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Abstract
We evaluate the value of loan monitoring systems for a bank controlled by a micro-
prudential regulator. We investigate dynamic systems (an information channel that generates
information flow about quality) and static systems (where the lender receives a single signal
about loan quality). We find that dynamic systems carry a regulatory charge that dominates
the benefit of the systems and are therefore unprofitable, whereas static systems have posi-
tive value. Specifically, lenders can profitably dismantle their dynamic systems and instead
turn to static monitoring systems. The model reveals, therefore, a potential weakness of
micro-prudential regulation.

Keywords Credit scoring · Dynamic monitoring · Loan risk · Loan sales · Optimal
stopping · Static monitoring

JEL Classification G21 · G28 · G32

1 Introduction

This paper evaluates the value of loan monitoring systems for a regulated bank in a
micro-prudential regulation framework. Many argue that the micro-prudential approach
to financial regulation is inadequate. See, for instance, Kahou and Lehar (2017), who
argue that the regulator’s focus on institutions can expose the banking system to systemic
vulnerability. Our paper points out a direct negative effect of micro-prudential regula-
tion: it discourages loan monitoring. Loan monitoring is essential in establishing a good
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lender-borrower relationship. Our paper argues that financial regulation threatens this rela-
tionship. Thus, even if the regulator aims to strengthen individual financial institutions, the
effects on loan monitoring can be harmful as it jeopardizes the benefits arising from the
closeness between borrowers and lenders (Boot 2000).

Our paper analyzes the use of monitoring systems. We define dynamic systems as an
information channel that reveals information about loan quality in real-time, whereas static
systems produce an information signal that instantly reveals information about loan quality.
The systems work differently: Static monitoring means that the bank makes the risk man-
agement decision about the loan while purchasing information about the loan quality. Loan
monitoring therefore leads to a resolution of risk with immediate effect. Dynamic moni-
toring means that the bank monitors the loan until the bank determines the optimal loan
management policy. In the latter case, the bank accumulates risk while monitoring the loans;
thus, it is likely to take more risk penalized by the regulator. Hence, we find that a micro-
prudential regulator indirectly encourages the bank to dismantle its dynamic monitoring
systems to reduce regulatory charges.

In a micro-prudential framework for regulation, the regulator imposes a charge on the
bank calibrated to the bank’s loan portfolio’s amount of risk. Our model’s fundamental
assumption, which is consistent with current practice, is that the charge is metered to the
loans’ risk so that the charge for safer loans is less than for riskier ones. A higher charge
incentivizes the bank to offload some of its risky loans, consistent with observed behavior.
With static monitoring, the bank instantly takes into account the information revealed by
the system. In contrast, the information arrives as an information flow with dynamic sys-
tems, separating information gathering from risk management decisions. The bank therefore
anticipates new information before making risk management decisions. The risk accumu-
lates until the bank has sufficient information to manage risk, leading to higher regulatory
charges. The fact that dynamic monitoring leads to higher risk does not, in itself, explain
our findings. One would think that the higher regulatory charge makes dynamic systems
less profitable than static systems rather than downright unprofitable. The paper’s point is to
demonstrate loss-making: even if the bank can acquire better dynamic systems free of cost,
it would never choose to do so — in fact, it would choose to dismantle its existing ones.

The lack of investment in dynamic monitoring is an obvious concern. As noted by Boot
(2000), the literature on banking assumes that banks develop a relationship with their bor-
rowers. Thus, the efficiency and stability of the banking sector require that information
about borrowers is available. The Basel Committee states “that a significant cause of bank
failures is poor credit quality and credit risk assessment. Failure to identify and recognize
deterioration in credit quality in a timely manner can aggravate and prolong the problem.
Thus, inadequate credit risk assessment policies and procedures, which may lead to inade-
quate and untimely recognition and measurement of loan losses, undermine the usefulness
of capital requirements and hamper proper assessment and control of a bank’s credit risk
exposure.”1 A compelling argument in this context is that the bank should be able to invest
in loan monitoring systems to both strengthen its ability to handle regulatory pressure as
well as to boost the value of its loan portfolio. The static analysis of our model supports
this view. The dynamic analysis produces the exact opposite conclusion: regulation encour-
ages banks to dismantle their monitoring systems because the private value of monitoring
is negative. There may be other benefits of monitoring. For instance, the bank may learn
new features about the loan market through loan monitoring to design and offer new credit

1Basel Committee on Banking Supervision: Sound credit risk assessment and valuation for loans, June 2006.
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products to the market. However, the fundamental problem remains that the bank is better
off gathering such information through static monitoring systems rather than dynamic ones.

We strip down the model to its simplest form. It consists of a regulated lender with
fixed lending opportunities but may have different monitoring systems with varying quality.
The regulator imposes a charge on the bank that depends on the loan’s riskiness: higher
risk leads to a higher charge. Static monitoring produces a single signal. A credit scoring
system is an example of a static monitoring system. The process is thus binary: it produces
a positive or negative signal with no time delay. Dynamic monitoring is an ongoing activity
(an information channel) that detects and records new information in real-time. An example
is relationship banking, surveyed in Boot (2000). Relationship banking describes a situation
where the bank builds a relationship with the borrower to offer advice and, in turn, collects
information about the borrower. A related system, described in Mester et al. (2001), involves
monitoring the borrower’s current account activity to assess the quality of the borrower’s
loans continuously. A costly dynamic monitoring process has a starting point and a stopping
point, which requires the bank to hold monitored loans until the monitoring stops. The fact
that the monitoring activity itself is riskier in the dynamic setting than in the static setting is
thus intuitive.

Nevertheless, it is still an open question why the extra profit from using improved mon-
itoring technology is overwhelmed by the additional cost of regulation. The answer to this
question depends on the way bank regulation works. The regulator controls bank risk by
loading costs on the bank for holding risky loans. The bank therefore only monitors loans
above a certain quality threshold with dynamic monitoring. The improved monitoring tech-
nology will, therefore, extend into new loans that are already relatively safe. Hence, the total
monitoring cost increases without the bank taking new risks in the loan market. The bank
therefore will find it profitable to dismantle its monitoring technology to comply with the
regulation. This effect will not happen with static systems, as improvements in monitoring
technology lead to monitoring new risky loans. With the monitoring signal available, the
bank can immediately manage the loan by offloading it if the risk turns out to be too high.

We measure monitoring quality along two dimensions, which are similar for both the
static and the dynamic systems. First, otherwise equivalent monitoring systems with smaller
monitoring costs are better than those with higher monitoring costs. Second, otherwise
equivalent monitoring systems revealing more information are better than those that reveal
less information. Also, to measure the usefulness of such improvements, we use two
dimensions, a social one and a private one. First, the use of loan monitoring systems has
implications for the riskiness of the bank. Bank risk has a social cost. Hence, a system that
lowers bank risk is socially desirable. Second, the use of loan monitoring systems has impli-
cations for the profitability of the bank; thus, there is a private value of loan monitoring
systems, and the system that increases bank value is privately desirable. The first dimen-
sion is neutralized with adaptive bank regulation since the regulator controls the bank’s risk
within tight limits. Adaptive bank regulation therefore keeps the social value of monitoring
systems constant (the regulator does not allow social slack). The value of the investments in
loan monitoring is determined exclusively by the private benefit to the bank’s shareholders.
With dynamic systems, the bank’s shareholders are always worse off with a better monitor-
ing system, and with static systems, the bank’s shareholders are better off with a cheaper
monitoring system and a more informative system under certain conditions. With dynamic
systems, the regulator loads regulatory costs on the bank as long as the bank holds the
loan, whether it is under monitoring or not. There is no regulatory cost associated with the
monitoring activity itself for static systems.
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Our model adds to many useful applications of continuous-time optimal stopping model-
ing techniques to economics and finance problems. Among related works, Daley and Green
(2012) formulates a model in which an informed seller decides the optimal timing of the
sale of a good to an uninformed buyer who gradually learns about the good’s quality. In
the finance literature, El Caroui et al. (2005) applies the technique to portfolio management
involving option based portfolio insurance, Dai et al. (2007) to mortgagors’ prepayment
decisions, and (Thijssen 2008) to mergers and acquisitions.

