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Abstract. We present the application of a simple probabilistic methodology to deter-
mine the reliability of a structural element exposed to fire when designed following
Eurocode 1-1-2 (EC1). Eurocodes are being used extensively within the European

Union in the design of many buildings and structures. Here, the methodology is
applied to a simply-supported, reinforced concrete slab 180 mm thick, with a stan-
dard load bearing fire resistance of 90 min. The slab is subjected to a fire in an office
compartment of 420 m2 floor area and 4 m height. Temperature time curves are pro-

duced using the EC1 parametric fire curve, which assumes uniform temperature and a
uniform burning condition for the fire. Heat transfer calculations identify the plausi-
ble worst case scenarios in terms of maximum rebar temperature. We found that a

ventilation-controlled fire with opening factor 0.02 m1/2 results in a maximum rebar
temperature of 448�C after 102 min of fire exposure. Sensitivity analyses to the main
parameters in the EC1 fire curves and in the EC1 heat transfer calculations are per-

formed using a one-at-a-time (OAT) method. The failure probability is then calcu-
lated for a series of input parameters using the Monte Carlo method. The results
show that this slab has a 0.3% probability of failure when the compartment is
designed with all layers of safety in place (detection and sprinkler systems, safe access

route, and fire fighting devices are available). Unavailability of sprinkler systems
results in a 1% probability of failure. When both sprinkler system and detection are
not available in the building, the probability of failure is 8%. This novel study con-

ducts for the first time a probabilistic calculation using the EC1 parametric curve,
helping engineers to identify the most critical design fires and the probabilistic resis-
tance assumed in EC1.
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1. Introduction

Performance based design for fire has been incorporated into legal frameworks
around the world [1] and allows designers to employ a rational engineering
approach to the provision of fire safety in the built environment [2].

The fundamental principles of performance based fire engineering for structures
are outlined in multiple guidance codes [3, 4]. Performance based design codes lay
down what safety standards need to be met by a designer, leaving scope for new
materials, systems, and methods to be used in a building’s design, whereas pre-
scriptive design codes simply describe how a building should be built. Perfor-
mance-based design codes mainly discuss qualitatively, rather than quantitatively,
the factors and input parameters that should be considered in the design process.
Designers should define the input variables required for design using any number
of sources. This can lead to a significant variability in the design fires used, and
thus inconsistent levels of safety for buildings [5].

Epistemic and Aleatory uncertainties exist in any engineering problem. The for-
mer is connected to a lack of complete scientific knowledge, and limited data
sources for the modelled scenario, while the latter is linked to the stochastic vari-
ability in population [6]. These uncertainties lead to the need for assumptions and
simplifications to be made in analytical and numerical models, and within
methodologies used by engineers for structural fire safety design [6, 7]. A sensitiv-
ity analysis can be used to characterise the significance of uncertainties in order to
determine the impact of these on the results of any analysis.

Moving from a prescriptive approach to performance based design enables
designers to apply knowledge of real structural behaviour during fire, while
accounting for uncertainties allows designers to quantify the reliability of the pro-
posed solution, as well as the overall level of risk associated with the design, and
to more confidently inform any further decision-making based on the results [8–
10].

Reliability-based structural fire engineering has progressed in recent years.
Examples in the literature include the application of the Monte Carlo method and
various variable reduction techniques to determine the probability of failure and/
or the reliability of both protected and unprotected elements [11], to evaluate the
behaviour of steel beams under fire, taking account of uncertainties in the fire
load [12], to evaluate designs carried out according to EN 1992-1-2, and to study
the influence of the input variables for a slab the ISO 834 standard fire [13]. A
new set of fire resistance periods in the development of codes of practice DD9999
were developed in [14], and a risk based methodology was defined, while the fun-
damental design challenges in the context of time equivalence were addressed in
[15]. Other examples could be mentioned, including identifying the most critical
fire scenarios for the structural response of car parks to fires [16], and the failure
probability of redundant cables in a cable tunnel fire [17]. An approach such as
this, based on the Monte Carlo method, can compensate for the lack of certainty
in modelling inputs in the case of real fires, as there is the opportunity to vary
input parameters within a defined range.
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This paper presents a method to identify the most important parameters that
need to be considered in a fire safety engineering design. It presents a structured
approach that could help to justify some of the assumptions and simplifications
which are made in fire safety engineering by identifying parameters for which
more information is needed for different applications, thus allowing engineers to
exclude variations in some of the other parameters in Monte Carlo analysis; in
turn reducing the number of runs needed in Monte Carlo analysis to obtain a
converged answer.

