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Abstract. Detailed characterization of a firefighter’s typical thermal exposures dur-
ing live-fire training and responses can provide important insights into the risks faced
and the necessary protections, protocols, and standards required. In order to gather

data on representative thermal conditions from a firefighter’s continually varying
local environment in a live-fire training exercise, a portable heat flux and gas temper-
ature measurement system was created, calibrated, and integrated into firefighter per-

sonal protective equipment (PPE). Data were collected from 25 live-fire training
exposures during seven different types of scenarios. Based on the collected data, mild
training environments generally exposed firefighters to temperatures around 50�C and

heat fluxes around 1 kW/m2, while severe training conditions generally resulted in
temperatures between 150�C and 200�C with heat fluxes between 3 kW/m2 and 6
kW/m2. For every scenario investigated, the heat flux data portrayed a more severe
environment than the temperature data when interpreted using established thermal

classes developed by the National Institute for Standards and Technology for elec-
tronic equipment used by first responders. Local temperatures from the portable mea-
surement system were compared with temperatures measured by stationary

thermocouples installed in the training structure for 14 different exposures. It was
determined the stationary temperatures represented only a rough approximate bound
of the actual temperature of the immediate training environment due to the typically

coarse distribution of these sensors throughout the structure and their relative (fixed)
distance from the fire sets. The portable thermal measurement system has provided
new insights into the integration of electronic sensors with firefighter PPE and the
conditions experienced by firefighters in live-fire training scenarios, which has promise

to improve the safety and health of the fire service.
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1. Introduction

A firefighter’s thermal exposure on the fire ground or training ground has a signif-
icant contribution to the risk faced in their job. Measuring this exposure can pro-
vide a means to quantify the risk and guide standards development to improve
training, personal protective equipment (PPE), technology, and overall firefighter
health and wellness. According to the National Fire Protection Association
(NFPA), over 7500 firefighters were injured during training related activities in the
United States in 2013 [1]. Instructors throughout the fire service follow the NFPA
1403 Standard on Live Fire Training Evolutions [2] in an attempt to minimize the
risk involved with this type of training. However, many believe there are addi-
tional ways to increase the safety of such activities. For example, thermocouples
have been integrated into some training structures to allow monitoring of room
temperatures during training exercises. There is concern that gas temperature
alone may not be a sufficient measure of the risk to which the firefighters are
exposed as these stationary thermocouples may be either partially shielded from
some portion of the fuel or installed in areas distant from where the firefighters
would be exposed. Fatalities that have occurred during live-fire training have led
to discussions about what the future of live-fire training should be [3–9].

In addition to instrumenting training buildings, the response environment has
recently been augmented through electronic technologies that have potential to
enhance fire fighting response capabilities and to acquire vast amounts of poten-
tially useful data from different areas of the fire service [10]. Data streams are
available from permanent installed temperature sensors within structures to which
firefighters respond, though the utility of these temperature sensors to identify
risks for firefighters has not been studied [10]. Additionally, portable measurement
and data acquisition systems are being researched and developed for integration
with firefighter PPE [10]. Local temperature measurement and display systems are
relatively inexpensive, compact, and mobile. Heat flux measurements can also pro-
vide important additional information, particularly when being used to monitor a
fire environment, but are more costly in terms of equipment and investment. The
ability to study thermal sensor capabilities in a training environment can provide
a first step towards improved utilization on the fire ground.

While thermal data acquisition capabilities are improving and their applications
increasing in scale, there exists limited guidance for fire and training officers on
the thermal and time limits that would ensure a safe live-fire response and training
exposure. Over the years, a variety of thermal environment classification systems
have been developed by researchers that may be useful to provide such insight
with appropriate instrumentation [11–13]. Many of these systems define three or
four different thermal classes based on temperature and heat flux. In 2006, the
National Institute of Standards and Technology (NIST) reviewed existing thermal
environment classification data and proposed four thermal classes, defined in
Table 1, for use in defining standardized test criteria for electronic safety equip-
ment used by firefighters [14].

While the NIST Thermal Classes have been established for evaluation of fire
fighting electronic equipment, limited experimental time-resolved data exist from
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the perspective of a firefighter’s typical exposure. Previous studies [15, 16] concern-
ing firefighter PPE and thermal exposures in a fire environment have described
pre-flashover fire fighting environments with temperatures ranging from 100�C
(212�F) to 300�C (572�F) and maximum heat fluxes between 5 kW/m2 and 12
kW/m2. However, these studies did not specifically focus on the firefighter’s local
environment in live-fire training scenarios, and the studied environments often
contained fuel loads that were different than the wood-based products and straw
often used in NFPA 1403 compliant training exercises. For example, Krasny et al.
conducted seven room fire scenarios using fuel loads prohibited for live-fire train-
ing by NFPA 1403 (mattresses, sofas, typical residential structure fuels) and com-
pared the results to the protection level required for firefighter turnout coats by
NFPA 1971 Protective Clothing for Structural Fire Fighting [17]. Similarly, thermal
exposures during live-fire training were studied by Rossi [16]. However, in both
cases, the instrumentation used to gather data remained stationary throughout the
experiments. Firefighters typically move throughout a structure during training
scenarios, so data collected from a single fixed position for the duration of a live-
fire training exercise are unable to accurately define the firefighters’ local thermal
environment. By gathering experimental time-resolved data from the local envi-
ronment of a firefighter moving throughout live-fire training scenarios, the live-fire
training environment can be better understood and compared to current descrip-
tions of pre-flashover fire fighting thermal conditions. Foster and Roberts have
previously developed a mobile firefighter carried data acquisition system [12].
However, this system was limited by the physical size and the firefighter’s mobil-
ity. Furthermore, the available analysis does not interpret the time-resolved effects
of typical fire training conditions.

