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Abstract
In this paper, we study the asymptotical behaviour of high exceedence probabilities 
for centered continuous ℝn-valued Gaussian random field X with covariance matrix 
satisfying Σ − R(t + s, t) ∼

∑n

l=1
B
l
(t) �s

l
��l as s ↓ 0 . Such processes occur naturally 

as time transformations of homogenous random fields, and we present two asymp-
totic results of this nature as applications of our findings. The technical novelty of 
our proof consists in showing that the Slepian-Gordon inequality technique, essen-
tial in the univariate case, can also be successfully applied in the multivariate setup. 
This is noteworthy because this technique was previously believed to be inaccessible 
in this particular context.

Keywords Locally stationary · Gaussian random fields · Gaussian extremes · High 
exceedence probability

AMS 2000 Subject Classifications 60G15 · 60G70

1 Introduction

Despite the fact that the Gaussian extremes have been an active research area since 
at least the 60  s, up until recently little has been known about exact asymptotics 
of high exceedance probabilities of Gaussian processes in the multivariate case. A 
deep contribution Dȩbicki et al. (2020) has paved a way towards different problems 
of the following kind:

ℙ{∃ t ∈ [0, T] ∶ X(t) > ub} as u → ∞
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for b ∈ ℝ
d⧵(−∞, 0]d and X being a continuous Gaussian process. Here “>” denotes 

the componentwise (Hadamard) comparison. As it turns out, these problems are 
much more challenging than the univariate ones due to the lack of several techniques 
which are crucial for the univariate case. The reader can find the detailed account of 
this shortage in the introduction to the aforementioned paper. Among these lacking 
techniques, the authors name the Slepian inequality and mention that its extension in 
the form of Gordon inequality is thought to be inapplicable if the compontents of X 
are not independent (see Dȩbicki et al. (2015) for the i.i.d. case).

In this contribution, we aim to achieve two goals. First, we extend  (Dȩbicki 
et al. 2020, Theorem 2.1) on stationary processes to a certain class of homoge-
nous Gaussian random fields defined on [0, T]n , see Theorem 1. Second, we apply 
this result to the study of locally-homogenous Gaussian random fields. The cor-
responding result is presented in Theorem 2. The crucial step of the second part 
involves constructing two homogenous processes which stochastically dominate 
X on short intervals from above and from below. This is done by showing that a 
certain matrix-valued function is positive definite and subsequently applying the 
Gordon inequality.

As an application of our findings, we present asymptotic formulas for the time-
transformed operator fractional Ornstein-Uhlenbeck process Y defined by the 
covariance matrix function

with H a symmetric matrix with eigenvalues from (0, 1] and � a strictly monotone 
continuously differentiable function. By Proposition 1,

where h is the lowest eigenvalue of H and c is given in the form of an integral of 
Pickands-type constants over [0, T] . This result extends (Dȩbicki et al. 2020, Propo-
sition 3.1). Another application concerns a class of continuous Gaussian processes 
associated to the following matrix-valued function:

where B± = (B ± B⊤)∕2 are symmetric and antisymmetric parts of a real d × d 
matrix B and � ∈ (0, 2] . In Ievlev and Novikov (2023) we found the necessary and 
sufficient conditions on the pair (�,B) under which this function is positive definite 
(see Lemma 3) and thus generates a Gaussian process. Here we present an asymp-
totic result on the time-transformed version of this process, see Proposition 2.

The notion of locally stationary process was introduced by Berman in 
(1974) and its extremes were extensively studied afterwards in the papers by 
Hüsler (1990), Piterbarg (1996), Chan and Lai (2006) and many others. See 
also Piterbarg and Rodionov (2020), Qiao (2021) and Tan and Zheng (2020) for 
more recent contributions. Its multivariate counterpart, however, has not been 
considered so far due to the technical issues. The technique of  Dȩbicki et  al. 

ℝ
2 ∋ (t, s) ↦ exp

(
−|�(t) − �(s)|H

)
,

ℙ{∃Y(t) > ub} ∼ c u1∕hℙ{Y(0) > ub},

ℝ
2 ∋ (t, s) ↦ exp

(
−|t − s|�

[
B+ + B−sign(t − s)

])
,



1 3

Extremes of locally‑homogenous vector‑valued Gaussian…

(2020) based on the uniform version of local Pickands lemma may in principle be 
applied to this class of processes, but it would require much stronger assumptions 
than those we impose in this contribution. Our result, presented in Theorem  2, 
should appear natural (if not obvious) for the specialist, but it still requires a 
rigorous proof, which involves imposing the right assumptions on the field X.

The applicability of Gordon inequality in this context allows to significantly sim-
plify the study of classical multivariate Gaussian extremes. In particular, the techni-
cal issue of uniformity in the single and double sums may be resolved by passing to a 
stationary dominating process. Therefore, besides the results here, we establish a sim-
pler methodology compared to Dȩbicki et al. (2020) for dealing with non-stationary 
Gaussian random fields.

We want to point out that one possible direction in which our results can be 
extended is the family of �(t)-locally stationary Gaussian random fields, see Hashorva 
and Ji (2016).

Brief organization of the paper Main results are presented in Section 2 with proofs 
relegated to Section 5. The applications are presented in the Section 3. Section 4 
contains auxiliary results and technical lemmas. Appendix contains several known 
results taken from Dȩbicki et al. (2020) and reproduced here for reader’s conveni-
ence in the adapted form.

2  Main results

Before proceeding to the theorems, let us introduce some relevant notation.

Vectors Throughout the paper points of ℝd are written in bold letters (values of 
multivariate processes), while points of [0, T]n ⊂ ℝ

n (points of their domain) are 
written in the regular font. This does not lead to any confusion since their mean-
ing can always be understood from the context, but allows to avoid visual clutter. 
All operations on vectors in both spaces, unless specified otherwise, are performed 
component-wise. For example, if t and s belong to ℝn , then ts denotes the vector 
(tisi)i=1,…,n . Similarly for t∕s , et , ⌊t⌋ and so on denoting vectors with components 
ti∕si , eti and ⌊ti⌋ correspondingly. We write t ≥ s if ti ≥ si for all their coordinates. 
By abuse of notation, we write 1 = (1,… , 1) ∈ ℝ

n and 0 = (0,… , 0) ∈ ℝ
n . If s > t , 

then [t, s] denotes the box {u ∶ ui ∈ [ti, si]}.

Matrices If A = (Aij)i,j=1,…,d is a d × d matrix and I, J ⊂ {1,… , d} are two index 
sets, we write AIJ for the submatrix (Aij)i∈I, j∈J . If I = J , we occasionally write AI 
instead of AII . ‖A‖ denotes any fixed norm in the space of d × d matrices. Our for-
mulas do not depend on the choice of the norm. For w ∈ ℝ

d , diag (w) stands for 
the diagonal matrix with entries w1, w2, … , wd on the main diagonal. The nota-
tion A ⊵ 0 means that A is positive definite and A ⊳ 0 means that A is strictly posi-
tive definite. If A is a real matrix, denote its symmetric and anti-symmetric parts by 
A± ∶= (A ± A⊤)∕2.



 P. Ievlev 

1 3

Quadratic programming problem Let Σ be a d × d real matrix with inverse Σ−1 . If 
b ∈ ℝ

d⧵(−∞, 0]d , then by Lemma 7 the quadratic programming problem

has a unique solution ̃b ≥ b and there exists a unique non-empty index set 
I ⊂ {1,… , d} such that

where w ∶= Σ−1 ̃b and J = {1,… , d}⧵I.

Other notation We use lower case constants c1, c2, … to denote generic con-
stants used in the proofs, whose exact values are not important and can be changed 
from line to line. The labeling of the constants starts anew in every proof. Let 
f , g ∶ [0, T]n → M , where M = ℝ

d×d, ℝd or ℝ be two matrix-valued, vector-valued 
or real-valued functions and h ∶ [0, T]n → ℝ be a real-valued function. We write 
“ f = g + o(h) as t → t0 ” if for all 𝜀 > 0 there exists 𝛿 > 0 such that |t − t0| < 𝛿 implies 
‖f (t) − g(t)‖ ≤ ��h(t)� . The next two subsections present our results on homogenous 
and locally homogenous fields.