2. Methodology

Several fire scenarios for a uniformly burning and fully developed fire were pro-
duced based on a range of values for input parameters such as fuel load, ventila-
tion size, contribution of fire protection systems, boundary material properties etc.
to select a ‘‘reference case’’ fire scenario. A set of temperature time curves were
produced in accordance with the EC1 parametric fire method [18], which assumes
a uniformly burning fire and is valid for compartments with floor areas up to
500 m2 and 4 m height [18]. Heat transfer analyses were then carried out so as to
identify the ‘‘reference case’’ scenario with the aim of sensitivity analyses. The
analytical equation given in EC1 [18] to calculate the fire temperature is:

Tg ¼ 1325 1� 0:324 exp � 0:2t�ð Þ � 0:204 exp � 1:7t�ð Þ � 0:472 exp � 19t�ð Þ½ � �Cð Þ
ð1Þ

t� ¼ t � C hð Þ ð2Þ

where t is the time (h), C is given as

C ¼ O=b½ �2= 0:04=1160ð Þ2 ð3Þ

O ¼ Av heq
� �0:5

=At ð4Þ

where b is the thermal inertia of the enclosure boundary, O is the opening factor
of the fire compartment (m1/2), Av is the total vertical opening on all walls (m2),
Heq is weighted average of window heights on the wall (m), and At is the total
area of enclosure (walls, ceiling and floor, including openings) (m2).The maximum
temperature Tmax occurs at tmax

* as:

t�max ¼ tmax � C hð Þ ð5Þ

tmax ¼ max ½ð0:2 � 10�3 � qt;d=OÞ; tlim� hð Þ ð6Þ
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qt;d ¼ qf ;d � Af =At ð7Þ

where qt,d is the design value of the fire load density related to the total surface
area At of the enclosure (walls, ceiling and floor, including openings) (MJ/m2),
and qf,d is the design value of the fire load density related to the surface area Af

of the floor (MJ/m2).
The limiting temperature tlim of 25 min is taken, assuming a medium fire

growth rate [18]. After tmax
* the cooling phase begins and the temperature–time

curve during this phase is given by:

Tg ¼ Tmax� 625 t� � t�max � x
� �

for t�max � 0:5 ð8Þ

Tg ¼ Tmax� 250 3 � t�max

� �
� t � � t�max x
� �

for 0:5 � t�max � 2 ð9Þ

Tg ¼ Tmax� 250 t� � t�max � x
� �

for 2 � t�max ð10Þ

Once this fundamental part has been addressed, a detailed sensitivity analysis of
the main parameters in the EC1 parametric curves and heat transfer model were
performed for a wide range of values. The heat transfer was solved by means of a
one-dimensional finite difference method for conductive heat transfer inside the
material, and boundary conditions for both convective and radiant heating were
taken into account [19, 20]. As such, a range of input variables in EC1 parametric
fire and heat transfer model were investigated (Tables 1 and 2). A sensitivity anal-
ysis of the ‘‘reference case’’ scenario examined a large number of fire scenarios
using a one-at-a-time method (OAT).

OAT is a sensitivity analysis method, which simply varies one input at a time,
keeping others at their baseline, and calculates the variation in the output. All
input parameters are examined and results are compared to determine which of
the input parameters have the highest impact on the final results. The OAT sensi-
tivity analysis has been used in different examples, such as identifying the govern-
ing parameters of a solid ignition model and global level of confidence associated
with the model predictions [21], and determining the most sensitive parameters in
travelling fire methodology for structural design [19]. The OAT sensitivity analysis
was useful in this study to determine which input data were important for further
the Monte Carlo analysis and required more information, and which were unim-
portant, thus reducing the number of variables required to be considered as uncer-
tain. In addition, it highlighted the range of possible fire scenarios for which the
designed element is structurally safe.

A Monte Carlo analysis was then carried out to evaluate the reliability of the
concrete slab, in terms of the failure probability Pf, given uncertainty in key
model parameters. Monte Carlo analysis is a method that performs numerical
experiments using a large number of randomly generated sample sets from the
input space, containing all possible values of the input variables according to their
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probability distributions. It is suitable when it is impossible to compute an exact
result with a deterministic approach and also to understand the impact of uncer-
tainty in forecast modelling [22].

