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Abstract
Pathogenic germline DICER1 variants are associated with pleuropulmonary blastoma, multinodular goiter, embryonal rhab-
domyosarcoma and other tumour types, while mosaic missense DICER1 variants in the RNase IIIb domain are linked to 
cause GLOW (global developmental delay, lung cysts, overgrowth, and Wilms’ tumor) syndrome. Here, we report four 
families with germline DICER1 pathogenic variants in which one member in each family had a more complex phenotype, 
including skeletal findings, facial dysmorphism and developmental abnormalities. The developmental features occur with a 
variable expressivity and incomplete penetrance as also described for the neoplastic and dysplastic lesions associated with 
DICER1 variants. Whole exome sequencing (WES) was performed on all four cases and revealed no further pathogenic or 
likely pathogenic dominant, homozygous or compound heterozygous variants in three of them. Notably, a frameshift vari-
ant in ARID1B was detected in one patient explaining part of her phenotype. This series of patients shows that pathogenic 
DICER1 variants may be associated with a broader phenotypic spectrum than initially assumed, including predisposition 
to different tumours, skeletal findings, dysmorphism and developmental abnormalities, but genetic work up in syndromic 
patients should be comprehensive in order not to miss additional underlying /modifying causes.
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Introduction

DICER1 is a member of ribonuclease III (RNaseIII) family 
and responsible for microRNA processing. Thus, DICER1 
modulates gene expression. Germline pathogenic vari-
ants in DICER1 cause a tumour predisposition syndrome 
(OMIM 601200), which is characterized by occurrence of 

pleuropulmonary blastoma, Sertoli-Leydig cell tumour, 
cystic nephroma, multinodular goiter, embryonic rhabdo-
myosarcoma of the cervix uteri and other tumour types [1].

Mosaic somatic missense DICER1 variants in the RNase 
IIIb domain are linked to GLOW syndrome, an acronym 
from the reported core features of global developmental 
delay, lung cysts, overgrowth, and Wilms’ tumour (OMIM 
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618272) [2]. The discussion of whether GLOW syndrome 
is a separate entity is ongoing: meanwhile some patients 
with pathogenic germline variants in DICER1 are reported 
matching the phenotype of GLOW syndrome and not all 
mosaic variants in the RNAase IIIb domain lead to the 
typical GLOW syndrome phenotype but instead are in line 
with the variable expressivity and reduced penetrance of 
DICER1-associated features [3].

Here, we report four families with germline DICER1 
pathogenic variants. One member in each family had in addi-
tion unusual symptoms which could be a hint to a broader 
phenotypic spectrum.

Patients

Case 1

The first family includes three siblings and their mother. 
The oldest son was born with severe Pierre-Robin-sequence 
(Fig. 1A, B), shortening of the left arm and leg and bilateral 
hip dysplasia. He later developed multiple thyroid nodules. 
His sister developed ovarian bilateral Sertoli-Leydig cell 
tumours at age 5. At age 17, she was diagnosed with papil-
lary thyroid carcinoma. The younger brother also developed 
papillary thyroid carcinoma at age 17. The children’s mother 
developed Sertoli-Leydig cell tumours of both ovaries at age 
23. Previously, she had a benign thyroid nodule removed at 
age 12. Later, she developed a follicular thyroid carcinoma, 
which was successfully treated with radioiodine therapy. The 
children’s maternal grandmother had developed a renal cell 
carcinoma, a bone malignancy and thyroid disease, which 
makes DICER1 pathogenic variation probable. However, 
testing in her has not been performed.

Case 2

This female patient was born as the third child to non-con-
sanguineous parents at 39 weeks of gestation. She showed 
macrosomia, macrocephaly, and dysmorphic facial features 

such as a prominent forehead, low set ears, hypertelorism 
and ptosis. At the age of 3 months she underwent VP-shunt 
placement for treatment of obstructive hydrocephalus, and 
Chiari malformation type 1 was noted. At the age of 11 
months the patient was diagnosed with Wilms tumour on 
the left kidney, which was treated with chemotherapy and 
nephrectomy according to the SIOP 2001 protocol. Large 
bilateral lung cysts were diagnosed during staging. Lung 
biopsy showed focal peripheral alveolar cyst formation con-
sistent with congenital cystic adenomatoid malformation 
type IV. The patient is now 6 years old and shows develop-
mental delay, dystrophy and mild respiratory insufficiency 
with overall good quality of life. Her family history was 
unremarkable for DICER1-associated tumors or unusual 
phenotypic features.

