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Abstract In this paper, we study option pricing under a regime-switching exponential
Lévy model. Assuming that the coefficients are time-dependent and modulated by a
finite state Markov chain, we generalise the work in Momeya and Morales (Method
Comput Appl Probab, 2014, doi:10.1007/s11009-014-9399-2), and Siu and Yang
(Acta Mathe Appl Sin 2:369–388, 2009), that is, we use a pricing method based on
the Esscher transform conditional on the information available on the Markov chain.
We also carry out numerical analysis, to show the impact of the risk induced by the
underlying Markov chain on the price of the option.
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1 Introduction

Empirical studies have suggested the need for modern financial modelling to move
from the standard log-normal dynamics of the Black–Scholes model framework. This
is primarily because in their works, the authors in Black and Scholes (1973); Merton
(1973) assume that the price dynamic of the underlying risky asset are governed by
geometric Brownian motion, an assumption which many researchers have challenged.
There is evidence that the risky assets experience stochastic volatility overtime and
therefore the assumption of constant volatility creates biases when an option is priced
using the Black–Scholes model. Several models have been developed to provide more
realistic ways tomodel empirical behaviour of option prices. Among them, we can list:
the jump-diffusion models, the stochastic volatility and the regime switching models.
In the latter case, economic cycles are described by a discrete, finite stateMarkov chain;
See for example Goldfeld and Quandt (1973); Hamilton (1989) for more details. The
states of the underlyingMarkov chain represent the different states of the economy and
suchmodel enable to incorporate the impact of changes inmacro-economic conditions
on the behaviour of the dynamics of the assets’ prices.

The possibility of switching across induces an important source of risk that investors
might want to hedge against. As pointed out in Elliott et al. (2011), in a regime
switchingBlack–Scholesmodel, there exist at least two sources of risk that the investor
needs to consider: the diffusion risk which can be considered as the market or financial
risk and regime switching risk which can be thought as economic risk. In addition,
when the underlying is driven by a Lévy process, one needs to consider the risk due to
multiple jumps coming from Poisson random measures. There has been many works
on option pricing under regime switching model, most of them assuming that the risk
due to switching of regimes is zero. In Siu and Yang (2009); Elliott and Siu (2011);
Momeya and Morales (2014), the importance of pricing the regime risk is shown, in
the sense that, the authors show the impact of the change in the regime on the option
prices, hence addressing the problem of pricing the risk associated to the regime. The
work regime switching Black–Scholes model is discussed in Siu and Yang (2009);
Elliott and Siu (2011) whereas Momeya and Morales (2014) is an extension to the
regime-switching Variance-Gamma model. See also the work Naik (1993) where the
author studies the price of the regime risk induced by the jumps in volatility.

One of the main characteristics of the regime-switching model is that they generate
incomplete market and hence a family of Equivalent Martingales Measure (EMM).
The first task is to determine an equivalent martingale measure which will enable
to price the different risks efficiently. One may think of the martingale measure that
minimises the “distance” between the set of equivalent martingale measures and the
real world probability measure. One of such distances is given by the relative entropy
and the associated minimiser is the minimal entropy martingale measure (MEMM). In
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this work, we will use the regime switching Esscher transformwhich was already used
in Siu and Yang (2009) (see also Momeya and Morales 2014). The Esscher transform
is taken conditional on the information available on the Markov chain. The result
by Momeya and Ben-Salah (2012) can be used to justify the choice of our pricing
result by the minimal entropy martingale measure. It is also worth mentioning that
the work Gerber and Shiu (1994) introduces Esscher transform in actuarial science
as the pricing measure for option valuation and justify this choice by maximizing the
expected utility of power type of an investor. For other works on minimal entropy
martingale measure, the reader may consult Arai (2001); Fujiwara (2006); Fujisak
and Zhang (2009); Miyahara (1999).

In this paper, we extend the works Momeya and Morales (2014); Siu and Yang
(2009), that is, we assume that the dynamic of the underlying risky asset is governed by
a regime switching Carr, Geman, Madan and Yor (CGMY) process. We first study the
option price under a general regime switching exponential Lévy model. In this model,
the parameters of the assets are assumed to be deterministic, time dependent and are
modulated by an observable continuous time, finite state Markov chain. For example,
one may interpret the time dependent interest rate as corresponding to the relative
frequent announcements or industry involving reasonably small shifts in the interest
rates (see for example Hyland et al. 1999). Onemay also interpret the observable states
of the chain as different stages of the business cycle, for instance if the states of the
Markov chain are two, they could be interpreted as expansion and recession periods.
As inMomeya andMorales (2014); Siu andYang (2009), we introduce a pricingmodel
to price the diffusion risk (for the time dependent regime switching Black–Scholes
model), the risk due to jumps and the regime-switching risk. To achieve this, we first
adopt the regime switching Esscher transform in order to determine a set of equivalent
martingale measures satisfying the martingale condition. The selection of the Esscher
transform martingale measure is done by minimizing the maximum entropy between
an equivalent martingale measure and the real world probability measure over the
different states of the economy (compare with Siu and Yang 2009; Momeya and
Morales 2014).

We conduct numerical experiments to show the impact of the risk induced by
the underlying Markov chain on the price of the option. This implies that in pricing
options, a probable error can bemade whenwe chose to ignore the risk associated with
the switching of regimes. Our results extend those in Siu and Yang (2009); Momeya
and Morales (2014) to incorporate the time dependency of the parameters and to the
CGMYmodel. Another interesting observation in our model is the following: During
the lifetime of the option, its price is higher when the regime risk is priced than when
it is not, which is higher than the option price when there is no regime.

The remaining of the paper is organized as follows: In Sect. 2, we describe themodel
and study the different pricing kernels and their associatedmartingale condition. These
conditions are explicitly given is the case of regime switching Black–Scholes model,
Variance-Gamma and CGMY model. Section 3 is devoted to numerical experiments
to illustrate the effect of pricing the regime switching risk and we find a significant
difference between pricing the risk and not.
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2 The Model

In this section, we present a general regime switching exponential Lévy model. The
model is similar to that of Momeya and Morales (2014). Let (�,F ,P) be a complete
probability space, where P is the reference measure.

The evolution of the states of the economy is modelled by an irreducible homoge-
neous continuous time Markov chain X :={X (t); t ∈ [0, T ]} with a finite state space
X = {e1, e2, . . . , eN } ∈ R

N , where N ∈ N, and the j th component of en is the
Kronecker delta δnj for each n, j = 1, . . . , D. Denote by A:=[ai j ]i, j=1,2,...,N the
intensity matrix of the Markov chain under P. Then for each i, j = 1, 2, . . . , N with
i �= j, ai j is the transition intensity of the chain X jumping from state e j to state
ei at time t ∈ [0, T ]. Hence, for i �= j, ai j ≥ 0 and

∑N
j=1 ai j = 0 i.e., λi i ≤ 0.