3. Case Study

The methodology presented here was applied to a simply-supported reinforced
concrete slab 180 mm thick with 44 mm axis-distance of the tension reinforce-
ments to the soffit of the slab (fire exposed surface) and a concrete cover of
36 mm. The compartment was an open-plan office building, 30.25 m long by
14.25 m wide and 4 m high (Fig. 1). The simplified calculation method in Euro-
code 2-1-2 [23] was used to measure the performance of the slab, as the simply-
supported slab was subjected to a uniformly distributed load, and the design at
ambient temperature was based on linear analysis. There are different methods to
evaluate the failure modes of concrete structures for different levels of assessment
in fires: maximum deflection (which is typically taken as a ratio of deflection), the
maximum temperature of the tension reinforcement, the ultimate strain in the ten-
sion reinforcement, and the shear capacity [23]. The slab is exposed to fire from
below, so the strength of the structural element may be assumed to be a function
of the temperature of the rebar in the tension zone [2]. The critical temperature of
the tension reinforcement in the slab was therefore selected as the limiting criteria.

The critical temperature of the reinforcement steel was calculated assuming a
reduction factor of 0.6 for the load combination (e.g. permanent and variable
loads) in the fire situation [23]. The effects of actions on structural element (e.g.
internal force, moment) for the fire situation, may be deduced from those deter-

Figure 1. Plan and elevation of the structure and slab cross section,
dimensions in meter.
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mined in normal temperature design using the reduction factor for the load com-
bination in the fire situation [23]. A partial safety factor of 1.15 for reinforcement
steel was selected in accordance with Eurocode 2-1-1 [24]. As such, failure in the
selected structural member for the fire situation, occurred when reduction factor
for the strength of reinforcement steel was 0.52. In accordance with clause 4.2
[23], for rebar (hot rolled) in concrete and for strain greater than 2% (which is the
case for slabs and beams without a high reinforcement ratio), the critical tempera-
ture is 583�C. This temperature is normally considered as the limiting temperature
above which steel loses strength such that the failure of a typical simply supported
slab could occur under the load assumed to be applied during a fire [25]. The
maximum temperature of the tension rebar was compared with the critical rebar
temperature.

It was assumed that explosive spalling is unlikely to occur, as the XC1 class is
considered with moisture content less than 3% and the concrete strength is below
55 MPa in accordance with EC2-1-2 [23].

A concrete density of 2300 kg/m3, thermal conductivity of 1.33 W/m K, specific
heat of 900 J/kg K, convective heat transfer coefficient of 35 W/m2 K for the
exposed surface and 4 W/m2 K for the unexposed surface of the concrete element,
and an emissivity of 0.7 were assumed [18, 24]. In this illustrative example, the
concrete properties were assumed to be constant. It is shown elsewhere that 1D
heat transfer with constant effective properties results in a 7–15% higher in-depth
concrete temperature than the case of temperature dependent concrete properties
[19]. Therefore, we deemed the method in this paper to be appropriate, because it
is simple but still accurate enough. To make the reference case scenario represen-
tative of habitual practice for this type of building, it was assumed that suppres-
sion and detection systems operated in the case of a fire, and safe access routes
and fire fighting devices were fitted in the building. The design value of the fire
load density qf,d related to the surface area Af of the floor in Annex E of EC1 is
given by:

qf ; d ¼ qf ; k � dq1 � dq2 � dn � m MJ/m2
� �

ð11Þ

The product of (1) characteristic fire load density for an office building (qf,k) equal
to 511 MJ/m2 (80% fractile), (2) different active firefighting measures (dn) assumed
to be 0.66 (in Table 1), (3) fire activation risk due to the size of the compartment
(dq1) equal to 1.53, (4) fire activation risk due to the type of occupancy (dq2) equal
to 1, and (5) a combustion factor of m = 0.8, were assumed to be 0.8 in accor-
dance with EC1 [18]. As such the design value of the fire load density, qf, d is
410 MJ/m2.

It should be noted that the Eurocodes are the required standards, providing a
common approach for the design of buildings within the European Union and
being used extensively in the design of buildings and slabs. On the other hand,
each country is expected to issue a National Annex to the Eurocodes and choose
those parameters which are left open in the Eurocode for national choice, known
as Nationally Determined Parameters, to be used in the design of buildings in the
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country concerned [18]. For example there are national annexes of EC1 which do
not use the factors in Eq. 11, which affects characteristic fire load density (qf,k)
[26]. A number of slabs around Europe have been designed without applying the
Annex E of EC1, therefore, for comparison, these cases were also considered.

3.1. Design Fire

The fire duration and severity in a fully developed fire depends on the amount of
ventilation and the nature, distribution, and quantity of fuel, which all have a sig-
nificant effect on duration and severity [25].