Case 3

The third individual was found to have gynandroblastoma 
at age 16 with features of intermediately differentiated Ser-
toli-Leydig cell tumour with juvenile granulosa cell tumour 
components with atypia and features of sclerosing stromal 
tumour. The tumour was completely resected (FIGO Stage 
IA) and followed with observation. She also has multinodu-
lar goiter, macrocephaly, macroglossia, developmental delay, 
mild bilateral varus forefoot and multiple atypical nevi. Fam-
ily history is significant for a sibling with gynandroblastoma 
and multinodular goiter [4]. Multiple family members have a 
history of talipes equinovarus. Three years after her ovarian 
tumour diagnosis, she developed a pituitary microadenoma 
which later resolved. Chest imaging has shown no lung 
cysts, however, histoplasmosis was incidentally discovered 
and successfully treated. She remains alive and well 14 years 
following resection of her ovarian tumour.

Case 4

The fourth individual was born preterm at 33 weeks of ges-
tation to non-consanguineous parents. She showed mild 
dysmorphic facial features such as a bulging underlip, 

Fig. 1  A, B Front and side view 
of patient 1 with severe Pierre-
Robin-sequence. The swal-
lowing of solid food is hardly 
possible. C, D Patient 4 with 
DICER1 variant and mild facial 
features,
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hypertelorism, flat nasal bridge, macroglossia, high palate 
and protruding ears (Fig. 1C, D). Tracheomalacia was noted 
at birth, requiring a tracheostomy for her first 3 years of 
life. Later, she showed developmental delay, especially in 
the field of speech. At age 16 she was diagnosed with an 
embryonic rhabdomyosarcoma of the cervix uteri. Further 
work-up revealed multiple thyroid nodules, atrophy of both 
optic nerves and a retrocerebellar arachnoid cyst. The patient 
was treated with chemotherapy according to the CWS-
Guidance 2014 and underwent hysterectomy. Now, 3 years 
after the end of therapy, she has been in ongoing remission. 
Family history was unremarkable for tumors or phenotypic 
abnormalities.

Methods and results

Conventional karyotyping as well as chromosomal whole-
genome microarray from peripheral blood lymphocytes 
revealed normal results.

Whole exome sequencing (WES) in patients 1, 2 and 
4 was carried out using a probe-based capture method to 
enrich the target regions (IDT Coraville, IA, USA). Align-
ment to the reference genome (hg19 or hg38), variant call-
ing and analysis was performed using an in-house pipeline 
based on SeqMule and Kggseq. In patient 3, WES was 
performed on the proband and her mother as previously 
reported with modification in capture kit, Roche Nimble-
Gen’s SeqCap EZ Human Exome Library, v3.0 with 64 Mb 
of exonic sequence targeted (Roche NimbleGen, Inc., 
Madison, WI) and sequencer NovaSeq 6000 (Illumina, San 
Diego, CA). Variants were called using three callers, Hap-
lotypeCaller (version 3.8-1-0-gf15c1c3ef), UnifiedGeno-
typer (version 3.8-1-0-gf15c1c3ef) and FreeBayes (ver-
sion v0.9.14-24-gc292036). Variants passed the GATK 
hard filter (QD < 2.0, FS > 60.0, MQ < 40.0, MQRank-
Sum < − 12.5, ReadPosRankSum < − 8.0, SOR > 3.0 for 

SNV and QD < 2.0, FS > 200.0, ReadPosRankSum < − 20.0, 
SOR > 10.0 for INDEL), ABHet is between 0.2 and 0.8, and 
called by at least two of three callers.

In case 1, all affected family members carried a heterozy-
gous pathogenic DICER1 variant c.2307C>G; p.(Tyr769*) 
(ENST00000393063). However, no further obvious patho-
genic variants were detected by whole-exome sequencing 
(WES).

