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Abstract
The convergence of a sequence of point processes with dependent points, defined by 
a symmetric function of iid high-dimensional random vectors, to a Poisson random 
measure is proved. This also implies the convergence of the joint distribution of a 
fixed number of upper order statistics. As applications of the result a generalization 
of maximum convergence to point process convergence is given for simple linear 
rank statistics, rank-type U-statistics and the entries of sample covariance matrices.
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1 Introduction

In classical extreme value theory the asymptotic distribution of the maximum of ran-
dom points plays a central role. Maximum type statistics build popular tests on the 
dependency structure of high-dimensional data. Especially, against sparse alternatives 
those tests possess good power properties (see Han et al. 2017; Drton et al. 2020; Zhou 
et al. 2019). Closely related to the maxima of random points are point processes, which 
play an important role in stochastic geometry and data analysis. They have applications 
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in statistical ecology, astrostatistics and spatial epidemiology (Baddeley 2007). For a 
sequence (Yi)i of real-valued random variables, we set

where �x is the Dirac measure in x. Let K ∶= (0, 1) × (u,∞) with u ∈ ℝ . Then, 
M̃p(K) counts the number of exceedances of the threshold u by the random variables  
Y1,… , Yp . If Y (k) denotes the k-th upper order statistic of Y1,… , Yp , it holds that 
{�Mp(K) < k} = {Y (k) ≤ u} , and in particular {M̃p(K) = 0} = {maxi=1,…,p Yi ≤ u} . 
Therefore, the weak convergence of a sequence of point processes gives information 
about the joint asymptotic distribution of a fixed number of upper order statistics. If 
the sequence (Yi)i consists of independent and identically distributed (iid) random 
variables, maximum convergence and point process convergence are equivalent, but 
if the random variables exhibit dependency, this equivalence does not necessarily 
hold anymore. In this sense, point process convergence is a substantial generaliza-
tion of the maximum convergence. Additionally, the time components i/p deliver 
valuable information of the random time points when a record occurs, i.e., the time 
points when Yj > maxi=1,…,j−1 Yi.

Our main motivation comes from statistical inference for high-dimensional data, 
where the asymptotic distribution of the maximum of dependent random variables 
has found several applications in recent years (see for example Han et  al.  2017; 
Drton et al. 2020; Zhou et al. 2019; Cai and Jiang 2011; Cai et al. 2013; Cai 2017; 
Cai and Liu 2011; Gösmann et al. 2022). The objective of this paper is to provide 
the methodology to extend meaningful results with reference to the convergence of 
the maximum of dependent random variables, to point process convergence.

To this end, we consider dependent points Ti ∶= gn,p(xi1 , xi2 ,… , xim) , where the 
index i = (i1, i2,… , im) ∈ {1,… , p}m . The random vectors x1,… , xp are iid on 
ℝ

n and gn,p ∶ ℝ
mn → ℝ is a measurable, symmetric function. Important examples 

include U-statistics, simple linear rank statistics, rank-type U-statistics, the entries 
of sample covariance matrices or interpoint distances.

Additionally, we assume that the dimension of the points n is growing with the 
number of points p. Over the last decades the environment and therefore the require-
ments for statistical methods have changed fundamentally. Due to the huge improve-
ment of computing power and data acquisition technologies one is confronted with 
large data sets, where the dimension of observations is as large or even larger than the 
sample size. These high-dimensional data occur naturally in online networks, genom-
ics, financial engineering, wireless communication or image analysis (see Johnstone 
and Titterington 2009; Clarke et al. 2008; Donoho 2000). Hence, the analysis of high-
dimensional data has developed as a meaningful and active research area.

We will show that the corresponding point process of the points Ti converges to a  
Poisson random measure (PRM) with a mean measure that involves the m-dimensional  
Lebesgue measure and an additional measure � . If we replace the points Ti with 
iid random variables with the same distribution, the (non-degenerate) limiting dis-
tribution of the maximum will necessarily be an extreme value distribution of the 

M̃p ∶=

p∑
i=1

�(i∕p,Yi),
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form exp(−�(x)) . Moreover, the convergence of the corresponding point process 
will be equivalent to the condition

However, since the random points Ti are not independent, we additionally need 
the following assumption on the dependence structure

where l = 1,… ,m − 1.
In the finite-dimensional case where n is fixed, several results about point pro-

cess convergence are available in similar settings. In Silverman and Brown (1978), 
Silverman and Brown showed point process convergence for m = 2 , n = 2 and 
g2,p(xi, xj) = ap‖xi − xj‖22 , where the xi have a bounded and almost everywhere con-
tinuous density, ap is a suitable scaling sequence and ‖ ⋅ ‖2 is the Euclidean norm on 
ℝ

2 . In the Weibull case �(x) = x� for x, 𝛼 > 0 , Dabrowski et al. (2002) proved a gen-
eralization to points with a fixed dimension and gn,p(xi, xj) = aph(xi, xj) , where h is a 
measurable, symmetric function and ap is a suitable scaling sequence.