Concerning existing works on loan monitoring, the interpretations of our results require
some care. Some existing works view monitoring as an intervention exercise, see for
instance Holmstrom and Tirole (1997), Parlour and Plantin (2008), Pennacchi (1988), and
Loranth and Morrison (2009) and Chemla and Hennessy (2014). In contrast, our model sees
monitoring as a pure information-gathering exercise, separating intervention from informa-
tion gathering. The value of the option to intervene is, moreover, derived endogenously.
However, we should note that the information gathered by the bank cannot lead to gains
when dealing with investors (when selling loans), as it is essentially made public. Monitor-
ing often appears as a feature in the agency literature. See for instance Barbos (2019) for a
recent example. We note that in this literature, monitoring is used primarily as a synonym for
the term verification. Finally, our paper is related to Boot (2000) who surveys relationship
banking. Boot (2000) analyzes the benefits of information gathering for the bank through
building a close relationship with its borrowers, whereas our paper discusses how regulation
is a threat to bank monitoring. An empirical study of relevance to our model is Kara et al.
(2015), which finds that securitized loans deteriorate in quality more rapidly than loans held
by the original lender. This finding is consistent with the notion that banks sell low-quality
loans, which also arises in our model.

The paper proceeds as follows. In Section 2, we present a model of dynamic monitor-
ing systems. In Section 3, we carry out an equilibrium analysis of this model and a static
benchmark model. Section 4 concludes.

2 Model

This section describes a model of dynamic loan monitoring under micro-prudential regula-
tion. We set the model within a risk-neutral framework with a constant risk-free interest rate
of r . The first part of the model describes the monitoring process for individual loans, and
the second part describes the regulation of the lender’s loan portfolio. We assume throughout
that the bank faces the same lending opportunities regardless of the monitoring technology
but will adapt the risk management policy of its loan portfolio to the available monitoring
technology and the requirements imposed by the regulator.

2.1 Monitoring individual loans

The lender operates in a loan market where it decides how to manage its loans to control
risk. The management boils down to deciding which loans to keep in-house on its books
and which loans to sell to others. The bank grants all loans based on an initial assessment
of loan quality. The loan contracts are identical and consist of a promise to pay a perpetual
coupon c. Each loan is either safe or risky. If the loan is safe, it has an intrinsic value of
c
r
, which is the discounted value of the loan’s coupon flow. If the loan is risky, it has an

intrinsic value of c
r

− k where the first term is the discounted value of the loan’s coupon
flow and the second term is the present value of the lender’s losses. Throughout the model,
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we assume that an observable credit event triggering the losses k does not happen within
the time-span of loan monitoring, so that the lender’s monitoring systems produce all new
information about the loan quality.2

Let π denote the probability that the loan is safe and 1−π the probability that the loan is
risky. The initial assessment at time 0 is π0, and the bank offers the borrower a value VS(π0),
which is the opportunity cost of the loan. The opportunity cost is the value of the loan if it
is sold immediately to the market. The value VS = c

r
− (1 − π0)k − g, which consists of

the expected value of the cash flows of the loan, c
r

− (1 − π0)k, minus a signalling cost g

that is incurred to convey the loan quality π0 to the investors in the market.
The monitoring system allows the bank to observe a signal process {xt }, t ≥ 0, which

gives the bank an option to hold the loan in-house if it values the loan higher than its oppor-
tunity cost. In line with existing models of loan monitoring such as Holmstrom and Tirole
(1997) and Parlour and Plantin (2008), we assume the bank can observe this signal at a con-
tinuous cost ofm. The signal process follows a Brownian motion dxt = θμdt+σdBt where
θ = 1 if the loan is safe and θ = 0 if the loan is risky. The drift and diffusion parameters
μ and σ are strictly positive, and Bt is a standard Brownian motion. The bank observes the
realization path of xt , which generates a posterior belief process πt . The posterior probabil-
ity process is πt = P(θ = 1|Fx

t ). This process solves the following stochastic differential
equation whose derivation is given in Appendix A:

dπt = μ

σ
πt (1 − πt )dB̃t , π0 = π, B̃t = 1

σ

(
xt − μ

∫ t

0
πsds

)
, (1)

where B̃t is a standard Brownian motion. Any claim under monitoring will depend on the
posterior process (1). If the loan is not under monitoring, the claim value is constant and
depends only on the prior beliefs π0. Figure 1 illustrates the optimal monitoring process,
which is derived below.

We impose a regulatory cost for retaining risky loans. Following Parlour and Plantin
(2008) and Wu and Zhao (2016), the cost is given by the parameter κ . The cost to the bank
of holding a loan of quality π is calibrated to the loan quality π so that it equals r(1 −
π)κ . We assume that the regulator can restrict lending only by calibrating the regulatory
cost κ . We assume further that the regulatory cost is always small compared to the losses
associated with bad loans, or κ < k. The regulator accesses the bank’s internal monitoring
technology, observing individual loans’ quality π . Thus, the parameter k determines the
market’s assessment of loan risk, and the parameter κ determines the regulator’s loan risk
assessment.3 If the loan is placed in-house with no further monitoring, the prior belief about
the loan quality determines the regulatory charge if no monitoring ever took place, or the
most recent posterior belief about loan quality if monitoring did take place. We can see right
away that if the signaling cost g is zero, then no loans would ever be held in-house, and if
the regulatory cost κ is zero, then no loans would ever be sold. In either case, no monitoring
would ever take place. Monitoring is optimal only if the bank wants to keep some loans
in-house and sell some loans.

2This assumption enables us to focus on the data provided by loan monitoring only. If credit events happen
during the monitoring period, then obviously, loan monitoring becomes redundant.
3A regulatory charge that is linear in loan quality is unnecessarily restrictive but will facilitate tractable
solutions. It suffices for our argument that if the regulator imposes a higher regulatory charge to curb risky
lending, the bank must also pay more for the relatively safer loans. If the regulator could charge the bank an
infinite amount for loans below a certain quality threshold and nothing for loans above, this would always
induce an optimal level of risky lending. This solution is, however, unrealistic.
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Fig. 1 Loan monitoring with dynamic monitoring systems: The probability of loan quality is π . The bank
uses the system to observe the posterior beliefs π in real time. When the loans are of sufficiently high quality
and reaches the upper barrier point π∗, the monitoring stops and the loan is held in-house. When the loans
are of sufficiently low quality and reaches a lower barrier point π∗∗, the monitoring stops and the loan is sold

The monitoring decision is an optimal stopping problem, where the bank monitors loans
until an optimal stopping time t∗. At the stopping time, t∗, the bank decides to hold the
loan in-house or sell the loan. The event that πt for the first time goes through the barrier
π∗ from below signifies that the bank decides to hold the loan in-house with no further
monitoring. The event that πt for the first time goes through the barrier π∗∗ from above
signifies that the bank decides to sell the loan with no further monitoring. If π0 /∈ (π∗∗, π∗),
then t∗ = 0 and the loan is held in-house or sold immediately. The loan value at the barrier
π∗ is VI (π

∗). The value of the loan at the barrier π∗∗ is VS(π∗∗). The values VI and VS take
simple forms: VI (π

∗) = c
r
−k(1−π∗)−κ(1−π∗), which consists of the discounted value

of the risk free cash flow c minus the expected discounted losses and minus the discounted
regulatory charge for holding risky loans. As mentioned above, the sale value VS(π∗∗) =
c
r
−k(1−π∗∗)−g, which consists of the risk free cash flow minus the expected discounted

losses and minus a signaling cost g. The signaling cost g conveys the information π to the
investors buying the loan. The value of a loan that is being monitored, denoted VM(πt ), is
expressed as follows (the derivation is shown in Appendix A): For πt ∈ [

π∗∗, π∗],

VM(πt ) = E

{∫ t∗

0
e−ru(c − m − rκ(1 − π))du + e−rt∗ max {VS(πτ ), VI (πτ )}

}
. (2)

We describe the dynamic monitoring system by its cost m and its efficiency as measured by
the signal-to-noise ratio of μ

σ
. We define an optimal monitoring policy as follows.
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Definition 1 Bank’s optimal stopping rule is a pair (π∗, π∗∗) that satisfies the following
conditions:

(a) The value function VM satisfies (A.5) for all πt ∈ [π∗∗, π∗], and VM(πt ) ≥
max{VI (πt ), VS(πt )};

(b) The trigger point π∗ satisfies VM(π∗) = VI (π
∗) and d

dπ
VM(π∗) = d

dπ
VI (π

∗);
(c) The trigger point π∗∗ satisfies VM(π∗∗) = VS(π∗∗) and d

dπ
VM(π∗∗) = d

dπ
VS(π∗∗).

Condition (a) repeats the rational valuation condition plus the condition that the value of
a monitored loan VM given by (2) must be higher than both VI and VS in the monitoring
region as otherwise, monitoring cannot be optimal. Conditions (b) and (c) are value match-
ing and standard smooth pasting conditions. With this definition, we obtain the following
proposition.

Proposition 1 For m, σ/μ and κ given, the optimal thresholds π∗ and π∗∗ have the
following properties:

(a) π∗ is strictly decreasing and π∗∗ is strictly increasing with m;
(b) π∗ is strictly decreasing and π∗∗ is strictly increasing with σ/μ;
(c) π∗ and π∗∗ are both strictly increasing with κ .