In case 2, the heterozygous DICER1 missense variant 
c.4031C>T; p.(Ser1344Leu) was identified in DNA of 
blood lymphocytes. This variant is located in the RNase 
IIIa domain (Fig. 2) and has previously been reported as 
a somatic mutation in various cancers, including Wilms 
tumour and as somatic hotspot mutation in uterine cancer 
[5, 6]. No other obvious pathogenic variants were detected 
by whole-exome sequencing (WES). Unfortunately, genetic 
testing could not be performed on patient’s parents nor on 
her two healthy siblings.

In case 3, the heterozygous nonsense variant c.3073G>T; 
p.(Glu1025*) in DICER1 was identified in DNA of blood 
lymphocytes. Exome sequencing the patient did not reveal 
any other homozygous, compound heterozygous, X-linked 
or dominant pathogenic or likely pathogenic sequence vari-
ants in a gene known to be associated with a human pheno-
type (by OMIM listing), other than the known pathogenic 
DICER1 variant.

In case 4 molecular genetics revealed a heterozygous 
variant in DICER1 (Exon 21; c.3234_3237dupTGGC; 
p.(Val1080Trpfs*12)). This frameshift variant has not been 
described previously. The DICER1 variant was inherited 
from the 50-year-old father without a history of tumours. 
Interestingly, heterozygosity for a frameshift variant 
c.5915_5916del, p.(Cys1972Tyrfs*11) (Chr6(GRCh38):g.
157206936_157206937del) in ARID1B was detected in addi-
tion. This variant has not yet been described in the genome 
variant databases (gnomAD, ClinVar) and is suspected to 
be pathogenic. The variant was not detected in blood from 

Fig. 2  Diagram of DICER1 variants in the four patients described here
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the parents, suggesting a de novo origin. ARID1B mutations 
are associated with autosomal dominant inherited Coffin-
Siris syndrome type 1 (OMIM 135900), which may in part 
explain some of the additional clinical features of the patient.

Discussion

Most germline DICER1 pathogenic variants are loss-of-
function variants (LOF) [1]. LOF variants as in our patients 
1, 3 and 4 are not likely to cause skewed miRNA processing, 
however, one cannot exclude the possibility that develop-
mental defects might arise from DICER 1 haploinsufficiency. 
Developmental delay and a syndromic phenotype combined 
with classical DICER1-associated tumours have been rarely 
reported and are described in association with a 14q32 dele-
tion encompassing the DICER1 locus [7, 8] (Table 1). One 
female patient with 14q32 deletion showed developmental 
delay, particularly in the field of speech in combination with 
mild facial dysmorphism (thick eyebrows, wide nasal base 
and bulbous nose) [9] as our patient 4 with a frameshift 
variant in DICER1 and in ARID1B. This similarity of both 
patients raises the possibility that developmental delay and 
facial dysmorphism in both patients may be associated with 
DICER1. However, the situation is complicated by the fact 
that the patient also has the characteristics of Coffin-Siris 
syndrome and most additional phenotypic features like tra-
cheomalacia and arachnoidal cyst may be well explained by 
the latter diagnosis [10]. Our patient 4 shows that, neverthe-
less, it cannot be excluded that in individual cases two rare 
conditions may occur simultaneously and that a comprehen-
sive molecular genetic diagnosis is necessary in the presence 
of additional symptomatology.

Developmental delay is also a feature of GLOW syn-
drome (mosaic DICER1 variant in the RNase IIIb domain) 
[2]. There are several similarities between the phenotypes 
of patient 2 and the two previously published patients with 
GLOW syndrome such as macrocephaly and macrosomia 
at birth, Wilms tumour, hydrocephalus, hypertelorism, 
lung cysts and developmental delay [2]. Unfortunately, 
segregation analysis in the family of patient 2 could not 