In a modern building, a double or triple glazed system may not break as readily
as single panels of ordinary glass. Characteristics, orientation and dimensions of
the glazed external openings are architectural variables. Due to all the uncertain-
ties associated with glass breakage and fall-out of glass [27], both fuel-controlled
and ventilation-controlled design fires were examined. To cover all possibilities of
ventilation, a series of parametric temperature–time curves were produced, in
which the opening factor varied from 0.02 to 0.2 m1/2, in accordance with the lim-
itations imposed by EC1 [18]. The external walls were considered to be 100%
glazed and ranges of the opening factor cover all possibilities of glass breakage.
The thermal inertia of the concrete and glazing were assumed to be 1659 W s1/2/
m2K and 1312 W s1/2/m2K respectively. The calculated average compartment tem-
peratures for different opening factors are presented in Fig. 2. The results show
that opening factors lying between 0.097 m1/2 and 0.2 m1/2 produced a relatively
short fuel-controlled fire. The decrease in opening factor to below 0.097 m1/2

resulted in a fire restricted by ventilation. Opening factors between 0.074 m1/2 and

Figure 2. Gas temperature in a compartment for different opening
factors using the EC1 parametric approach and resulting rebar
temperatures in the concrete slab. The reference case with the
maximum rebar temperature is obtained from ventilation-controlled
fires without using Annex E of EC1 and was used for sensitivity
analysis.
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0.02 m1/2, due to the façade glass breakage, resulted in a ventilation-controlled fire
with peak gas temperatures between 750�C and 850�C.

The calculated temperature fields were used as an input to a one dimensional
heat transfer model to calculate the resulting temperature in the concrete slab at
the location of the rebar. The rebar was assumed to have the same temperature as
the adjacent concrete, as it has a much higher thermal diffusivity than concrete.

A comparison of the rebar temperatures in Fig. 2 clearly shows that the highest
temperatures were caused by a ventilation-controlled fire, obtained from an open-
ing factor of 0.02 m1/2. The maximum rebar temperature was 408�C after 95 min
of fire exposure. This scenario is named the ‘‘reference case’’ scenario and was
used for further analysis.

Without considering the Annex E of EC1, Fig. 2 shows that the maximum
rebar temperature obtained from an opening factor of 0.02 m1/2 was 448�C after
102 min of fire exposure which is 9% higher than the case in accordance with
Annex E of EC1.

4. Parametric Sensitivity Study Using OAT Method

As the most challenging scenario was the one with an opening factor of 0.097 m1/2,
it was examined as the ‘‘reference case’’ for all the sensitivity studies performed in
this section. The OAT (one-at-a-time) method was used to observe how varying one
input variable affects the output results, particularly the maximum rebar tempera-
ture (RMT) and time to reach the maximum rebar temperature (tRMT). In OAT sen-
sitivity analysis, the input parameters were incremented across the ranges
investigated.

The parameter values for the reference case scenario and the ranges investigated
are given in Tables 1 and 2. The study includes all the input variables in the EC1
parametric fire and the heat transfer models.

The following sections present the sensitivity analysis of the parameters in
Tables 1 and 2.

4.1. Characteristic Fire Load Density

The amount of fuel in a building significantly alters the dynamics of a fire. The
available guidance provides the characteristic ranges of the fire load, which should
include temporary and permanent fire loads, and the fire loads from construction
elements, linings, and finishes [18]. Some national annexes of EC1 provide differ-
ent values of fire load density for an individual occupancy and recommend using
the 80% or 90% fractile [26]. On the other hand, comparison of the office fire
load density in EC1 with recent surveys shows that the fire load given in EC1 may
be nonconservative compared to the data in survey. Results of the survey are
approximately 40% higher [28] than EC1, and therefore, the 95% fractile is a rea-
sonable fire load density for an office building [29].

The range of fire load density was therefore selected to cover everything from
sparsely furnished (classroom, 347 MJ/m2) [18] to densely loaded (business office,
1315 MJ/m2) spaces [2].
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Figure 3 shows the variations of the maximum rebar temperature and the corre-
sponding time, relative to the reference case, with a characteristic fire load density
ranging from 347 MJ/m2 to 1315 MJ/m2.