(Proof) See Appendix B.
The monitoring region is the interval between the lower bound π∗∗ and the upper bound

π∗. Proposition 1 outlines how the monitoring region is affected by changes to the moni-
toring technology and regulation. If the cost of monitoring increases, the monitoring region
narrows. The narrowing consists of a reduction of the upper bound and an increase of the
lower bound. The narrowing occurs because the bank will optimally abandon the monitor-
ing activity on some loans near the bounds due to the higher cost. The monitoring will also
narrow with a reduction of the signal-to-noise ratio. Such a reduction represents a decrease
in the informativeness of the monitoring activity. The bank will consequently abandon the
monitoring activity on some loans near the upper and lower bounds. Finally, there is an
upward shift in the monitoring region when there is an increase in regulation cost. As the
cost of holding loans under monitoring or placed in-house increases, the bank becomes more
reluctant to engage in both, and the monitoring region shifts upwards with the increase in
the regulatory cost. We illustrate the monitoring equilibrium in Fig. 2. In the area where the
loan quality is below the lower monitoring barrier π∗∗, the loan will be sold immediately as
the value of keeping the loan in-house is too small. In the region where the loan quality is
higher than the upper monitoring barrier π∗, the loan will be placed in-house with no further
monitoring. In between the two boundaries, the bank monitors the loan. Depending on the
information signal, the bank will ultimately hold the loan in-house if the information signal
pushes the loan quality up to the upper barrier and sold if the information signal drives the
loan quality down to the lower boundary.

What happens for limiting values of the parameters? We expect that κ will be calibrated
to the desired outcome of regulation, which we discuss in more detail below. However, the
cost of monitoring and the noise-to-signal ratio are exogenous, and it may be interesting
to discuss what happens when the cost of monitoring and the noise-to-signal ratio become
high. The monitoring region vanishes for some finite cost of monitoring, as the benefit
of monitoring only has a finite value. Thus, there must exist a limiting cost that prevents
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Fig. 2 Loan value as a function of loan quality π : Loans that are of quality below the lower monitoring
barrier π∗∗ are sold and valued at the sale value VS . Loans that are of quality above the upper monitoring
barrier π∗ are held in-house at the holding value VI . The loans that in between are monitored and valued at
the monitoring value VM . The figure shows in blue the higher of the three values

all monitoring altogether. As for the noise-to-signal ratio, we know that a higher noise-to-
signal ratio leads to a narrower monitoring region (Proposition 1 (b)), and therefore also a
lower monitoring gain. Thus, there is a finite noise-to-signal ratio at some point that makes
monitoring too costly (whatever the monitoring cost m). Limiting equilibria could only
exist, therefore, if m = 0 and σ/μ → ∞. However, as σ/μ → ∞, the value function
will not be properly defined (see Appendix A and the derivation of the value function VM ).
Thus, the equilibrium degenerates in the limit because the equilibrium conditions as set out
in Definition 1 cannot be satisfied.

2.2 Regulation of loan portfolios

Loans arrive and exit (through prepayment) randomly. We need to assume withdrawal to
avoid the bank growing its portfolio indefinitely. The intensity of arriving loans is uniform
across all loan qualities on the interval [0, 1], and the intensity of exiting loans is also fixed
and uniform on the interval [0, 1]. The outflow of loans depends on the number of loans
the bank holds. Therefore, the bank will grow its holding of a given quality loan until the
outflow equals the inflow. We arrive, therefore, at a steady-state where the bank’s loan
portfolio is stationary in the sense that the distribution of loans the bank holds of various
riskiness is constant, and in particular, uniformly distributed between the lower monitoring
barrier π∗∗ and the upper barrier 1. The bank sells arriving loans of quality below π∗∗
immediately.

The regulator chooses an adaptive policy of regulation where the regulator calibrates the
charge κ to keep the bank risk below a certain threshold. In steady-state, the bank holds a
loan portfolio with uniform distribution of quality between the lower barrier π∗∗ and the
upper barrier 1. The bank will monitor loans that are between the lower barrier π∗∗ and the
upper monitoring barrier π∗. Also, note that the steady-state assumption has no bearing on
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each loan’s risk management, as outlined in Proposition 1, since the withdrawal of loans
happens randomly. Hence, the bank’s incentive to monitor each loan within the barriers π∗∗
and π∗ remain the same. The regulator’s choice of κ may influence the lower barrier point
π∗∗. If there is an increase in the lower monitoring barrier, the bank will respond by selling
a chunk of loans so that all loans under monitoring have quality above the new barrier.
The uniformity assumption thus remains in place. However, if there is a lowering in the
monitoring barrier, the bank will temporarily wish to hold more incoming loans of quality
lower than the old barrier point when there is no existing portfolio to generate an offsetting
outflow. Therefore, the bank will adjust its portfolio until it finds a new steady state.

In steady-state, each loan of quality π leads to expected losses k(1 − π). A uniform
distribution of loans between π∗∗ and 1 means that we can define the expected loan losses
by ϕ(κ):

ϕ(κ) =
∫ 1

π∗∗(κ)

k(1 − π)dπ . (3)

The regulator imposes an optimal regulatory cost κ∗ such that the risk measure in (3) takes
a maximum tolerance value ϕ(κ∗) = ϕ̄. The monitoring region will shift upwards as the
regulator increases the regulatory cost κ (Proposition 1). The regulator therefore reduces the
bank’s loan losses by increasing the regulatory cost of κ . Hence, the regulator chooses the
optimal regulation κ∗ such that the expected loan losses do not exceed a certain threshold
of ϕ̄.

3 Equilibrium analysis

This section asks whether an improvement in the monitoring systems increases the loan
portfolio’s average value. First, we analyze the dynamic framework set out in the preceding
section. We provide the necessary formal proofs in the appendix. However, the conclusions
are ultimately clear cut and show that an improvement hurts the loan portfolio’s average
value and can make the bank lose out to its competitors. Second, we analyze the static
monitoring systems, and we find the opposite result.

3.1 Equilibrium under dynamic monitoring systems

A loan of quality π has a market value of VS(π). The bank can enhance this value by
holding the loan in-house at the value VI (π) or monitoring the loan at the value VM(π).
The intermediation surplus of a given loan is the maximum of these three values minus the
market value, that is,

V (π) = max{VS(π), VM(π), VI (π)} − VS(π). (4)

We notice that the intermediation surplus in (4) measures the excess value of a loan over
and above its sale value VS , thus loans that are sold immediately will not contribute to the
value of the bank. The bank operates in a steady-state equilibrium where the distribution of
loan quality is constant. If we assume it is uniform across the interval [0, 1], the expected
value of intermediation of a loan is a function of κ , m and σ/μ:

EV (π0; κ, m, σ/μ) =
∫ 1

0
V (π0; κ, m, σ/μ)dπ0 =

∫ 1

π∗∗(κ)

V (π0; κ, m, σ/μ)dπ0. (5)

The expected intermediation surplus in (5) and the risk measure in (3) depend on the
assumption that the uniformity of the distribution of loan quality in steady state is not
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affected by regulation. A change in regulation could lead to both (3) and (5) becoming func-
tions not only of the lower monitoring barrier π∗∗(κ) but also of distributional changes to
the loan portfolio. However, the following proposition demonstrates that regulation implies
no distributional changes to the loan portfolio so that the loan quality distribution remains
uniform.

Proposition 2 Regulatory cost κ has no impact on the steady state distribution of loan
quality.

(Proof) See Appendix B.
Hence, we can define the following value function for the intermediation surplus for the

bank, as a function of regulation, the monitoring cost, and the noise-to-signal ratio:

W(m, σ/μ) := EV (π0; κ∗(m, σ/μ),m, σ/μ). (6)

We analyze the impact on the intermediation surplus in (6) from making improvements in
the monitoring technology, particularly the effects of a reduction in the cost of monitoring,
m, and an increase in the signal-to-noise ratio μ/σ .

Proposition 3 The monitoring cost m has the following effects on the bank’s surplus
W(m, σ/μ), the upper threshold π∗ and the regulatory cost of risk capital κ∗ imposed by
the regulator:

(a) W(m, σ/μ) is strictly increasing in m;
(b) π∗ is strictly decreasing in m;
(c) κ∗ is strictly decreasing in m.

(Proof) See Appendix B.
Lowering the monitoring cost reduces the bank’s intermediation surplus, and it becomes

more reluctant to place a loan in-house by monitoring the loan longer. The main reason
for the first effect is that lowering the monitoring cost leads to a higher regulatory cost
of risk capital κ∗, as pointed out in Proposition 3 (c). The bank is, therefore, penalized
by the regulator for making investments to lower the monitoring. The second effect is a
consequence of the fact that lowering the monitoring cost leads to more monitoring activity.
Even though the two effects are offsetting, it will always be the case that the increase in the
regulatory charge dominates the effect of lowering the monitoring cost. Hence, the bank is
always worse off with cheaper monitoring. Next, we present the following result concerning
the effects of signal quality σ/μ.