Additionally, there exists a legacy of research to study the effects of fire fighting
PPE and activities on a firefighter’s physiology and biomechanics, which has been
conducted in a variety of testing environments. Some studies have utilized training
drills with environmental temperatures less than 100�C in a live-fire burn structure
to simulate fire ground activities [18–22]. More commonly, research groups have
used a treadmill protocol in a temperature-controlled (�25�C to 50�C) room [23–
28]. While Selkirk and McLellan have shown that the physiological responses to
activity in fire fighting PPE is affected by the ambient temperature of the testing
environment, there are limited data available upon which to base the representa-
tive thermal conditions.

Table 1
National Institute of Standards and Technology Thermal Classes

Thermal class Maximum time (min) Maximum temperature (�C) Maximum heat flux (kW/m2)

I 25 100 1

II 15 160 2

III 5 260 10

IV <1 >260 >10
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The purpose of this project is to characterize a firefighter’s typical thermal
exposures as a firefighter participates in NFPA 1403 compliant live-fire training
exercises in order to study risks associated with training as well as establish a
baseline for response exposure scenarios and data acquisition systems. To accom-
plish this task, a portable measurement and data acquisition system was created
and integrated into firefighter PPE. Laboratory experiments were conducted at
NIST to test and calibrate the custom system. This tool was then used to collect
temperature and heat flux measurements from a firefighter’s immediate surround-
ings in numerous live-fire training scenarios at the Illinois Fire Service Institute
(IFSI). The live-fire exposure data were then interpreted with the NIST Thermal
Class system and compared to data from stationary thermocouple arrays installed
in the walls of the fire room.

2. Portable Measurement and Data Acquisition System

2.1. System Components and Design

To characterize a firefighter’s continuously changing local thermal exposure dur-
ing live-fire training, the data acquisition system shown in Figure 1 was designed
to be used with standard firefighter PPE to allow for portability with minimal
impact on mobility. Neither the thermal protection of the PPE nor the user’s
range of motion were significantly compromised by the utilization of the system.
The measurement and data acquisition system is composed of two main parts: the
helmet and the pack.

The helmet portion of the system (Figure 2) consists of a fire helmet (Cairns
880, MSA, Cranberry Township, PA, USA) equipped with a 0.25 mm (0.01 in)
bare bead type K thermocouple (Type K, Omega Engineering Inc., Stamford,
CT), a heat flux microsensor (HFM) [29], and a custom cooling block for the sen-
sor that is attached to an aluminum helmet shield. The thermocouple bead is loca-
ted approximately 6 cm (2.4 in) in front of the helmet shield.

In order to mount the thermocouple and HFM to the front of the helmet, four
holes are fabricated along the vertical centerline of the aluminum shield. The ther-
mocouple wire passes through the top hole and is located approximately 6 cm
(2.4 in) in front of the shield. The three remaining holes are used to mount the
cooling block for the HFM to the back of the shield and to mount the HFM to
the front of the shield. The aluminum cooling block is designed specifically for the
HFM and contains counterbore holes machined to the HFM’s specifications. A 1/
2-20 THD nut is used to hold the HFM in the block. Additionally, a 1/8 in diam-
eter ‘‘pipeline’’ is machined around the counterbore holes for the cooling water to
flow through. Two 1/8-NPT pipe fittings are used to connect 1/8 in diameter rub-
ber tubing from the cooling block to the miniature water pump and water reser-
voir in the hydration backpack.

A data logger [30], water reservoir, and miniature water pump [31] are con-
tained in various pockets of the hydration backpack (Figure 3). The data logger
rests in the front pocket of the pack and is used to collect and store data from the
heat flux microsensor and the thermocouple. The water reservoir, located in the
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rear pocket of the pack, serves as the storage unit for the cooling water. Finally,
the water pump used to circulate water from the reservoir through the cooling
block and its battery pack are located in a side pocket of the pack. The low-pro-
file pack is worn under the firefighter’s bunker coat on the chest to avoid interfer-
ence with the SCBA pack on the back. While this system is designed to work with
fire fighting PPE, it’s intended for use as a research instrument at this point. It
can be advanced for use in the response environment in future efforts.

Figure 1. Customized portable measurement and data acquisition
system used for all experiments.

Figure 2. Exploded CAD model of the helmet portion of the
portable measurement and data acquisition system.
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2.2. Laboratory Calibration

All laboratory calibration experiments were performed at NIST in Gaithersburg,
MD using a natural gas-fired radiant panel apparatus described in detail in
ASTM E162 Standard Test Method for Surface Flammability of Materials Using a
Radiant Heat Energy Source [32]. The apparatus was modified to provide for a
range of heat flux exposures from 1 kW/m2 to 20 kW/m2 for testing firefighter
protective equipment [33–35].

For each experiment, a NIST-calibrated, water-cooled Schmidt–Boelter total
heat flux gauge (SBG) [36] was moved along a horizontal track to locate the dis-
tance from the panel with the desired level of heat flux. The distance from the
panel was recorded, and the incident heat flux at this position was measured by
the SBG and collected by a data acquisition system (SCB-100, National Instru-
ments Corporation, Austin, TX, USA) for 60 s at a rate of one sample per sec-
ond. The entire helmet portion of the portable measurement and data acquisition
system with the HFM installed as it would be in the field (Figure 2) was moved
along the horizontal track to the marked position, and the system’s HFM mea-
sured the incident heat flux for 60 s at a rate of one sample per second.