With the canonical representation of the state space of the Markov chain, the follow-
ing semimartingale decomposition for the Markov chain X was given in Elliott et al.
(1994):

X (t) = X (0) +
∫ t

0
A(s)X (s) ds + M(t), t ∈ [0, T ]. (2.1)

where {M(t); t ∈ [0, T ]} is an R
N -valued martingale under the measure P with

respect to the filtration generated by X .
We consider a financial market with two primary securities, namely, a riskless asset

B and a risky stock S, which are traded continuously over the time horizon [0, T ]. We
model the evolution of the instantaneous interest rate r = {r(t); t ∈ [0, T ]} of the
money market account B at time t as follows.

r(t) = r(t, X (t)) = 〈r, X (t)〉 =
N∑

i=1

ri (t) 〈ei , X (t)〉 , (2.2)

where r:=(r1(t), r2(t), . . . , rN (t))′ ∈ R
N for each i = 1, 2, . . . , N and 〈·, ·〉 denotes

the inner product in R
N . The i-th component ri (t) of the vector r is a deterministic

function, representing the value of the interest rate when the Markov chain is in state
ei that is when X (t) = ei . The dynamics of {B(t); t ∈ [0, T ]} of the money market
account B are given by

dB(t) = r(t)B(t) dt, B(0) = 1. (2.3)

Denote by {μ(t); t ∈ [0, T ]} and {σ(t); t ∈ [0, T ]} the appreciation rate and the
volatility of the stock S at the time t respectively. Using similar convention, we set

μ(t) = μ(t, X (t)):= 〈μ, X (t)〉 =
N∑

i=1

μi (t) 〈ei , X (t)〉 , (2.4)

σ(t) = σ(t, X (t)):= 〈σ , X (t)〉 =
N∑

i=1

σi (t) 〈ei , X (t)〉 , (2.5)
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where μ = (
μ1(t), μ2(t), . . . , μN (t)

)′ ∈ R
N and σ = (

σ1(t), σ2(t), . . . , σN (t)
)′ ∈

R
N+ .

μi (t) and σi (t), i = 1, 2 . . . , N are deterministic functions representing respec-
tively the appreciation rate and volatility of S when the Markov chain is in state ei .
The price dynamics of the stock S is given by the following stochastic differential
equation:

dS(t) = S(t−)
(
μ(t) dt + σ(t) dW (t) +

∫

R0

(ez − 1)Ñ X ( dt; dz)
)
, S(0) > 0,

(2.6)

where R0 = R\{0}, W = {W (t); t ∈ [0, T ]} is a Brownian motion and
Ñ X (dt, dz):=N (dz, dt)−ρX (dz) dt is an independent compensated Markov regime-
switching Poisson random measure with ρX (dz) dt , the compensator (or dual
predictable projection) of N , defined by:

ρX (dz)dt :=
D∑

j=1

〈
X (t−), e j

〉
ρ j (dz)dt. (2.7)

For each j ∈ {1, 2, . . . , D}, ρ j (dz) is the conditional density of the jump size
when the Markov chain X is in state e j and satisfies

∫
R0

min(1, z2)ρ j (dz) < ∞
and

∫
|z|≥1(e

z − 1)2ρi (z) dz < ∞.
The dynamic of the stock S can also be written as

S(t) = S(0)eY (t),

where Y (t) is given by:

Y (t) = Y (0) +
∫ t

0

(
μ(s) − 1

2
σ 2(s) −

∫

R\{0}
(ez − 1 − z)ρX ( dz)

)
ds

+
∫ t

0
σ(s) dW (s) +

∫ t

0

∫

R\{0}
z Ñ ( ds, dz). (2.8)

The model defined by (2.1)–(2.6) is referred to as a general regime switching
exponential Lévy model. Such model leads to incomplete markets i.e., there exists
more than one equivalent martingale measures (EMM) describing the risk-neutral
price dynamic and compatible with the no arbitrage requirement. In order to price
contingent claim, we shall determine EMMusing regime switching Esscher transform
introduced in Elliott et al. (2005); Siu and Yang (2009). In fact, the classical definition
of Esscher transform based on the moment generating function of a random variable
is replaced by a conditional Esscher transform where the moment generating function
is conditional to a subset of information available on the Markov chain. This leads to
two different pricing kernels based on the conditional Esscher transform.
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2.1 Pricing Kernel I

In this section, we construct a risk neutral measure assuming that the whole path of
the underlying Markov chain is known. This Esscher change of measure produces
a pricing kernel that does not take into account the risk associated with the Markov
chain.

We shall first specify the information structure of our model. Let F X := {F X
t ; t ∈

[0, T ]} and F S := {F S
t ; t ∈ [0, T ]} denote the P-augmentation of natural filtrations

generated by {X (t); t ∈ [0, T ]} and {S(t); t ∈ [0, T ]} respectively. That is, for each
t ∈ [0, T ], F X

t and F S
t are, respectively, the σ -fields generated by the histories of the

chain X and the stock price S up to and including time t . We define for t ∈ [0, T ], Gt

to be the σ -algebra F X
T ∨ F S

t . This represents the information set generated by both
histories of X and S up to and including the time t . We write G := {Gt ; t ∈ [0, T ]}.
We set

� :=
{

θ(t); t ∈ [0, T ]|θ(t):=
N∑

i=1

θi (t)
〈
X (t−), ei

〉
, with

(
θ1(t), . . . , θN (t)

) ∈ R
N ,

such that θi , i = 1, . . . , N are deterministic and EP

[
e− ∫ t

0 θ(s) dY (s)
∣
∣
∣F X

T

]
< ∞

}

.

(2.9)

For θ :={θ(t); t ∈ [0, T ]} ∈ �, define the generalized Laplace transform of a
G-adapted process Y by

MY (θ):=EP

[
e− ∫ t

0 θ(s) dY (s)
∣
∣
∣F X

T

]
. (2.10)

We define the kernel of a generalized Esscher transform with respect to the parameter
θ . Let 	θ :={	θ(t); t ∈ [0, T ]} denote a G-adapted stochastic process defined as

	θ(t) =
exp
(

− ∫ t
0 θ(s) dY (s)

)

MY (θ)
, t ∈ [0, T ], θ ∈ �. (2.11)

Then, the regime switching Esscher transform Q ∼ P on G with respect to a family
of parameters {θ(s); s ∈ [0, t]} is given by:

	θ(t) = dQ

dP

∣
∣
∣
∣
Gt

=
exp
(

− ∫ t
0 θ(s) dY (s)

)

EP

[
exp
(

− ∫ t
0 θ(s) dY (s)

)∣
∣
∣F X

T

] , t ∈ [0, T ], θ ∈ �.

(2.12)
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Hence, as shown in Elliott et al. (2005), one has

	θ(t) = exp

(

−
∫ t

0
θ(s)σ (s) dW (s) − 1

2

∫ t

0
(θ(s))2(σ (s))2 ds

−
∫ t

0

∫

R0

θ(s−)z Ñ X ( ds, dz) −
∫ t

0

∫

R0

(e−zθ(s) − 1 + θ(s)z)ρX ( dz) ds

)

.

(2.13)

For each θ ∈ �, 	θ is a density process (see Momeya and Morales 2014; Siu and
Yang 2009), therefore a new equivalent probability measure can be defined by setting

dQθ

dP

∣
∣
∣
∣
Gt

= 	θ(t), t ∈ [0, T ]. (2.14)

The pricing kernel associated to such measure shall then be defined by choosing θ

adequately (see Sect. 2.3).

2.2 Pricing Kernel II

In this section, we construct a change of measure assuming that the initial state of the
underlying Markov chain is known. This assumption seems more realistic since an
investor can only observe the current and past information about the macro-economic
condition and then anticipate future evolution of the macro-economic conditions. The
expectation in the denominator of the regime switching Esscher transform is uncon-
ditional implying that the risk due to the switching regimes is priced.

