
in traditional and SSC scenarios.

Figure 14. Visibility (0–20 m) for light reflecting signs (K = 3)
measured in chosen vertical plots through the cellar after 180 s,
300 s and 600 s for both verified smoke control solutions.
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Besides extending the ASET value, the implementation of SSC has caused a
sharp decrease in the average temperature of the smoke removed at the peak
value of HRR of the design fire, Fig. 16. What is noticeable is that the average
temperature in the SSC in the duct #2 was below 400�C, which means that in this
case smoke exhaust fans could be rated in class F400120, while in traditional solu-
tion fans with a higher rating are necessary (F600 60). To the best of the authors’
knowledge, the differences in technology and costs between these two classes are
profound and could exceed the associated costs with the installation of additional
automation and a larger fan of the SSC system.

7. Conclusions

Smoke control in small, confined spaces located in underground levels of historic
buildings can be considered as a significant challenge. The prime difficulties rela-
ted to smoke control in such historic venues are limited duct and smoke reservoir
space, an insufficient amount of air supply and unfavourable compartmentation of
the area. This paper shown a possible improvement of the performance of smoke
control in such areas, through a hypothetical temperature-adaptive smoke exhaust
with variable exhaust rate, referred to as the smart smoke control (SSC). This
solution could be useful for refurbishment of underground areas of historical
building, that are converted to restaurant or music club venues.

The potential benefits of a hypothetical SSC were shown based on a case study
of a historic cellar converted to a music club. A ‘‘traditional’’ solution for
mechanical smoke and heat exhaust ventilation was developed based on the archi-
tectural constrains related to the duct-space and location of make-up air. The per-
formance of this solution was verified through CFD simulations, deemed as
unsatisfactory. The estimated ASET time of 3–5 min was lower, than the esti-
mated RSET of 5–7 min.

Figure 16. Average smoke temperature measured at duct #2 in
traditional and SSC scenarios.
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The use of SSC in this venue allowed for the removal of substantially larger
amounts of hot air and smoke. This, in consequence, has significantly improved
the smoke exhaust performance and tenability in the analysed space, without any
change done to the ducting or building architecture. In the performed CFD simu-
lation, the SSC system removed 90% more smoke in one of the wings of the
building, and approx. 50% more smoke overall (in the whole venue). The ASET
time estimated for the SSC solution was estimated as ASET > 10 min, and the
smoke stratification was maintained in the venue. A surprising finding was that
the average temperature of the smoke removed by the SSC was approx. 380�C,
compared to 472�C for the traditional solution. The temperature value of 400�C is
a threshold value, at which a different type of fans must be used (F600 60 instead
of F400120).

Based on the results of this numerical study it can be concluded, that a tradi-
tional smoke control system with exhaust rate similar to the one obtained with the
SSC system, would provide similar effects related to the safety of occupants. How-
ever, due to technical, legal and economical constrains, provision of such a solu-
tion was not possible for the building in question.

In this paper we have investigated hypothetical performance of a SSC system.
Due to simplifications introduced to the simulations (use of constant volumetric
flow rate boundary condition instead of a fan-curve model) we did not address the
change of the mechanical performance of the fan in increased temperatures (both
traditional and SSC). For the reasons given in pt. 4.4, we consider these effects to
be negligible compared to the change introduced by implementation of SSC solu-
tion. However, in real world engineering these considerations will be important to
the MEP designer of the system, and also may reflect on the final cost of SSC
solution. For the historic building shown in the study the implementation of a tra-
ditional system was not possible, thus we conclude that the SSC is a viable alter-
native, regardless of the cost effectiveness of the solution.

The presented Smart Smoke Control system is a new concept in the building
smoke control, being a part of the ‘‘smart’’ revolution of safety systems. The posi-
tive results of the computational research justify further experimental research on
these systems. The effects of change in fan curves with temperature must be inclu-
ded in the analysis to allow for simple choice of a fan fit for SSC solution. Fur-
thermore, simple steering algorithms presented in this study may be further
improved, to improve the robustness of the solution, and minimize the potential
problems, that were identified in previous studies. Finally, the cost effectiveness of
the SSC and its compatibility with different types of fixed suppression systems
must be investigated. All of the above form the directions for future research on
the SSC systems.
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