Water Pump

Data Logger

Pump   
Ba�ery Pack

Water Reservoir

Figure 3. Contents of the pack portion of the portable measurement
and data acquisition system.

Table 2
Heat Flux Microsensor (HFM) and Schmidt–Boelter Gauge (SBG) Labo-
ratory Calibration Results

Approximate incident

heat flux (kW/m2)

Average SBG heat

flux (kW/m2)

Average HFM heat

flux (kW/m2)

1 1.08 ± 0.02 1.28 ± 0.09

3 3.26 ± 0.02 3.24 ± 0.10

5 5.27 ± 0.03 5.23 ± 0.10

Data are presented as mean ± standard deviation
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The procedure was performed for incident heat flux values of approximately
1 kW/m2, 3 kW/m2, and 5 kW/m2 (Table 2; Figure 4). Firefighter PPE and ther-
mal exposures [15, 16] have described pre-flashover fire fighting environments with
maximum heat fluxes between 5 kW/m2 and 12 kW/m2. It was decided that labo-
ratory experiments would be conducted at heat fluxes up to the lower end of the
maximum range to ensure that the data collected from the helmet mounted HFM
can be generalized to other similar training scenarios. The average and standard
deviation of each experimental data set were calculated and used to generate a
calibration curve for the portable system’s HFM module compared to the NIST-
traceable SBG (Figure 5).

It is apparent from Figure 4 that the field-deployable HFM module and data
acquisition system has a higher sample-to-sample variation within the 60 s data
interval compared to the laboratory-based SBG sensor and data acquisition sys-
tem. The average coefficient of variation (standard deviation/mean) for the three
heat flux levels measured with the SBG sensor was 1.0%, while the HFM of the
portable system resulted in a 4.0% variation. Furthermore, the relative variability
of the HFM module was the largest at the 1 kW/m2 heat flux (6.8%) and reduced
for larger heat fluxes (3.2% and 1.9% for 3 kW/m2 and 5 kW/m2, respectively).
The calibration curve in Figure 5 confirms a slope of very near 1 with a high
Pearson correlation coefficient (R = 0.997). The plot does suggest a slight bias
towards over predicting the lowest end of the calibration range, though agreement
at 3 kW/m2 and 5 kW/m2 is better than 1%. Together, these results suggest the
HFM of the portable measurement and data acquisition system will provide a
reliable assessment of the moderate to high heat flux values of interest in the Class

Figure 4. Heat flux microsensor (HFM) and Schmidt–Boelter gauge
(SBG) data at each incident heat flux for each 60 s calibration expo-
sure.
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II–IV levels (Table 1) expected in the training environments. At lower heat flux
values (Class I), the HFM’s data will be more significantly affected by A/D con-
version noise and result in slightly higher variability. Future iterations of this
device may be improved with increased sensor sensitivity (currently 150 lV/W/
cm2) or reduction in the noise floor of the data acquisition system.

3. Live-Fire Scenarios

Experimental data were collected from a variety of live-fire scenarios including
multiple coordinated fire ground training exercises and two different fire behavior
demonstrations: (1) in a concrete-and-steel burn structure and (2) in a metal con-
tainer based training prop known as a ‘‘flashover simulator’’. A wide variety of
scenarios—from fuel loads, conditions, and activities commonly used for training
firefighters from new recruit to highly experienced veterans—were studied. Prior
to entering any structure, a steel plate coated with high emissivity ultra flat black
paint (� = 0.97) [37] that was acclimatized to the outside ambient temperature
was placed in front of the HFM module for 30 s to estimate black body emission
at the current environmental conditions and establish background flux. Upon
entry into the structure, the firefighter equipped with the portable measurement
and data acquisition system followed the company of firefighters throughout the
training exercise as the temperature and incident heat flux measurements from the
immediate thermal environment were being recorded. This study involved human
subject research, and its methods were approved by the University of Illinois Insti-
tutional Review Board.

Figure 5. Heat flux microsensor (HFM) calibration with the Schmidt–
Boelter gauge (SBG).
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3.1. Live-Fire Training Exercises

Data were collected from a total of five different NFPA 1403 compliant coordi-
nated fire ground training exercises (denoted as Exercises 1–5), all of which were
conducted in a concrete-and-steel live-fire training structure (Structures A and B)
located at IFSI in Champaign, IL (Figures 6a, 7a). The coordinated attack scenar-

(a) North side of Structure A

3.05 m (10 ft) 
Ceiling Height 

* 

* 

(b) Exercise 5 layout on second floor of Structure A

Figure 6. (a) Image of Structure A and (b) the approximate path
taken by the training company (red dashed lines) and approximate
locations of the fire sets (flame) and stationary thermocouple arrays
(red ‘*’) on the second floor of Structure A during Exercise 5 (Color
figure online).
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(a) Northeast corner of Structure B

Lower Level 
3.05 m (10 ft) 
Ceiling Height 

Upper Level 
2.44 m (8 ft) 

Ceiling Height 

Location of FF 
throughout 

demonstration 

Levels offset by 
0.61 m (2 ft) 

