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Abstract. There are currently important questions in the fire service as to the effi-

cacy of various fire attack methods, both in terms of rapidly suppressing the fire and
for potentially impacting the burn risk for occupants in the structure. A series of 24
full-scale residential fire experiments were performed to investigate the influence of
fire size and fire service water application (interior only vs exterior-to-interior fire

attack) on relative risk for skin burns in trapped occupants. A novel skin damage
assessment tool utilizing ex vivo porcine skin samples was developed allowing mea-
surement of temperatures at the surface of the porcine skin and at the subcutaneous

fat surrogate interface. This tool allowed, for the first time, observation that typical
fire attack methods resulted in short-lived transient increases in skin surface tempera-
tures for a simulated occupant just outside the fire room that were typically around

5�C but ranged from 0�C to 15�C for rapid fire service intervention. Minimal differ-
ences were observed between the effects of interior or exterior fire streams immedi-
ately outside of the fire room. However, these values were markedly lower than when
water application was delayed. This new tool provides novel information regarding

trapped occupant skin burn risk that compliments traditional fire measurement tools
and may provide a platform for future study on the impact of clothing as well as
model based interpretation of experimental data that more accurately captures rele-

vant physiology.
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1. Introduction

Occupants trapped within a residential structure during active fire are faced with
life-threatening conditions due to the thermal risk as well as exposure to the irri-
tant, toxic and asphyxiant smoke. While those close to the area of origin of the
fire are at the highest risk for exposure to a thermal injury, those distant from the
source may still be overcome by the fire gases. As a result, the fire service is called
on to intervene as rapidly as possible to reduce both the thermal and gas threat
through the application of water streams and ventilation of the structure. There
are important questions in the fire service as to the efficacy of various hose stream
application techniques, both in terms of rapidly suppressing the fire and for
potentially impacting the burn risk for the occupants of the structure. Firefighters
want to ensure that they are not unintentionally putting occupants at additional
risk by upsetting the thermal layers or by creating excessive amounts of steam
that could cause burns when in contact with bare skin.

In recent years, fire protection research has provided the fire service with several
studies that have allowed a more detailed understanding of the fire dynamics of
residential environments, including the effects of different ventilation tactics [1–5]
and the relative effectiveness of different stream types [6–8]. Furthermore, firefight-
ers may have the option to apply water to the fire from either the exterior or inte-
rior of the structure. Exterior initiated fire attack may provide the ability to apply
water into the structure more rapidly (when conducted prior to structure entry)
but may be limited in ability to reach the seat of the fire [9]. Interior water appli-
cation requires entering the structure and may take longer, but this approach is
more likely to allow direct access to the seat of the fire [10]. The ‘‘transitional fire
attack’’ involves an initial exterior application of water through a ventilation
opening near the seat of the fire in an attempt to improve conditions on the inte-
rior prior to entry, followed by an interior water application for final suppression
(exterior-to-interior) [11]. While this tactical approach may provide a promising
compromise for firefighters, there remains an important concern in the firefighting
community that exterior and transitional attack may increase the threat of burns
for trapped occupants as highlighted by recent trade journal articles [12, 13] as
well as recommendations in common fire service tactics handbook [14]. In prac-
tice, the hazard of fire service hose streams increasing risk for burns in trapped
occupants is likely highest for those who have been incapacitated by toxic gasses
while breathing air at higher elevations in the compartment (and have fallen to
the ground without fatal dose) or for occupants who had been protected by com-
partmentation that either failed during the fire or as the occupant attempted to
self-evacuate from that compartment and was no longer protected during firefight-
ing activities.

Prior to adopting a method that may differ from what they have used in the
past, the fire service requires valid evidence to better understand the influence of
water application to a ‘‘room and contents’’ fire on trapped occupant expo-
sure—particularly with respect to changing the risk for burns. Traditional mea-
surement techniques utilized to estimate thermal risk include thermocouples to
measure air temperature and heat flux gauges to characterize the thermal energy
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available to increase temperature of surfaces such as skin. These devices can be
utilized to estimate thermal exposures through techniques such as the ISO stan-
dard fractional effective dose (FED) tenability method. Large-scale studies have
examined room and contents fires through the lens of occupant tenability using
the FED methodology outlined in ISO 13571 [15]. The relative impact of toxic
gases and heat has been examined in constructed rigs for compartments [16], sin-
gle family residential structures [8, 17], one-bedroom apartments [18], and base-
ment fires [19]. These studies reinforce anecdotal evidence that the most significant
risk for occupants in the fire room or close to the fire is from thermal injuries,
while those distant from the fire typically experience an increased risk from toxic
gases. Intermediate distances are of interest, particularly where the thermal injury
and gas exposures may not reach untenable levels and the fire service intervention
may affect survivability for trapped occupants.

However, there exist some important limitations to the FED approach. Thermal
FED techniques based on air temperature (as measured by thermocouples) do not
account for local velocity that can impact heat transfer, nor do they account for
the effects of radiant heat. Radiation can have significant impacts on trapped
occupants and operating firefighters; for example polycarbonate materials used in
firefighting PPE have been shown to soften and damage even when the local air
temperature averages 40�C, which was attributed to the significant radiant heat
exposure [20]. Alternate FED methodologies exist that utilize heat flux measure-
ments, but common laboratory heat flux gauges are limited when significant mois-
ture is present in the environment. This limitation is of particular concern when
attempting to characterize impact of fire service hose streams. Furthermore, the
interaction between the metallic heat flux gauges and the complex environment
may be much different than that experienced by skin since radiant flux is highly
dependent on the emissive characteristics of the surrounding environment, and the
skin’s interaction with radiant heat varies with the spectral characteristics of the
incident radiant flux [21, 22]. The FED methodologies are also limited by their
use of correlation equations and thus inherently involves a large amount of uncer-
tainty. Finally, interpretation of FED tenability criteria in terms of skin damage
and relative risk can be challenging due, in part, to the complexity of the progres-
sion of burn damage in the skin.