We introduce a new filtration, namely G:={Gt = F X
t ∨ F S

t ; t ∈ [0, T ]} which
denotes the right continuous, P-complete filtration generated by the bivariate process
(X, S). Set

�∗ :=
{
θ∗(t); t ∈ [0, T ]|θ∗(t) :=

N∑

i=1

θ∗
i (t)

〈
X (t−), ei

〉
, with

(
θ∗
1 (t), . . . , θ∗

N (t)
) ∈ R

N , such that EP

[
e− ∫ T

0 θ∗(s) dY (s)
∣
∣
∣X (0)

]
< ∞

}

(2.15)

and define the generalized Laplace transform of a G-adapted process Y as

MY (θ∗) := EP

[
e− ∫ T

0 θ(s) dY (s)
∣
∣
∣X (0)

]
. (2.16)

As in Momeya and Morales (2014); Siu and Yang (2009), define the new kernel
	θ∗ = {	θ∗

(t); t ∈ [0, T ]} as follows
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⎧
⎨

⎩

	θ∗
(0):=1

	θ∗
(t):=E[	θ∗

(T )|Gt ] = EP

[
e− ∫ T

0 θ∗(s) dY (s)

EP[e−
∫ T
0 θ∗(s) dY (s)|X (0)]

∣
∣
∣
∣Gt

]

, t ∈ (0, T ]; θ∗ ∈ �∗.

(2.17)
Then {	θ∗

(t); t ∈ [0, T ]} is a positive (G,P)-martingale satisfying

EP[	θ∗ ] = 1, ∀t ∈ [0, T ].

As for the first kernel, one can define a family of equivalent measures Qθ∗ through

dQθ∗

dP

∣
∣Gt = 	θ∗

(t), t ∈ [0, T ]. (2.18)

and derive a pricing kernel by adequately choosing θ∗ (see Sect. 2.3.)
The pricing kernel (2.14) and (2.18) and The knowledge of the whole path of

the Markov chain implies that there is no need for additional premium whereas the
knowledge of only the initial state of the Markov chain forces the need of additional
premium that will take into account the risk associated to the changes in the regime.

2.3 Martingale Condition

Denote by {S∗(t):= S(t)
B(t) ; t ∈ [0, T ]} the discounted price process. Therefore, by the

fundamental theorem of asset pricing (see Harrison and Pliska 1981, 1983), the no-
arbitrage price of any contingent claim written on S in this market is given by

EQ

[
S∗(t)

∣
∣
∣G0
]

= S∗(0), (2.19)

withQ ∈ {Qθ ,Qθ∗}. Eq. (2.19) implicitly gives the condition on the process θ and θ∗
that determine an EMM within the families {Qθ : θ ∈ �} and {Qθ∗ : θ∗ ∈ �∗}.

The following theorem gives necessary and sufficient conditions for Qθ to be an
EMM.

Theorem 2.1 Consider the Lévy regime-switching market defined in (2.3) and (2.6).
An equivalent probability measure Qθ defined through (2.14) is an equivalent martin-
gale measure on (�,GT ),i.e., it satisfies the condition (2.19), if and only if θ satisfies
the following equation

μi (t) − ri (t) − θi (t)σ
2
i (t) +

∫

R

(ez − 1)(e−zθi (t) − 1)ρi (z) dz = 0,

t-a.e., ∀ t ∈ [0, T ] (2.20)

for i = 1, . . . , N.

Proof It easily follows using the martingale condition under the enlarged filtration
G = {Gt ; 0 ≤ t ≤ T } and Bayes rules. ��
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Next, we shall discuss the necessary and sufficient condition for Qθ∗ to be an
equivalent martingale on (�,GT ). We begin by presenting, without proof, a lemma
which gives an explicit form of the moment generating function of the Markov chain
in terms of the occupation times.

Lemma 2.2 Consider an irreducible homogeneous continuous-time Markov chain
X :={X (t); t ∈ [0, T ]} on (�,GT ,G,P) with a finite state space X of size N ∈ N

and with an intensity matrix A:={ai j : 1 ≤ i, j ≤ N }. Let

J(u, v):=(J1(u, v), J2(u, v), . . . , JN (u, v)) (2.21)

denote the vector of the occupation times of X during a period of time [u, v] ⊂ [0, T ].
We have

Jk(u, v) =
∫ v

u
〈X (s), ek〉 ds.

The conditional moment generating function of J(u, v) is given by

EP
[
e
∑N

k=1
∫ t

u ζk (v) dJk(u,v)
∣
∣Gu
] = 〈e

∫ t
u

(
A+Diag(ζ

k
(r))
)
dr

X (u), 1
〉
, ζ ∈ R

N , (2.22)

where 1 = (1, 1, . . . , 1)′ ∈ R
N , 〈·, ·〉 is the scalar product in R

N and Diag(ζ ) is an
N × N diagonal matrix of the form

Diag(ζ ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ζ1 0 . . . 0 0
0 ζ2 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . ζN−1 0
0 . . . 0 0 ζN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Proof Follows in the same way as in the proof of Elliott and Osakwe (2006) Propo-
sition 2. ��

We can now state the necessary and sufficient condition forQθ∗ to be an equivalent
martingale measure on (�,GT ). This result is adapted from Siu and Yang Siu and
Yang (2009).

Theorem 2.3 Consider the Lévy regime-switching market defined in (2.3) and (2.6).
An equivalent measureQθ∗ defined through (2.18) is an equivalent martingale measure
on (�,GT ), i.e., condition (2.19) holds if and only if θ∗ satisfies the following equation

〈
e
∫ t
0 (A+Diag

(
ξ̃ (θ∗(r))

)
dr

X (0), 1
〉
−
〈
e
∫ t
0 (A+Diag(ξ(θ∗(r))) dr X (0), 1

〉
= 0, (2.23)

where

ξ(θ∗) = (ξ1(θ
∗
1 (t)), ξ2(θ

∗
2 (t)), . . . , ξN (θ∗

N (t))),

ξ̃ (θ∗) = (ξ̃1(θ
∗
1 (t)), ξ̃2(θ

∗
2 (t)), . . . , ξ̃N (θ∗

N t)),
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with

ξi (θ
∗
i (t)) = −θ∗

i (t)
(
μi (t) − 1

2
σ 2

i (t)
)+ 1

2
(θ∗

i (t))2σ 2
i (t)

+
∫

R

(e−zθ∗
i (t) − 1 + θ∗

i (t)(ez − 1))ρi (z) dz, t-a.e., (2.24)

ξ̃i (θ
∗
i (t)) = −ri (t) − (θ∗

i (t) − 1)(μi (t) − 1

2
σ 2

i (t)) + 1

2
(θ∗

i (t) − 1)2σ 2
i (t)

+
∫

R

(e−z(θ∗
i (t)−1) − 1 + (θ∗

i (t) − 1)(ez − 1))ρi (z) dz, t-a.e. (2.25)

for i = 1, 2, . . . , N .

In order to prove this theorem, we will need the following lemma, which is a exten-
sion of (Momeya andMorales 2014 Lemma 4.2) and (Siu and Yang 2009 Lemma 3.1).

Lemma 2.4 Under Assumptions of Theorem 2.3, for all u, v ∈ [0, T ] such that u ≤ v,
we have that

EQθ∗
[

S∗(v)

∣
∣
∣Gu

]
=
〈
e
∫ v

u (A+Diag(ξ̃ (θ∗(r)))) dr X (u), 1
〉

〈
e
∫ v

u (A+Diag(ξ(θ∗(r)))) dr X (u), 1
〉 S∗(u), (2.26)

where ξ̃ (θ∗(r)) and ξ(θ∗(r)) are given in Theorem 2.3.