2.1  Homogenous case

Let X(t), t ∈ [0, T]n be a centered homogenous and continuous Gaussian random field. 
Denote its covariance and variance matrices by

Homogenity means that for each t and s in [0, T]n

therefore we set in the following R(t) ∶= R(t, 0) . It follows that R(−t) = R⊤(t) . 
The matrix Σ − R(t) is positive definite, but not necessarily symmetric. Let 
b ∈ ℝ

d⧵(−∞, 0]d and denote by ̃b and I the unique solution of ΠΣ(b) and its I index 
set, see Lemma 7 for details. Set w ∶= Σ−1 ̃b.

In this section we impose the following assumptions: 

A1  ΣII − RII(t) is strictly positive definite for every t ∈ (0, T]

A2  There exist a collection � ∶= (Bl)l=1,…,n of real d × d matrices and a collection 
of numbers � ∶= (�l)l=1,…,n ∈ (0, 2]n such that 

ΠΣ(b) ∶ minimize x
⊤Σ−1

x under the linear constraint x ≥ b

�bI = bI ,
�bJ = ΣIJ(ΣII)

−1
bI ≥ bJ , wI = (ΣII)

−1
bI > 0I , wJ = 0J ,

R(t, s) ∶= �
{
X(t)X⊤(s)

}
and Σ ∶= R(0, 0).

�
{
X(t)X⊤(s)

}
= �

{
X(t − s)X⊤(0)

}
= R(t − s, 0),

(A2.1)Σ − R(t) =

n∑

l=1

Bl |tl|�l + o

(
n∑

l=1

|tl|�l
)

as t ↓ 0,
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Remark 1 It follows from (A2.1) that

as t → 0 and Bl ’s satisfy

From this follows that B+
l
⊵ 0.

Theorem 1 If X is a centered homogenous and continuous Gaussian random field 
satisfying Assumptions A1 and A2, then

where the constant H
�,� is given by

Here Yl is a continuous Gaussian process associated to the covariance function

2.2  Locally homogenous case

In this section X(t), t ∈ [0, T]n is a centered continuous Gaussian random field with 
covariance matrix

and variance matrix Σ satisfying R(t, t) = R(0, 0) =∶ Σ . We impose the following 
assumptions: 

B1  ΣII − RII(t) is strictly positive definite for every t ∈ (0, T]

B2  There exist a collection �(t) ∶= (Bl(t))l=1,…,n of continuous real d × d matrix-
valued functions and a collection of numbers � ∶= (�l)l=1,…,n ∈ (0, 2]n  
such that 

(A2.2)w
⊤Bl w > 0 for all l = 1,… , n.

Σ − R(t) ∼

n∑

l=1

[
Bl |tl|𝛼l �tl≥0 + Bl |tl|𝛼l �tl<0

]

(1)�Bl ∶= B+
l
cos

(
𝜋𝛼l

2

)
− iB−

l
sin

(
𝜋𝛼l

2

)
⊵ 0, where B± ∶=

B ± B⊤

2
.

ℙ{∃ t ∈ [0, T]n ∶ X(t) > ub} ∼ Tn H
�,𝔹,w

n∏

l=1

u2∕𝛼l ℙ{X(0) > ub},

(2)
H

�,𝔹,w ∶= lim
Λ→∞

1

Λn ∫
ℝd

e
1
⊤x

ℙ

{
∃ t ∈ [0,Λ]n ∶

n∑

l=1

diag (w)
[
Yl(tl) − S

𝛼l ,Bl
(tl)w

]
> x

}

dx ∈ (0,∞).

R
𝛼l,Bl

(tl, sl) ∶= S
𝛼l,Bl

(tl) + S
𝛼l,Bl

(−sl) − S
𝛼l,Bl

(tl − sl), S
𝛼l,Bl

(tl) ∶= |tl|𝛼l
[
B�tl≥0 + B⊤

�tl<0

]
.

R(t, s) ∶= �
{
X(t)X⊤(s)

}
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 where small-o is uniform in t ∈ [0, T]n and 

Remark 2 From (B2.2) follows that w⊤ Bl(t)w > 0 for all t ∈ [0, T]n.

Theorem  2 If X is a centered and continuous Gaussian random field satisfying 
Assumptions B1 and B2, then

where the constant H
�,� is given by (2).

3  Examples

3.1  Time‑transformed operator fractional Ornstein‑Ulhenbeck process

Let H be a symmetric matrix with all eigenvalues h1,… , hd belonging to (0, 1] and 
consider a stationary a.s. continuous ℝd-valued Gaussian process X(t), t ≥ 0 with cmf

where tH = exp(H ln t) for t > 0 . This process is known in the literature as the opera-
tor fractional Ornstein-Uhlenbeck process. In this section we consider its time-trans-
formed version. Specifically, let � be a continuously differentiable strictly monotone 
function. Define Y(t) ∶= X(�(t)) . Let us show that this process is locally stationary 
in the sense defined above. Since H is symmetric, there exists an orthogonal matrix 
Q such that H = Q diag (h1,… , hd)Q

⊤ . Hence,

with h ∶= mini=1,…,d hi and [̃I ]ij ∶= �i=j and h=hi
 . Since � is differentiable, we have

Then  (B2) holds with B(t) ∶= Q�IQ⊤|𝜑�(t)|2 h and Σ = I . Note that |𝜑�(t)| > 0 
since � is strictly monotone. By Theorem 2 we have the following result:

(B2.1)

Σ − R(t + s, t) =

n∑

l=1

[
Bl(t) |sl|𝛼l�sl≥0 + B⊤

l
(t) |sl|𝛼l �sl<0

]
+ o

(
n∑

l=1

|sl|𝛼l
)

as t → +0,

(B2.2)
B̃l(t) ∶= B+

l
(t) cos

(
��l

2

)
− iB−

l
(t) sin

(
��l

2

)
⊳ 0 for all t ∈ [0, T]n.

ℙ{∃ t ∈ [0, T]n ∶ X(t) > ub} ∼ ∫[0,T]n
H

�,𝔹(t),w dt

n∏

l=1

u2∕𝛼l ℙ{X(0) > ub},

(3)R(t, s) = exp
(
−|t − s|2H

)
,

R(t + s, t) = I − Q�IQ⊤|𝜑(t + s) − 𝜑(t)|2h + O
(
|𝜑(t + s) − 𝜑(t)|2

)
as s → 0,

R(t + s, t) = I − Q�IQ⊤|𝜑�(t)|2h|s|2h + O
(
|s|4h

)
as s → 0.
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Proposition 1 Let Y(t) = X(�(t)), t ∈ [0, T] , where � is a continuously differentiable 
strictly monotone function and X(t), t ∈ ℝ is an operator fO-U process associated 
to the covariance (3) with a symmetric matrix H whose eigenvalues belong to (0, 1] . 
Let b̃j = max{bj, 0} for j = 1,… , d . If �b

⊤

Q�IQ⊤�b > 0 , then

3.2  A Gaussian process with ̨ ‑homogenous log‑covariance

In an upcoming paper Ievlev and Novikov (2023) we show the following result:

Theorem 3 Let B be a real d × d matrix. If a matrix-valued function R defined by

is positive-definite, then the condition (1) is satisfied. If, on the other hand, the con-
dition (1) is satisfied. Then

• If � ∈ (0, 1) , then R is positive-definite if and only if B satisfies 

• If � ∈ [1, 2] , then R is positive-definite.

Using the above result, define X(t), t ∈ ℝ a stationary continuous Gaussian pro-
cess associated to this covariance and let � be a strictly increasing continuously dif-
ferentiable function. Define Y(t) ∶= X(�(t)) . The covariance of Y satisfies

where we used the fact that sign(�(t + s) − �(t)) = sign(s) since � is increasing. 
Hence, the assumption B2.1 is satisfied with B(t) = B|��(t)|� . The validity of B2.2 
follows from the fact that |𝜑�(t)| > 0 and our assumption on B . By Theorem 2, we 
have the following result:

Proposition 2 Let Y(t) = X(�(t)), t ∈ [0, T] , where � is a strictly increasing contin-
uously differentiable function and X is a process associated to the covariance (4), 
where B and � are such that this function is positive definite. Then

as u → ∞.