Skin is comprised of two distinct layers above the subcutaneous fat layer. The
epidermis is the outer layer of skin with a thickness that typically ranges from
50 lm to 120 lm [23, 24], though can be much thicker on palms of the hand or
soles of the feet [25, 26]. This layer of skin is comprised of dead cells and acts as
the protective barrier to harmful environmental conditions such as moisture,
ultraviolet radiation, and extreme heat [23]. The dermis is the second layer of skin
(� 500 lm to � 5000 lm based on body site [23, 27]) which contains important
living tissues such as blood vessels and nerve endings. Classification of burn inju-
ries has historically taken many forms, but usually considers the involvement of
one or both skin layers and potentially deeper tissues such as subcutaneous fat,
muscle and/or bone [28–30]. Commonly, burns are considered ‘first-degree’ if only
the epidermis is affected (superficial epidermal injury). ‘Second-degree burns’
occur when the damage reaches the dermal layer and are sometimes separated
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into ‘superficial partial thickness’ that involve the papillary dermis and ‘deep par-
tial thickness’ second-degree burns that extend into the reticular dermis. ‘Third-de-
gree’ or ‘full-thickness’ burns involve the full depth of the dermis and may begin
to impact deeper tissues. Additional burn damage classifications may include
‘fourth-degree’ burns that involve subcutaneous fat and even ‘fifth-degree’ (mus-
cle) or ‘sixth-degree’ (bone) [29].

To support deeper understanding of the relative impact of firefighting tactics
and techniques on trapped occupant skin burn risk, it is desirable to develop a
technique that can provide a biologically relevant estimate of skin burn risk with-
out the limitations of the current instrumentation and numerical methodologies.
Ethical and logistical concerns limit the ability to use live human or animal mod-
els in such experiments. However, there is promise in utilizing an ex vivo porcine
skin model to provide a viable, flexible, and logically interpretable means on
which to estimate human burn risk. Domestic pigs have been used for decades as
surrogates for humans in experiments. The skin of a domestic pig is similar to
humans in many aspects such as thickness, structure, and composition [31]. Pig
skin and human skin both have similar proteins, a sparse hair coat, a thick epi-
dermis, a dermis with a papillary body, a deep layer of subcutaneous fat, and a
large amount of elastic tissue [32]. Normal pig skin varies by body site just as
human skin does. The pig epidermis is described as ranging in thickness from
70 lm to 140 lm, which compares well with the human epidermis range [33]. Due
to the range of skin thickness throughout the body, a dermal-epidermal ratio
ranging from 10:1 to 13:1 proves to be a better measure of thickness and is again,
comparable in both pig and human skin [34]. It has been suggested that the struc-
ture of the pig’s skin is so similar to that of a human, that it may be a superior
model than that of nonhuman primate skin [35]. However, there are important
differences such as a lower water loss from pig skin at elevated temperatures and
lack of blister formation that must be considered when using this model.

In the 1940s, Moritz and Henriques conducted a series of experiments with
both humans and pigs, where they created contact burns at different temperatures
and durations of time [31, 36]. Through these experiments, it was discovered that
irreversible damage will occur to the epidermis when the surface of skin reaches
44�C, although it can take long periods of exposure. Below this temperature,
transfer of heat away from the skin is rapid enough to reduce the risk of damage
due to burning. It was noted that irreversible damage at the deep dermal (basal)
layer did not occur until approximately six hours of exposure to surface tempera-
tures of 44�C. However, the time required to create irreversible damage is reduced
by about half with every degree increase between 44�C and 51�C. If the surface
temperature is raised to 70�C or higher, skin damage occurs so quickly that necro-
sis of the epidermis can take place in less than one second. Stoll and Green con-
tinued the work of Moritz and Henriques and studied the implication of the skin
damage model using a first order chemical reaction rate equation [37]. Impor-
tantly, Stoll and Green discussed that the destruction of the skin does not only
begin when the surface rises above 44�C, but continues as long as the temperature
of the layer is maintained above 44�C. Thus, the impact of cooling skin to below
this level also needs to be included in damage prediction methods. With the use of
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this approach, burn injury becomes a function of the time and temperature that
the skin exceeds 44�C.

The goal of this study was to characterize the relative risk for skin damage in
occupants trapped in structure fires with a specific focus on how this risk is
impacted by fire attack method. To accomplish this goal, twenty-four experiments
were performed in a full-scale residential structure and a new approach utilizing
an ex vivo biological model of porcine skin was implemented in five locations
throughout the structure. Skin surface temperatures are measured throughout fire
growth and post suppression as the environment responds to water application
end eventually cools to ambient. Local air temperatures and heat flux measure-
ments were collected at each location to compare and contrast skin surface tem-
peratures to traditional measurements commonly used for estimating skin damage
risk.

2. Experimental Setup

A series of 24 experiments were performed at UL’s large fire lab in Northbrook,
IL [38]. A 150 m2 single-story structure was built with a total of six rooms (four
bedrooms, one living room, and one dining room) and an extended hallway. Each
bedroom had a doorway entering into the hallway, and a removable insert for a
window opening to the exterior of the structure. The floor plan of the structure
with furnishings, initial fire locations, simulated occupant locations, and instru-
mentation relevant to this manuscript is presented in Fig. 1. A complete descrip-
tion of the experimental details and significant additional data collected during
this experimental campaign can be found in reference [38].

