Skip to main content
Log in

Effect of Plastic Component of Defromation on Accuracy of Prediction of Functional Properties of Polymeric Materials

  • Published:
Fibre Chemistry Aims and scope

Classical methods for predicting polymeric materials deformation processes are based on numerical solution of governing Boltzmann-Volterra viscoelasticity type of equations, which do not take account of the correction for irreversibility of plastic component of deformation, owing to which there could be considerable prediction errors. To increase the accuracy of prediction of deformation processes of polymeric materials, it is proposed to introduce physically valid correction for determining the irreversibility of the plastic component of deformation. Introduction of this correction greatly increases the reliability and authenticity of prediction of functional-performance properties of polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. P. P. Rymkevich, A. A. Romanova, et al., J. Macromol. Sci. Part B: Physics, 52, No. 12, 1829-1847 (2013). https://doi.org/10.1080/00222348.2013.808906.

    Article  CAS  Google Scholar 

  2. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 6, 569-572 (2019). https://doi.org/10.1007/s10692-019-10030-7

    Article  CAS  Google Scholar 

  3. N. V. Pereborova, A. G. Makarov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 378, No. 6, 267-272 (2018). eid=2-s2.0-85072335464

  4. A. G. Makarov, G. Y. Slutsker, et al., Physics of the Solid State, 58, No. 4, 840-846 (2016). https://doi.org/10.1134/S1063783416040132

    Article  CAS  Google Scholar 

  5. A. G. Makarov, G. Y. Slutsker, and N. V. Drobotun, Techn. Phys., 60, No. 2, 240-245 (2015). https://doi.org/10.1134/S1063784215020152

    Article  CAS  Google Scholar 

  6. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 4, 306-309 (2018). https://doi.org/10.1007/s10692-019-09981-8

    Article  CAS  Google Scholar 

  7. A. G. Makarov, N. V. Pereborova, et al., Fibre Chemistry, 50, No. 4, 378-382 (2018). https://doi.org/10.1007/s10692-019-09993-4

    Article  CAS  Google Scholar 

  8. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 5, 468-472 (2019). https://doi.org/10.1007/s10692-019-10010-x

    Article  CAS  Google Scholar 

  9. N. V. Pereborova, A. V. Demidov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 374, No. 2, 251-255 (2018). eid=2-s2.0-85056451197

  10. A. S. Gorshkov, A. G. Makarov, et al., Mag. Civil Eng. 44, No. 9, 76-83, 103-104 (2013). 10.5862/MCE.44.10

  11. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 368, No. 2, 309-313 (2017). eid=2-s2.0-85035207042

  12. A. V. Demidov, A. G. Makarov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 367. No. 1, 250-258 (2017). eid=2-s2.0-85033239149

  13. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 370, No. 4, 287-292 (2017). eid=2-s2.0-85057142312

  14. A. G. Makarov, A. V. Demidov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 360, No. 6, 194-205 (2015). eid=2-s2.0-84976560627

  15. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 359, No. 5, 48-58 (2015). eid=2-s2.0-84971636036

  16. A. V. Demidov, A. G. Makarov, et al., Mechan. Solids, 44, No. 1, 122-130 (2009). https://doi.org/10.3103/S0025654409010130

    Article  Google Scholar 

  17. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 351, No. 3, 110-115 (2014). eid=2-s2.0-84937410003

  18. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Izv. VUZ. Tekhnol. Tekst. Prom., 297, No. 2, 14-17 (2007). eid=2-s2.0-38849203122

  19. A. V. Demidov, A. G. Makarov, et al., Izv. VUZ. Teknol. Tekst. Prom., 292, No. 4, 9-13 (2006). eid=2-s2.0-33845499474

  20. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Izv. VUZ. Tekhnol. Tekst. Prom., 291, No. 3, 13-17 (2006). eid=2-s2.0-37849188658

  21. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, Izv. VUZ. Tekhnol. Tekst. Prom., 294, No. 6, 15-18 (2006). eid=2-s2.0-342500009041

  22. A. V. Demidov, A. G. Makarov, and A. M. Stalevich, J. Appl. Mechan. a. Techn. Phys., 48, No 6, 897-904 (2007). 10.1007/s10808-007-0114-8

  23. A. M. Stalevich and A. G. Makarov, Izv. VUZ. Tekhnol. Tekst. Prom., 270, No 1, 16-22 (2003). eid=2-s2.0-2642532049

  24. A. G. Makarov, Izv. VUZ. Tekhnol. Tekst. Prom., 266, No. 2, 13-17 (2002). eid=2-s2.0-0036931214

  25. A. M. Stalevich and A. G. Makarov, Izv. VUZ. Tekhnol. Tekst. Prom., 267, No. 3, 10-13 (2002). eid=2-s2.0-0038128574

  26. A. M. Stalevich, A. G. Makarov, and E. D. Saidov, Izv. VUZ. Tekhnol. Tekst. Prom., 268, No. 4-5, 15-18 (2002). eid=2-s2.0-0037742684

  27. A. M. Stalevich and A. G. Makarov, Izv. VUZ. Tekhnol. Tekst. Prom., 255, No. 3, 8-12 (2000). eid=2-s2.0-0034436083

  28. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 51, No. 6, 471-474 (2020). https://doi.org/10.1007/s10692-020-10137-2

    Article  CAS  Google Scholar 

  29. N. V. Pereborova, A. V. Demidov, A. G. Makarov, et al., Fibre Chemistry, 50, No. 2, 104-107 (2018). https://doi.org/10.1007/s10692-018-9941-z

    Article  CAS  Google Scholar 

  30. A. G. Makarov, N. V. Pereborova, et al., Fibre Chemistry, 50, No. 3, 239-242 (2018). https://doi.org/10.1007/s10692-018-9968-1

    Article  CAS  Google Scholar 

  31. N. V. Pereborova, A. G. Makarov, et al., Fibre Chemistry, 50, No. 6, 487-490 (2019). https://doi.org/10.1007/s10692-019-10015-6

    Article  CAS  Google Scholar 

  32. N. V. Pereborova, A. G. Makarov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 375, No. 3, 253-257 (2018). eid=2-s2.0-85059766891

  33. A. G. Makarov, N. V. Pereborova, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 354, No. 6, 120-124 (2014). eid=2-s2.0-84937439497

  34. A. V. Demidov, A. G. Makarov, et al., Izv. VUZ. Tekhnol. Tekst. Prom., 293, No. 5, 21-25 (2006). eid=2-s2.0-34247548784

Download references

The research was financed within the ambit of accomplishment of the state assignment of the Ministry of Science and Higher Education of the Russian Federation, Project No. FSEZ-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Makarov.

Additional information

Translated from Khimicheskie Volokna, No. 2, pp. 15-19. March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, A.G., Kiselev, S.V. & Kozlov, A.A. Effect of Plastic Component of Defromation on Accuracy of Prediction of Functional Properties of Polymeric Materials. Fibre Chem 53, 68–72 (2021). https://doi.org/10.1007/s10692-021-10241-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-021-10241-x

Navigation