ℙ{∃ t ∈ [0, T] ∶ Y(t) > ub} ∼ u1∕h ∫
T

0

H2h,Q�IQ⊤|𝜑�(t)|2h,w dt ℙ{X(𝜑(0)) > ub}.

(4)R(t, s) = exp
(
−|t − s|�

[
B+ + B−sign(t − s)

])
, t, s ∈ ℝ,

(5)B1∕𝛼 + B1∕𝛼,⊤
⊵ 0.

RY(t + s, t) ∼ I −
[
B+ + B−sign(s)

]
||�

�(t)||
�|s|� + O

(
|s|2�

)
as s → 0,

ℙ{∃ t ∈ [0, T] ∶ Y(t) > ub} ∼ u2∕𝛼 ∫
T

0

H
𝛼,B|𝜑�(t)|𝛼 ,w dt ℙ{X(𝜑(0)) > ub}
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4  Auxiliary results

4.1  Lemma on positive definiteness

Lemma 1 Let B be a real d × d matrix satisfying

Then there exists a collection of complex numbers {�k}k=1,…,d satisfying

and a collection of strictly positive definite Hermitian matrices {Vk}k=1,…,d of rank 
one such that

Proof Note that B can be represented as follows:

Here B+ is symmetric and strictly positive definite by  (6) and B�
−
 is Hermitian. 

Hence, there exists an invertible real matrix A such that B+ = AA⊤ . Note that for 
each unitaty matrix Q holds

Since B�
−
 is Hermitian, so is A−1B�

−
A−⊤ and therefore there exists a unitary matrix 

Q and a real diagonal matrix D such that

Denote V ∶= AQ∗ . Therefore, we have the following representations of B+

and B�
−

Hence, for B we have

Set next

(6)B̃ = B+ sin
(
��

2

)
− iB− cos

(
��

2

)
⊳ 0.

(7)Re 𝜆k = 1, || Im 𝜆k
|| <

||||
tan

(
𝜋𝛼

2

)||||

(8)B =

d∑

k=1

�kVk.

B = B+ + iB�
−
, B�

−
∶= −iB−, B± ∶=

B ± B⊤

2
.

QA−1B+A
−⊤Q∗ = QQ∗ = I.

A−1B�
−
A−⊤ = Q∗DQ.

(9)VV∗ = AQ∗QA⊤ = AA⊤ = B+

(10)VDV∗ = AQ∗DQA⊤ = AA−1B�
−
A−⊤A⊤ = B�

−
.

B = B+ + iB�
−
= VV∗ + iVDV∗ = V

[
I + iD

]
V∗.
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where [Dk]ml = �km�kl is the diagonal matrix with 1 at k-th place. Clearly, Vk ’s are 
Hermitian, positive definite, of rank one and (8) is satisfied. It remains to show that 
the inequality (7) is also satisfied. To this end, use (9) and (10) to rewrite B̃ as

Therefore, we have

which implies (7).  ◻

Lemma 2 Under the conditions of Lemma 1, the functions given by

with �k , Vk and � from Lemma 1 are all positive definite complex matrix-valued func-
tions. Let Σ = AA⊤ be a strictly positive definite matrix and define

Then E
�,B(t) is positive definite real matrix-valued function satisfying

Proof Since Vk = V∗ Dk V  by (11), there exists 𝜇k > 0 and a unitary matrix U such 
that Vk = �k U

∗ Dk U . Hence,

Positive definiteness of this function is therefore equivalent to that of a scalar-
valued function

which follows from (7). The second claim follows from (8) and the fact that

by a direct computation.  ◻

(11)�k ∶= 1 + iDkk, Vk ∶= V Dk V
∗,

B̃ = V
[
I cos

(
��

2

)
− iD sin

(
��

2

)]
V∗

⊳ 0.

I cos
(
��

2

)
− iD sin

(
��

2

)
⊳ 0,

E
𝛼,B,k(t) ∶= exp

(
−d𝜆kVk|t|𝛼

)
�t≥0 + exp

(
−d 𝜆k Vk|t|𝛼

)
�t<0

E
𝛼,B(t) ∶=

1

2d
A

d∑

k=1

[
E
𝛼,A−1BA−⊤,k(t) + E

𝛼,A−1BA−⊤,k(t)
]
A⊤.

E
𝛼,B(t) = Σ − B|t|𝛼�t≥0 − B⊤|t|𝛼�t<0 + o(|t|𝛼) as t → 0.

exp
(
−d

[
1 + i Im �ksign(t)

]
Vk|t|�

)
= U∗ exp

(
−d�k

[
1 + i Im �ksign(t)]Dk |t|�

)
U.

exp
(
−d�k

[
1 + i Im �k sign(t)

]
|t|�

)
,

�B ⊳ 0 ⟹ �A−1BA−⊤ = A−1�BA−⊤
⊳ 0
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4.2  Double sum bound

Define for k ∈ ℤ
d⧵{0} and Λ > 0 the double events’ probabilities by

Lemma 3 (Double sum bound). If X(t), t ∈ [0, T]n is a centered continuous Gauss-
ian field satifying Assumption A2, then there exist positive constants C and � such 
that for every k ∈ ℤ

d⧵{0} with 1 < |kl| ≤ Nu(𝜀) for all l and Λ > 0 holds

Remark 3 Note that the conditions of the lemma demand that there be no l ’s such 
that kl = ±1 . This is not a coincidence: the adjacent double events are to be esti-
mated differently. See the proof of Theorem 1 for details.

Proof Without loss of generality assume that I = {1,… , n} . Then

where

with

and �u,k is the pdf of Xu,k(0, 0)
d
=N(0,Σu,k) , where

First, bound �u,k as follows:

Pb(k,Λ) ∶= ℙ

{
∃ t ∈ Λ[0, 1]n ∶ X(t) > ub

∃ s ∈ Λ[k, k + 1] ∶ X(s) > ub

}
.

Pb(k,Λ)

ℙ{X(0) > ub}
≤ CΛ#{l∶kl=0}

∏

l∶kl≠0
(||kl|| − 1

)−2
exp

(
−
1

4
w
⊤Bl wΛ𝛼l

(||kl|| − 1
)
𝛼l

)

(12)

Pb(k,Λ) ≤ ℙ

{
∃ (t, s) ∈ Λu−2∕𝛼[k, k + 1] × [0, 1] ∶

1

2

[
X(t) + X(s)

]
> ub

}

= u−d �
ℝd

ℙ
{
∃ (t, s) ∈ [0,Λ]2n ∶ �u,k,x(t, s) > x

}
𝜑u,k

(
ub −

x

u

)
dx,

�u,k,x(t, s) ∶= u
(
Xu,k(t, s) − ub

|||Xu,k(0, 0) = ub −
x

u

)
+ x

Xu,k(t, s) ∶=
1

2

[
X
(
Λu−2∕�k + u−2∕�t

)
+ X

(
u−2∕�s

)]

(13)

Σu,k ∶= �

{
Xu,k(0, 0)X

⊤

u,k
(0, 0)

}
=

1

4

[
2Σ + R

(
Λu−2∕𝛼k

)
+ R

(
−Λu−2∕𝛼k

)]

= Σ − u−2
n∑

l=1

[
Bl + B⊤

l

]
Λ𝛼l k

𝛼l

l
+ o

(
u−2∕𝛼Λk

)
.

𝜑u,k

(
ub −

x

u

) ≤ 𝜑(ub) exp

(
u2

2
b
⊤

[
Σ−1 − Σ−1

u,k

]
b

)
exp

(
b
⊤Σ−1

u,k
x

)
,
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where � is the pdf of N(0,Σ) . Plugging this into  (12) and noting that 
u−d 𝜑(ub) = ℙ{X(0) > ub} , we obtain the following bound:

At this point we split the proof into three parts: estimation of the integral, estima-
tion of the exponent in front of it and their comparison.

The exponent in front of the integral By (13), we have

Therefore,

By our assumptions,

The integral First note that

where the small-o term tends to zero uniformly in k . We will drop this term from 
now on to simplify the notation. To bound the remaining integral we will use 
Lemma 8, which gives

with some positive constants c1 and c2 . Here G ∈ ℝ and 𝜎2
> 0 are numbers 

(depending on k and u ) such that

and

To apply this lemma we need to find such numbers.