Three different fire scenarios (Test Types) were studied in this project. Test
Type 1 was conducted with a fire in Bedroom 1, the bedroom window closed and
a flow path from the fire room to the front door (to allow firefighters to enter and
suppress) created 7 min to 9 min after ignition. Test Type 2 was similar to Test
Type 1, but the Bedroom 1 window was open for the duration of the experiments
and entry was made to the structure 5 min to 7 min post-ignition. For Test Type
3, fires were simultaneously ignited in both Bedroom 1 and Bedroom 2, with both
bedroom windows open, and the front door opened 5 min to 7 min after ignition.
Within each group of scenarios conducted for all three Test Types, two different
fire attack methods were employed (interior only, exterior-to-interior), with slight
differences in the technique implemented for water application. During the experi-
mental study, different patterns (e.g. straight stream vs. narrow fog) and hose
advancement technique (e.g. ‘flow and move’ vs. ‘shut down and move’) were con-
sistently implemented for each Test Type. For the most part, these small differ-
ences had little impact on the environment or on the pattern of response where
skin burn assessments were taking place. However, the sample size was too small
to make any meaningful conclusions regarding the effect of those differences in
technique. Furthermore, because the study was aimed at analyzing how water
application affects the fire environment, some of the water application techniques
implemented are not recommended by the authors and were only performed to
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compare with more reasonable and typical water application techniques. In a few
isolated cases, comments will be made where important outcomes are noted based
on these technique differences, but detailed study of technique is beyond the scope
of this manuscript.

In order to measure gas temperature throughout the structure, Type K, bare
bead (0.5 mm nominal diameter) chromel–alumel thermocouples were deployed at
several locations shown in Fig. 1. These thermocouples measured temperatures at
0.3 m, 0.9 m, 1.5 m and 2.1 m above the floor. Identical thermocouples were also
utilized for surface and subdermal temperature measurements for the skin burn
assessment packages as indicated below. Thermocouple uncertainty is less than 1
to 2% of the measured values up to 977�C [39].

Medtherm 64-10SB-20 heat flux gauges, capable of measuring combined con-
ductive, convective, and radiative flux, were used to measure the heat flux in the
hallway outside the fire rooms and at each simulated occupant location. The
uncertainty given by the manufacturer was ± 3% of the measured value and the
sensor has an average radiative absorptance of 0.95 for 0.6 lm to 15 lm.

Figure 1. Floor plan (approximately to scale) with locations of
furnishings, skin burn assessment (SBA) package at simulated trapped
occupant locations (red crosses numbered 1 to 5) and fire location for
each Test Type (#1 to 3) (Color figure online).
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2.1. Skin Burn Assessment (SBA) Package Description

A new method for estimating skin burn risk based on ex vivo samples of porcine
skin was developed to support these experiments. Figure 2 shows the design and
instrumentation of the skin burn assessment (SBA) package experimental setup.
While there are important limitations to using an ex vivo model, such as a lack of
perspiration (a limitation of any porcine model) and no skin perfusion, the num-
ber of samples needed for this large-scale study (five locations over 24 scenarios
would require 120 animals) and the limitation of using live animal models
required such an approach. Furthermore, the SBA tool provides significant advan-
tage over methods that utilize porcine carcass [e.g. 40] approach by harvesting
only the skin. By not freezing the full carcass, defrosting and controlling tempera-
tures—particularly core temperatures—at biologically reasonable levels is possible.
The SBA package is an easily transportable technique for estimating the impact of
skin samples exposed to live-fire conditions in a repeatable set up.

Five excised porcine skin samples (surrogate for human epidermal and dermal
layers) are introduced on top of 9.5 mm thick ethylene propylene diene monomer
(EPDM) rubber slabs (surrogate for subcutaneous fat), which float on top of a
basin holding water at 36�C to 38�C (to simulate the core of the body). Each
exposed skin sample was 10 cm 9 10 cm to allow generalization of a one-dimen-
sional heat transfer scenario through the skin. EPDM was used for subcutaneous
fat as it has similar thermal conductivity and heat capacity of subcutaneous fat
while being only slightly more dense as well as providing a repeatable and uni-
form thickness. The thickness of the EPDM was selected to simulate the thickest
layers of subcutaneous fat. The back side of the EPDM was in contact with the
water bath, providing a controlled thermal boundary condition. Strips of ceramic
insulation were used to cover the exposed aluminum on the top of the support
tray. Fiberglass insulation was wrapped around the basin to focus heat transfer

SBA Package Components
ITEM QTY DESCRIPTION

1 1 Air Thermocouple
2 2 Thermocouple Bundle
3 5 Skin

4 1 
Water Bath

Thermocouple
5 5 EPDM
6 1 Support Tray
7 1 Reservoir
8 1 Heat Flux Mount
9 1 Heat Flux Gauge

Figure 2. Exploded CAD view of SBA experimental design with parts
list.
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into the system through the skin surrogate, which allowed the water bath to main-
tain a temperature at physiologically valid human core body levels.

Type K thermocouples were attached to the surface of the EPDM layer using
cyanoacrylate glue to measure subdermal temperature. An identical thermocouple
was placed in the center on the surface of the skin sample after it was deployed.
Additionally, thermocouples were used to measure the temperature of the air sur-
rounding the SBA packages and to monitor the temperature of the water bath
during the test to ensure simulated core body temperature was closely maintained.
Vertically oriented heat flux gages were deployed at each location to measure the
thermal energy reaching the skin samples.

2.2. Sample Preparation and SBA Deployment

Porcine skin samples were collected from research animals at the University of Illi-
nois after they were euthanized for purposes unrelated to this project. The dermal
and subcutaneous fat layers were removed immediately from the carcass. After
transportation to the lab, subcutaneous fat was removed, the hair was shaved and
approximately 10 cm 9 10 cm samples were excised. Each sample was then sealed
in an individual plastic bag and stored in a freezer until the live-fire scenarios were to
be conducted. Before being deployed into an experiment, the skin was thawed in the
plastic bags using a water bath held at 35�C to 40�C approximately 1 h before the
experiment began. After the sample was fully thawed, the skin was removed from
the bag and its thickness was measured (MTG-DX2, Schultes Precision Mfg). Skin
samples were placed on a flat pan with a damp towel covering the surfaces to keep
the sample from drying out. The samples were then deployed to their locations and
attached to the EPDM blocks using cyanoacrylate glue, with surface thermocouples
fastened in a similar manner. Damp towels were then placed over the specimens
until testing began while submersible water heaters and pumps were used to control
the water bath temperature and provide continuous water circulation. Approxi-
mately 2 min to 5 min before the experiment began, the towels were removed and
the doors and windows of the structure were closed as appropriate. Air temperatures
in the lab were typically between 15�C and 25�C and the surface temperature of the
skin was generally between 27�C and 33�C at the start of the experiment.