* 
(b) Fire behavior demonstration layout on second floor of Structure B

Figure 7. (a) Image of Structure B and (b) approximate locations of
the firefighter equipped with portable measurement and data acqui-
sition system (red ‘X’), fire sets (flame), and stationary thermocouple
array (red ‘*’) on the second floor of Structure B during the fire
behavior demonstration (Color figure online).
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ios all followed a similar procedure: the fire was ignited and allowed to develop
for a duration determined by the instructor depending on heat and smoke levels
that were appropriate for each scenario, and then the training company would
enter the structure, perform their assigned task(s), and exit the structure once
the task was complete. Assigned tasks included searching the structure, advanc-
ing a hose line into the structure to extinguish the fire, and forcing entry
through doors and other barriers. The fuel loads for the five exercises consisted
of wooden pallets and straw. Fire sizes varied widely within and between each
scenario, depending on when the firefighters arrived to the room location (which
depended on exterior operations, such as forcible entry, and hose movement
time within the structure) as well as throughout the time they were working in
the room (water is applied, but may not completely suppress the fires). Based
upon previous experiments conducted by NIST to characterize the heat release
rate of various wooden pallet and excelsior fuel load configurations [38], it can
be estimated that the fire size never exceeded 3 MW for any of the studied sce-
narios. Characteristics of the five different exercises, such as the number of
repeats, the structure in which it was conducted, and the average duration of an
exposure for each exercise, are listed in Table 3. The same firefighter wore the
portable data measurement and acquisition system for every exposure encoun-
tered during Exercises 1–4, and the system was rotated between two different
firefighters during Exercise 5. The firefighter wearing the system closely followed
the path of the firefighters in the training exercise for all exposures. However,
for some of the exercises (see Table 3), the path taken by the firefighters was
different for each exposure.

As an example of a typical scenario, Figure 6b shows the path taken by fire-
fighters during Exercise 5 on a floor plan schematic of the second story of Struc-
ture A, including the approximate locations of the fire sets and the thermocouples
installed in the structure walls. During Exercise 5, the training company was
assigned to search the second floor of the structure, so a consistent path was fol-
lowed during each exposure. Data were collected from the height of the crawling
firefighters, approximately 0.9 m (3 ft) to 1.4 m (4.5 ft) above the floor.

During 14 of the live-fire experiments, the firefighter’s local temperature mea-
surements were compared to temperature data from stationary thermocouples
extending 0.2 m (0.5 ft) into the rooms from the training structure walls. Thermo-
couples are located near the walls of the structure to cause minimal interference
with the firefighters involved in the training exercise as is typical for this type of
application. The 0.5 mm (0.02 in) bare bead thermocouples were located at
heights of 0.2 m (0.5 ft), 1.2 m (4 ft), and 2.4 m (8 ft) above the floor near the
wall of each room or hallway of the structure, and the data were acquired and
recorded using a stationary logger [30]. This sparse distribution of thermocouples
within the structure is typical of that found in the few structures that do charac-
terize temperatures during live-fire training. While research grade instrumentation
is typically employed, the ability to deploy these sensors is limited by the firefight-
ers’ need to move through the structure while using and deploying fire fighting
tools.
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3.2. Fire Behavior Demonstrations

Two different, but common, fire behavior demonstrations were studied using
Structure B in Figure 7 (using only the second floor of the simulated six-story
high-rise structure) and Structure C, a typical steel-container-based ‘‘flashover
simulator’’ (Figure 8). In both scenarios, firefighters remained stationary for the
majority of the demonstration. The firefighter wearing the portable measurement
and data acquisition system was in a position such that data were collected from
heights of approximately 0.9 m (3 ft) to 1.2 m (4 ft) above the floor.

Figure 7b shows the approximate location of the fire sets and the area from which
data were collected during the fire behavior demonstration in Structure B. The
demonstration lasted approximately 15 min and involved igniting the fuel load (woo-
den pallets and straw); letting the fire develop and allowing ‘‘rollover’’ to occur; sup-

(a) Image of typical "flashover simulator"

Upper Level 
2.44 m (8 ft) 

Ceiling Height 

Levels offset by 
1.22 m (4 ft) 

Lower Level 
2.44 m (8 ft) 

Ceiling Height 

Location of FF 
throughout 
Exposure 1 

Location of FF 
throughout 
Exposure 2 

~1.5 m 

OSB 

MDF 

Ceiling 
Vent 

(b) Fire behavior demonstration layout for Structure C

Figure 8. (a) Image of ‘‘flashover simulator’’ and (b) approximate
locations of the firefighter equipped with portable measurement and
data acquisition system (red ‘X’) and location of fire set (flame) in
Structure C during the ‘‘flashover simulator’’ fire behavior demon-
stration (Color figure online).
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pressing the fire with a water stream from a smooth bore nozzle; and then repeating
the process using a combination nozzle set to the wide fog stream pattern.

Two exposures using Structure C, the ‘‘flashover simulator’’, were studied during
a training exercise at an IFSI Regional Training Site in Frankfort, IL. The ‘‘flash-
over simulator’’ contains two levels: the lower level where the training company
was located throughout the duration of each exposure and the upper level where
the fuel load was located. Both exposures used identical fuel loads: two wooden
pallets and straw in a fire set located in the middle of the upper level; one
1.9 cm 9 1.2 m 9 2.4 m (0.75 in 9 4 ft 9 8 ft) sheet of oriented strand board
(OSB) against a side wall of the upper level; and one 1.9 cm 9 1.2 m 9 2.4 m
(0.75 in 9 4 ft 9 8 ft) sheet of medium density fiberboard (MDF) against the adja-
cent wall of the upper level. Each experiment began by igniting the middle fire set
and allowing the fire to develop and rollover to the lower level. Ventilation condi-
tions were varied and small amounts of water were applied to the fire several times
to demonstrate the impact of changing these parameters. During Exposure 1, data
were collected from the perspective of a firefighter near the front of the training
company (closer to the source) and during Exposure 2, data were collected from
the perspective of a firefighter located towards the back of the training company.