(14)

Pb(k,Λ)

ℙ{X(0) > ub}
≤ exp

(
u
2

2
b
⊤

[
Σ−1 − Σ−1

u,k

]
b

)

�
ℝd

exp
(
b
⊤Σ−1

u,k
x

)

ℙ
{
∃ (t, s) ∈ [0,Λ]2n ∶ �

u,k,x(t, s) > x
}
dx .

(15)Σ−1 − Σ−1
u,k

= −u−2
n∑

l=1

Σ−1
[
Bl + B⊤

l

]
Σ−1Λ𝛼l |kl|𝛼l + o

(
u−2∕𝛼Λk

)
.

(16)
u2

2
b
⊤

[
Σ−1 − Σ−1

u,k

]
b = −

n∑

l=1

w
⊤Bl wΛ𝛼l |kl|𝛼l + u2o

(
u−2∕𝛼Λk

)
.

sup
−Nu(�)≤k≤Nu(�)

u2
|||o
(
u−2∕�Λk

)||| �������������������→u→∞
0.

exp
(
b
⊤Σ−1

u,k
x

)
= exp

(
(w + o(u−2∕𝛼Λk))⊤x

)

(17)
�
ℝd

ew
⊤x
ℙ
{
∃ (t, s) ∈ [0,Λ]2n ∶ �u,k,x(t, s) > ub

}
dx ≤ c1 exp

(
c2(G + 𝜎

2)
)

(18)sup
F⊂{1,…,d}

sup
(t,s)∈[0,Λ]2n

w
⊤

F
�
{
�u,k,x,F(t, s)

} ≤ G + 𝜀

d∑

j=1

|xj|

sup
F⊂{1,…,d}

sup
(t,s)∈[0,Λ]2n

Var
{
w
⊤

F
�u,k,x,F(t, s)

} ≤ 𝜎
2.
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Finding G By the formulas on conditional Gaussian distribution, we have

where Ru,k(t, s, t
�, s�) is the covariance of �u,k,x(t, s) . Note that this covariance does 

not depend on x . The x-term can clearly be bounded by

Let us bound the b-contribution. A direct computation gives

uniformly in k ∈ [−Nu(�),Nu(�)] . By (15)

uniformly in k ∈ [−Nu(�),Nu(�)] , where

The first can be bounded as follows:

A2,l and A3,l can be bounded for kl ≠ 0 similarly as follows:

Therefore, the inequality (18) is satisfied with

Finding �2 We have

(19)�
{
�u,k,x(t, s)

}
= u

[
Σu,k − Ru,k(t, s, 0, 0)

]
Σ−1
u,k

[
ub −

x

u

]
,

‖‖‖‖

[
Σu,k − Ru,k(t, s, 0, 0)

]
Σ−1
u,k

x
‖‖‖‖
≤ �

d∑

j=1

|xj|.

(20)

Σu,k − Ru,k(t, s, 0, 0)

∼
1

4u2

n∑

l=1

[
S
�l,Bl

(sl) + S
�l,Bl

(tl) + S
�l,Bl

(Λkl + tl) + S
�l,Bl

(sl − Λkl) − S
�l,Bl

(−Λkl) − S
�l,Bl

(Λkl)
]

u
2
w
⊤

F

[[
Σ
u,k − R

u,k(t, s, 0, 0)
]
Σ−1
u,k

b

]

F

∼ u
2
w
⊤

F

[[
Σ
u,k − R

u,k(t, s, 0, 0)
]
w

]

F

∼
1

4

n∑

l=1

[A1,l + A2,l + A3,l]

A1,l ∶= w
⊤

F

[[
S
𝛼l,Bl

(sl) + S
𝛼l,Bl

(tl)
]
w

]

F
,

A2,l ∶= w
⊤

F

[[
S
𝛼l,Bl

(Λkl + tl) − S
𝛼l,Bl

(Λkl)
]
w

]

F
,

A3,l ∶= w
⊤

F

[[
S
𝛼l,Bl

(sl − Λkl) − S
𝛼l,Bl

(−Λkl)
]
w

]

F
.

||A1,l
|| ≤ |w|2

[‖‖‖S�l,Bl
(sl)

‖‖‖ +
‖‖‖S�l,Bl

(tl)
‖‖‖
] ≤ 2Λ�l |w|2‖‖Bl

‖‖.

��A2,l
�� ≤ �w�2‖B‖

�
��Λkl + tl

��
�l − ��Λkl��

�l

� ≤ c2 Λ
�l �kl��l−1.

(21)G = c2

n∑

l=1

Λ�l(1 + |kl|�l−1�kl≠0).
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where

where

Similarly to how we bounded differences of this form above, we obtain

Hence, the inequality (18) is satisfied with

as u → ∞.

Proceeding with the integral Combining (21) and (22) with (17), we find

By (16) and (14), we have

If |kl| is large enough, we have

Lifting the assumption that |kl| is large Let K be such that for |kl| ≥ K holds

Var
{
w
⊤

F
�u,k,x,F(t, s)

}
=

∑

j�, j∈F

wjwj� cov (𝜒u,k,x,j(t, s),𝜒u,k,x,j� (t, s)) ≤ c3

∑

j,j�

[
Ru,k,x(t, s, t, s)

]

j,j�
,

R
u,k,x(t, s, t

�
, s

�) ∶= �

{
�

u,k,x(t, s)�
⊤

u,k,x
(t�, s�)

}
= R

u,k(t, s, t
�
, s

�) − R
u,k(t, s, 0, 0)Σ

−1
u,k
R
u,k(0, 0, t

�
, s

�)

∼
1

4

n∑

l=1

[
A1,l + A2,l + A3,l + A4,l + A5,l + A6,l

]
,

A1,l ∶= S
�l,Bl

(tl) + S
�l,Bl

(sl) + S
�l,Bl

(−t�
l
) + S

�l,Bl
(−s�

l
),

A2,l ∶= S
�l,Bl

(sl − Λkl) − S
�l,Bl

(−Λkl),

A3,l ∶= S
�l,Bl

(tl + Λkl) − S
�l,Bl

(Λkl),

A4,l ∶= −S
�l,Bl

(s − s�) − S
�l,Bl

(t − t�),

A5,l ∶= S
�l,Bl

(−Λkl − t�
l
) − S

�l,Bl
(−Λkl − t�

l
+ sl),

A6,l ∶= S
�l,Bl

(Λkl − s�
l
) − S

�l,Bl
(Λkl − s�

l
+ tl).

‖‖A1,l
‖‖, ‖‖A4,l

‖‖ ≤ c4Λ
�l , ‖‖A2,l

‖‖, ‖‖A3,l
‖‖, ‖‖A5,l

‖‖, ‖‖A6,l
‖‖ ≤ c5Λ

�l |kl|�l−1.

(22)�
2 = c6

n∑

l=1

Λ�l

(
1 + |kl|�l−1�kl≠0

)

�
ℝd

ew
⊤x
ℙ
{
∃ (t, s) ∈ [0,Λ]2n ∶ �u,k,x(t, s) > ub

}
dx ≤ c6 exp

(
c7

n∑

l=1

Λ𝛼l

(
1 + |kl|𝛼l−1𝟙kl≠0

)
)
.

(23)

Pb(k,Λ)

ℙ{X(0) > ub}
≤ c8 exp

(
−

n∑

l=1

Λ𝛼l

[
w⊤Bl w

2
|kl|𝛼l − c7

(
1 + |kl|𝛼l−1𝟙kl≠0

)]
)
.

w⊤Bl w

2
|kl|𝛼l − c7

(
1 + |kl|𝛼l

) ≥ w⊤Bl w

4
.
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It suffices to consider the case when some of kl ’s satisfy 1 < |kl| < K . Assume for 
simplicity that there is exactly one such l that |kl| < K , take Λ�

> 0 such that Λ�
< Λ 

and bound Pb as follows:

Here 1l ∈ ℤ
d such that [1l]l� = �l,l� . Choose Λ� ∶= Λ(|kl| − 1)∕K . Then

and therefore

It remains to note that the number of terms in the sum  (24) is at most 
⌈Λ∕Λ�⌉2 ≤ 2K2∕(�kl� − 1)2.