The SBA packages were deployed at five locations in the test structure (Fig. 1)
at two different heights as described in Table 1. The SBA packages at the 0.2 m

Table 1
SBA Number Designation and Sample Height for the Different SBA
Package Locations

SBA location Location description Height (m)

1 End of hallway between bedroom 1 and 2 0.2

2 In the closed door bedroom (Bedroom 3) on the bed 0.9

3 In the open door bedroom (Bedroom 4) on the bed 0.9

4 At the beginning of the hallway in the living room 0.2

5 In the corner of the dining room 0.2
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Figure 3. Air temperatures measured at each of the five SBA
locations for Test Type 1 (top), Test Type 2 (middle) and Test Type 3
(bottom, note different temperature scale).
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height were placed on the floor of the structure to simulate an incapacitated occu-
pant lying on the ground. The SBA packages deployed at the 0.9 m location were
placed on top of a typical queen-sized bed (with metal frame, box spring, and
mattress) in order to simulate a sleeping occupant. The bedroom door at the
entrance to Location 2 was closed throughout each burn while door leading into
Location 3 (and each of the fire rooms) was left open. Typical environmental tem-
peratures at each of the five locations for the three different Test Types are pro-
vided in Fig. 3.

3. SBA Results and Discussion

3.1. Typical Skin and Environmental Thermal Data

Multiple skin samples are deployed at each location in order to ensure consistency
in measurement and to provide several data points in case a single thermocouple
fails. To ease visualization of typical data trends, average surface and subdermal
temperatures are plotted along with the local ambient air temperature and heat
flux collected by the SBA tool in Fig. 4 at Location 1 (hallway just outside of the
fire room(s)) and Location 3 (on bed in room down the hallway (Bedroom 4)) for
an example Test Type 1 experiment. The standard deviation of surface tempera-
tures is, on average, by 1.3�C (max standard deviation 2.9�C) at Location 1 and
1.3�C (max standard deviation 3.2�C) at Location 3 over the course of the experi-
ment. For the first couple of minutes, as the fire begins to build, the highest recor-
ded temperatures are from the water basin (‘core temperature’—not shown here),
followed by the subdermal thermocouples. Thermcouple readings on the skin sur-
face are between sudbdermal and air temperature as expected. Once the SBA
packages begin to receive radiant heating from the growing fire (1 kW/m2 to
2 kW/m2), the surface temperatures begin to rise. By four minutes, the surface
temperatures have exceeded the subdermal temperatures and shortly thereafter,
these values exceed core temperature. In this specific scenario, the surface temper-
atures begin to level off for about 3 min. The delivered heat flux is sufficient to
hold the skin temperatures at around 42�C, as heat transfer dissipates this energy
deeper into the tissue. As such, the subdermal temperatures begin to rise over
time. In this scenario, air temperature remains fairly constant until the firefighters’
water application. Shortly after water is flowed down the hallway to begin the fire
attack, a significant jump in temperatures is measured by the surface thermocou-
ples as well as the air thermocouple at Location 1. Skin surface temperatures are
increased to above 49�C for approximately 15 s before rapidly cooling as water
continues to be flowed by the fire suppression stream. By the end of the experi-
ment, the highest temperatures are measured at the subdermal level as the surface
appears to have been cooled through water contact.

With heat flux data (green line, secondary vertical axis) overlaid on the temper-
ature plots, it is clear that the initial skin temperature rise at Location 1 is driven
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Figure 4. Average surface and subdermal temperature along with air
temperature and local heat flux for Test Type 1 at SBA Location 1
(top) and Location 3 (bottom). Black dotted line shows water
application time.
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largely by the radiant energy from the growing fire as opposed to convection. The
local ambient air temperature never exceeds the skin surface temperature until
after suppression. When water is applied around 9 min after ignition, the tempera-
ture of the skin surface and air temperature rapidly increase in concert. Several
potential mechanisms may be responsible for these transient increases in tempera-
ture, most likely attributable to increased mixing in the fire environment that
would lead to descent of the hot upper gas layer, contact with steam or hot water
from suppression sprays, and/or condensation onto the cooler surfaces in the
lower layer. Prior to water application, the skin temperatures were typically below
the 44�C threshold for burn damage to occur, but the levels reached after water
application were, in some cases, high enough to begin the damage process of the
surface layers and possibly into the thickness of the skin. Fortunately, this spike
in temperatures was short lived as the firefighters continued to flow water and
cool the environment. During the suppression phase, the heat flux measured at
Location 1 typically shows a spike, often to unrealistic values (in this case reach-
ing nearly 32 kW/m2). Thus, while the trends in skin temperatures match that of
the heat flux more closely than air temperature, it was not possible to accurately
estimate useful skin temperature estimates with heat flux measurements.

At Location 3, the measured heat flux is below 1 kW/m2 throughout the fire
event and it is not likely that significant radiation from the flames would reach
this SBA package due to the configuration of the structure. However, as this SBA
package is sitting on top of a bed (at � 0.9 m from the ground), the hot upper
gas layer—without any significant ventilation to the exterior of the structure—de-
scends to this level, raising local air temperatures to over 70�C. In contrast to the
skin surface and air temperatures that peaked abruptly at Location 1 after water
application, these values decrease sharply at Location 3. Heat flux measurements
at this location do show a small but noticeable spike after water application, pos-
sibly due to condensation on the cooled gauge from moisture in the upper gas
layer as it descends into the structure. In this case, the skin surface temperature
follows the gas temperature trends more closely than the heat flux trends.
Although the SBA measurements at Location 1 peaked at a higher surface tem-
perature than at Location 3, the longer duration exposures to high ambient tem-
peratures resulted in more substantially elevated subdermal temperatures at
Location 3. This fact again highlights that the skin burn risk potential is both a
function of temperature of the skin and the length of time the skin is at that tem-
perature.