The results show that the critical rebar temperature (critical case) occurred
when the characteristic fire load density was above 1140 MJ/m2 after 140 min of
fire exposure, using the Annex E of EC1. Without considering the Annex E of
EC1, the critical case occurred for a characteristic fire load density of 912 MJ/m2

after 120 min of fire exposure. It should be noted that, when Annex E of EC1 was
used, the characteristic fire load density (qf, k) of 1140 MJ/m2 was multiplied by
the product of factors in Eq. 11 equal to 0.8 (obtained in Sect. 3), and thus the
design fire load density (qf, d) was equal to 912 MJ/m2 (using Eq. 11). Without
using Annex E of EC1, the characteristic fire load density and the design fire load
densities were both 912 MJ/m2. This shows that using the factors in Annex E of
EC1 (i.e. dq1, dq2, dn, m) could highly decrease the characteristic fire load density
used to calculate the gas temperature. Figure 3 indicates that without using Annex
E of EC1 the critical temperature was reached for a lower characteristic fire load
density (in this case study 20% less than using Annex E of EC1). The fuel load
densities which lead to the critical cases are representative value for densely loa-
ded (i.e. library, business office) spaces.

4.2. Fire Fighting Measures Index

The presence of active fire protection systems influences the severity of the fire
environment and fire duration in an enclosure. This index takes into account dif-
ferent active firefighting measures and ranges from 0.148 (full fire protection) to
3.37 (no active fire protections and intervention of fire fighters) in accordance with
Annex E of EC1 [18]. Cases with and without the firefighting measures index were
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studied here and serve to illustrate the effect of this method on the resulting level
of safety.

Figure 4 shows how rebar maximum temperatures and associated times vary
with the firefighting measure index.

The results indicate that cases where the firefighting measures index has a value
greater than 1.46 (i.e. the case when either sprinkler systems or detection and
alarm systems are not installed [18]) resulted in a temperature greater than the
rebar critical temperature (i.e. 583�C) after 150 min of fire exposure. Without
using Annex E of EC1, the maximum rebar temperature was 408�C after 95 min
of fire exposure. This demonstrates that using Annex E of EC1 prolongs the fail-
ure time of the structural element.

4.3. Axis Distance of Reinforcement

Axis distance of the reinforcement is a fundamental design variable in any con-
crete structure and is likely to be a fixed value early in the design of a building.
Typical concrete covers a range from 20 mm to 60 mm [19]. It is worth under-
standing the impact of axis distances on peak rebar temperatures, as it could
make a significant difference to the performance of the structure.

Figure 5 indicates that the peak rebar temperatures were lower than the rebar
critical temperature for all axis distances. A concrete cover of 36 mm was used for
the reference case; in addition, the range selected implicitly included the possible
loss of 24 mm concrete cover due to spalling. For each rebar depth in Table 2, we
also checked that the bending strengths with different lever arms were above the
applied bending moment.

4.4. Opening Factor

Figure 6 shows the variation of the maximum rebar temperature and the time
taken to reach the maximum temperature with a ventilation size of 0.02 m1/2 to
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0.2 m1/2. Figure 6 illustrates that the maximum rebar temperature value corre-
sponds to opening factor 0.02 m1/2. It is notable that the sharp gradient changes
in the maximum rebar temperature were due to a change in fire environment,
from fuel-controlled to ventilation-controlled. Therefore, the predicted structural
element temperature from parametric fire is highly sensitive to small variation of
the size of opening.

4.5. Concrete Density

Density varies greatly for concrete types, and guidance exists which provides typi-
cal ranges. The reference case density was taken as the density of normal weight
concrete, equal to 2300 kg/m3 [23]. Figure 7 shows the maximum rebar tempera-
ture and the time to reach the maximum temperature against concrete densities
from 1900 kg/m3 to 2300 kg/m3 [25]. Results show that concrete density affects
the maximum rebar temperature. The results indicate that the lower the density,
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the higher the peak bay rebar temperatures and the shorter the time to reach the
peak rebar temperature.

4.6. Other Parameters

The results from the OAT sensitivity analysis for the rest of the parameters in
Tables 1 and 2 are illustrated in Figs. 12, 13, 14, 15, 16, 17, 18 and 19 in ‘‘Ap-
pendix’’. The results demonstrate the effects of varying the input parameters on
the maximum rebar temperature and corresponding time. No critical scenario,
where the slab reached the critical rebar temperature, was found in the investi-
gated ranges of these parameters, and consequently, the range of values for which
the designed slab is structurally safe (i.e. with no critical temperature) was deter-
mined. Variations in concrete thickness were not varied, and it is assumed that the
effects of these variations are included in the variations in rebar depth. The results
confirm that variation in the total area, sample thickness, time to reach maximum
gas temperature tlim, coefficients in Olim and Clim, and unexposed surface’s convec-
tive coefficient do not change the maximum rebar temperature from the reference
case value.

OAT analysis allowed the identification of the input parameters which have lit-
tle to no impact on maximum rebar temperature, and the mean values were used
for 6 input variables in a further probabilistic analysis, thus reducing the number
of simulations needed and their runtime.