Proposition 4 The signal quality σ/μ has the following effects on the bank’s surplus
W(m, σ/μ), the upper threshold π∗ and the regulatory cost of risk capital κ∗ imposed by
the regulator:

(a) W(m, σ/μ) is strictly increasing in σ/μ;
(b) π∗ is strictly decreasing in σ/μ;
(c) κ∗ is strictly decreasing in σ/μ.

(Proof) See Appendix B.
A higher signal-to-noise ratio means that the bank incurs a higher regulatory cost of risk

capital κ∗, which will lower the intermediation surplus. The bank will also, in this case,
monitor loans with a broader range of quality. The implications for financial regulation
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are straightforward. The bank is always better off without than with a dynamic monitoring
system. Therefore, as long as regulatory costs are binding, the bank has an incentive to dis-
mantle its dynamic monitoring systems and instead reject many loans deemed of marginal
value at the outset. The cost of monitoring these loans and picking the good ones is higher
than the regulatory charge attached. This finding does not imply that regulation could not be
adapted to mitigate the problem. The standard approach to micro-prudential bank regulation
is to allocate weights to the bank’s various risk categories and to arrive at a risk-weighted
aggregate risk capital requirement. In principle, it does not matter whether the risk arises
from lending activities or non-lending activities. Our results, however, suggest the regula-
tor should apply a pecking order approach to regulation. First, the regulator should control
the bank’s non-lending activities to keep bank risk within acceptable limits. Thus, the bank
is encouraged to seek a competitive advantage in lending through investment in monitoring
systems. Second, the model highlights a regulatory trade-off between controlling bank risk
and encouraging banks to gain a competitive advantage from investments in superior moni-
toring technology. We could investigate this issue further, but it requires rigorous treatment
in a model that endogenizes lending and non-lending bank activities, which goes beyond
this paper’s scope.

3.2 Equilibrium under static monitoring systems

To provide a benchmark for the analysis, we analyze a version of the model where the bank
uses a static monitoring system. The fact that the system produces a single information
signal means that we are, in effect, analyzing the dynamic model’s snapshot rather than the
full dynamic version. Hence, if the loan portfolio has a uniformly distributed steady-state
distribution of loan quality in the dynamic model, we assume the static snapshot also has a
similar uniformly distributed distribution of loan quality.

To simplify, we adapt the notation from the dynamic framework as far as we can. A
lender intermediates loans that have uniformly distributed quality with π0 ∈ [0, 1], and
a loan that kept in-house is worth c

r
− (1 − π0)(k + κ), and the proceeds from selling a

loan is c
r

− (1 − π0)k − g.4 The bank can pay a monitoring cost M that reveals a signal
whether the loan is of high or low quality.5 Conditional on the event that the loan is safe,
the probability of a positive signal is � > 0.5, and conditional on the event that the loan is
risky, the probability of a negative signal is �.6 The conditional probabilities are:

P(High Quality|Positive Signal) = π0�

�P

, �P = π0� + (1 − π0)(1 − �),

P(Low Quality|Negative Signal) = (1 − π0)�

�N

,�N = (1 − π0)� + π0(1 − �).

The unconditional probability of observing a positive or negative signal is �P and �N ,
respectively.

The question is whether the bank can increase the loans’ average value by improving
the static monitoring systems, either by reducing the monitoring cost M or increasing the
precision �. Given π0, the bank can choose one of three actions: (i) the bank holds the loan

4These values correspond to VI (π) and VS(π) in the dynamic model, respectively.
5We can think of the cost M as the static equivalent of the expected dynamic monitoring cost E

∫ T

0 e−rtmdt

from time 0 to the stopping time T where monitoring stops.
6The parameter � is the static equivalent to the signal-to-noise ratio μ/σ in the dynamic framework.
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without monitoring its quality; (ii) the bank sells the loan without monitoring its quality;
and (iii) the bank monitors the loan and keeps the loan if the signal is positive and sells the
loan if the signal is negative.7 For a given π0, the value of the loan is the maximum of the
three options:

max
( c

r
− (1 − π0)(k + κ),

c

r
− (1 − π0)k − g,

c

r
− M − (�P − π0�)(k + κ) − ((1 − π0)�k + �Ng)

)
.

(7)

We work out the third term in (7), the value of a monitored loan, in Appendix A. The
following two probabilities π̂∗∗ and π̂∗ define the solution to the maximization program
above: π̂∗ = �(κ−g)−M

�κ−(2�−1)g and π̂∗∗ = M+(1−�)(κ−g)
(1−�)κ+(2�−1)g .

8 The option to hold the loan in-house
is optimal for π0 ≥ π̂∗, the option to sell the loan is optimal for π0 < π̂∗∗, and the option
to monitor the loan is optimal for 1 ≥ π̂∗ ≥ π̂∗∗ ≥ 0.9 These probabilities are derived in
the appendix, as well as the conditions which ensures that 1 ≥ π̂∗ ≥ π̂∗∗ ≥ 0.

The regulator sets out to use the regulatory cost of κ to control bank risk, similarly to the
dynamic case. For given π , the intermediation surplus is defined as the added value of the
loan as compared to its sale value in the open market:

V̂ (π0; κ,M,�) = max
( c

r
− (1 − π)(k + κ),

c

r
− (1 − π)k − g,

c

r
− M − (�P − π�)(k + κ) − ((1 − π)�k + �Ng)

)
−

( c

r
− (1 − π)k − g

)
. (8)

The expected intermediation surplus is EV̂ (π0; κ, M, �), which is the expectation of (8)
across loan qualities (we assume, as we did for dynamic systems, that there is uniform
distribution of π0 on the interval [0, 1]):

EV̂ (π0; κ, M,�) =
∫ 1

0
V̂ (π0; κ, M,�)dπ0 =

∫ 1

π̂∗∗(κ)

V̂ (π0; κ, M,�)dπ0. (9)

As for the dynamic version of the model, the integration in (9) can be taken over the loans
that the bank decides to hold outright or monitor (that is, the loans of quality π̂∗∗ or higher).
Loan risk feeds into the bank from two sources. First, the loans held in-house without
monitoring, that is, the loans for which π0 ≥ π̂∗, contribute to loan risk because they are
generally not safe for sure. There is a probability of 1 − π0 that they are risky. Second, the
bank holds loans that are monitored and produce a positive signal in-house, that is, the loans
within the region π̂∗ ≥ π0 > π̂∗∗. Even if the bank observes a positive monitoring signal,
the loan may be risky because the information revealed through monitoring is not perfect.
The risk measure is, therefore,

ϕ̂(κ) =
∫ π̂∗

π̂∗∗
(�P − π0�) kf (π0)dπ0 +

∫ 1

π̂∗
(1 − π0)kf (π0)dπ0. (10)

The measure ϕ̂ in (10) is the static equivalent of the dynamic risk measure ϕ in (3). We
notice that the measure in (3) involves only the lower barrier point for the monitoring region

7Since information must have value, the decision to hold or sell the loan must be different given different
signals.
8Derivations of π̂∗ and π̂∗∗ are in Appendix A.
9The probabilities π̂∗ and π̂∗∗ are the static equivalents of π∗ and π∗∗ in the dynamic framework,
respectively.
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π∗∗, whereas the measure in (10) involves both the lower and the upper barrier points π̂∗∗
and π̂∗.

We first investigate what happens to the bank risk when we increase κ . The bank is
encouraged to sell loans, and the bank is discouraged from holding loans in-house without
monitoring, hence both π̂∗∗ and π̂∗ increase.10 Therefore, an increase in κ leads to a reduc-
tion in ϕ̂, which is what we would expect. Therefore, a reduction in κ leads to the bank
selling fewer loans and holding more loans in-house without monitoring. Hence, a reduction
of κ will always increase the intermediation surplus. We can evaluate the effect of changing
the loan monitoring technology by evaluating the effect on the risk measure ϕ̂. We find the
following result.

Proposition 5 The risk measure ϕ̂ is increasing with the monitoring cost M , and for
sufficiently large �, decreasing with the informativeness of monitoring, �.

(Proof) See Appendix B.
Any reduction in the monitoring cost increases the loan portfolio’s average value and,

therefore, leads to higher private profits and lower cost of regulation, a win-win. Similarly,
if the monitoring system’s informativeness is already sufficiently high, a further increase
has the same effect.