4. Results and Discussion

4.1. Live-Fire Training Exercises

Data collected from the five different typical live-fire training exercises are summa-
rized in Tables 4 and 5.

Throughout Exercises 1–5, more severe thermal exposures were characterized by
ambient temperatures generally between 150�C and 200�C (Class II and III) and
incident heat fluxes between 3 kW/m2 and 6 kW/m2 (Class III), while moderate
exposures consisted of ambient temperatures around 50�C (Class I) and incident
heat fluxes less than 1 kW/m2 (Class I). These values were determined based on
the average and standard deviation of the top and bottom 10% of the heat flux
and temperature measurements collected from Exercises 1–5. To provide a visual
comparison of the range of different exposure conditions, data collected during a
more severe exposure (Exercise 2) and data from a moderate exposure (Exercise 5)
were plotted against time, as shown in Figure 9. These data provide the first time-
resolved picture of a firefighter’s typical thermal exposure while moving through a
structure and conducting live-fire training. Qualitatively, there exists a positive
correlation between the heat flux and temperature variations with time. However,
the temperature data peaks and valleys tend to lag behind the peaks in heat flux
and are not as severe. Furthermore, the ratio between these measures is not con-
sistent between each training scenario. Even though the same types of fuels are
used in all of these scenarios (straw and wood pallets), the varying quantity of
fuel involvement (due to different levels of fuel consumption and water applica-
tion) throughout each scenario will affect direct radiant load and smoke produc-
tion.
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It has been reported that surface cracking of a firefighter’s SCBA facepiece can
begin to occur at temperatures around 180�C and at an exposure to a heat flux of
5 kW/m2 for a minimum of 12 min [35]. Firefighter radios begin to experience
performance problems (drift of signal frequency, failure to transmit, etc.) when
exposed to Class II/III conditions at 160�C for 15 min [39]. While some environ-
ments encountered during Exercises 1–5 contained temperatures and heat fluxes
that exceeded these values, exposure levels varied throughout each training evolu-

(a) Data with linear scaling

(b) Data scaled to different thermal classes

Figure 9. Local temperature and heat flux (moving average of 5 s) of
a more severe thermal environment (Exercise 2) and a moderate
thermal environment (Exercise 5) encountered during the various typ-
ical response live-fire training exercises.
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tion and were not maintained at these levels continuously for the stated durations.
Intermittent cooling occurred as the firefighter moved through the training evolu-
tion to areas with lower intensity heat flux exposure. So, no degradation of the
firefighter’s PPE or radio was observed during the exposures.

In Tables 4 and 5, the exposure duration is parsed into the average time spent
in each of the NIST Thermal Classes for Exercises 1–5. Based on the temperature
criteria in Table 1, no evolution exposed the firefighters to thermal conditions that
exceed the maximum times associated with each NIST Thermal Class. Using the
heat flux criteria, however, firefighters were exposed to Class III conditions longer
than the suggested maximum time (5 min) for 7 of the 22 exposures encountered
during Exercises 1–5. The longest exposure for a Class III thermal environment
based on heat flux criteria was 8 min and 18 sec at an average heat flux of
4.1 kW/m2. It is important to note that the durations listed for each class do not
typically represent a continuous amount of time at that level; as firefighters moved
throughout the structure, exposure to varying levels of thermal environments
occurred. For example, considering only the temperature data from Exercise 2 in
Figure 9b, Class III conditions were encountered between 79 s and 143 s; 248 s
and 251 s; 253 s and 262 s; and 335 s and 400 s, for a total time of 141 s in Class
III conditions. However, the longest amount of continuous time in Class III con-
ditions was 65 s (the period from 335 s to 400 s). So, for all environments studied
during Exercises 1–5, the longest continuous exposure to conditions at or above
Class III during Exercises 1–5 was 2 min and 55 s. The intermittent thermal expo-
sure conditions studied here may have allowed the firefighter’s SCBA facepeice
and other PPE to dissipate some built up heat due to the interior air movement
which prevented any visual damage to the firefighter’s PPE to occur.

As these results and the tabulated average NIST Thermal Class durations sug-
gest, classifying an exposure using the heat flux criteria portrays a more severe
exposure than if the temperature criteria were used to characterize the same envi-
ronment. In fact, for every exposure encountered during Exercises 1–5, using the
heat flux criteria suggested longer exposures to Class II–IV conditions than when
using the temperature criteria. This result indicates that solely using temperature
measurements to monitor a thermal environment in live-fire training scenarios
may not be sufficient to predict risk to firefighters and that other measurements,
such as heat flux, should be considered.