Lifting the assumption that all kl ’s are non‑zero By (23) and (25)

Similarly to the previous point of the proof, take Λ� ∈ (0,Λ) and assume for sim-
plicity that there is only one l such that kl = 0 . Note that

A similar proof to what we used above shows that each term of this sum is at most

Pb(k,Λ)

ℙ{X(0) > ub}
≤ c8 exp

(
−
1

4

n∑

l=1

w
⊤Bl wΛ𝛼l |kl|𝛼l

)
.

(24)

Pb(k,Λ) ≤
�

0≤ pl , ql ≤ ⌈Λ∕Λ�⌉
ℙ

�
∃ t ∈ Λ�u−2∕𝛼[Λk∕Λ� + ql1l,Λk∕Λ

� + ql1l + 1] ∶ X(t) > ub

∃ s ∈ Λ�u−2∕𝛼[pl1l, pl1l + 1] ∶ X(s) > ub

�

=
�

0≤ pl , ql ≤ ⌈Λ∕Λ�⌉
Pb(Λk∕Λ

� + (ql − pl)1l,Λ
�).

k�
l
∶= Λkl∕Λ

� + ql − pl ≥ Λkl∕Λ
� − Λ∕Λ� = Λ(kl − 1)∕Λ� ≥ K

(25)

Pb(k
�,Λ�)

ℙ{X(0) > ub}
≤ c8 exp

(
−
1

4

n∑

l=1

w
⊤

B
l
wΛ�𝛼

l |k�
l
|𝛼l
)

= c8 exp

(
−
1

4

n∑

l=1

w
⊤

B
l
wΛ𝛼

l(|k
l
| − 1)𝛼l

)
.

(26)

Pb(k,Λ)

ℙ{X(0) > ub}
≤ c8

∏

l∶kl≠0
exp

(
−
1

4
w
⊤Bl wΛ𝛼l

(||kl|| − 1
)
𝛼l

) ∏

l∶kl=0

exp
(
c7Λ

𝛼l

)
.

(27)

Pb(k,Λ) ≤
�

0≤ p≤⌈Λ∕Λ�⌉
ℙ

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∃ tj ∈ Λu−2∕𝛼j[kj, kj + 1], j ≠ l

∃ tl ∈ Λ�u−2∕𝛼l[p, p + 1]
∶ X(t) > ub

∃ sj ∈ Λu−2∕𝛼j[0, 0 + 1], j ≠ l

∃ sl ∈ Λ�u−2∕𝛼l[p, p + 1]
∶ X(s) > ub

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.
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The number of terms in the sum (27) is at most ⌈Λ∕Λ�⌉ , hence

where c9 = 2c8 exp(c7Λ
��� )∕Λ� . The general case when there is several l ’s such that 

kl = 0 can be addressed similarly.  ◻

5  Proofs of the main results

5.1  Proof of theorem 1

Proof We begin the proof by splitting [0, T]n into pieces of Pickands scale

and using Bonferroni inequality to obtain

where

and Σ�
1
 is defined by the same formula as Σ1 but with N − 1 instead of N in the upper 

summation limit. At this point we split the proof into two parts. First, we will focus 
on finding the exact asymptotics of the single sum Σ1 ∼ Σ�

1
 , and then demonstrate 

that the double sum Σ2 is negligible with respect to Σ1.
Since X is homogenous, we can easily compute the single sum

Applying local Pickands Lemma 5, we obtain

c8

∏

l�≠l
exp

(
−
1

4
w
⊤Bl wΛ𝛼l

(||kl|| − 1
)
𝛼l

)
exp

(
c7Λ

�𝛼l
)
ℙ{X(0) > ub}.

Pb(k,Λ)

ℙ{X(0) > ub}
≤ c9Λ

∏

l≠l�
exp

(
−
1

4
w
⊤Bl wΛ𝛼l

(||kl||
𝛼l − 1

)
𝛼l

)
,

[0, T]n = Λu−2∕�
⋃

k≤Nu

[k, k + 1], where Nu(T) ∶=

⌈
T

Λu−2∕�

⌉

Σ�
1
− Σ2 ≤ ℙ{∃ t ∈ [0, T]n ∶ X(t) > ub} ≤ Σ1,

Σ1 ∶=
∑

0≤ k≤Nu(T)

ℙ
{
∃ t ∈ Λu−2∕𝛼[k, k + 1] ∶ X(t) > ub

}
,

Σ2 ∶=
∑

0 ≤ k, j ≤ Nu(T)

k ≠ j

ℙ

{
∃ t ∈ Λu−2∕𝛼[k, k + 1] ∶ X(t) > ub

∃ s ∈ Λu−2∕𝛼[j, j + 1] ∶ X(s) > ub

}
.

Σ1 =

[
n∏

l=1

Nu,l(T)

]
ℙ
{
∃ t ∈ Λu−2∕𝛼[0, 1]n ∶ X(t) > ub

}
.
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Since E ↦ H
�,�,w(E) is subadditive, we have that the limit

exists and is finite. We will show that it is also positive after dealing with the double 
sum.

Double sum By stationarity we have that

Reindexing the sum by q = k − j , we obtain

Denote the double events’ probabilities by

Take some � ∈ (0, T) and divide the sum in two parts:

Terms of the first sum can be bounded as follows:

Let Σ(t, s) denote the variance matrix of (X(t) + X(s))∕2:

Σ�
1
∼ Σ1 ∼ Tn

[
n∏

l=1

u−2∕𝛼l

]
H

�,𝔹,w([0,Λ]
n)

Λn
ℙ{X(0) > ub}.

H
�,�,w ∶= lim

Λ→∞

H
�,�,w([0,Λ]

n)

Λn

Σ2 =
∑

0 ≤ k, j ≤ Nu(T)

k ≠ j

ℙ

{
∃ t ∈ Λu−2∕𝛼[k − j, k − j + 1] ∶ X(t) > ub

∃ s ∈ Λu−2∕𝛼[0, 1] ∶ X(s) > ub

}
.

Σ2 =

n∏

l=1

Nu,l(T)
∑

−Nu(T) ≤ q ≤ Nu(T)

q ≠ 0

ℙ

{
∃ t ∈ Λu−2∕𝛼[q, q + 1] ∶ X(t) > ub

∃ s ∈ Λu−2∕𝛼[0, 1] ∶ X(s) > ub

}
.

Pb(q,Λ) ∶= ℙ

{
∃ t ∈ Λu−2∕𝛼[q, q + 1] ∶ X(t) > ub

∃ s ∈ Λu−2∕𝛼[0, 1] ∶ X(s) > ub

}
.

(28)

∑

0 ≤ q ≤ Nu

q ≠ 0

Pb(q,Λ) =
∑

∃ l∶|ql|>Nu,l(𝜀)

Pb(q,Λ) +
∑

−Nu(𝜀)≤ q≤Nu(𝜀)

Pb(q,Λ).

Pb(q,Λ) ≤ ℙ

{
∃ (t, s) ∈ Λu−2∕𝛼([q, q + 1] × [0, 1]) ∶

1

2
[X(t) + X(s)] > ub

}

≤ ℙ

{
∃ (t, s) ∈ Λu−2∕𝛼([q, q + 1] × [0, 1]) ∶

1

2

[
XI(t) + XI(s)

]
> ubI

}
.

Σ(t, s) =
1

4

[
2Σ + R(t − s) + R(s − t)

]
.
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In view of Assumption  A1, the matrix (ΣII(t, s))
−1) − (ΣII)

−1 is strictly positive 
definite for t ≠ s , which implies

Note that the condition ∃ l ∶ |ql| > Nu(𝜀) allows us to separate �(u, �) ∶= � − �0 
from 0 by 𝛿(𝜀) ∶= 𝜏1 − 𝜏0 > 0 , which depends on � , but does not depend on u . Since 
𝜏0 = b

⊤

I
(ΣII)

−1bI = b
⊤Σ−1b , we obtain by using the Piterbarg inequality (34) the fol-

lowing upper bound:

which is negligible with respect to ℙ{X(0) > ub} as u → ∞ . Summing these bounds, 
we obtain

To bound the second sum in (28), we divide it further into

The probabilities of the second sum can be estimated by Lemma 3 as follows:

and therefore

Next, we show how to bound the first sum. Assume for simplicity that q is such 
that |ql| = 1 and |ql′ | ≠ 1 for all l′ ≠ l . We have

𝜏 ∶= inf

{
inf
xI≥bI

x
⊤

I
(ΣII (t, s))

−1
xI

||| (t, s) ∈ Λu−2∕𝛼([q, q + 1] × [0, 1])

}

≥ 𝜏1 ∶= inf

{
inf
xI≥bI

x
⊤

I
(ΣII (t, s))

−1
xI

||| (t, s) ∈ [0, T]n ∶ |tl − sl| > 𝜀

}
> 𝜏0 ∶= inf

xI≥bI
x
⊤

I
(ΣII )

−1
xI > 0.