3.3 Comparison of dynamic and static systems

Why do we find that the two monitoring systems give such opposite answers? We can
illustrate the intermediation surplus with dynamic systems; see Fig. 3. We see here the
effects of increasing the monitoring cost. Since the regulator adjusts the regulation cost to
keep risk-taking constant, the equilibrium always produces a fixed lower monitoring trigger
point π∗∗. Hence, the increase in the monitoring cost justifies a lowering of the regulatory
cost. A lowering of the monitoring cost has an asymmetric impact on the loans near the
boundary points. For loans that are just sold or are close to being sold, there is little impact.
There is a negative impact on loans that are just placed in-house or are close to being placed
in-house. These loans have less worth to the bank if the regulatory charge for holding them
increases. The bank therefore benefits from the rise in the monitoring cost.

With static systems, an increase in the monitoring cost will reduce the monitoring region
at both ends, so the bank monitors fewer risky loans and fewer safe loans. Consequently,
increasing the monitoring cost will increase the banks’ risk, leading to lower loan value. We
expect, therefore, that given a choice between a static monitoring system (at least one with a
sufficient level of informativeness) and none, the bank will choose to adopt a static monitor-
ing system. The restrictions on informativeness is given in Appendix A, under the heading
‘Derivation of the Probabilities π̂∗ and π̂∗∗’, and it states that M

g
≤ (

1 − g
κ

)
(2� − 1). That

is, the monitoring cost M must be sufficiently small relative to the informativeness � in
order that a static monitoring system is profitable. Thus, if a static system is profitable, bank
regulation leads to a substitution effect where banks abandon their dynamic monitoring sys-
tems and instead adopt static monitoring systems. If the static system is not profitable, then
the regulated bank prefers no monitoring of its loans by any kind of system.

A second relevant question is a comparison of the welfare effects in the two systems.
Welfare is not directly observable in our model. If the relevant welfare effects arise due

10By direct calculation, we find that dπ̂∗∗
dκ

, dπ̂∗
dκ

> 0 for all parameter values where 1 ≥ π̂∗ ≥ π̂∗∗ ≥ 0.
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Fig. 3 Intermediation Surplus: The figure shows the effects on the intermediation surplus from an increase in
the monitoring cost from m0 to m1. The increase justifies a reduction in the regulatory charge, which means
that the in-house value VI increases for all loan quality levels, and the upper monitoring region reduces from
π∗(m0) to π∗(m1). The lower monitoring barrier remains constant to maintain a constant aggregate bank
risk. Thus, the bank’s intermediation surplus increases as a consequence of increasing the monitoring cost
and reducing the monitoring activity

to the bank’s risk, the bank takes the same amount of risk regardless of how effective the
monitoring systems are because the adaptive regulator controls the bank’s risk with that
objective in mind. The borrowers are equally well off as the monitoring system’s choice
will not affect the borrowing opportunities. So, we measure all remaining welfare effects
by the monitoring surplus of the bank. Therefore, the analysis above shows that acquiring
effective monitoring systems is encouraged by welfare concerns if the systems are static but
discouraged if they are dynamic.

4 Conclusions

A vital aim of a micro-prudential regulatory framework is to ensure the stability of financial
institutions. Our analysis demonstrates that loan monitoring can jeopardize this job through
harmful incentive effects. We contrast the use of static monitoring systems (which produce
a single information signal) with dynamic ones (which produce an information flow) and
find that banks are encouraged to invest in static systems but are discouraged from investing
in dynamic ones (see Berger et al. 2005). The reason is that dynamic systems increase the
number of risky loans under observation, leading to higher regulatory risk charges. The
higher regulatory cost penalizes the bank for using its dynamic monitoring systems.

This finding raises obvious questions concerning bank regulation and whether we can
achieve stability in the financial system by regulating individual financial institutions. More-
over, regulation may impact lending in a harmful way. A switch from dynamic to static
systems is not a problem as long as static monitoring systems are a perfect substitute for
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dynamic systems. However, there is a danger that the two types of systems are not perfect
substitutes for some borrowers. For instance, for small or young companies with a lack of
credit history, loan screening may be relatively ineffective as there is limited past data to go
on. A dynamic system will produce a flow that picks up new information as it arrives and
may thus be a better choice for this type of borrowers.

Appendix A: Derivations

Posterior Process Eq. 1 With Brownian uncertainty, the increments xt −x0 are normal with
mean θμt and variance σ 2t , with density function

f (x; θ) = 1

σ
√
2πt

exp

(
−1

2

(
x − θμt

σ
√

t

)2
)
. (A.1)

Normalize x0 = 0, so conditional on observing xt , the likelihood of θ = 1 is πt which
according to Bayes Law is

πt = f (xt ; 1)π0

f (xt ; 1)π0 + f (xt ; 0)(1 − π0)
. (A.2)

Using the formula for the density function in Eq. A.1, we can write Eq. A.2 as

πt =
π0

1−π0
exp

(
1
2

(
xt

σ
√

t

)2 − 1
2

(
xt−μt

σ
√

t

)2)

1 + π0
1−π0

exp

(
1
2

(
xt

σ
√

t

)2 − 1
2

(
xt−μt

σ
√

t

)2) =
π0

1−π0
φt

1 + π0
1−π0

φt

, (A.3)

where we define φ as the likelihood function φt = f (xt ; 1)/f (xt ; 0). Using Ito’s lemma
and the definition of φt , we work out

dφt = μ

σ 2
φtdxt ,

dπt = μ

σ 2
πt (1 − πt )dxt − μ2

σ 2
π2

t (1 − πt )dt . (A.4)

Using the change of probability measure dB̃t = 1
σ
dxt − μ

σ
πtdt , the process in Eq. A.4

becomes a martingale, dπt = μ
σ
πt (1 − πt )dB̃t . �

Derivation of VM (π ) We analyze the optimal stopping problem in πt rather than xt . The

infinitesimal generator for {πt ; t ≥ 0} is L = μ2

2σ 2 π
2(1−π)2 ∂2

∂π2 − rI, which applies to any
value function V that depends on πt . The first term arises from the diffusion term in dπt ,
and the second term (where I is the identity operator) arises from the fact that any claim
must earn a return of r . Since for πt > 0 there is also the possibility of a credit event, the
claim VM satisfies

LVM(πt ) + (c − m − rκ(1 − π)) = 0. (A.5)
The first term in Eq. A.5 is the “capital gains” net of the required rate of return associated
with the arrival of new information, and the second term (c − m − rκ(1 − π)) is the net
cash flow from holding a loan under monitoring, consisting of the coupon flow minus the
monitoring cost and minus the regulatory charge levied on risky loans. In a rational market,
the sum of the two is zero. The general solution to Eq. A.5 is

VM(π) = Af1(π) + Bf2(π) + c

r
− m

r
− κ(1 − π), (A.6)
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where the functions fi(π), i = 1, 2, in Eq. A.6 are given by

fi(π) = π
1
2 (1+(−1)i ξ)(1 − π)

1
2 (1+(−1)i+1), i = 1, 2, (A.7)

and A and B are arbitrary constants to be determined by the smooth pasting conditions. The
parameter ξ in Eq. A.7 is given by ξ = (1 + 8r(σ/μ)2)0.5 > 1.

Derivation of Eq. 7 The two first expressions in the maximum-operator are straightforward,
so we concentrate on the third term, which is the value of a loan that has been subject to
monitoring. We find,

Value of a monitored loan = −M + P(Positive Signal)E(Value|Positive Signal)
+P(Negative Signal)E(Value|Negative Signal)

= −M + c

r
− (�P − π0�)(k + κ) − �Ng − (1 − π0)�k,

and Eq. 7 follows.

Derivation of the Probabilities π̂∗ and π̂∗∗: The probability π̂∗ is defined as the proba-
bility π for which c

r
− (1− π)(k + κ) = c

r
− M − (π� + (1− π)(1− �) − π�)(k + κ) −

((1 − π)�k + ((1 − π)� + π(1 − �))g). Eliminating and rearranging terms, we find the
solution π = π̂∗

π̂∗ = �(κ − g) − M

�κ − (2� − 1)g
. (A.8)

It is necessary that �(κ − g) > M in order that the probability in Eq. A.8 is well defined.
Similarly, the probability π̂∗∗ is defined as the probability π for which c

r
− (1− π)k − g =

c
r
−M − (π�+ (1−π)(1−�)−π�)(k + κ)− ((1−π)�k + ((1−π)�+π(1−�))g).

Eliminating and rearranging terms, we find the solution π = π̂∗∗

π̂∗∗ = M + (1 − �)(κ − g)

(1 − �)κ + (2� − 1)g
. (A.9)

We find that 1 ≥ π̂∗ provided that �κ − (2� − 1)g ≥ �(κ − g) − M , or (1− �)g ≥ −M

which is always true. Using Eq. A.9 find that π̂∗∗ > 0 provided that M+(1−�)(κ−g) ≥ 0
which is true. We then need to check that π̂∗ ≥ π̂∗∗, which is true for

�(κ − g) − M

�κ − (2� − 1)g
≥ M + (1 − �)(κ − g)

(1 − �)κ + (2� − 1)g
,

which is true for M
g

≤ (
1 − g

κ

)
(2� − 1). Since the right hand side is always less than 1, it

is necessary that the monitoring cost is smaller than the sales cost g.