4.1.1. Comparison of Structure Temperatures to Immediate Environment Tempera-
tures For 14 of the live-fire experiments conducted during Exercises 1–4, station-
ary temperatures were measured at the structure walls as described in Sect. 3.1.
For each experiment, the fire was approximately located in the middle of the
room. The temperatures measured by the thermocouples in the stationary array
were compared to the ambient temperature data collected from the firefighter’s
immediate thermal environment. The firefighters participating in the training exer-
cises were crawling for the majority of the exposure, so the thermocouple used to
measure the ambient temperature of the firefighter’s immediate environment was
generally 0.9 m (3 ft) to 1.4 m (4.5 ft) above the floor.
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Table 6 contains the average ambient temperature measured by the portable mea-
surement system and the average temperatures measured by the wall-mounted ther-
mocouple array at heights of 1.2 m (4 ft) and 2.4 m (8 ft) above the floor during
the 14 exposures. Based on the local measurement position, one would expect the
thermocouple at the 1.2 m location to provide the most likely estimate for the fire-
fighter operating location. However, for 12 of the 14 exposures, the temperature of
the firefighter’s local environment was greater than the temperature measured at
1.2 m (4 ft) above the floor for at least 89% of the duration of the exposure. For 5
of these 12 exposures (2.1, 2.2, 2.3, 4.4, and 4.8), the temperature of the firefighter’s
local environment was between the temperatures at 1.2 m (4 ft) and 2.4 m (8 ft)
above the floor for over 75% of the time, and for 3 of the 12 exposures (1.4, 4.6,
and 4.7), the local environment temperature was greater than the temperature at
the 2.4 m (8 ft) level for more than 75% of the duration.

Correlations between the temperature data sets collected during the 14 expo-
sures were calculated. In general, the correlations between the fixed thermocouples
and local temperatures were poor, though the data from the 2.4 m temperatures
averaged a higher positive correlation with the temperature data from the fire-
fighter’s local environment (0.387) than the data from 1.2 m above the floor
(0.280). However, the range of calculated correlation coefficients is quite large
(-0.618 to 0.943) for both temperature data sets, suggesting that changes in the
local temperature measured by fixed building thermocouples does not provide a
reliable indication of the changes in a firefighter’s local temperature.

Table 6
Average Ambient Temperature of Firefighter’s Local Thermal Environ-
ment and Average Temperatures Measured by the Wall-Mounted
Thermocouples at Heights of 1.2 m (4 ft) and 2.4 m (8 ft) for 14
Exposures

Training exercise � exposure number

Average temperature ± StdDev (�C) at

Firefighter local Room at 1.2 m Room at 2.4 m

1.1 119 ± 27 42 ± 10 150 ± 31

1.2 121 ± 30 22 ± 5 115 ± 40

1.4 95 ± 11 53 ± 5 65 ± 12

2.1 143 ± 35 54 ± 25 273 ± 58

2.2 101 ± 47 17 ± 3 143 ± 56

2.3 87 ± 20 24 ± 3 92 ± 20

3.1 103 ± 47 41 ± 4 88 ± 30

3.2 127 ± 45 47 ± 7 101 ± 27

4.2 96 ± 15 99 ± 16 160 ± 48

4.3 89 ± 25 116 ± 9 198 ± 18

4.4 84 ± 16 64 ± 1 142 ± 13

4.6 78 ± 21 69 ± 2 79 ± 3

4.7 121 ± 19 76 ± 10 118 ± 21

4.8 96 ± 8 73 ± 4 103 ± 7
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For all the exposures considered, the fire was located approximately in the middle
of the room, while the stationary thermocouples were near the walls. The concrete
structure can act as a local heat sink and the distance from the fire source provides an
opportunity for significant mixing of the plume gases with ambient air. Thus, local
readings when the firefighter is closer to the fire are expected to be significantly higher
than the stationary sensor readings. The temperatures measured by the thermocouple
array at the 1.2 m level appear to represent, at best, a lower bound of the temperature
of the immediate environment of firefighters in the studied training exercises. For the
majority of the exposures considered, the firefighter’s local ambient temperature was
between the temperatures measured at 1.2 m (4 ft) and 2.4 m (8 ft) levels, or at
heights greater than the approximate height of the firefighter’s immediate environ-
ment in the training scenario (e.g., Figure 10). The firefighter’s local temperatures
measured here were within the 100�C to 190�C range established by Rossi as the
approximate temperature range in training fires at 1 m (3.3 ft) off the ground [16].
Rossi’s data were acquired approximately 1 m to 2 m (3.3 ft to 6.6 ft) from the fire set
in order to approximate the firefighter’s exposure. While this may provide a better
approximation for the more intense conditions experienced by the firefighters com-
pared to the wall mounted thermocouples at 1.2 m (4 ft), such an approach would be
difficult to reliably utilize in a training environment where firefighters are moving.
Further, the heat flux values reported by Rossi are significantly higher than the
portable system’s measurements reported here, likely due to the consistent and close
proximity to the fire set in the former study. It is imperative that anyone using build-
ing temperatures to monitor a live-fire training environment (e.g. safety officer) under-
stands the limitations of the data and uses it only in an advisory manner to maintain a
safe training environment. The typical deployment of these sensors is not sufficiently
dense within the buildings to describe the fire environment. However, a few thermo-
couples in the walls are the best-case scenario currently utilized in burn structures.