Figure 5 shows similar SBA tool generated information as Fig. 4, but for an
example scenario from Test Type 2. At Location 1, significantly higher heat flux is
measured at the beginning of the fire (3 min to 5 min after ignition) as the win-
dow vent allows smoke to exit the building and supports well ventilated combus-
tion for a longer period of time. With the fire room window initially ventilated,
there is enough oxygen supplied to the fire room to allow the compartment to
transition to flashover. Though fire attack occurs sooner than in Test Type 1, the
SBA temperature profiles are relatively similar. While water is being flowed down
the hallway for suppression (approximately six minutes after ignition), the surface
temperature spikes to around 52�C, though for only a few seconds. After suppres-
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Figure 5. Average surface and subdermal temperature along with air
temperature and local heat flux for Test Type 2 at SBA Location 1
(top) and Location 3 (bottom). Black dotted line shows water
application time. At Location 1, peak heat flux prior to suppression
(at around 4 min) reaches 6.0 kW/m2.
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sion, the skin surface temperature begins to drop and eventually returns to levels
below subdermal values. Once again, the heat flux values measured during sup-
pression reach magnitudes that are not realistic (peaking near 37 kW/m2) and
would suggest a significant increase in skin temperatures while the measured val-
ues are actually declining.

At Location 3, the ambient air and skin temperatures 6 min after ignition are
lower than in Test Type 1. With the window initially ventilated, the hot fire gases
are able to exhaust out of the fire compartment, such that the descent of the
smoke layer in the rest of the structure is slower than if there were no ventilation.
Skin temperature remains above ambient temperatures prior to suppression. Sur-
face temperatures begin to increase around 4 min when radiation from the hot
upper gas layer—though relatively small—begins to deliver energy to the skin.
Again, after water application, a � 5�C spike in surface temperature is measured
at Location 3 as the ambient air temperature and heat flux increases dramatically,
though for a short period of time. While the magnitude of this surface tempera-
ture increase is larger than at Location 1, the magnitude of the initial skin temper-
ature was much lower. Thus, this increase, though likely to be perceived and
possibly uncomfortable to the occupant, is not likely to increase burn risk as skin
temperatures never exceeded 40�C. Outside of the water suppression induced peak
in surface temperature, the subdermal readings remained higher than or equiva-
lent to the surface throughout. This data set highlights the sensitivity of the SBA
approach to detecting the impact of small changes in environmental conditions on
the skin temperatures.

Finally, Fig. 6 shows the same SBA tool output at Locations 1 and 3 for a rep-
resentative Test Type 3 scenario. For Test Type 3, the standard deviation of the
surface temperatures was, on average, 1.9�C (max standard deviation was 10.7�C)
at Location 1 and 1.3�C (max standard deviation 3.2�C) at Location 3. The likely
reason for the relatively large variability at Location 1 for the Test Type 3 scenar-
ios, is that the view factor from the skin samples to the two rooms can vary sig-
nificantly. Additionally, at this location near the fire, falling debris (ash, damaged
drywall, charred fuel, etc.) would often land on only a few of the samples. This
latter affect was more common in the intense Test Type 3 fires than in Test Type
1 or 2 fires.

Due to the large, radiant fire with heat flux values at Location 1 briefly exceed-
ing 30 kW/m2, skin surface temperatures reach above 110�C in less than 4 min
after ignition. Due the presence of two fully involved bedrooms with exterior ven-
tilation, both rooms transition to flashover. Typically in the Test Type 3 scenar-
ios, flames will intermittently enter the hallway from the bedrooms underneath the
smoke layer as long as there is enough oxygen remaining in the attached compart-
ment, resulting in high radiant flux to the floor in this location. However, once
oxygen levels are reduced in the hallway, flaming combustion is no longer sup-
ported at this location and flames are only seen at the exterior vent location. This
high intensity heat exposure is likely to be immediately dangerous for any unpro-
tected occupants trapped at this location. In fact, the heat exposure is about five
times larger than in Test Type 2 and about 30 times larger than in Test Type 1.
Additionally, skin surface temperature at Location 3 reaches approximately 50�C
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Figure 6. Average surface and subdermal temperature along with air
temperature and local heat flux for Test Type 3 at SBA Location 1
(top) and Location 3 (bottom). Black dotted line shows water
application time.
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in less than 6 min after ignition, which could also result in burns for trapped
occupants at those locations. While the total heat flux in the target bedroom was
much lower, the air temperature peaks around 100�C to 120�C at both locations.
Interestingly, because of the extremely high temperature prior to water applica-
tion, there were minimal temperature increases observed after suppression in this
experiment. At Location 1, skin surface temperatures dropped immediately,
despite the unrealistic changes in heat flux post suppression (peaking at � 34 kW/
m2). Skin temperature at Location 3 displayed a jump in magnitude for a few sec-
onds that does coincide with an increase in heat flux, but a drop in ambient air
temperature.

As Figs. 4, 5 and 6 display, the response of the skin surface and subdermal tem-
peratures do not consistently scale or even trend with the traditional ambient air
or heat flux measurements commonly used to estimate occupant burn risk. Due to
the moisture in the fire environment, the heat flux gauges often significantly over-
predict the skin temperatures after the hot upper gas layer descends to the height
of the gauge. Furthermore, once water is applied to the fire, heat flux measure-
ments made by water cooled gauges, particularly those near the fire room, are
widely variable and not likely reliable for the estimation of heat transfer to skin
tissues.