ℙ

{
∃ (t, s) ∈ Λu−2∕𝛼([q, q + 1] × [0, 1]) ∶

1

2

[
X(t) + X(s)

]
> ub

}

≤ c1 u
2n∕𝛾−1 mes

(
Λu−2∕𝛼([q, q + 1] × [0, 1])

)
exp

(
−
u2𝜏

2

)
≤ c2 Λ

2n uM exp

(
−
u2

2

[
b
⊤Σ−1

b + 𝛿(𝜀)
])

,

lim sup
u→∞

∑

∃ l∶|ql|>Nu(𝜀)

Pb(q,Λ)

n∏

l=1

u−2∕𝛼lℙ{X(0) > ub}

= 0.

(29)

∑

−Nu(�)≤ q≤Nu(�)

Pb(q,Λ) =
∑

−Nu(�) ≤ q ≤ Nu(�)

∃ l ∶ |ql| = 1

Pb(q,Λ) +
∑

−Nu(�) ≤ q ≤ Nu(�)

∀ l ∶ |ql| ≠ 1

Pb(q,Λ) =∶ A1 + A2.

Pb(q,Λ)

ℙ{X(0) > ub}
≤ cΛ#{l∶kl=0}

∏

l∶kl≠0
(||kl|| − 1

)−2
exp

(
−
1

4
w
⊤Bl wΛ𝛼l

(||kl|| − 1
)
𝛼l

)

lim
Λ→∞

lim sup
u→∞

A2

H
�,𝔹,w([0,Λ]

n)

n∏

l=1

u
−2∕𝛼

lℙ{X(0) > ub}

≤ c1 lim
Λ→∞

∑

l

Λ#{l∶k
l
=0}−n exp

(
−
1

8
w
⊤

B
l
wΛ𝛼

l

)
= 0.
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The first probability on the right satisfies the conditions of Lemma 3, and therefore

Therefore, we obtain

For A4 , we have by Lemma 5

Consequently, we have

The general case of qI ∈ {±1} for I ⊂ {1,… , n} can be addressed similarly.

Pb(q,Λ) = ℙ

⎧
⎪
⎨
⎪
⎩

∀ j ≠ l ∃ tj ∈ Λu−2∕𝛼j[qj, qj + 1]

∃ tl ∈ Λu−2∕𝛼l[1, 2]
∶ X(t) > ub

∃ s ∈ Λu−2∕𝛼[0, 1] ∶ X(s) > ub

⎫
⎪
⎬
⎪
⎭

≤ ℙ

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∀ j ≠ l ∃ tj ∈ Λu−2∕𝛼j[qj, qj + 1]

∃ tl ∈ u−2∕𝛼l
�
Λ +

√
Λ, 2Λ +

√
Λ
� ∶ X(t) > ub

∃ s ∈ Λu−2∕𝛼[0, 1] ∶ X(s) > ub

⎫
⎪
⎪
⎬
⎪
⎪
⎭

+ ℙ

⎧
⎪
⎨
⎪
⎩

∃ tj ∈ Λu−2∕𝛼j[qj, qj + 1] ∀ j ≠ l

∃ tl ∈ u−2∕𝛼l
�
Λ,Λ +

√
Λ
� ∶ X(t) > ub

⎫
⎪
⎬
⎪
⎭

=∶ A3 + A4.

A3

ℙ{X(0) > ub}
≤ c1Λ

#{l∶kl=0}
∏

l�≠l, kl≠0
exp

(
−
1

4
w
⊤Bl wΛ𝛼l

(||ql|| − 1
)
𝛼l

)

exp
(
−
1

4
w
⊤Bl wΛ𝛼l∕2

)

lim
Λ→∞

lim sup
u→∞

∑

l

A3

H
�,𝔹,w([0,Λ]

n)

n∏

l=1

u−2∕𝛼l ℙ{X(0) > ub}

= 0.

A4

ℙ{X(0) > ub}
∼ H

�,𝔹,w

�
[0,Λ] ×… ×

�
0,
√
Λ
�
×…[0,Λ]

�
.

lim
Λ→∞

lim sup
u→∞

�

l

A4

TnH
�,𝔹,w([0,Λ]

n)

n�

l=1

u−2∕𝛼l ℙ{X(0) > ub}

= lim
Λ→∞

H
�,𝔹,w

�
[0,Λ] ×… ×

�
0,
√
Λ
�
×…[0,Λ]

�

H
�,𝔹,w([0,Λ]

n)
≤ lim

Λ→∞
Λ−1∕2 = 0.
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Positivity of the Pickands constant To show that the constant is positive we can use 
the following lower bound:

where Σ̃1 and Σ̃2 are the single and double sum with some Λ� instead of Λ and with-
out odd (in all coordinates) intervals:

and Ñu(�) = ⌊�∕2Λ�u−2∕�⌋ . By the same reasoning as above,

and

Taking Λ� to be large enough, we find that the difference in (30) is separated from 
zero. Hence, its limit is positive.  ◻

(30)

lim sup
u→∞

H
�,𝔹,w([0,Λ]

n)

Λn
≥ lim inf

u→∞

ℙ{∃ t ∈ [0, T]nX(t) > ub}

T
n

n∏

l=1

u
−2∕𝛼

lℙ{X(0) > ub}

≥ lim inf
u→∞

ℙ{∃ t ∈ [0, 𝜀]nX(t) > ub}

T
n

n∏

l=1

u
−2∕𝛼

lℙ{X(0) > ub}

≥ lim inf
u→∞

�Σ1 − �Σ2

T
n

n∏

l=1

u
−2∕𝛼

lℙ{X(0) > ub}

,

�Σ1 ∶=
∑

0≤ k≤ �Nu(𝜀)

ℙ
{
∃ t ∈ Λ�u−2∕𝛼[2k, 2k + 1] ∶ X(t) > ub

}
,

�Σ2 ∶=
∑

0 ≤ k, j ≤ �Nu(𝜀)

k ≠ j

ℙ

{
∃ t ∈ Λ�u−2∕𝛼[2k, 2k + 1] ∶ X(t) > ub

∃ s ∈ Λu−2∕𝛼[2j, 2j + 1] ∶ X(s) > ub

}

lim inf
u→∞

�Σ1

n∏

l=1

u−2∕𝛼lℙ{X(0) > ub}

=
(
𝜀

2

)nH
�,𝔹,w([0,Λ

�])

Λ�n
,

lim sup
u→∞

�Σ2

n∏

l=1

u−2∕𝛼lℙ{X(0) > ub}

≤ c
(
𝜀

2

)n ∑

l

Λ�#{l∶kl=0}−n
∏

kl≠0
exp

(
−
1

4
w
⊤Bl wΛ�𝛼l

)
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5.2  Proof of theorem 2

Proof We begin the proof by splitting [0, T] into intervals of some small enough 𝛿 > 0

and applying the Bonferroni inequality, which yields

where

and Σ�
1
 is defined by the same formula as Σ1 , but with (N − 1) instead of N in the 

upper limit of summation. At this point we split the proof into two parts. First, we 
will focus on finding the exact asymptotics of the single sum Σ1 ∼ Σ�

1
 , and then 

demonstrate that the double sum Σ2 is negligible with respect to Σ1.