Proof Choose u, v ∈ [0, T ] such that v ≥ u. Then the discounted stock price is given
by S∗(v):=S(v)e− ∫ v

u r(s) ds . Using this and a version of the Bayes’s rule, we get

EQθ∗
[

S∗(v)

∣
∣
∣Gu

]
= S∗(u)EQθ∗

[
e− ∫ v

u r(s) dse
∫ v

u dY (s)
∣
∣
∣Gu

]

= S∗(u)
EP

[
e− ∫ v

u r(s) dse
∫ v

u dY (s)	θ∗
(v)

∣
∣
∣Gu

]

EP

[
	θ∗

(v)

∣
∣
∣Gu

]

= S∗(u)
EP[e− ∫ v

u r(s) dse
∫ v

u dY (s)	θ∗
(v)|Gu]

EP[	θ∗
(v)|Gu]

= S∗(u)
EP

[
e− ∫ v

u r(s) dse− ∫ v
u (θ∗(s)−1) dY (s)EP

[
e− ∫ T

v θ∗(s) dY (s)
∣
∣
∣Gv

]∣
∣
∣Gu

]

EP

[
e− ∫ T

u θ∗(s) dY (s)
∣
∣
∣Gu

] (2.27)
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Using the occupation times (Lemma 2.2.)

EQθ∗
[

S∗(v)

∣
∣
∣Gu

]

= S∗(u)
EP

[
exp
(∑N

i=1

∫ v

u ξ̃i (θ
∗
i (t)) dJi (u, t)

)
EP

[
exp
(∑N

i=1

∫ T
v

ξi (θ
∗
i (t)) dJi (v, t)

)∣
∣
∣Gv

]∣
∣
∣Gu

]

EP

[
exp
(∑N

i=1

∫ v

u
ξi (θ

∗
i (t)) dJi (u, t)

)
EP[exp

(∑N

i=1

∫ T

v

ξi (θ
∗
i (t)) dJi (v, t)

)∣
∣
∣Gv

∣
∣
∣Gu

]
. (2.28)

Using the following property of homogeneous Markov chains

Law(J1(v, T ), . . . , JN (v, T )|G(v)) = Law(J1(v, T ), . . . , JN (v, T )|X (v))

= Law(J1(0, T − v), . . . , JN (0, T −v)|X (0)),

(2.28) becomes

EQθ∗
[

S∗(v)

∣
∣
∣Gu

]

= S∗(u)
EP

[
exp
(∑N

i=1

∫ T −v

0 ξi (θ
∗
i (t)) dJi (0, t)

)∣
∣
∣X (0)

]
EP

[
exp
(∑N

i=1

∫ v

u ξ̃i (θ
∗
i (t)) dJi (u, t)

)∣
∣
∣Gu

]

EP

[
exp
(∑N

i=1

∫ T −v

0 ξi (θ
∗
i (t)) dJi (0, t)〉

)∣
∣
∣X (0)

]
EP

[
exp
(∑N

i=1

∫ v

u ξi (θ
∗
i (t)) dJi (u, t)

)∣
∣
∣Gu

] .

This implies

EQθ∗
[

S∗(v)

∣
∣
∣Gu

]
= S∗(u)

EP

[
exp
(∑N

i=1

∫ v

u ξ̃i (θ
∗
i (t)) dJi (u, t)

)∣
∣
∣Gu

]

EP

[
exp
(∑N

i=1

∫ v

u ξi (θ
∗
i (t)) dJi (u, t)

)∣
∣
∣Gu

] .

Hence, using Lemma 2.2, we get

EQθ∗
[

S∗(v)

∣
∣
∣Gu

]
= S∗(u)

〈
e
∫ v

u (A+Diag(ξ̃ (θ∗(r)))) dr X (u), 1
〉

〈
e
∫ v

u (A+Diag(ξ(θ∗(r)))) dr X (u), 1
〉 . (2.29)

��
Proof of Theorem 2.3 This follows directly from the previous lemma by setting v = t
and u = 0 in (2.26). In fact, we have that the martingale condition (2.19) is equivalent
to (2.23). ��

We turn our main focus on the condition for the family {Qθ∗ : θ∗ ∈ �∗} because
through a standard approximation for thematrix exponential in (2.23), we shall deduce
the martingale condition for the family {Qθ : θ ∈ �}; See Siu and Yang (2009);
Momeya and Morales (2014).

2.4 Approximations

Here, we analyse the two families of equivalent martingale measures Qθ and Qθ∗ via
certain types of approximations for the martingale condition (2.23). The exponential
of a N × N matrix E is defined as
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exp(E):=
∞∑

n=0

En

n! , (2.30)

where E0 = I is the identity matrix and by convention 0! = 1. Replacing X (0) by ei

for i = 1, . . . , N in (2.23) yields,

〈
e
∫ t
0 (A+Diag(ξ̃ (θ∗(r)))) drei , 1

〉
−
〈
e
∫ t
0 (A+Diag(ξ(θ∗(r)))) drei , 1

〉
= 0. (2.31)

This is a system of N equations and in practice, to solve it, one needs to adopt a finite
number of terms in the series’ expansionof exp(E).Using thefirst-order approximation
of exp(E) (i.e., exp(E) ≈ I + E) in (2.31), we have

〈(
I +

∫ t

0
(A + Diag(ξ̃ (θ∗(r)))) dr

)
ei , 1

〉

−
〈(
I +

∫ t

0
(A + Diag(ξ(θ∗(r)))) dr

)
ei , 1

〉
= 0.

This yields

⎛

⎝
N∑

k=1,k �=i

taki + 1 + aii t +
∫ t

0
ξ̃i (θ

∗
i (r)) dr

⎞

⎠

−
⎛

⎝
N∑

k=1,k �=i

taki + 1 + aii t +
∫ t

0
ξi (θ

∗
i (r)) dr

⎞

⎠ = 0,

i.e., ∫ t

0
ξ̃i (θ

∗
i (r)) dr −

∫ t

0
ξi (θ

∗
i (r)) dr = 0, for i = 1, 2, . . . , N ,

which simplifies to

μi (t)−ri (t)−θi (t)σ
2
i (t)+

∫

R

(ez −1)(e−zθi (t)−1)ρi (z) dz = 0, t-a.e., ∀ t ∈ [0, T ].
(2.32)

Eq. (2.32) coincides with the martingale condition for the family {Qθ : θ ∈ �} as
given in (2.20). Hence, the martingale condition for the family {Qθ : θ ∈ �} is a first
order approximation of the martingale condition for {Qθ∗ : θ∗ ∈ �∗}. We can think
of the pricing kernel 	θ∗

as having more information than the kernel 	θ with θ∗ been
more realistic.

We will now as in Siu and Yang (2009); Momeya and Morales (2014) derive the
martingale condition for Qθ∗ by taking a two-order approximation for the matrix
exponential in (2.30). This will enable to move from the less realistic assumption
where the whole path of the Markov chain is known to the more realistic one where
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only the initial state in know. The approximation is given by

exp(E) ≈ I + E + 1

2
E2. (2.33)

For simplicity, we consider two regimes i.e, N = 2 and we set a11 = −a12 = −a and
a21 = −a22 = a; a ≥ 0 and t > 0. In this case, we need to solve the following pair
of equations:

〈
e
∫ t
0 (A+Diag(ξ̃ (θ∗(r)))) dre1, 1

〉
−
〈
e
∫ t
0 (A+Diag(ξ(θ∗(r)))) dre1, 1

〉
= 0, (2.34)

〈
e
∫ t
0 (A+Diag(ξ̃ (θ∗(r)))) dre2, 1

〉
−
〈
e
∫ t
0 (A+Diag(ξ(θ∗(r)))) dre2, 1

〉
= 0 (2.35)

for 1 = (1, 1)′ ∈ R
2. But

E =
∫ t

0
(A + Diag(ξ̃ (θ∗(r)))) dr

)
, (2.36)

or

E =
(∫ t

0 (−a + ξ̃1(θ
∗
1 (r))) dr at

at
∫ t
0 (−a + ξ̃2(θ

∗
2 (r))) dr

)