3.2. Prior to Firefighter Intervention

The relative impact of fire size and ventilation configuration on temperatures in
unprotected skin at each simulated occupant location prior to fire service interven-
tion is summarized in Table 2, including average and standard deviation of the
surface and subdermal temperatures for each test type. As expected, the highest
temperatures were measured at Location 1 followed by Location 3. The magni-
tudes measured during Test Type 1 and 2 might suggest occupants at Location 1
would experience pain with a possibility of first-degree burns prior to firefighter
intervention for the average case, though there is a slightly higher risk for the ven-
ted fire configuration. On the other hand, based on measured subdermal tempera-
tures, the two room fires (Test Type 3) likely resulted in increased risk for deeper

Table 2
SBA Surface and Subdermal Temperatures at Each Location and All
Three Fire and Ventilation Configurations Prior to Any Fire Service
Intervention (5:20 After Ignition)

Location 1

(Mean ± SD)

Location 2

(Mean ± SD)

Location 3

(Mean ± SD)

Location 4

(Mean ± SD)

Location 5

(Mean ± SD)

Test

type 1

Surface 42.4 ± 4.6 31.1 ± 2.4 33.1 ± 2.0 32.0 ± 2.0 31.7 ± 3.2

Subdermal 35.5 ± 2.5 31.8 ± 1.7 32.2 ± 1.8 31.8 ± 2.9 30.0 ± 1.4

Test

type 2

Surface 45.7 ± 4.1 28.9 ± 2.7 31.4 ± 2.1 29.5 ± 1.6 31.2 ± 2.9

Subdermal 34.9 ± 2.1 31.2 ± 1.3 31.3 ± 2.3 28.8 ± 1.7 30.9 ± 3.2

Test

type 3

Surface 69.0 ± 20.2 30.5 ± 2.8 41.5 ± 4.6 32.1 ± 2.8 30.4 ± 1.7

Subdermal 48.9 ± 5.5 31.7 ± 2.8 33.7 ± 1.9 32.0 ± 1.5 30.2 ± 2.0
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burns (deep second-degree or third-degree) for unprotected skin at Location 1
(subdermal temperatures above 44�C) and possibly first-degree burns at Location
3 for a few of the higher temperature scenarios. In all other locations, skin tem-
peratures are only slightly increased from baseline on the skin. In fact, in Loca-
tion 2 (behind a closed bedroom door), subdermal temperatures remain higher
than the surface temperatures. These results again reinforce the ability of a closed
door to protect these simulated occupant locations from thermal burns [41]. It is
important to note that perfusion and perspiration in live skin will likely reduce
these temperature and can be incorporated in future work through numerical
interpretation of these experimental data [e.g. 42, 43].

3.3. Temperature Changes with Suppression

A primary goal for developing this new assessment technique was to examine the
relative impact of different fire attack methods on burn risk for potentially trap-
ped occupants. Critically, the fire service discussion regarding interior vs exterior
water application has often centered on the concerns that applying water from the
exterior will increase the risk for injuring occupants trapped within the structure
immediately after water application. To assess this impact, we specifically focused
on changes at the SBA packages immediately after fire suppression.

Data are presented here in a relative format—to compare changes in the condi-
tions after fire attack relative to those present immediately prior to water applica-
tion. As has been shown before [41], despite the controlled laboratory
environment within which these full-sized structure fires were conducted, there was
important variability in fire development at the time of water application that
could make comparison of raw magnitudes misleading. These data are grouped
based on Test Type (1–3) and fire attack method (interior only vs exterior-to-exte-
rior) where applicable. Table 3 shows the temperatures immediately before water
is applied, the peak temperature increase after the initial water application (within
30 s), and the difference in skin temperature at 30 s post-water application (com-
pare to pre-water application) for each of the 21 scenarios where rapid fire service
suppression was initiated after front door opening. Additionally, results from the
delayed intervention experiments for each fire type are shown in the table in bold
font (see Fig. 1 for timing details). Outside of delayed intervention scenarios, tem-
peratures at Locations 2, 4, and 5 did not approach the 44�C surface temperature
threshold where risk of skin burns would become a concern. Therefore, the rest of
this discussion will focus on responses from the SBA packages at Locations 1 and
3.

As summarized in Table 3, fire service water application has the potential to
result in transient increases in skin temperatures for trapped occupants after either
exterior or interior fire attack and even in rooms adjacent to the fire compartment
(Location 3). The transient increases in temperature after rapid fire service inter-
vention range from 0.0�C to 15.0�C for Location 1 (though peaked at a 33.3�C
increase for delayed intervention for Test Type 3) and 0.5�C to 13.6�C for Loca-
tion 3. At Location 1, for Type 1 fires, temperatures pre-water application were
43.2 ± 1.5�C and the peak post-suppression temperature increase was
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9.8 ± 3.7�C. For Type 2 fires at Location 1, pre-suppression temperatures were
45.9 ± 3.0�C with a 5.2 ± 1.9�C peak increase for interior fire attack scenarios
while these magnitudes were very similar at 44.7 ± 2.3�C and 4.7 ± 7.0�C after
the initial exterior water application in the exterior-to-interior fire attack scenar-
ios. Type 3 fires resulted in pre-suppression temperatures of 62.5 ± 9.2�C with a
4.9 ± 4.4�C peak increase for interior fire attack scenarios compared to pre-sup-
pression temperatures of 82.7 ± 20.3�C and 3.3 ± 3.0�C peak increase after the
initial exterior water application in the at Location 1. When all of the Test Type 2
and 3 scenarios tested here are combined, there were no statistically significant dif-
ferences observed between the temperature increases at the test location immedi-
ately outside of the fire room(s) regardless of utilizing the exterior or interior fire

Table 3
SBA Package Surface Temperature Changes (�C) Based on Fire Type
and Fire Attack Method After Initial Water Application, Including
Peak Temperature Increase Post-suppression and the Overall Change
from Pre-water Application Temperatures 30 s Post-suppression. See
Reference [38] for More Details on Timing of Each Experiment