Single sum Let min and max applied to a matrix denote component-wise minimum 
and maximum and let J denote a d × d matrix of all ones: Jkj = 1 . Take 𝜀 > 0 and for 
each l define two matrices, which bound Bl(t) on �[k, k + 1] component-wise from 
below and from above by

Since for all t ∈ [0, T] we have B̃t ⊳ 0 strictly, it follows that B̃k, �,± ⊳ 0 if � is 
small enough. Denote

By Lemma  2 the real matrix-valued functions E
�l,Bl,k, �,±

(sl) are positive definite 
and give rise to the following bounds on the covariance of X:

for small enough s . These functions generate two stationary Gaussian processes 
Yl,k,�,±(s), s ∈ ℝ , which by Lemma 4 provide us with bounds on the high excursion 
probabilities on �[k, k + 1]:

[0, T]n = �

⋃

k≤N
�

[k, k + 1], N
�
∶=

⌈
T

�

⌉
,

Σ�
1
− Σ2 ≤ ℙ{∃ t ∈ [0, T] ∶ X(t) > ub} ≤ Σ1,

Σ1 ∶ =
∑

k≤N
𝛿

ℙ{∃ t ∈ 𝛿[k, k + 1] ∶ X(t) > ub},

Σ2 ∶ =
∑

k, j ≤ N
𝛿

k ≠ j

ℙ

{
∃ t ∈ 𝛿[k, k + 1] ∶ X(t) > ub

∃ s ∈ 𝛿[j, j + 1] ∶ X(s) > ub

}

Bl,k,�,+ ∶= min
t∈�[k,k+1]

Bt − �J, Bl,k,�,− ∶= max
t∈�[k,k+1]

Bt + �J.

�k,�,± ∶= (Bl,k,�,±)l=1,…,n.

n∑

l=1

E
�l,Bl,k, �,−

(sl) ≤ R(t + s, t) ≤
n∑

l=1

E
�l,Bl,k, �,+

(sl)
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Note that the sign plus is on the left and minus is on the right.
Applying Theorem 1, we find that

By adding together all the terms, we obtain

By continuity of B ↦ H
�,B,b , we have that

Hence, as u → ∞,

Double sum The double sum can be estimated by the same argument as in the proof 
of Theorem 1.  ◻

Appendix

Gordon inequality

The following Slepian-type lemma is stated in  Dȩbicki et  al. (2015) for the case 
where T ⊂ ℝ , but it can be extended to the following version by standard techniques. 
Due to its complexity we present it here without proof.

Lemma 4 (Gordon inequality). Let X(t), t ∈ T  and Y(t), t ∈ T  be two centered sepa-
rable vector-valued Gaussian processes with values in ℝd defined on a separable 
metric space T  . If for all t, s ∈ T  holds

then for u ∈ ℝ
d holds

ℙ{∃ t ∈ 𝛿[k, k + 1] ∶ X(t) > ub} ≤ ℙ

{
∃ t ∈ 𝛿[k, k + 1] ∶

n∑

l=1

Yl,k,𝜀,−(t) > ub

}

≥ ℙ

{
∃ t ∈ 𝛿[k, k + 1] ∶

n∑

l=1

Yl,k,𝜀,+(t) > ub

}

ℙ
{
∃ t ∈ 𝛿[k, k + 1] ∶ Yk,𝜀,±(t) > ub

}
∼ 𝛿

n H
�,𝔹k,𝜀,±,w

n∏

l=1

u−2∕𝛼l ℙ{X(0) > ub}.

[
Nu−1∑

k=1

H
𝛼,𝔹k,�,+,w

𝛿
n

]
u2∕𝛼 ℙ{X(0) > u b} ≤ Σ�

1
≤ Σ1 ≤

[
Nu∑

k=1

H
𝛼,𝔹k,�,−,w

𝛿
n

]
u2∕𝛼 ℙ{X(0) > u b}.

lim
�→0

lim
�→0

N
�∑

k=1

H
�,�k,�,±,w

�
n ����������������→

�→0 ∫
T

0

H
�,�(t),w dt .

lim
�→0

lim
𝛿→0

Σ�
1
∼ lim

�→0
lim
𝛿→0

Σ1 ∼

[

∫
T

0

H
�,𝔹(t),w dt

]
u2∕𝛼 ℙ{X(0) > u b}.

RX(t, t) = RY(t, t), RX(t, s) ≥ RY(t, s),
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Local Pickands lemma

The reader may find the uniform multivariate version of the local Pickands lemma 
in Dȩbicki et al. (2020). However, for the needs of this paper this strong result is not 
necessary, since we obtain uniformity using Gordon’s inequality (Lemma 4). This is 
why we present here a simplified version of the local Pickands lemma.

Lemma 5 Let X(t), t ∈ [0, T]n be a centered Hölder continuous homogenous Gauss-
ian random field with values in ℝd and covariance R satisfying

where Bl ’s are some d × d real matrices and �l ∈ (0, 2] . Denote � ∶= (�l)l=1,…,n , 
B ∶= (Bl)l=1,…,n and w ∶= Σ−1 ̃b , where ̃b is the unique solution of the quadratic 
programming problem ΠΣ(b) . Then the matrix-valued functions R

�l,Bl
∶ ℝ → ℝ

d×d 
defined by

are positive definite and for any closed E ⊂ [0, T] containing 0 and closed holds

with

where Yl is a continuous zero mean Gaussian process associated to the covariance 
function R

�l,Bl
(t, s).

Borell‑TIS and Piterbarg inequalities

Lemma 6 Let (Z(t))t∈E , E ⊂ ℝ
k be a separable centered d-dimensional vector-val-

ued Gaussian random field having components with a.s. continuous paths. Assume 
that Σ(t) = �

{
Z(t)Z(t)⊤

}
 is non-singular for all t ∈ E . Let b ∈ ℝ

d⧵(−∞, 0]d and 
define �2

b
(t) by

ℙ{∃ t ∈ T ∶ X(t) > u} ≤ ℙ{∃ t ∈ T ∶ Y(t) > u}.

Σ − R(t) =

n∑

l=1

[
Bl|tl|𝛼l�tl≥0 + B⊤

l
|tl|𝛼l�tl<0

]
+ 𝜖(t), 𝜖(t) = o

(
n∑

l=1

|tl|𝛼l
)

as t → 0,

R
𝛼l,Bl

(tl, sl) ∶= S
𝛼l,Bl

(tl) + S
𝛼l,Bl

(−sl) − S
𝛼l,Bl

(tl − sl), S
𝛼l,Bl

(tl) = |tl|𝛼l
[
Bl�tl≥0 + B⊤

l
�tl<0

]

ℙ
{
∃ t ∈ u−2∕𝛼E ∶ X(t) > ub

}
∼ H

𝛼,B,w(E)ℙ{X(0) > ub}

H
𝛼,B,w(E) = ∫

ℝd

e1
⊤

x
ℙ

{
∃ t ∈ E ∶

n∑

l=1

diag (w)
[
Yl(tl) − S

𝛼l,Bl
(tl)w

]
> x

}
dx ∈ (0,∞),

𝜎
−2
b
(t) ∶= min

x≥b x
⊤Σ−1(t) x.
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If �2
b
∶= supt∈E �

2
b
(t) ∈ (0,∞) , then there exists some positive constant � such 

that for all u > 𝜇

If further for some C ∈ (0,∞) and � ∈ (0, 2]k

and

hold for all t, s ∈ E , then for all u positive

where C∗ is some positive constant not depending on u . In particular, if �2
b
(t) is con-

tinuous and achieves its unique maximum at some fixed point t∗ ∈ E , then (34) is 
still valid if (32) and (33) are assumed to hold only for all t, s ∈ E in an open neigh-
borhood of t∗.

Quadratic programming problem

For a given non-singular d × d real matrix Σ we consider the quadratic programming 
problem

Below J = {1,… , d}⧵I can be empty; the claim in (37) is formulated under the 
assumption that J is non-empty.

Lemma 7 Let d ≥ 2 and Σ a d × d symmetric positive definite matrix with inverse 
Σ−1 . If b ∈ ℝ

d⧵(−∞, ]d , then ΠΣ(b) has a unique solution ̃b and there exists a unique 
non-empty index set I ⊂ {1,… , d} with m ≤ d elements such that

(31)ℙ{∃ t ∈ E ∶ Z(t) > ub} ≤ exp

(
−
(u − 𝜇)2

2𝜎2
b

)
.

(32)
∑

1≤i≤k
�

{(
Zi(t) − Zi(s)

)2} ≤ C

k∑

m=1

|tm − sm|�m

(33)‖‖‖Σ
−1(t) − Σ−1(s)

‖‖‖F ≤ C

k∑

m=1

|tm − sm|�m

(34)ℙ{∃ t ∈ E ∶ Z(t) > ub} ≤ C∗mes(E) u2d∕𝛾−1 exp

(
−

u2

2𝜎2
b

)
,

(35)ΠΣ(b) ∶ minimize x⊤ Σ−1
x under the linear constraint x ≥ b.