. (2.37)

Substituting (2.33) in (2.34), the martingale condition (2.23), for X (0) = e1 = (1, 0)′
becomes

∫ t

0
(ξ̃1(θ

∗
1 (r)) − ξ1(θ

∗
1 (r))) dr − at

∫ t

0
(ξ̃1(θ

∗
1 (r)) − ξ1(θ

∗
1 (r))) dr

+ 1

2

{[ ∫ t

0
(ξ̃1(θ

∗
1 (r)) − ξ1(θ

∗
1 (r))) dr

][ ∫ t

0
(ξ̃1(θ

∗
1 (r)) + ξ1(θ

∗
1 (r))) dr

]

+ at
∫ t

0
(ξ̃2(θ

∗
2 (r)) − ξ2(θ

∗
2 (r))) dr

}

= 0. (2.38)

Similarly, for X (0) = e2 = (0, 1), substituting (2.33) in (2.35), we get

∫ t

0
(ξ̃2(θ

∗
2 (r)) − ξ2(θ

∗
2 (r))) dr − at

∫ t

0
(ξ̃2(θ

∗
2 (r)) − ξ2(θ

∗
2 (r))) dr

+ 1

2

{[ ∫ t

0
(ξ̃2(θ

∗
2 (r)) − ξ2(θ

∗
2 (r))) dr

][ ∫ t

0
(ξ̃2(θ

∗
2 (r)) + ξ2(θ

∗
2 (r))) dr

]

+ at
∫ t

0
(ξ̃1(θ

∗
1 (r)) − ξ1(θ

∗
1 (r))) dr

}

= 0. (2.39)
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Here

ξ̃i (θ
∗
i (t)) − ξi (θ

∗
i (t)) = μi (t) − ri (t) − θ∗

i (t)σ 2
i (t)

+
∫

R

(ez − 1)(e−zθ∗
i (t) − 1)ρi (z) dz, t-a.e (2.40)

and

ξ̃i (θ
∗
i (t)) + ξi (θ

∗
i (t)) = μi (t) − ri (t) − 2θ∗

i (t)μi (t) + (θ∗
i (t))2σ 2

i (t)

+
∫

R

(e−z(θ∗
i (t)−1) + e−zθ∗

i (t) − 2)

+ (2θ∗
i (t) − 1)(e−z − 1)ρi (z) dz, t-a.e. (2.41)

for i = 1, 2. (2.38) and (2.39) are more tractable than (2.23) and we shall use them to
determine the EMM parameters (θ∗

1 (t), θ∗
2 (t)) for the numerical illustrations.

2.5 Particular Cases

In this section, we present the developments made in the previous section for particular
models. In the sequel, we take N = 2, i.e., theMarkov chain X moves only between the
two states e1 = (1, 0)T and e2 = (0, 1)T . We shall give explicit martingale conditions
for regime-switching Black–Scholes, Variance Gamma (VG) and Carr GemanMadan
and Yor (CGMY) models when the coefficient are constants. Note that the former
cases of regime-switching Black–Scholes and Variance Gamma models were already
derived in Siu and Yang (2009) and Momeya and Morales (2014).

2.5.1 The Regime-Switching Black–Scholes Model

In this section, we present the regime switching Black–Scholes model. The dynamic
of price of the risky asset in this case is given by

S(t) = S(0) exp

{∫ t

0

(
μ(s) − 1

2
σ 2(s)

)
ds +

∫ t

0
σ(s) dW (s)

}

. (2.42)

In the following theorem, we give (without proof) the equation satisfied by the state
price density θi and θ∗

i .

Theorem 2.5 Assume that the dynamic of the stock price is given by (2.42). Then the
values of θi satisfying the martingale condition (2.20) are reduced to

θi = μi − ri

σi
2 for i = 1, 2. (2.43)
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Moreover, θ∗
i in (2.23) satisfy the following system of nonlinear equations in (θ∗

1 , θ∗
2 ),

σ1
4t2

2
(θ∗

1 )3 − (3μ1 − r1)σ12t2

2
(θ∗

1 )2 +
(

σ1
2t + (μ1 − r1)(σ12(t) + 2μ1)t2 − aσ1

2t2

2

)

θ∗
1 (t)

+ aσ2
2t2

2
θ∗
2 −

(
(μ1 − r1)2 − a(μ1 − r1) + a(μ2 − r2)

2

)

t2 − (μ1 − r1
)
t = 0, t ∈ [0, T ]

(2.44)

and

σ2
4t2

2
(θ∗

2 )3 − (3μ2 − r2)σ22t2

2
(θ∗

2 )2

+
(
σ2

2t + (μ2 − r2)(σ22 + 2μ2)t2 − aσ2
2t2

2

)
θ∗
2 + aσ1

2t2

2
θ∗
1

−
( (μ2 − r2)2 − a(μ2 − r2) + a(μ1 − r1)

2

)
t2 − (μ2 − r2

)
t = 0, t ∈ [0, T ].

(2.45)

Proof See Siu and Yang (2009). ��

2.5.2 The Regime-Switching Variance-Gamma Model

In this section we present the regime switching variance-gamma model. We obtain
this model from the general model for the risky asset described in Eq. (2.6) by setting
the dynamics of the process as

S(t) = S(0) exp

[ ∫ t

0
μ(s) ds +

∫ t

0

∫

R\{0}
z Ñ X

V G( ds, dz)

−
∫ t

0

∫

R\{0}
(ez − 1 − z)ρX

V G( dz) ds

]

, (2.46)

where the jump process NV G(·, ·) has the predictable compensator

ρX
V G( dz) dt =

2∑

i=1

〈
ei , X (t−)

〉
ρV G

i (z) dt, (2.47)

with the Lévy measure associated to the variance gamma process as

ρV G
i (z) = Ci

e−Gi |z|

|z| 1z<0 + Ci
e−Mi |z|

|z| 1z>0. (2.48)

We then have the following martingale conditions theorem
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Theorem 2.6 Assume that the dynamic of the stock price is given by (2.46). Then the
values of θi satisfying the martingale condition (2.20) are reduced to

μi − ri − Ci log

(
Gi Mi

(Gi + 1)(Mi − 1)

)
+ Ci log

( (Gi − θi )(Mi + θi )

(Gi − θi + 1)(Mi + θi − 1)

)

= 0

(2.49)

for i = 1, 2. Moreover, θ∗
i in (2.23) satisfy the following system of nonlinear equations

in (θ∗
1 , θ∗

2 )

{

μ1−r1−C1 log

(
G1M1

(G1 + 1)(M1 − 1)

)

+C1 log

(
(G1 − θ∗

1 )(M1 + θ∗
1 )

(G1 − θ∗
1 + 1)(M1 + θ∗

1 − 1)

)}

×
{

t + 1

2
t2
[

μ1 − r1 − 2θ∗
1μ1 + C1 log

(
G1M1

(G1 − θ∗
1 )(M1 + θ∗

1 )

)

+ C1 log

(
G1M1

(G1 − θ∗
1 + 1)(M1 + θ∗

1 − 1)

)

+ (2θ∗
1 − 1)C1

× log

(
G1M1

(G1 + 1)(M1−1)

)]

−a

}

+ 1

2
at2
{

μ2 − r2 − C2 log

(
G2M2

(G2 + 1)(M2−1)

)