5. Probabilistic Assessment of Structural Fire Safety

This section seeks to investigate the fire resistance and reliability of the reinforced
slab probabilistically, using Monte Carlo simulations, accounting for the uncer-
tainties in the fire and heat transfer models in the case of a fully developed fire.
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The OAT sensitivity analysis (Sect. 4) identified the key input parameters which
had the greatest effect on the maximum rebar temperature for the purpose of the
Monte Carlo simulation. The parameter ranges found in the literature and their
expected values are given in Tables 1 and 2. Probabilistic distributions were then
defined for the selected parameters. A Gumbel distribution was assumed for the
fire load density in accordance with EC1 [18], with a mean value of 411 MJ/m2

and a variance of 0.3. Since little is known about the probability distribution of
the other input parameters [30], for the purpose of this study a uniform distribu-
tion was conservatively assumed. Consequently, any value has the same probabil-
ity of being selected over the set range. This assumption is conservative, since it is
the shape of the tail of each distribution that is important; in this case, if the high
end (or the low end if this is critical) is artificially ‘fattened’ then the likelihood of
randomly sampling from the tail is increased.

In Monte Carlo simulation, a value was selected at random for each of the
input variables based on the given distributions, and the maximum rebar tempera-
ture in the concrete slab was calculated as before. The results for the model were
recorded and the process was repeated. The Monte Carlo analysis comprised 1500
individual runs. One way to select the number of trials in a Monte Carlo simula-
tion is to run the model repeatedly until the mean value of the outputs converges
[31]. In this case, convergence was satisfied based on a tolerance of 5% change in
the mean and standard deviation in the output. It should be noted that the proba-
bilities of failure were small, so less than 5% change in the mean value of the out-
puts did not significantly affect the probabilities of failure. Therefore, it was
concluded that 1500 runs were enough.

The probability of failure Pf was calculated by evaluating the ratio between the
number of simulations in which the structure failed and the number of times the
simulation was performed, given by:

Pf ¼ nf =n ð12Þ

where nf is the number of failed simulations, and n is the total number of simula-
tions.

The reliability of a system (R) was defined as the probability that it will per-
form successfully [32], which is given by:

R ¼ 1� Pf ð13Þ

The effect of the different variables on the maximum rebar temperature was com-
pared from the results of the OAT, which let us exclude some of the lower impact
variables, and in turn reduce the number of runs needed to obtain a converged
answer. The relationship between two variables can be ranked using the Spear-
man’s correlation coefficient [17], which shows the strength and direction of a
monotonic relationship between paired data. In this study, all graphs from the
OAT analysis showed a linear and monotonic relationship, with very strong
strength between the input and output data.
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Instead, the strength of relationship between maximum rebar temperature and
different variables (i.e. sensitivity of the probability of failure to different input
data) was obtained from the results of the OAT. The resulting percentage change
in the maximum rebar temperature, against a 10% variation of each parameter
from the corresponding reference case, was plotted in Fig. 8.

Figure 8 shows that conductivity, emissivity, and convective coefficient are the
lower impact variables. These parameters were excluded from the Monte Carlo
simulation. The calculated reliability was thus slightly increased, and the number
of simulations needed to achieve convergence of solution decreased to 750, where
the probability of failure varied by less than 3.5% in 100 iterations compare to
1500 trials (3.5% variation of probability of failure was too small). The simulation
time also decreased to 2 h for 750 runs, compared with 3.30 h for 1500 runs, per-
formed on a 2.1 GHz Intel Core i7 processor.

We found that the maximum rebar temperature is sensitive to the active fire
fighting measure index. Analyses were therefore conducted for the system with
specified values for this sensitive parameter, where the probability of failure was
calculated for different set up of active fire protection measures.

To examine a number of scenarios with different chains of events, an event tree
approach was used. An event tree is a logical model expressing the possible out-
comes of an event. The construction of event trees start with specifying an event,
and then various events following the initial event are modelled as branches of the
tree. Each branch represents a specific risk scenario. The possible event sequence
arising from the lack of active fire protections was structured, and the event tree is
shown in Fig. 9. Each final scenario is an aggregation of events and was assigned

0% 1% 2% 3% 4% 5%

Fuel load density

FFMi

Coefficient in tmax

Axis distance of reinfrocing

Concrete density

Conductivity

Specific heat

Convective Coeff.

Emissivity

Ventilation Size

Floor Area

Relative Change in Maximum RebarTemperature (%) 

Figure 8. The resulting percentage change of the maximum rebar
temperature to 10% variation of the reference case values of the
most important input variables which were identified by the OAT
sensitivity analysis.
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a firefighting measures index in accordance with EC1. A reliability analysis was
performed on sub-scenarios in the event tree by varying all other parameters using
Monte Carlo simulation.