Test

type

Fire attack

method

Experiment

# [38]

Occupant location 1 Occupant location 3

Pre

water

Peak increase

post-water

Change

after 30 s

Pre

water

Peak

increase

post-water

Change

after 30 s

1 Interior 2 42.1 14.3 - 2.5 38.0 5.8 3.1

3 42.9 10.5 - 0.3 49.4 0.5 - 1.8

4 45.9 7.5 - 14.2 50.5 1.9 - 1.3

5 42.7 4.7 2.4 42.6 0.7 0.3

6 42.5 11.9 0.5 48.1 3.7 - 0.7

Delayed 1 136.6 3.4 - 71.9 67.4 1.0 0.6

2 Interior 7 50.2 3.7 - 5.5 34.6 4.3 1.8

8 45.4 4.2 - 2.0 31.5 4.8 0.3

9 42.1 7.4 - 6.7 29.9 7.4 2.7

10 47.2 7.1 - 1.5 32.7 5.5 0.9

11 44.8 3.6 - 5.3 31.0 10.4 1.7

Exterior-

to-Interior

18 47.2 15.0 - 4.2 33.2 1.5 1.1

19 41.9 3.2 - 4.0 31.2 1.4 1.2

20 45.8 0.3 - 3.6 33.6 1.9 1.9

21 43.9 0.1 - 5.1 30.8 1.3 0.8

Delayed 12 104.3 1.0 - 56.2 53.5 2.1 2.1

3 Interior 13 66.6 2.1 - 25.5 43.6 7.7 2.4

14 53.4 8.2 - 9.1 51.6 3.8 - 2.1

15 56.6 8.9 - 8.0 40.2 7.6 3.1

16 73.5 0.2 - 29.5 39.7 13.6 0.0

Exterior-

to-Interior

22 93.2 0.0 - 12.6 49.1 1.4 - 3.9

23 59.3 5.9 5.3 41.8 1.9 - 2.9

24 95.7 4.0 - 29.6 40.2 1.4 1.3

Delayed 17 214.6 33.3 - 169.7 51.4 1.0 - 2.6

Data shown in underlined font are from the same set as shown in Figs. 4, 5 and 6. Data shown in bold is from the

Delayed scenario for ease of reference
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stream. This study provides the first indication of transient increases in skin sur-
face temperature on the order of 5�C that result from fire suppression streams. At
the same time, the delayed suppression experiments provide important context for
these results, where skin temperature increases due to the increased fire exposure
were up to an order of magnitude larger than that which results from suppression
streams.

At Location 3, for Test Type 1 fires, temperatures pre-water application were
45.7 ± 5.3�C and the peak temperature change post suppression was 2.5 ± 2.2�C.
For Type 2 fires, pre-fire temperatures were 31.9 ± 1.8�C with a 6.5 ± 2.5�C peak
for interior fire attack scenarios and 32.2 ± 1.4�C with 1.5 ± 0.3�C peak increase
after the initial exterior water application. Finally, for Type 3 fires pre-fire temper-
atures were 43.8 ± 5.5�C with a 8.2 ± 4.1�C peak for interior suppression scenar-
ios and 43.7 ± 4.7�C with a 1.6 ± 0.3�C peak increase after the initial exterior
water application. When all the Test Type 2 and 3 scenarios are combined, the
peak temperature increase after the exterior water application was slightly, but
significantly lower than after the initial interior fire attack at Location 3
(p = 0.001).

There are several potential mechanisms that may be responsible for these tran-
sient increases in temperature, such as steam and/or hot water coming in contact
with the surface of the skin, particularly at Location 1. It is also possible that this
effect may be attributable to the hot gas layer descending onto the surface of the
skin as it is cooled by suppression streams, which can provide for increased con-
vective heat flow to the skin while also allowing in the high water vapor content
in the upper layer an opportunity to condense onto the cooler skin surface. This
mechanism is likely most relevant at Location 3 where the samples were elevated.
Further study is necessary to elucidate the mechanism by which this heat transfer
is occurring. However, the finding that water application in the fire environment
can cause transients to occur regardless of the orientation of the suppression
stream, is a critical message to convey to the fire service.

At the same time, it is important to note that in 19 of the 21 scenarios, rapid
application of water to the fire resulted in either a reduction in surface tempera-
ture or minimal temperature changes within 30 s of initial water applications at
the simulated occupant in the highest thermal risk (Location 1). Despite the tran-
sient increase shortly after fire attack, the water application was able to either
reduce or minimize the increase in temperatures that would be experienced if
water were not applied. At Location 3, the temperature changes 30 s after water
application range from - 3.9�C to + 3.1�C. However, again at Location 3, the
skin temperatures 30 s after water application were below the skin temperatures
prior to water application in the delayed water application experiments.

Despite these consistent trends, there were two scenarios where the skin temper-
ature 30 s after water application was more than 1�C higher than prior to water
application at Location 1 (Experiment 5—Test Type 1, interior fire attack and
Experiment 23—Test Type 3, exterior-to-interior fire attack). In both scenarios,
the fire attack was conducted using a narrow fog pattern compared to a solid or
straight stream for the others in those groups of scenarios. A similar narrow fog
pattern was utilized for other Test Type 2 (Experiment 11 and 19) and Test Type
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3 (Experiment 16) scenarios, where the temperature was significantly reduced at
Location 1 within 30 s. As such, these increased temperatures are not consistent
across all narrow fog scenarios. However, Experiment 11 and 16 resulted in the
largest peak increase post-water at Location 3 (10.4�C and 13.6�C); the only two
scenarios with peak temperature increases that were more than two standard devi-
ations from the mean of all 24 scenarios at Location 3 (4.0 ± 3.2�C). While these
four (of the five total) scenarios utilizing narrow fog stream patterns produce
interesting observations, additional controlled experiments are necessary to fully
vet the impact of stream pattern on skin temperature change.