+ C2 log

(
(G2 − θ∗

2 )(M2 + θ∗
2 )

(G2−θ∗
2 +1)(M2+θ∗

2 −1)

)}

= 0 (2.50)

and

{

μ2−r2−C2 log

(
G2M2

(G2 + 1)(M2−1)

)

+C2 log

(
(G2 − θ∗

2 )(M2 + θ∗
2 )

(G2 − θ∗
2 + 1)(M2 + θ∗

2 − 1)

)}

×
{

t + 1

2
t2
[

μ2 − r2 − 2θ∗
2μ2 + C2 log

(
G2M2

(G2 − θ∗
2 )(M2 + θ∗

2 )

)

+ C2 log

(
G2M2

(G2 − θ∗
2 + 1)(M2 + θ∗

2 − 1)

)

+ (2θ∗
2 − 1)C2

× log

(
G2M2

(G2+1)(M2 − 1)

)]

− a

}

+ 1

2
at2
{

μ1−r1 − C1 log

(
G1M1

(G1+1)(M1−1)

)

+ C1 log

(
(G1 − θ∗

1 )(M1 + θ∗
1 )

(G1 − θ∗
1 + 1)(M1 + θ∗

1 − 1)

)}

= 0. (2.51)

Proof See Momeya and Morales (2014). ��
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2.5.3 The regime-Switching CGMY Model

In this section we present the regime switching CGMY. This model is obtained from
the general case by setting the dynamics of the risky process S as

S(t) = S(0) exp

[ ∫ t

0
μ(s) ds +

∫ t

0

∫

R\{0}
z Ñ X

CG MY ( ds, dz)

−
∫ t

0

∫

R\{0}
(ez − 1 − z)ρX

CG MY ( dz) ds

]

, (2.52)

where the jump process N X
CG MY (t; ·) has the predictable compensator

ρX
CG MY ( dz) dt =

2∑

i=1

〈
ei , X (t−)

〉
ρCG MY

i (z) dt, (2.53)

with the Lévy measure associated to the CGMY process as

ρCG MY
i (z) = Ci

e−Gi |z|

|z|1+Y
1z<0 + Ci

e−Mi |z|

|z|1+Y
1z>0. (2.54)

In the following theorem, we derive the equation satisfied by the state price density
θi of the equivalent martingale measure Q

θi when the price of risk in the regime
switching model is not taken into account.

Theorem 2.7 (Martingale condition without price of risk) Assume that the dynamic
of the stock price is given by (2.52). Moreover assume that the state price density θi

is such that 0 < θi < Gi and Mi > 1. Then θi (t) satisfies the following system of
equations

μi − ri + Ci�(−Yi )
[
(Gi − (θi − 1))Yi − (Gi + 1)Yi − (Gi − θi )

Yi

+ GYi
i + MYi

i + (Mi + θi − 1)Yi − (Mi − 1)Yi − (Mi + θi )
Yi
]

= 0

for i = 1, 2. (2.55)

Proof Assume that S satisfies (2.52), then (2.20) is reduced to

μi − ri +
∫

R

(ez − 1)(e−zθi − 1)νi (z) dz = 0, i = 1, 2. (2.56)
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The integral term involved in Eq. (2.56) is computed as follows

∫

R

(ez − 1)(e−zθi − 1)νi (z) dz =
∫

R

(ez − 1)(e−zθi − 1)

×
(

Ci
e−Gi |z|

|z|1+Y
1z<0 + Ci

e−Mi |z|

|z|1+Y
1z>0

)
dz

=
∫ 0

−∞
(ez − 1)(e−zθi − 1)

Ci exp(Gi z)

(−z)Yi +1 dz

+
∫ ∞

0
(ez − 1)(e−zθi − 1)

Ci exp(−Mi z)

(z)Yi +1 dz

= I1 + I2. (2.57)

We shall now consider different cases
Case 1: Y = 0.

This is the variance gamma case and was discussed in the previous section.

Case 2: Y �= 0. We have that

I1 =
∫ 0

−∞

(
e−z(θi −1) − ez − e−zθi + 1

) Ci eGi z

(−z)Yi +1 dz

= Ci

[ ∫ 0

−∞

(
eGi −z(θi −1)(−z)−1−Yi

)
dz −

∫ 0

−∞

(
e(Gi +1)z(−z)−1−Yi

)
dz

−
∫ 0

−∞

(
e(Gi −θi )z(−z)−1−Yi

)
dz −

∫ 0

−∞

(
eGi z(−z)−1−Yi

)
dz

]

. (2.58)

Put w = −(Gi − (θi − 1))z, w = −(Gi + 1)z, w = −(Gi − θi )z, w = −Gi z in
the first, second, third and fourth integral respectively, then using the definition of the
gamma function, we get

I1 = Ci�(−Yi )
[
(Gi − (θi − 1))Yi − (Gi + 1)Yi − (Gi − θi )

Yi + GYi
]
. (2.59)

In the same way, I2 is solved explicitly using change of variable and the definition of
the gamma function to get

I2 = Ci�(−Yi )
[
(Mi + θi − 1)Yi − (Mi − 1)Yi − (Mi + θi )

Yi + MYi
i

]
. (2.60)
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Combining (2.59) and (2.60), we get

∫

R

(ez − 1)(e−zθi − 1)ρi (z) dz = Ci�(−Yi )

[

(Gi − (θi − 1))Yi − (Gi + 1)Yi

+ GYi
i − (Gi − θi )

Yi + (Mi + θi − 1)Yi

− (Mi − 1)Yi − (Mi + θi )
Yi + MYi

i

]

. (2.61)

Substituting this into Eq. (2.56) gives us the desired result. ��
In the following theorem, we derive the equation satisfied by the state price density

θ∗
i of the equivalent martingale measure Qθ∗

i
when the price of risk in the regime

switching model is taken into account.

Theorem 2.8 (Martingale condition with price of risk) Assume that conditions of
Theorem (2.7) are satisfied. Then the state price densities θ∗

i (t) in (2.23) satisfy the
following system of non linear equations in (θ∗

1 , θ∗
2 )),

{
μ1 − r1 + C1�(−Y1)

[
(G1 − (θ1 − 1))Y1 − (G1 + 1)Y1 − (G1 − θ1)

Y1

+ GY1
1 + MY1

1 + (M1 + θ1 − 1)Y1 − (M1 − 1)Y1 − (M1 + θ1)
Y1
]}

×
{

t + 1

2
t2
(
μ1 − r1 − 2θ∗

1μ1 + C1�(−Y1)
[
(G1 − (θ∗

1 − 1))Y1

+ (G1 − θ∗
1 )Y1 + (2θ∗

1 − 1)(G1 + 1)Y1 − (2θ∗
1 + 1)G1

Y1 + (M1 + θ∗
1 − 1)Y1

+ (M1 + θ1)
Y1 + (2θ∗

1 − 1)(M1 − 1)Y1 − (2θ∗
1 + 1)M1

Y1

])

− a

}

+ 1

2
t2a
{
μ2 − r2 + C2�(−Y2)

[
(G2 − (θ2 − 1))Y2 − (G2 + 1)Y2 + GY2

2 + MY2
2

− (G2 − θ2)
Y2 + (M2 + θ2 − 1)Y2 − (M2 − 1)Y2 − (M2 + θ2)

Y2
]}

= 0

(2.62)

and

{
μ2 − r2 + C2�(−Y2)

[
(G2 − (θ2 − 1))Y2 − (G2 + 1)Y2 − (G2 − θ2)

Y2

+ GY2
2 + MY2

2 + (M2 + θ2 − 1)Y2 − (M2 − 1)Y2 − (M2 + θ2)
Y2
]}

×
{

t + 1

2
t2
(
μ2 − r2 − 2θ∗

2μ2 + C2�(−Y2)
[
(G2 − (θ∗

2 − 1))Y2

+ (G2 − θ∗
2 )Y2 + (2θ∗

2 − 1)(G2 + 1)Y2 − (2θ∗
2 + 1)G2

Y2 + (M2 + θ∗
2 − 1)Y2

+ (M2 + θ2)
Y2 + (2θ∗

2 − 1)(M2 − 1)Y2 − (2θ∗
2 + 1)M2

Y2

])

− a

}
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+ 1

2
t2a
{
μ1 − r1 + C1�(−Y1)

[
(G1 − (θ1 − 1))Y1 − (G1 + 1)Y1 + GY1

1 + MY1
1

− (G1 − θ1)
Y1 + (M1 + θ1 − 1)Y1 − (M1 − 1)Y1 − (M1 + θ1)

Y1
]}

= 0.