(36)̃bI = bI ≠ 0I

(37)�bJ = ΣJI(ΣII)
−1
bI ≥ bJ , (ΣII)

−1
bI > 0I ,
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with w = Σ−1 ̃b satisfying wI = (ΣII)
−1bI > 0I , wJ = 0J.

Integral estimate

Lemma 8 If a family of Hölder continuous random fields �x(t) , t ∈ [0,Λ]n indexed 
by x ∈ ℝ

d and jointly measurable with respect to (t, x) satisfies

and

with some constants w > 0 , 𝜎2
> 0 , G ∈ ℝ and small enough 𝜀 > 0 , then there exist 

constants C, c > 0 independent of Λ , such that the following inequality holds:

Proof of Lemma 8 Define a collection of sets ΩF =
{
x ∈ ℝ

d ∶ xF > 0, xFc < 0
}
 

indexed by F ⊂ {1,… , d} and split the integral:

For x ∈ ΩF the probability under the integral may be bounded as follows:

where

(38)min
x≥ b

x
⊤ Σ−1

x = �b
⊤

Σ−1 �b = b
⊤

I
(ΣII)

−1
bI > 0,

(39)max
z∈[0,∞)d∶z⊤b>0

(z⊤b)2

z⊤ Σ z
=

(w⊤b)2

w⊤ Σw
= min

x≥ b
x
⊤ Σ−1

x,

sup
F⊂{1,…,d}

sup
t∈[0,Λ]n

w
⊤

F
�
{
�x,F(t)

} ≤ G + 𝜀

d∑

j=1

|xj|

sup
F⊂{1,…,d}

sup
t∈[0,Λ]n

Var
{
w
⊤

F
�x,F(t)

} ≤ 𝜎
2,

�
ℝd

ew
⊤x
ℙ
{
∃ t ∈ [0,Λ]n ∶ �x(t) > x

}
dx ≤ Cec(G+𝜎

2).

∫
ℝd

ew
⊤x
ℙ
{
∃ t ∈ [0,Λ]n ∶ �x(t) > x

}
dx =

∑

F∈2d
∫ΩF

ew
⊤x
ℙ
{
∃ t ∈ [0,Λ]n ∶ �x(t) > x

}
dx .

ℙ
{
∃ t ∈ [0,Λ]n ∶ �x(t) > x

} ≤ ℙ
{
∃ t ∈ [0,Λ]n ∶ w

⊤

F

(
�x,F(t) − 𝔼

{
�x,F(t)

})
> w

⊤

F
xF − w

⊤

F
𝔼
{
�x,F(t)

}}

≤ ℙ

{
∃ t ∈ [0,Λ]n ∶ w

⊤

F

(
�x − 𝔼

{
�x(t)

})
> w

⊤

F
xF − G − 𝜀

d∑

j=1

|xj|
}

= ℙ
{
∃ t ∈ [0,Λ]n ∶ 𝜂x,F(t) > rF,𝜀(x) − G

}
,

rF,𝜀(x) = w
⊤

F
xF − 𝜀

d∑

j=1

|xj| and 𝜂x,F(t) = w
⊤

F

(
�x,F(t) − �

{
xx,F(t)

})
.
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Let us split the domain ΩF into two parts

Let us first deal with the integral over ΩF,− . It follows from w⊤

F
xF − 𝜀

∑d

j=1

|x
j
| < G that

or, with w∗ = minj∈F wj > 0 and 𝜀 < w∗,

Therefore, with r = rF,�(x) , we have

provided that � is small enough. Bounding the probability under the integral by 1 
and changing the variables, we obtain

Next, we concentrate on the intergral over ΩF,+ . By Piterbarg inequality (34), we 
have the following uniform in x ∈ ΩF,+ upper bound:

Plugging this bound into the integral and changing the variables, we obtain

ΩF,+ =
{
x ∈ ΩF ∶ rF,𝜀(x) > G

}
and ΩF,− = ΩF⧵ΩF,+.

∑

j∈F

(wi − 𝜀)|xj| − 𝜀

∑

j∈Fc

|xj| < G

�

∑

j∈F

|xj| ≤ �G

w∗ − �

+
�
2

w∗ − �

∑

j∈Fc

|xj|.

w
⊤

x = r + w
⊤

Fc xFc + 𝜀

d∑

j=1

|xj| = r + 𝜀

∑

j∈F

|xj| −
∑

j∈Fc

(wj − 𝜀)|xj|

≤ r +
𝜀G

w∗ − 𝜀

−

(
w∗ −

𝜀
2

w∗ − 𝜀

− 𝜀

)∑

j∈Fc

|xj| ≤ r +
𝜀G

w∗ − 𝜀

,

�ΩF,−

ew
⊤x
ℙ
{
∃ t ∈ [0,Λ]n ∶ �x(t) > x

}
dx ≤ �ΩF,−

ew
⊤x dx = �

G

−∞

dr � dS ew
⊤x rd−1

≤ �
G

−∞ � dS er+𝜀G∕(w∗−𝜀)rd−1 dr dS ≤ c1e
𝜀G∕(w∗−𝜀) �

G

−∞

e(1+𝜀)r dr = c1 e
c2G.

ℙ
{
∃ t ∈ [0,Λ]n ∶ 𝜂x,F(t) > x

} ≤ c3

(
r(x) − G

𝜎

)2∕𝛾

exp

(
−
1

2

(
r(x) − G

𝜎

)2
)
.

�ΩF,+

ew
⊤x
ℙ
{
∃ t ∈ [0,Λ]n ∶ �x(t) > x

}
dx

≤ c3 �ΩF,+

ew
⊤x

(
r(x) − G

𝜎

)2∕𝛾

exp

(
−
1

2

(
r(x) − G

𝜎

)2
)
dx

= c3 �
∞

G

dr � dS ew
⊤x

(
r − G

𝜎

)2∕𝛾+d−1

exp

(
−
1

2

(
r − G

𝜎

)2
)
.
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Note that with w∗ = maxi=1,…,d wi we have

and it follows that for all 𝜀 < w∗ the following bound holds:

This bound yields

from which for small enough � follows that (w, x) ≤ (1 + �
�)r, with �� = �∕(w∗ − �) . 

Hence,

where in the last step we used the Gaussian mgf formula �
{
etN(�,�2)

}
= et�+t

2
�
2∕2 

with t = 1 + �
�.  ◻

Acknowledgements The author wants to express his gratitude to Enkelejd Hashorva and Svyatoslav Novikov 
for our thoughtful discussions and numerous suggestions that substantially improved the manuscript.

Author contributions Pavel Ievlev developed the theoretical framework, conducted the mathematical 
proofs and wrote the manuscript.

Funding Open access funding provided by University of Lausanne Financial support by SNSF 
Grant 200021–196888 is kindly acknowledged.

Data availability Not applicable.

Declarations 

Ethical approval This study is a purely mathematical research paper and does not involve human subjects, 
animal subjects, or ethical considerations. Therefore, no ethical approval was required for this research.

Conflict of interest The author declares that there are no conflicts of interest regarding this research study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 

r =
∑

i∈F

(wi − �)|xi| − �

∑

i∈Fc

|xi| ≥ (w∗ − �)
∑

i∈F

|xi| − �

∑

i∈Fc

|xi|

�

∑

i∈F

|xi| ≤ �r

w∗ − �

+
�
2

w∗ − �

∑

i∈Fc

|xi|.

(w, x) = r + �

d∑

i∈F

|xi| −
∑

i∈Fc

(wi − �)|xi| ≤
(
1 +

�

w∗ − �

)
r −

(
w∗ − � −

�
2

w∗ − �

)∑

i∈Fc

|xi|,

c3 �
∞

G

dr � dS ew
⊤x

(
r − G

𝜎

)2∕𝛾+d−1

exp

(
−
1

2

(
r − G

𝜎

)2
)

≤ c4 �
∞

−∞

e(1+𝜀
�)r exp

(
−
1

2

(
r − G

𝜎

)2
)
dr ≤ c5 e

c6(G+𝜎
2),
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