While short-lived transient increases in surface temperature were noted after
water was applied to the fire—and in some cases may increase the level of risk for
burn injuries to trapped occupants—it is important to put this in context of what
might happen without fire service intervention. Table 4 shows the peak surface
and subdermal temperatures at Location 1 averaged over all the rapid fire service
intervention scenarios (i.e. fire attack using interior only or exterior-to-interior
means shortly after the front door is open) compared to the scenarios where the
fire service intervention was delayed. Peak temperatures suggest that occupants
with exposed skin may be at risk for first-degree or possibly second-degree burns
for the one bedroom fires and likely third-degree or deeper burns for the two bed-
room fires after fire service intervention. However, if suppression is delayed for
the Test Type 1 and 2 fires, skin temperatures can reach values similar to or
higher than the multi-room fires (Test Type 3) and the occupant would be at risk
for third-degree or deeper burns. At the same time, a 4 min to 5 min delay in
water application for the two bedroom fire (Test Type 3) resulted in surface and
subdermal temperatures that would likely cause significant damage to deep biolog-
ical tissues. Thus, while water application was shown to result in transient increases
in skin surface temperature, a delay of a few minutes results in significantly higher
risk for burns near the fire room(s).

Table 5 shows the same comparison, but at Location 3 (in the target bedroom).
Test Type 1 and 3 typically resulted in skin temperatures that might suggest a risk
for first- or second-degree burns for exposed skin. Again, delayed water applica-
tion significantly increased risk for deeper burns at each location for Test Types 1
and 2. Test Type 3 did not show a significant difference in temperatures for the

Table 4
Average Peak Surface and Subdermal Temperatures (�C) for Different
Test Types with Quick and Delayed Interventions for Location 1

Test

type

Dermal surface temperature Subdermal temperature

Fire service

intervention

Delayed

suppression

Fire service

intervention

Delayed

suppression

1 50.9 ± 6.0 140.0 43.5 ± 2.0 72.3

2 51.2 ± 5.4 107.2 39.7 ± 2.3 66.5

3 97.3 ± 25.5 248.0 55.9 ± 4.7 78.6

2484 Fire Technology 2019



delayed water application likely due to the increased ventilation of both bedroom
windows preventing heat from reaching Location 3. The highest temperatures
recorded at this location were for the Test Type 1 delayed water application
experiment due to the length of time that this simulated occupant location was
subjected to the hot gases. In addition to the added thermal risk from the delayed
intervention, the relative magnitude of the toxic gas concentrations will also
increase and are likely important at Location 3, which is elevated on the bed.

4. Future Work

The experimental platform introduced here can provide important additional
insights related to skin burn risk for occupants of a structure as well as firefighters
responding to these incidents. Future studies with the SBA tool can include the
impact of sleepwear or other clothing that may influence burn risk for trapped
occupants or how different levels of firefighting PPE can impact firefighters’ burn
risk. This tool provides information that may be more relatable and understand-
able that typical TPP tests (and may be conducted with different levels of mois-
ture in the air). Future studies should also include model based interpretation of
the experimental data. Such analysis techniques may range from simple extrapola-
tions of the Henriques model using surface temperature measurements to more
advanced finite element modeling that can elucidate the physics and physiology of
the burn process in more detail. Furthermore, the SBA tool provides a direct mea-
surement of subdermal temperatures, which may also be used to estimate damage
evolution through the dermal layer thickness. Such efforts should be supported
and validated by laboratory scale experiments that measure temperature change
through the depth of the skin surrogate in a variety of convective and radiant
conditions with a range of moisture concentrations that may be experienced dur-
ing fire conditions (this effort will be enabled by an ongoing study to measure
moisture concentrations during similar full scale experiments [38]). The tool itself
may be iterated to include skin surrogates such as hydrogel or other materials that
can experimentally include controlled levels of perfusion and possibly even blister-

Table 5
Average Maximum Surface and Subdermal Temperatures (�C) for
Different Test Types with Quick and Delayed Interventions for
Location 3

Test

type

Dermal surface temperature Subdermal temperature

Fire service

intervention

Delayed

suppression

Fire service

intervention

Delayed

suppression

1 47.5 ± 4.3 68.8 42.0 ± 4.1 62.4

2 38.7 ± 3.8 56.9 34.7 ± 2.7 49.6

3 52.1 ± 4.3 52.8 40.4 ± 3.0 40.3
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ing in a material system that precludes the need to harvest and process porcine
skin (which can be a limiting step for broad implementation of the tool).

5. Conclusions

By deploying a novel experimental method using an ex vivo porcine skin model in
a series of full-scale residential structure fire scenarios, new information regarding
thermal exposure risk to trapped occupants has been presented. Importantly, skin
temperature changes did not consistently correlate with ambient temperature mea-
surement from a bare bead thermocouple or heat flux measurements, which are
commonly used in standardized risk assessment approaches. Differences with heat
flux measurements were particularly noteworthy after fire service water applica-
tion, which was the source of risk of interest here.

Using the porcine skin model, water application in the full-scale residential
structure fire scenarios was found to result in short lived, transient increases in
surface temperature on the order of 5�C near the fire rooms. In nearly all scenar-
ios tested, by 30 s after water application, the skin surface temperatures were
lower than or similar to the magnitude prior to firefighter intervention. There was
no significant difference in the magnitude of these temperature changes shortly
after water was applied to the fire from the exterior or the interior at the location
immediately outside the fire room, though slightly lower peak skin temperature
increases were measured in the target bedroom after the exterior fire attack. This
finding is important to the fire service in the on-going conversation regarding tac-
tical decision as well as to practicing fire protection engineers in characterizing
tenability changes during suppression (manual and installed systems). Importantly,
it was also found that delaying the application of water to the fire (in some cases by
just a few minutes after opening the front door) resulted in the highest skin surface
temperatures and presented the highest burn risk to occupants.

Not only does this tool provide new and useful insight for the fire service to
further understand the impact of fire suppression steams on occupant burn risk,
but with additional model based interpretation supported by laboratory scale
assessments, it may provide a platform for a variety of future investigations rela-
ted to both occupant and firefighter burn risk.
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