(2.63)

Proof In this case, (2.40) and (2.41) are reduced to

ξ̃i (θ
∗
i (t)) − ξi (θ

∗
i (t)) = μi (t) − ri (t) + Ci�(−Yi )

[

(Gi − (θ∗
i (t) − 1))Yi + GYi

− (Gi + 1)Yi + MYi − (Gi − θ∗
i (t))Yi + (Mi + θ∗

i (t) − 1)Yi

− (Mi − 1)Yi − (Mi + θ∗
i (t))Yi

]

, (2.64)

and

ξ̃i (θ
∗
i (t)) + ξi (θ

∗
i (t)) = μi (t) − ri (t) − 2θ∗

i (t)μi (t) + Ci�(−Yi )
[
(Gi − θ∗

i (t))Yi

+ (Gi − (θ∗
i (t) − 1))Yi + (2θ∗

i (t) − 1)(Gi + 1)Yi

+ (Mi + θ∗
i (t) − 1)Yi + (Mi + θi (t))

Yi − (2θ∗
i (t) + 1)Gi

Yi

+ (2θ∗
i (t) − 1)(Mi − 1)Yi − (2θ∗

i (t) + 1)Mi
Yi
]
, (2.65)

respectively and the result follows. ��
The solutions to themartingale condition forQθ∗ are generally not unique and therefore
we need to use some criteria to select the final Esscher parameters. These criteria are
discussed in the “Appendix”.

3 Numerical Results and Discussions

In this section, we conduct numerical experiments for the models discussed in the
previous sections; the regime switching Black–Scholes (Model I) and CGMY (Model
II). We shall assume that there are two states of the economy i.e., N = 2. State 1
represents an expansion period while state 2 represents a recession period. We assume
that the transition probability matrix is

A =
(−a1 a1

a2 −a2

)

, with a1 = a2 = 0.5.

3.1 Model I

We assume that the stock price is driven by a regime switching geometric Brownian
motion.
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Specific Forms of Time Dependent Interest Rate and Volatility. Here, we will extend
the results and analysis in Siu and Yang (2009) to the time dependent interest rate and
volatility that is, there are both functions of time. We refer the reader to Siu and Yang
(2009) (see also Momeya and Morales 2014) in the case of constant parameters.

In the following graphs, it is assumed that the exercise price is 100, the value of
the asset is 120, and the expiry date is one year in the future. t = T is known as the
remaining life of an option. It is also assumed that there is a gradual trend for the
parameter to move in a decreasing or increasing manner which might conveniently be
regarded as continuous.

We write the two forms as,

(a) Constant model. The interest rates in the two regimes are given by

r1(t) = a1 and r2(t) = a2.

(b) Linear model. The interest rates are given by

r1(t) = a1 + b1t and r2(t) = a2 − b2t,

where a1, a2, b1, b2 are constants with a1 = a2 = b1 = b2 = 0.05.

We define the forms of volatility as;

(a) Constant model. Volatility in the two regimes are given by

σ1(t) = b1 and σ2(t) = b4.

(b) Decaying model. The volatility is given by

σ1(t) = b1 + b2e−b3t and σ2(t) = b4 + b5e−b6t ,

where b1, b2, b3, b4, b5, b6 are constantswith b1 = 0.15, b2 = b5 = b4 = 0.25
and b3 = b6 = 4.

In Fig. 1, while keeping the volatility constant, we investigate the impact on the
option price of a variation in the form of interest rate when there is no regime (NR), the
regime risk not priced (RNP) and the regime risk priced (RP), respectively. In Fig. 2,
the same study is made assuming that the interest rate is constant and the form of the
volatility can change. Finally, in Fig. 3, we looked at the impact of both linear interest
rate and decaying volatility on the option prices in the case of NR, RNP and RP.

As shown in the graphs, the same qualitative results are observed over the lifetime
of the option. The initial price of the option is affected in all the situations (NR,
RNP and RP) by the change in the form of interest rate and volatility. When the
interest is constant, the option price values are very closed during the option’s lifetime
irrespective of the form of volatility. Note also that, when the regime risk is priced,
the option prices are lower when the parameters are time dependent than those with
constant parameters. The graphs also show that taking only into account the impact
of the regime on the option prices leads to a completely different overall result. For
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Fig. 1 Effect of linear interest rates
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Fig. 2 Effect of decaying volatility

example, the initial value of the option prices are increased substantially when the
regime risk is priced. Moreover, during the lifetime of the option, the option prices
with the regime risk priced are higher than those with regime risk not priced which
are higher than those without regime risk considered.
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Fig. 3 Effect of linear interest and decaying volatility

3.2 Model II

In this section, we discuss the regime switching CGMYmodel. We cover in particular
two cases: Y = 0 (known as the variance gamma (VG)model) and Y �= 0.We refer the
reader to Momeya and Morales (2014) for the case Y = 0 with constants coefficients.

3.2.1 VG Case

We consider linear interest rates and analyse their effects on the call prices. We set

r1 = 0.05 + 0.05t and r2 = 0.01 − 0.005t,

C = [3, 4], G = [5, 6], M = [10, 8],
S(0) = 100, X (0) = e1, μ = [0.35, 0.05].

We use the constant parameter case i.e., constant interest rates, as a marker. We define
t = T as the remaining time to maturity. We present the results of our simulation
below.

In Figs. 4 and 5, we investigate the impact of a variation in the form of interest
rate on the option price in three cases: no regime (NR), regime risk not priced (RNP)
and regime risk priced (RP). The same conclusions as in the Black–Scholes regime
switching model hold concerning the impact of the regime risk on the option prices.
Note however that during the life time of the option, the difference in option prices
when the regime is priced and when it is not are not significant.
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Fig. 4 Effect of Linear rates on call prices when K = 70
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Fig. 5 Effect of Linear rates on call prices when K=100

3.2.2 CGMY Case

The simulation of this case proved to be more difficult than the former case. We have
simulated the CGMY’s with Y > 0. We shall give the results of our simulation in
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Fig. 6 Call prices across strikes when T = 0.25

two examples. An algorithm for the simulation of the CGMY process can be found in
Cont and Tankov (2004).

(1) We assume that Y ∈ (0, 1) and set the parameters to be

r = [0.05, 0.01], μ = [0.35, 0.05],
C = [3, 4], G = [5, 6], M = [10, 8], Y = [0.5, 0.5]
S(0) = 100, X (0) = e1, K = {70, 80, 90, 100, 110, 120, 130, 140, 150}.