For comparison, the Monte Carlo analysis was performed without considering
the impact of active fire protection in the Annex E of EC1. This meant that the
range for the firefighting measures index was dropped from the input variables in
this specific analysis.

5.1. Results of the Monte Carlo Analysis and Discussion

Figure 10 shows the probability of reaching the failure criteria in a concrete slab
when the active firefighting measures index ranges from 0.66 (i.e. sprinklers, auto-
matic smoke detection and fire alarm, safe access routes, and fire fighting devices)
to 3.35 (no active fire protection and no intervention of fire fighters), in accor-
dance with [18].

Figure 9. Event tree and possible scenarios for Monte Carlo
sensitivity analysis. Each final scenario is an aggregation of events
and was assigned a fire fighting measures index in accordance with
EC1.
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Figure 10 illustrates that, for the reference scenario where detection and sprin-
kler systems, safe access route, and fire fighting devices were available in the
building, the probability of failure of slab was 0.3%, therefore the reliability, R,
was 99.7%, using Eq. (10). Unavailability of sprinkler systems, which also covers
the case of ‘‘no detection system’’, resulted in a 1% probability of failure. The
reliability of the structure for this case was then R = 99%. When both sprinkler
system and detection and alarm systems were not available in the building, the
probability of failure was 8%, which corresponds to 92% reliability. The higher
the firefighting measure index, the higher the design fire load density and, conse-
quently, the higher the probability of failure. The highest probability of failure
corresponded to an extreme case when no active fire protection measures, and no
fire fighting intervention were available, and therefore the randomly generated fuel
load density was always multiplied by 3.37 in accordance with the methodology in
EC1 [18], which is indicated in the event tree in Fig. 9. For this extreme case, the
mean characteristic fuel load density of 411 MJ/m2 (in Table 1) was multiplied by
3.37, and thus the mean value of 1385 MJ/m2 was taken for the Monte Carlo
analysis. As such a high probability of failure is expected.

Figure 10 also shows that, for the case without considering Annex E of EC1
where the fire fighting measures index was taken 1, the probability of failure of
the slab was 0.6%, which implies a reliability of R = 99.4%.

For illustrative purposes all of the possible temperature curves in the compart-
ment, from the Monte Carlo simulation using EC1 parametric fire, are demon-
strated in Fig. 11. The red line in Fig. 11, is the converged result, and that the
other lines are included to show how many scenarios are captured by the proba-
bilistic approach. These gas temperatures were applied to calculate the probability
of failure of the slab. In this case (Fig. 11), the sprinkler system was not unavail-
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Figure 10. Probability of failure for a range of active fire fighting
measures of EC1 from a Monte Carlo simulation based on 750 trials.
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able, but detection systems, safe access routes and firefighting devices were avail-
able in the compartment.

6. Conclusion

The work herein applies a simple, but powerful, structured methodology to: (1)
identify the most important parameters that need to be considered during fire
safety engineering, and (2) to determine the reliability of a structural element
exposed to fire when designed following EC1. The methodology was applied to a
simply-supported reinforced concrete slab 180 mm thick; with a standard load
bearing fire resistance of 90 min; subjected to a fire in an office building compart-
ment of 420 m2 floor area and 4 m height. Design fires were constructed in accor-
dance with the EC1 parametric fires. It was demonstrated that opening factors
under 0.097 m1/2 resulted in a ventilation-controlled fire with peak gas tempera-
tures lying between 750�C and 850�C and maximum rebar temperatures between
300�C and 408�C. The maximum rebar temperature of 448�C was found after
102 min of fire exposure by a ventilation-controlled fire with opening factor
0.02 m1/2, without using the Annex E of EC1. It was found that using the Annex
E of EC1 decreased the maximum rebar temperature of the slab by 20%.
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Figure 11. Resulting gas temperatures in the compartment from the
Monte Carlo simulation using EC1 parametric method. The red line is
the converged result, and that the other lines are included to show
how many scenarios are captured by the probabilistic approach. The
sprinkler system is not available but there are detection system, safe
access route and fire fighting devices available in the compartment.
The probability of failure is 1% in this case.
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Analyses of the main input parameters in the EC1 curves and heat transfer
model were performed, in order to assess the sensitivity of the main results to
parameter uncertainty, and also to define the safe and critical design fires using an
OAT method. The critical design fires were found when the characteristic fire load
density was above 1140 MJ/m2 (densely loaded spaces) and 912 MJ/m2, for cases
with and without using Annex E of EC1 respectively. It was concluded that using
the factors in Annex E of EC1 (i.e. dq1, dq2, dn, m) could highly affect the charac-
teristic fire load density used to calculate the gas temperature.