Figure 10. Local temperature of the firefighter’s immediate environ-
ment and temperature data from the stationary thermocouple array in
Structure A during Exercise 2.
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These temperature comparisons also provide useful information for investiga-
tors designing research protocols for physiological testing of firefighters. Studies,
such as those conducted in live-fire training buildings, have reported ambient tem-
peratures at the 1.2 m (4 ft) level as approximately 71�C to 82�C [22], which is
near the upper end of the average temperatures reported in Table 6 at 1.2 m
(4 ft). However, these values are typically lower than the average temperatures of
the firefighter’s local environment during the same exposures. Laboratory-based
physiological test scenarios (which are often necessitated due to sensitive equip-
ment) are typically performed at temperatures around 35�C to 50�C. While these
values match the lower end of the 1.2 m (4 ft) building temperature conditions,
they do not approximate the firefighter’s local exposure conditions. Furthermore,
these physiology-focused studies typically employ temperatures that are relatively
constant, which is different than the continuously varying temperatures typically
encountered on the training ground (Figure 9). As Selkirk and McLellan [23] have
shown, physiological responses to activities in PPE are affected by the temperature
of the environment, so these differences should be considered in future iterations
of firefighter physiological studies where possible. Finally, the effect of heat flux
on firefighter physiological responses has not been studied to the same level of
detail as exposure to high ambient air temperature environments.

4.2. Fire Behavior Demonstrations

4.2.1. Traditional Fire Behavior Demonstration The traditional fire behavior
demonstration in Structure B resulted in firefighter exposure conditions shown in
Figure 11. Table 7 summarizes the average and maximum heat fluxes and temper-
atures measured during the experiment along with the duration spent in each
NIST Thermal Class based on both criteria.

Figure 11. Local temperature and heat flux (moving average of 5 s)
of the firefighter’s immediate environment measured during the fire
behavior demonstration in Structure B.
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Compared to the live-fire training exercises, the thermal environment encoun-
tered during the traditional fire behavior demonstration in Structure B was
defined by relatively moderate temperatures averaging 87�C (Class I) and reaching
a maximum of 136�C (Class II) and moderate to severe incident heat fluxes aver-
aging 2.1 kW/m2 (Class III) and reaching a maximum of 10.0 kW/m2 (Class III/
IV). The average heat flux was typically higher than the coordinated fire attack
scenarios, yet the average temperature was near the lowest levels encountered dur-
ing the coordinated attack scenarios. In fact, based on the NIST Thermal Class
heat flux criteria, the firefighters were exposed to Class III conditions for 7 min
and 51 s, which exceeds the maximum suggested time of 5 min (as with the coor-
dinated attack scenarios, the firefighter did not experience a continuous exposure
to these levels). On the other hand, the conditions never entered the Class III
region based on the temperature criteria. Figure 11 shows significant reductions in
temperature at approximately 375 s and 675 s when water is applied to the fire.
These breaks in the high temperature and heat flux conditions may have been
enough to keep PPE damage from occurring. It is interesting to note that a sharp
spike in local heat flux is experienced each time water is briefly applied to the fire.
This phenomenon is attributed to convective heat transfer due to steam generation
in the relatively small, enclosed room and close proximity to the fire set.

4.2.2. ‘‘Flashover Simulator’’ Fire Behavior Demonstrations Figure 12a, b contain
plots of the ambient temperature and heat flux as a function of time for Expo-
sures 1 (firefighter located closer to the fire set) and 2 (farther from the fire set),
respectively, for the ‘‘flashover simulator’’ fire behavior demonstration in Struc-
ture C. Tables 8 and 9 list the average and maximum heat fluxes and ambient
temperatures of the firefighter’s immediate environment for each of the two expo-
sures along with the total amount of time spent in each NIST Thermal Class.

Once again, using the ambient temperature data to define the thermal environ-
ment of each exposure produces drastically different results than using the incident
heat flux data. Based on ambient temperature data, the environment of the ‘‘flash-
over simulator’’ training exercise was quite mild, with average ambient tempera-
tures of 38�C and 51�C (Class I). Class II conditions were experienced for a total
of 6 s during Exposure 1 and for a total of 4 s during Exposure 2, each instance
occurring at the very end of the exposure when the firefighter stood up to exit the
container. However, the incident heat flux data from the two exposures suggest
the environment of the ‘‘flashover simulator’’ training exercise was severe, contain-
ing average heat fluxes of 3.0 kW/m2 and 2.3 kW/m2 (Class III in both cases) and
maximum heat fluxes of 11.3 kW/m2 and 8.3 kW/m2 (Class IV and III, respec-
tively) for each exposure. Additionally, the NIST Thermal Class durations gener-
ated using the heat flux data suggested that firefighters were in conditions that
exceeded the Class III maximum recommendation (5 min) for each exposure.

To further visualize the differences in NIST Thermal Classifications based on
heat flux and temperature data, kernel density estimations (KDEs) were calculated
to estimate the probability density functions of the heat flux and temperature data
sets from each of the three fire behavior demonstration exposures (Figure 13).
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The KDEs demonstrate the effect of the large radiant heat loading component
of the fire behavior demonstrations, specifically on how these scenarios are classi-
fied by the NIST Thermal Classifications. The differences between the temperature
and heat flux classifications are more extreme in the fire behavior demonstrations
than the differences observed during Exercises 1–5. Compared to the coordinated
attack scenarios, the fire behavior scenarios exposed firefighters to the highest heat
flux conditions, yet also to the lowest ambient air temperature. Fire behavior sce-
narios typically involve larger radiant heat fluxes with less smoke (at least at the

(a) Exposure 1

(b) Exposure 2

Figure 12. Local temperature and heat flux (moving average of 5 s)
of the firefighter’s immediate environment during the two ‘‘flashover
simulator’’ fire behavior demonstration exposures in Structure C.
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trainee level) than the attack scenarios. While these demonstration scenarios pro-
vide great opportunities for firefighters to learn fire behavior in an immersive set-
ting, it also exposes firefighters to conditions that can lead to PPE—particularly
SCBA and helmet—damage and potential risk for increased thermal storage in
bunker coats.