We plot graphs of Call prices across different strikes.
Figures 6, 7, 8 and 9, depict the impact of a change in the regime on the option

prices when the strike price changes and the interest rate is constant in three situations:
no regime (NR), regime risk not priced (RNP) and regime risk priced (RP). The effect
of the parameter Y is seen in this case. As shown in the graph, when the exercised
time increases, the initial price of the option is substantially affected. For each time to
maturity, as the strike price increases, the value of the option decreases. Contrarily to
the Black–Scholes regime switching model (see Siu and Yang 2009), the option prices
with regime risk priced are higher than those with regime risk not priced regardless of
the option maturity.

Assume now that the interest rates are linear and set

r1 = 0.05 + 0.05t and r2 = 0.01 − 0.005t.

We use the constant parameter case., i.e constant interest rates, as a marker.
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Fig. 7 Call prices across strikes when T = 0.5
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Fig. 8 Call prices across strikes when T = 0.75

In Figs. 10 and 11, we examine the impact that a change in the form of interest rate
has on the option price. It can be seen that, there is no substantial impact of the form of
interest rate in the three cases. However, there is a significant difference in the option
prices when considering the impact of the regime risk. Once again, the initial value of
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Fig. 9 Call prices across strikes when T = 1
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Fig. 10 Effect of Linear rates on call prices when K = 70

the option price is considerably increased when the regime risk is priced, and during
the lifetime of the option, its price when the regime risk is priced is higher than that
when the regime risk is not priced which is higher than that when there is no regime.

123



332 P. Asiimwe et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Remaining time to maturity t

E
ur

oc
al

l P
ric

es

Effect of linear interest rates on call prices when K=100.

No regime linear rate
RNP linear rate
RP linear rate
No regime Constant vol and rate
RNP Constant vol and rate
RP Constant vol and rate

Fig. 11 Effect of Linear rates on call prices when K = 100

Remark 3.1 When Y ∈ (0, 1), the CGMY process is an infinite activity and finite
variation process. This means that the path of the process has a similar behaviour to
the path of the VG process.

4 Conclusion

In this paper, we use the pricing method developed in Siu and Yang (2009) to
price options when the underlying assets are driven by a regime switching CGMY
process with time dependent parameters. The theoretical results are given for gen-
eral regime switching exponential Lévy model with time dependent parameters. The
choice of the martingale pricing measure is justified by the minimization of the
maximum entropy. We conduct numerical experiments to investigate the effect of
pricing regime-switching risk and the analysis shows a significant difference of val-
ues between prices of an European call when the regime risk priced and when the
regime risk is not priced. We also observe that the regime risk is sensitive to mar-
ket parameters like time dependent interest rates and volatilities with the sensitivity
higher in the case of the Black–Scholes than in the Variance Gamma or CGMY
cases.

We may explore the applications of our models to other types of options such as
American options, barrier options, look back options, Asian options, Exotic options,
option-embedded insurance products, etc. We may also extend our framework to
include stochastic interest rates and volatility whichwould probably give higher values
of the option prices.
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Appendix 1: Criteria for Selecting Esscher Parameters

As already mentioned systems of equations characterizing martingale condition for
Qθ∗ have in general more than one solution in (θ∗

1 (t), θ∗
2 (t)). Here we present the

selection criteria of the set of neutral Esscher parameters (θ∗
1 (t), θ∗

2 (t)) that minimizes
the maximum entropy between an EMM and the real world probability measure over
different states. The idea is from Siu and Yang (2009).

Define first the entropy between Qθ∗ and P conditional on X (0) ∈ {e1, e2} as
follows:

I (Qθ∗ ,P) : = EP

[
dQθ∗

dP
ln

(
dQθ∗

dP

)∣
∣
∣
∣X (0) = ei

]

= EP

[

	θ∗
T ln	θ∗

T

∣
∣
∣
∣X (0) = ei

]

=
EP

[
− ∫ T

0 θ(s) dY (s)e− ∫ T
0 θ(s) dY (s)

∣
∣
∣X (0) = ei

]

EP

[
e− ∫ T

0 θ(s) dY (s)
∣
∣
∣X (0) = ei

]

− ln EP

[
e− ∫ T

0 θ(s) dY (s)
∣
∣
∣X (0) = ei

]
. (4.1)

Let �:= {θ∗ ∈ R
2|θ∗ satisfies (2.38) and (2.39)

}
and denote by IM (Qθ∗ ,P) the

maximum entropy between Qθ∗ and P over the different values of X (0), i.e.,

IM (Qθ∗ ,P):= max
i=1,2

I (Qθ∗ ,P|X (0) = ei ). (4.2)

One can show as in Siu and Yang (2009) that

I (Qθ∗ ,P|X (0) = ei ) : = EP

[
dQθ∗

dP
ln

(
dQθ∗

dP

)∣
∣
∣
∣X (0) = ei

]

=
〈
e
∫ T
0 (A+diag(ξ k

i (θ∗
i (t)))) dt X (0), 12

〉

〈
e
∫ T
0 (A+diag(ξi (θ

∗
i (t)))) dt X (0), 12

〉

− ln
〈
e
∫ T
0 (A+diag(ξi (θ

∗
i (t)))) dt X (0), 12

〉
. (4.3)

The selected (θ∗
1 (t), θ∗

2 (t)) shall be solution to the following problem: Find
(θ̂∗

1 (t), θ̂∗
2 (t)) ∈ � such that

IM (Q
θ̂∗ ,P) = min

θ∗∈�
IM (Qθ∗ ,P), (4.4)

with �:= {θ∗ ∈ R
2|θ∗ satisfies (2.38) and (2.39)

}
.
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Appendix 2: Simulation Procedure

In this section, we discuss the simulation procedure. We adopt a straight forward
Monte-Carlo procedure in order to obtain simulation approximations for the European
call price. Suppose we want to evaluate the price of a European call option at the
current time t = 0 with maturity T and strike price K . We note that the call option
C(0, S(0), X (0)) can be evaluated as follows:

C(0, X (0), S(0)) = Eθ∗
[

exp

(

−
∫ t

0
r(u) du

)

(S(T ) − K )+
]

= EP

[
dQθ∗

dP
exp

(

−
∫ t

0
r(u) du

)

(S(T ) − K )+
∣
∣
∣
∣S(0), X (0)

]

.

(4.5)

We assume that the process S is simulated over a discrete grid. To achieve this, we
divide the time horizon [0, T ] into J subintervals [t j , t j+1] for j = 0, 1, . . . , J − 1
of equal length � = T

J where t0 = 0 and tJ = T .
For the discrete-time version of the Markov chain X , we suppose that the transition

probability matrix in a subinterval is I + A� given X (0).
Given the simulated path of X , the sample paths of the processes {μ(t j )}J

j=1,

{σ(t j )}J
j=1, {θ(t j )}J

j=1 and {r(t j )}J
j=1 are identified. Then, we can now use these

to construct a Euler forward discretization scheme to discritize the log return process
Y as follows

Y (t j+1) = Y (t j ) + � ∗ (μ(t j ) − 1

2
σ 2(t j )) + � ∗

∫

R

(ez − 1 − z)ρX (t j )(dz)

+ σ(t j ) ∗ ξ ∗ √
� + J̃ X

j (t j+1) − J̃ X
j (t j ). (4.6)

where ξ ∼ N (0, 1) and

J̃ X
j (t) =

∫

R

z J X
j (t; dz) −

∫ t

0

∫

R

zρX (t j )( dz) dt. (4.7)

Given {X (t j )}J
j=1 and Y (0) = 0, we then sample {Y (t j )}J

j=1 using (4.6) recursively.
The Monte Carlo simulation procedure can be found in Siu and Yang (2009).
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