The safe ranges of design fire scenarios were identified for the firefighting mea-
sures indices lower than 1.46 (i.e. sprinkler and detection systems were not avail-
able, however safe access route and fire fighting devices were available) in the
building. The axis distance of reinforcement-the most sensitive parameter- has a
fixed value early in the design. The range selected for sensitivity analysis of axis
distance of rebar implicitly included the possible loss of 24 mm concrete cover due
to spalling, which does not have any impact on the resistance of the slab. The
maximum gas temperature and corresponding rebar temperature from the para-
metric fire in EC1 is highly sensitive to small variation of the size of opening (i.e.
ventilation), due to the change of fire environment from fuel–controlled to venti-
lated-controlled. The concrete density was found to have a large effect on the
rebar maximum temperature. The study shows that OAT sensitivity analysis pro-
vides an insight into the range of fire parameters for which the design is struc-
turally safe.

The OAT analysis determined that 8 out of 17 input parameters were the most
sensitive in regard to changes in the maximum rebar temperature: axis distance of
reinforcement, ventilation sizes, concrete density, coefficient in tmax, fuel load den-
sity, fire protection measures, specific heat, and floor area.

Such a structured approach could help to justify some of the assumptions and
simplifications which are made in fire safety engineering, by identifying parameters
for which more information is needed for different applications, thus allowing
engineers to ignore some of the other parameters in Monte Carlo analysis, thus
reducing the number of runs needed to have a converged answer. In this study,
the number of simulations were decreased from 1500 to 750.

It was found that unavailability of fire protection measures, as indicated in the
EC1 method, leads to an increased probability of failure (lower reliability of struc-
ture). It was found that probability of failure of the concrete slab was 0.3% (i.e.
99.7% structural element reliability) where detection and sprinkler systems, safe
access route, and fire fighting devices were available in the building. Unavailability
of either sprinkler systems or detection systems resulted in 1% probability of fail-
ure of the slab (i.e. 99% reliability), and unavailability of sprinkler and detection
systems resulted in 8% probability of failure of the slab (i.e. 92% reliability).
Probability of failure of the slab was equal to 0.6% (i.e. 99.4% reliability) without
considering Annex E of EC1.

The methodology presented in this paper quantifies the reliability of a structural
element in terms of collapse probabilities, using the Monte Carlo method. This
methodology could be applied to define the reliability of a fire-affected structure.
In that case, more performance criteria and detailed structural analysis should be
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used to assess the failure modes of structures. This study demonstrates that sensi-
tivity and probabilistic analyses can provide a comprehensive understanding of the
factors affecting the structural fire resistance and inform further fire development
and detailed structural analysis.

This novel study which conducted for the first time the OAT analysis and the
Monte Carlo simulation of a slab exposed to the EC1 parametric fire, was consid-
ered by the International Organization for Standardization (ISO) for inclusion in
an ISO technical report [33].
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Appendix: Results from OAT Sensitivity Analyses

The results from the OAT sensitivity analysis for the some of the parameters in
Tables 1 and 2 are illustrated in Figs. 12, 13, 14, 15, 16, 17, 18 and 19. The results
demonstrate the effects of varying the input parameters on the maximum rebar
temperature and corresponding time.
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Figure 12. Maximum rebar temperature and corresponding time
versus the convective heat transfer Coefficient of exposed surface. No
critical case is found in this range of the parameters.
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Figure 13. Maximum rebar temperature and corresponding time
versus concrete thermal inertial characteristic. No critical case is
found in this range of the parameters.
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Figure 14. Maximum rebar temperature and corresponding time
versus coefficient in the time. No critical case is found in this range of
the parameters.
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Figure 15. Maximum rebar temperature and corresponding time
versus Coefficient in time factor function C. No critical case is found in
this range of the parameters.
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Figure 16. Peak bay temperature and corresponds time versus
coefficient in the time tmax. No critical case is found in this range of
the parameters.
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Figure 17. Maximum rebar temperature and corresponding time
versus the emissivity of concrete. No critical case is found in this
range of the parameters.
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Figure 18. Maximum rebar temperature and corresponding time
versus thermal conductivity of concrete. No critical case is found in
this range of the parameters.
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Figure 19. Maximum rebar temperature and corresponding time
versus specific heat of boundary of enclosure. No critical case is found
in this range of the parameters.
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