One important, yet unexpected, outcome from the ‘‘flashover simulator’’ sce-
nario was that towards the end of Exposure 1, the SCBA facepiece of the fire-
fighter equipped with the portable measurement and data acquisition system
began to form bubbles (the firefighter immediately left the structure upon noticing
this damage). A picture of the damaged facepiece is shown in Figure 14. Although
the ambient temperature data indicate an extremely mild environment was present
during the ‘‘flashover simulator’’ exercise and the firefighters participating in the
exercise felt no physical discomfort, the thermal environment was quite severe.

According to Putorti et al, an SCBA facepiece can begin to bubble when
exposed to a heat flux of 5 kW/m2 for approximately 12 min or 7 kW/m2 for 6
min [35]. During Exposure 1, bubbling of the facepiece began to occur after
roughly 9 min of Class I and Class II heat flux exposures (average of 1.1 kW/m2)
followed by less than 9 min of Class III heat flux exposures containing an average
of 5.0 kW/m2. Preheating of the SCBA facepiece during the initial Class I and II
conditions likely contributed to the earlier onset of damage at this heat flux level
(i.e. 9 vs. 12 min). Thus, predicting risk for damage to PPE should account for
the entirety of the exposure conditions, even those that may be considered subcrit-
ical based on the NIST Thermal Classes. Interestingly, during Exposure 2, no
degradation occurred after more than 10 min of Class II exposure averaging
1.7 kW/m2 and just under 10 min of Class III conditions averaging 3.1 kW/m2.

Figure 13. Estimated probability density functions for the National
Institute of Standards and Technology Thermal Classes based on heat
flux and temperature data from the Structure B traditional (FB) and
Structure C ‘‘flashover simulator’’ (FL) fire behavior demonstrations.
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Compared to Exposure 1, the second exposure contained a longer duration at
Class III, yet no visible damage occurred. This outcome could suggest that condi-
tions in this range may need to be studied more carefully in terms of risk for PPE
damage. For example, Foster and Roberts [12] propose slightly different exposure
criteria where ‘Hazardous Conditions’ include heat fluxes from 1 kW/m2 to 4 kW/
m2 while 4 kW/m2 to 10 kW/m2 would be considered ‘Extreme Conditions’.

As shown repeatedly in these training scenarios and demonstrations, the mea-
sured heat flux suggests a more severe environment than the temperature measure-
ments. In this case, the local temperature measurements indicate a very mild
environment, yet fire fighting PPE was damaged. Only by measuring the local heat
flux would we have any indication that these conditions reach the Class III level
and present risk for such damage. While temperature measurements can be made
in a simple and cheap manner, it appears more valuable to characterize the fire
environment by the relatively expensive heat flux measurements.

5. Conclusions and Future Works

In order to effectively measure the heat flux and ambient temperature of a fire-
fighter’s local environment during live-fire training exercises, a portable measure-
ment and data acquisition system was created and integrated into firefighter PPE.

Figure 14. Image of the facepiece damaged during Exposure 1 of
the ‘‘flashover simulator’’ demonstration.
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Laboratory experiments were conducted at NIST to calibrate and characterize the
variability associated with the HFM module of the portable measurement and
data acquisition system compared to a NIST-traceable Schmidt–Boelter total heat
flux gauge. The portable system was then used to measure the temperature and
incident heat flux of a firefighter’s immediate thermal environment in numerous
live-fire training scenarios.

Of the environments encountered during the training exercises, the most severe
thermal environments were typically defined by ambient temperatures generally
between 150�C and 200�C and incident heat fluxes between 3 kW/m2 and 6 kW/
m2, while the less severe environments consisted of ambient temperatures generally
around 50�C and incident heat fluxes around 1 kW/m2.

NIST Thermal Class definitions were used to better establish exposure severity
of every live-fire training environment studied. For every exposure, heat flux data
produced higher estimates for severity of exposure than those derived from tem-
perature data. The difference in the exposure estimates was most extreme during
the ‘‘flashover simulator’’ training exercise. Of particular interest, minor damage
occurred to an SCBA facepiece in conditions in the Class I range based on tem-
perature criteria, but Class III based on heat flux criteria.

Finally, the temperature data collected from the training structure’s wall moun-
ted, stationary thermocouple array represented only a rough approximate bound
of the actual temperature of the immediate training environment. For the majority
of the exposures studied, the actual local temperature of the crawling firefighter
was between the temperatures measured at the 1.2 m (4 ft) and 2.4 m (8 ft) levels.
Those using thermocouples to monitor the thermal conditions of a live-fire envi-
ronment must understand the limitations of this measurement.

The portable measurement and data acquisition system that has been developed
and proven effective during this project may play a significant role in future
research such as studying other types of training scenarios (gas-fed burners, prox-
imity or wildland fire fighting, etc.) or to study the impact of fire service tactics
and strategies. Considering the lack of agreement between firefighter worn local
and building installed temperature measurements, as well as the absence of con-
gruence between temperature and local heat flux measurements, a useful future
investigation could study improved methods of fixed environmental monitoring
techniques, such as plate thermometers. Combining this thermal mapping capabil-
ity with 3D firefighter tracking tools might also provide great additional insight
into the locations where peak temperatures and heat flux exposures are encoun-
tered.
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