Appendix B: Proofs

Proof of Proposition 1: First we obtain Lemma 1:

Lemma 1 The points π∗ and π∗∗ satisfying conditions (b) and (c) in Definition 1 are the
solutions to the following system:

M
−1
1

(
k

k − κ

)
= M

−1
2

( −k(1 − π∗) + m
r−k(1 − π∗∗) + κ(1 − π∗∗) − g + m

r

)
. (B.1)
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where

M1 =
(

f1(π
∗)g1(π∗) f2(π

∗)g2(π∗)
f1(π

∗∗)g1(π∗∗) f2(π
∗∗)g2(π∗∗)

)
,M2 =

(
f1(π

∗) f2(π
∗)

f1(π
∗∗) f2(π

∗∗)

)
,

fi(π) = π
1
2 (1+(−1)i ξ)(1 − π)

1
2 (1+(−1)i+1ξ), i = 1, 2,

gi(π) := 1

2
(1 + (−1)iξ)π−1 − 1

2
(1 + (−1)i+1ξ)(1 − π)−1, i = 1, 2.

A necessary and sufficient condition for condition (a) in Definition 1 to hold is that VM as
given in Lemma 4 is strictly convex over the region [π∗∗, π∗].

Proof of Lemma 1 We derive the system of equations directly from the value matching and
smooth pasting conditions (b) and (c) in Definition 1. The condition that

VM(π) ≥ max
{c

r
− (k + κ)(1 − π),

c

r
− k(1 − π) − g

}

ensures that the value function of the optimal stopping problem is indeed VM(π) for all
π ∈ [π∗∗, π∗]. We can verify that dfi

dπ
= figi , i = 1, 2. Hence, we can write the smooth

pasting conditions as

M1

(
A

B

)
=

(
k

k − κ

)
(B.2)

and the value matching conditions as

M2

(
A

B

)
=

( −k(1 − π∗) + m
r−k(1 − π∗∗) + κ(1 − π∗∗) − g + m

r

)
(B.3)

Combining Eq. B.2 and Eq. B.3, we find Eq. B.1. The functions π
1
2 (1−ξ)(1− π)

1
2 (1+ξ) and

π
1
2 (1+ξ)(1 − π)

1
2 (1−ξ) are both strictly convex because ξ > 1 (see Appendix A, Derivation

of VM ), so it is possible to find coefficients A and B such that the function is strictly convex
over the monitoring region, and strict convexity of VM is clearly sufficient for VM to strictly
dominate both VI and VS since the latter two functions are both linear. It is also necessary
because if VM is not convex over the whole range, it will be non-convex in the neighborhood
of π∗ or π∗∗, and in this case, the value of VM will dip below VS − g if it is non-convex
near π∗∗ or below VI if it is non-convex near π∗.

Using Lemma 1, we proceed with the rest of the proof of Proposition 1. We can write

VM = Af1 + Bf2 + c − m

r
− κ(1 − π) (B.4)

V ′
M = Af1g1 + Bf2g2 + κ

= Af1
1

2
(1 − ξ)π−1 − Af1

1

2
(1 + ξ)(1 − π)−1 + Bf1

1

2
(1 + ξ)π−1 − Bf2

1

2
(1 − ξ)(1 − π)−1 + κ

= Af1
1

2
(π−1 − (1 − π)−1) + Bf2

1

2
(π−1 − (1 − π)−1) − Af1

ξ

2
(π−1 + (1 − π)−1)

+Bf2
ξ

2
(π−1 + (1 − π)−1) + κ

= (Af1 + Bf2)
1 − 2π

2π(1 − π)
− (Af1 − Bf2)

ξ

2π(1 − π)
+ κ, (B.5)

V ′′
M = Af1(g

2
1 + g′

1) + Bf2(g
2
2 + g′

2)

= (Af1 + Bf2)
ξ2 − 1

4π2(1 − π)2
. (B.6)
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g2
1 + g′

1 =
(
1

2
(1 − ξ)π−1 − 1

2
(1 + ξ)(1 − π)−1

)2

− 1 − ξ

2
π−2 − 1 + ξ

2
(1 − π)−2

= 1

4
(1 − 2ξ + ξ2)π−2 − 1

2
(1 − ξ2)π−1(1 − π)−1 + 1

4
(1 + 2ξ + ξ2)(1 − π)−2

− 1

2
(1 − ξ)π−2 − 1

2
(1 + ξ)(1 − π)−2

= − 1

4
(π−2 + 2π−1(1 − π)−1 + (1 − π)−2) + ξ2

4
(π−2 + 2π−1(1 − π)−1 + (1 − π)−2)

= ξ2 − 1

4

(
1

π(1 − π)

)2

.

The latter equality of the final equations follows since we find the following expressions
for g2

i + g′
i : A similar calculation yields the same expression for g2

2 + g′
2. The smooth

pasting problem states that at π∗∗, VM = c
r

− k(1 − π∗∗) − g and V ′
M = k, and that at

π∗, VM = c
r

− (k + κ)(1 − π) and V ′
M = (k + κ). We prove (a) and (b) using the second

derivative.

Claim: π∗∗ is strictly increasing and π∗ strictly decreasing in m Suppose m1 > m0 and
π∗∗
1 ≤ π∗∗

0 . We use Eq. B.4. Since VM is always increasing, A1f1 + B1f2 = m1
r

− k(1 −
π) − g is greater than A0f1 + B0f2 = m0

r
− k(1 − π) − g at π∗∗

0 . Therefore, V ′′
M is

greater for m1 than for m0, so if π∗∗
1 ≤ π∗∗

0 there cannot be smooth pasting on (π∗∗
0 , 1],

contradicting the assumption that π∗∗
1 ≤ π∗∗

0 .
Similarly, suppose π∗

1 ≥ π∗
0 . Again, since VM is always increasing, A1f1 + B1f2 =

m1
r

− (k + κ)(1− π) is greater than A0f1 + B0f2 = m0
r

− (k + κ)(1− π) at π∗
0 . Therefore,

V ′′
M is greater for m1 than for m0 so if π∗

1 ≥ π∗
0 there cannot be smooth pasting on [0, π∗

0 ),
contradicting the assumption that π∗

1 ≥ π∗
0 .

Claim: π∗∗ is strictly increasing and π∗ strictly decreasing in σ/μ The way the noise-to-
signal ratio affects the problem is through the parameter ξ . Suppose ξ1 > ξ0 and π∗∗

1 ≤ π∗∗
0 .

We know that VM = c
r

− k(1 − π) − g at π∗∗ but since ξ1 > ξ0 the function grows
faster (second derivative greater and first derivative always positive) for ξ1 than for ξ0, so
A1f1 + B1f2 ≥ A0f1 + B0f2 at π∗∗

0 . This implies that there is no smooth pasting on
(π∗∗

0 , 1], contradicting the assumption that π∗∗
1 ≤ π∗∗

0 .
Similarly, suppose π∗

1 ≥ π∗
0 . We know that VM = c

r
− (k + κ)(1 − π) at π∗ but since

ξ1 > ξ0 the function grows faster for ξ1 than for ξ0, so A1f1 + B1f2 ≥ A0f1 + B0f2 at π∗
0 .

This implies that there is no smooth pasting on [0, π∗
0 ], contradicting the assumption that

π∗
1 ≥ π∗

0 .

Claim: π∗∗ and π∗ are strictly increasing in κ Suppose κ1 > κ0. VM(π |κ1) and VI (π |κ1)
have lower cash flows than the corresponding VM(π |κ0) and VI (π |κ0), hence it must be the
case that VM(π |κ1) < VM(π |κ0) so it is impossible that the two value functions VM(π |κ1)
and VM(π |κ0) cross each other. Since both functions smooth-pastes into VS(π) (which is
independent of κ) it must be the case that π∗∗

1 > π∗∗
0 .

We now turn to π∗. We use Eqs. B.5 and B.6. We know that V ′
M = k at π∗∗ and

V ′
M = k + κ at π∗, and we know that V ′′

M ≥ 0 (convex) as otherwise it would not be
optimal. Suppose π∗ is decreasing in κ , then the function VM must be more convex for
increasing κ because the first derivative increases more (from k to k + κ) over a shorter
distance (from π∗∗ to π∗). Hence, Af1 + Bf2 must be increasing in κ . But, since the value
matching condition at π∗ is independent of κ , and given by Af1 +Bf2 = −k(1−π∗)+ m

r
,

the left hand side is increasing in κ and π∗ must therefore also be increasing in κ .
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Proof of Proposition 2 This proposition shows why the truncation effect at the barrier point
π∗ which separates the loans that are not monitored (i.e., above π∗) from the loans are
monitored (i.e., below π∗), does not change the uniform distribution of loans even though
the barrier point may change.