be undertaken and thus mosaicism in our patient cannot 
be ruled out, but allele distribution argues for a germline 
heterozygous DICER1 variant. The detected missense 
variant c.4031C>T; p.(Ser1344Leu) within the RNase IIIa 
domain has been described so far only as somatic muta-
tion in patients with Wilms tumour and other cancers, but 
not as germline variant, leaving a rest of uncertainty on the 
pathogenicity of this variant [11]. Interestingly, mutations 
within the RNase IIIa domain have been shown to pheno-
copy mutations in the RNase IIIb domain presumably due to 
the constrained proximity of the RNase IIIa and RNase IIIb 
as shown by structural and evolutionary coupling analyses 
[6]. This constrained proximity could also explain why the 
presumed germline variant in patient 2 leads to a pheno-
type similar to the one described in the two patients with 
GLOW syndrome associated with mosaic DICER1 mutation 
in the RNase IIIb domain, suggesting a genotype–phenotype 
relationship with missense mutations in RNase III. Whether 
a missense variant as in patient 2 is sufficient to lead to 
tumor development or a second somatic hit in DICER1 is 
needed, as presumed in patients with LOF variants, remains 
speculative.

Pierre-Robin sequence and other skeletal abnormalities 
as described in patient 1 may also be a rare phenotypic pres-
entation of a DICER1 variant. Pierre-Robin sequence is a 
craniofacial anomaly which includes mandibular hypoplasia, 
glossoptosis and often cleft palate. There are several genetic 
causes leading to this phenotype [12]. Interestingly, DICER 
has been shown to play a role in nucleolar function, and het-
erozygous pathogenic variants in genes involved in nucleolar 
homeostasis have been identified to cause various craniofa-
cial disorders [13, 14]. One case of Pierre-Robin sequence 
associated with DICER1 variant was previously described 
[15]. In mice, a conditional Dicer1 deletion leads to late 
embryonic lethality and severe craniofacial dysmorphism, 
including a secondary cleft palate [16].

Abnormalities in optic nerves as in patient 4 were previ-
ously described in patients with DICER1 germline vari-
ants [17]. In a mouse model, conditional Dicer1 deletion 
in the retina led to developmental disorder of retinal cells 
[18]. Although ocular involvement has to be discussed in 

Table 1  Patients with DICER1 variants and syndromic features described in the literature

Phenotype DICER1 mutation or deletions 
including DICER1

6-year-old male, developmental delay, hypotonia, macrocephaly, obesity, and behavioral problems [8] 1,4 MB deletion 14q32
Mother: bilateral multinodular goiter and papillary thyroid carcinoma [8]
15-year-old female, autism, coarse facial features, Sertoli-Leydig cell tumour, and Wilms’ tumour [8] 5 MB deletion 14q32
4-year-old male, developmental delay, congenital dysmorphic features, cystic nephroma, ciliary body 

medulloepithelioma, cerebral sarcoma, lung cyst, bifid uvula [9]
5,82 MB deletion 14q32

Male patient with Pierre-Robin sequence [15] DICER1-mutation: p.(Tyr1511*)
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this patient in context of the identified ARID1B variant, in 
Coffin-Siris syndrome ocular findings are more likely to 
manifest as strabismus, nystagmus, cataract, hypophoria, 
astigmatism, hypermetropia and anisomyopia [19], with 
optic nerve hypoplasia being described only occasionally 
[20].

In summary, germline pathogenic DICER1 variants 
may not only be associated with the occurrence of certain 
tumour types, but might also rarely include developmental 
features, like Pierre-Robin sequence, developmental delay, 
facial dysmorphisms, and ocular abnormalities. Actually, it 
is rather surprising that DICER1 pathogenic germline vari-
ants do not lead to an even more severe clinical phenotype, 
since DICER1 is an absolutely central molecule in RNA 
interference: Dicer catalyses the first step of RNA inter-
ference and initiates the formation of the RNA-induced 
silencing complex (RISC), where argonaute endonucle-
ase, is able to degrade mRNA whose sequence is comple-
mentary to the resulting siRNA. Due to this fundamental 
mechanism, effects in all kinds of cells are conceivable. 
Nevertheless, we acknowledge that the role of concomitant 
pathogenic variants in other genes cannot be ruled out, or 
may indeed modify the phenotype such as in patient 4. The 
coincidence of developmental phenotypes and pathogeneic 
DICER1 variant merits further evaluation.
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