The quality of the loans that are monitored will vary over time, but all monitoring activity
is truncated at the barrier point π∗. Thus, we may expect that the loans could accumulate
from below at the barrier point π∗. To address this point, we look in more detail at the steady
state distribution of loan quality.

Suppose there is a fixed uniform inflow of loans, 1 − π∗ flow into the region above
the monitoring region, π∗ − π∗∗ flow into the monitoring region, and π∗∗ flow into the
region below the monitoring region. We divide the unit interval into n smaller intervals �π

n ,
i = 0, . . . , n such that

∑
π �π

n = 1 and for given π , �π = μ
σ
π(1 − π)

√
�t , where �t are

the time steps, to make sure that the Binomial process has the same volatility as (1). We will
let n → ∞ and �t → 0 to study the convergence to the continuous time model in the text.

Above the monitoring region, for each node π there is an inflow �π and an outflow
d(π)η, where d(π) is the number of loans of quality π and η is the outflow rate. In steady
state, therefore, d(π) = �π

η
. As �t → 0, the number of loans converges to a uniform

density.
In the monitoring region things are different. Let us label π0 := π∗, π1 := π∗ − �π1 ,

π2 := π∗ − �π1 − �π2 , and so on, until we have exhausted all nodes between π∗∗
and π∗. At node π0, the inflow of new loans is �π0 + 1

2d(π1)(1 − η) (the latter term
is the non-exiting loans from the node below migrating up) and the outflow is d(π0)η,
hence d(π0) = �π0

η
+ 1

2d(π1)
1−η
η

, which is higher than the number of loans at the nodes
in the non-monitoring region above. Using a similar argument, at node π1 the inflow of
new loans is �π1 + 1

2d(π2)(1 − η) (the latter term is the inflow of non-exiting loans
from the node below migrating up), and the outflow is d(π1)η + d(π1)(1 − η) (non-
exiting loans at this node that migrates up or down one node). This implies that d(π1) =
�π1

η
+

(
1
2d(π2) − d(π1)

)
1−η
η

, which is lower than for the nodes in the non-monitoring

region above. At the next node, and any node πi , i ≥ 2, we use a similar argument to find

d(πi) = �πi

η
+

(
1
2d(πi+1) + 1

2d(πi−1) − d(πi)
)

1−η
η

. This number eventually converges to

the number of loans at the nodes in the non-monitoring region above. Thus, the truncation
effect will create a “bump” in the distribution at π∗ which leads to a below-average number
below π∗, which then is gradually evened out as we go further down the nodes.

The average density at nodes π0 and π1 is 1
2

(
�π0

η
+ �π1

η

)
+ 1

4 (d(π2) − d(π1))
1−η
η

.

The � terms are of order
√

�t because they represent the volatility terms, whereas the
functions d(π) are of order �t . Hence, the difference between the average number of loans
at the neighboring nodes and the current node will vanish at a quicker rate than the �

terms. Moreover, the difference between d(π2) and d(π1) will also vanish at a quicker rate.
Therefore, the second term in the expression for the number of loans at each node will
vanish in the limit (it will vanish in expectation for the first two nodes, but this will not affect
the limiting density). Hence, in the limit we obtain a uniform distribution of loan quality
independent of regulation.

Proof of Proposition 3 We first show that ∂2VM

∂π2 (π; κ(m, σ/μ),m, σ/μ) is strictly decreas-

ing in m, for all σ/μ fixed. Suppose 0 < m0 < m1. Since ψ̄ = k
2 (1 − π∗∗)2 is fixed by
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assumption, π∗∗ is fixed for both m0 and m1. By letting A0 and B0 associated with m0 and
A1 and B1 with m1 for every σ/μ fixed, the optimality conditions outlined in Eq. B.1 imply:

A0f1(π
∗∗) + B0f2(π

∗∗) = m0

r
− k(1 − π∗∗) − g,

A1f1(π
∗∗) + B1f2(π

∗∗) = m1

r
− k(1 − π∗∗) − g,

which implies that (A0 − A1)f1(π
∗∗) + (B0 − B1)f2(π

∗∗) = m0−m1
r

. Eq. B.1 also implies:

A0f1(π
∗∗)g1(π∗∗) + B0f2(π

∗∗)g2(π∗∗) = k,

A1f1(π
∗∗)g1(π∗∗) + B1f2(π

∗∗)g2(π∗∗) = k,

which implies that (A0−A1)f1(π
∗∗)g1(π∗∗)+(B0−B1)f2(π

∗∗)g2(π∗∗) = 0. Combining
both we can find expressions for (A0 − A1) and (B0 − B1):

(A0 − A1) = m0 − m1

r

1

1 + g2(π∗∗)
1

f2(π∗∗)
,

(B0 − B1) = m0 − m1

r

g2(π
∗∗)

1 + g2(π∗∗)
1

f1(π∗∗)
.

Since fi , i = 1, 2, and g2 are strictly positive, we find that sign(A0−A1) = sign(B0−B1) =
sign(m0 −m1), which implies that for m1 > m0, A1 > A0 and B1 > B0. Since fi , i = 1, 2,
are strictly convex, we have for every σ/μ fixed,

∂2VM

∂π2
(π; κ∗

0 ,m0, σ/μ) = A0
∂2f1

∂π2
(π) + B0

∂2f2

∂π2
(π)

< A1
∂2f1

∂π2
(π) + B1

∂2f2

∂π2
(π)

= ∂2VM

∂π2
(π; κ∗

1 , m1, σ/μ). (B.7)

By Lemma 1, Eq. B.7 implies that for every σ/μ fixed, V (π0; κ∗
0 ,m0, σ/μ) <

V (π0; κ∗
1 ,m1, σ/μ) for all π0. By integrating over π0, this implies W(m0, σ/μ) <

W(m1, σ/μ) for all σ/μ fixed. This completes the proof of part (a). Also, by Lemma 1, (b)
and (c) directly follow from Eq. B.7.

Proof of Proposition 4: First we obtain Lemma 2:

Lemma 2 For every (m0, σ0/μ0) and (m1, σ1/μ1), if

d2

dπ2
VM(π; κ∗

0 ,m0, σ0/μ0) >
d2

dπ2
VM(π; κ∗

1 , m1, σ1/μ1),∀π ∈ [π∗∗,min(π∗
0 , π∗

1 )],
(B.8)

then the following statements hold:

(a) V (π; κ∗
0 ,m0, σ0/μ0) ≥ V (π; κ∗

1 ,m1, σ1/μ1) for all π , with > for π > π∗∗;
(b) π∗

0 < π∗
1 ;

(c) κ∗
0 < κ∗

1 .

Proof of Lemma 2 Before we proceed, associate Ai , Bi , and ξi with the pair (mi, σi/μi),
i = 0, 1, and recall the expressions for VM and V ′

M in Eqs. B.4 and B.5.
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Claim (b) By condition Eq. B.8, the functions V ′
M and VM will grow faster for (m0, σ0/μ0)

than for (m1, σ1/μ1). At the point min(π∗
0 , π∗

1 ) therefore, both

VM(π; κ∗
0 ,m0, σ0/μ0) > VM(π; κ∗

1 ,m1, σ1/μ1)

and

V ′
M(π; κ∗

0 ,m0, σ0/μ0) > V ′
M(π; κ∗

1 ,m1, σ1/μ1).

Suppose π∗
1 ≤ π∗

0 . Then there must be smooth pasting for VM(π; κ∗
1 , m1, σ1/μ1). Then

there cannot be smooth pasting for VM(π; κ∗
0 ,m0, σ0/μ0) since either κ∗

0 < κ∗
1 so that the

first derivative of VM(π; κ∗
0 ,m0, σ0/μ0) has already grown too large for smooth pasting to

happen, or else κ∗
0 ≥ κ∗

1 in which case the function VM(π; κ∗
0 , m0, σ0/μ0) itself has grown

too large for value matching. This is a contradiction; thus, π∗
1 > π∗

0 .

Claim (c) We know from (b) that min(π∗
1 , π∗

0 ) = π∗
0 , and by definition of

π∗
0 , VM(π; κ∗

0 ,m0, σ0/μ0) smooth pastes at this point. Assume κ∗
0 ≥ κ∗

1 . Then
VM(π; κ∗

1 , m1, σ1/μ1) will never smooth paste on [π∗
0 , 1] since at π∗

0 it must be the case
that VM(π; κ∗

1 , m1, σ1/μ1) < VI (π; κ∗
1 ,m1, σ1/μ1). This is a contradiction, so κ∗

1 > κ∗
0 .

Claim (a) It is straightforward from Eq. B.8 that VM(π; κ∗
0 , m0, σ0/μ0) >

VM(π; κ∗
1 , m1, σ1/μ1) on [π∗∗, π∗

0 ], and also from (c) that VI (π; κ∗
0 , m0, σ0/μ0) >

VI (π; κ∗
1 , m1, σ1/μ1) on [π∗

1 , 1]. For the interval [π∗
0 , π∗

1 ], VI (π; κ∗
0 ,m0, σ0/μ0) is

linear and has a greater starting point at π∗
0 and a greater end point in π∗

1 than the
function VM(π; κ∗

1 , m1, σ1/μ1) which is concave. Therefore, it must be the case that
VI (π; κ∗

0 , m0, σ0/μ0) > VM(π; κ∗
1 ,m1, σ1/μ1) on this interval also. The result follows

immediately.
We continue the proof of Proposition 3. We show that an increase in σ/μ leads to a

decrease in the convexity of the function VM(π). First, since σ/μ enters the equilibrium
conditions only through the parameter ξ , and since an increase in σ/μ leads to an increase in
ξ , we will consider a change in the equilibrium conditions from ξ to ξ +� (where obviously
� > 0). Corresponding to the case above, therefore, we find the following.

A0f1(π
∗∗; ξ) + B0f2(π

∗∗; ξ) = m

r
− k(1 − π∗∗) − g, (B.9)

A1f1(π
∗∗; ξ + �) + B1f2(π

∗∗; ξ + �) = m

r
− k(1 − π∗∗) − g, (B.10)

and

A0f1(π
∗∗; ξ)g1(π

∗∗; ξ) + B0f2(π
∗∗; ξ)g2(π

∗∗; ξ) = k,(B.11)

A1f1(π
∗∗; ξ + �)g1(π

∗∗; ξ + �) + B1f2(π
∗∗; ξ + �)g2(π

∗∗; ξ + �) = k. (B.12)

We can use the fact that f1(π∗∗; ξ + �) = f1(π
∗∗; ξ)π∗∗− �

2 (1 − π∗∗)�
2 and f2(π

∗∗; ξ +
�) = f2(π

∗∗; ξ)π∗∗ �
2 (1 − π∗∗)− �

2 , and also that g1(π
∗∗; ξ + �) = g1(π

∗∗; ξ) −
�

2π∗∗(1−π∗∗) and g2(π
∗∗; ξ + �) = g2(π

∗∗; ξ) + �
2π∗∗(1−π∗∗) . Rewriting Eq. B.10 and

Eq. B.12 we find the following.

A1f1(π
∗∗; ξ)

(
1 − π∗∗

π∗∗

)�
2 +B1f2(π

∗∗; ξ)

(
π∗∗

1 − π∗∗

)�
2 = m

r
−k(1−π∗∗)−g, (B.13)
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and

A1f1(π
∗∗; ξ)

(
1 − π∗∗

π∗∗

) �
2

[
g1(π

∗∗; ξ) − �

2π∗∗(1 − π∗∗)

]

+ B1f2(π
∗∗; ξ)

(
π∗∗

1 − π∗∗

) �
2

[
g2(π

∗∗; �) + �

2π∗∗(1 − π∗∗)

]
= k. (B.14)

Taking the difference between Eqs. B.9 and B.13 and eliminating terms, we find

[
A0 − A1

(
1 − π∗∗

π∗∗

)�
2
](

1 − π∗∗

π∗∗

)ξ

+
[
B0 − B1

(
π∗∗

1 − π∗∗

)�
2
]

= 0. (B.15)

Taking the difference between Eqs. B.11 and B.14 and eliminating terms and using
additionally Eq. B.15, we find

(
1 − π∗∗

π∗∗

)ξ
[
A0ξ − A1(ξ − �)

(
1 − π∗∗

π∗∗

)�
2
]

= B0ξ − B1(ξ − �)

(
π∗∗

1 − π∗∗

)�
2

.

(B.16)
Clearly, for � = 0 the term inside the bracket on the left hand side of Eq. B.16
becomes A0ξ − A1ξ and the right hand side B0ξ − B1ξ , so we need that A1 = A0
and B1 = B0. We expand, therefore, the effects on both sides for small changes d�

around the point � = 0. Taking the point A1ξ as the starting point we find the

expansion ξdA1 − A1

(
1 − ξ

2 ln
1−π∗∗
π∗∗

)
d� = 0. Rearranging we find that dA1

d�
=

A1
ξ

(
1 − ξ

2 ln
1−π∗∗
π∗∗

)
. Taking the point B1ξ as the starting point we find the expan-

sion ξdB1 − B1

(
1 − ξ

2 ln
π∗∗

1−π∗∗
)

d� = 0. Rearranging again we find that dB1
d�

=
B1
ξ

(
1 − ξ

2 ln
π∗∗

1−π∗∗
)
.

Next, we need to look at the effect that a change in σ
μ
, or equivalently, ξ , has on the

functions f1 and f2. We use the same idea as above to study the impact that the change in

ξ has on the convexity of the value function VM . Namely, by showing ∂3VM

∂ξ∂π2 (π; ξ) > 0,

we prove VM(π; ξ0) < VM(π; ξ1) for all π ∈ (π∗∗,min{π∗
0 , π∗

1 }] when ξ0 < ξ1. Note that
we are slightly abusing notation to simplify the expression – VM(π; ξ) is more precisely
VM(π; κ∗(m, h−1(ξ)),m, h−1(ξ)), where h−1(ξ) is the inverse function of h(σ/μ) =√
1 + 8r σ 2

μ2 .

A change in the parameter ξ will lead to a change of the second derivative ∂2VM

∂π2 (π; ξ),

∂3VM

∂ξ∂π2
(π; ξ)= ∂A

∂ξ
(ξ)

∂2f1

∂π2
(π; ξ)+∂B

∂ξ
(ξ)

∂2f2

∂π2
(π; ξ)+A

∂3f1

∂ξ∂π2
(π; ξ)+B

∂3f2

∂ξ∂π2
(π; ξ).

(B.17)
We know from the above that

∂A

∂ξ
(ξ) = dA

d�
= A1

ξ

(
1 − ξ

2
ln

1 − π∗∗

π∗∗

)
, (B.18)

∂B

∂ξ
(ξ) = dB

d�
= B1

ξ

(
1 − ξ

2
ln

π∗∗

1 − π∗∗

)
. (B.19)

360



Journal of Financial Services Research (2023) 63:339–362

We now need to work on the last two terms. By straightforward differentiation we find

∂3f1

∂ξ∂π2
(π; ξ) = f1(π; ξ)

2
ln

1 − π

π

(
ξ2 − 1

4

) [
1

π(1 − π)

]2
+ f1(π; ξ)

2
ξ

[
1

π(1 − π)

]2
, (B.20)

∂3f2

∂ξ∂π2
(π; ξ) = f2(π; ξ)

2
ln

π

1 − π

(
ξ2 − 1

4

) [
1

π(1 − π)

]2
+ f2(π; ξ)

2
ξ

[
1

π(1 − π)

]2
. (B.21)

Using Eqs. B.18, B.19, B.20 and B.21, some mechanical calculations yield the following
expression for Eq. B.17

∂3VM

∂ξ∂π2
(π; ξ) = [Af1(π; ξ) + Bf2(π; ξ)]

3ξ2 − 1

4ξ

[
1

π(1 − π)

]2
> 0.

An increase in σ
μ
leads to an increase in ξ , so the result follows immediately by applying

Lemma 2.

Proof of Proposition 5 We analyse the effect on the risk measure ψ̂ from a reduction in M

or an increase in �. We at M first. Calculating directly the derivative ∂ψ̂
∂M

we find

∂ψ̂

∂M
= k((1 − �)g + M)

(
�

(�κ − (2� − 1)g)2
+ 1 − �

((1 − φ)κ + (2� − 1)g)2

)
> 0

Hence, if we reduce the monitoring cost M the regulator will always reduce the regulatory

cost κ . Next, we consider the derivative ∂ψ̂
∂�

. We find,

∂ψ̂

∂�
= k

(
−(1 − �)(1 − π̂∗∗) ∂π̂∗∗

∂�
− �(1 − π̂∗) ∂π̂∗

∂�
−

∫ π̂∗

π̂∗∗
(1 − π0)dπ0

)

We find that ∂π̂∗
∂�

> 0 > ∂π̂∗∗
∂�

since an increase in the precision � makes the monitoring
region more attractive. This fact implies that for sufficiently large �, the expression in the
large bracket on the right-hand side is negative because the weight on the positive term van-
ishes. For sufficiently large �, a further increase in precision will reduce the risk measure
and the regulatory cost κ .
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