Also in the finite-dimensional case, under similar assumptions as in (1.1) with 
�(x) = �x� for x, 𝛼 > 0 , � ∈ ℝ and under condition (1.2), Schulte and Thäle (2012) 
showed convergence in distribution of point processes towards a Weibull process. 
The points of these point processes are obtained by applying a symmetric func-
tion gn,p to all m-tuples of distinct points of a Poisson process on a standard Borel 
space. In Schulte and Thäle (2016), this result was extended to more general func-
tions � and to binomial processes so that other PRMs were possible limit processes. 
In Decreusefond et al. (2016), Decreusefond, Schulte and Thäle provided an upper 
bound of the Kantorovich-Rubinstein distance between a PRM and the point pro-
cess induced in the aforementioned way by a Poisson or a binomial process on an 
abstract state space. Notice that convergence in Kantorovich-Rubinstein distance 
implies convergence in distribution (see Panaretos and Zemel 2020, Theorem 2.2.1 
or Decreusefond et al. 2016, p. 2149). In Chenavier et al. (2022) another point pro-
cess result in a similar setting is given for the number of nearest neighbor balls in 
fixed dimension. Moreover, Basrak and Planinić (2021) presents a general frame-
work for Poisson approximation of point processes on Polish spaces.

1.1  Structure of this paper

The remainder of this paper is structured as follows. In Section 2 we prove weak 
point process convergence for the dependent points Ti in the high-dimensional case 
as tool for the generalization of the convergence of the maximum (Theorem 2.1). We 
provide popular representations of the limiting process in terms of the transformed 
points of a homogeneous Poisson process. Moreover, we derive point process con-
vergence for the record times. In Section 3 these tools are applied to study statistics 
based on relative ranks like simple linear rank statistics or rank-type U-statistics. We 

(1.1)
(

p

m

)
ℙ(gn,p(x1, x2,… , xm) > x) → 𝜇(x), p → ∞.

(1.2)
ℙ(gn,p(x1, x2,… , xm) > x, gn,p(xm−l+1,… , x2m−l) > x) = o(p−(2m−l)), p → ∞,
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also prove convergence of the point processes of the off-diagonal entries of large 
sample covariance matrices. The technical proofs are deferred to Section 4.

1.2  Notation

Convergence in distribution (resp. probability) is denoted by d
−→ (resp. ℙ

−→ ) and unless 
explicitly stated otherwise all limits are for n → ∞ . For sequences (an)n and (bn)n we 
write an = O(bn) if an∕bn ≤ C for some constant C > 0 and every n ∈ ℕ , and an = o(bn) 
if limn→∞ an∕bn = 0 . Additionally, we use the notation an ∼ bn if limn→∞ an∕bn = 1 
and an ≲ bn if an is smaller than or equal to bn up to a positive universal constant. We 
further write a ∧ b ∶= min{a, b} for a, b ∈ ℝ and for a set A we denote |A| as the num-
ber of elements in A.

2  Point process convergence

We introduce the model that was briefly described in the introduction. Let x1,… , xp 
be iid ℝn-valued random vectors with xi = (Xi1,… ,Xin)

⊤, i = 1,… , p , where p = pn 
is some positive integer sequence tending to infinity as n → ∞.

We consider the random points

where i = (i1, i2,… , im) ∈ {1,… , p}m and gn = gn,p ∶ ℝ
mn → ℝ is a measurable  

and symmetric function, where symmetric means g
n
(y1, y2,… , y

m
) = g

n
(y�(1),

y�(2),… , y�(m)) for all y1, y2,… , ym ∈ ℝ
n and all permutations � on {1, 2,… ,m} .  

We are interested in the limit behavior of the point processes Mn towards a PRM M,

where i∕p = (i1∕p,… , im∕p) . The limit M is a PRM with mean measure

where �m is the Lebesgue measure on ℝm . For an interval (a, b) with a < b ∈ ℝ we write 
�(a, b) ∶= �((a, b)) ∶= �(a) − �(b) and � ∶ (v,w) → ℝ

+ = {x ∈ ℝ ∶ x ≥ 0} is a 
function satisfying limx→v �(x) = ∞ and limx→w �(x) = 0 for v,w ∈ ℝ̄ = ℝ ∪ {∞,−∞} 
and v < w . Furthermore, we set �n(⋅) ∶= �[Mn(⋅)] . We consider the Mn ’s and M as ran-
dom measures on the state space

with values in M(S) the space of point measures on S, endowed with the vague 
topology (see Resnick 2008). The following result studies the convergence Mn

d
−→M , 

which denotes the convergence in distribution in M(S).

Ti ∶= gn,p(xi1 , xi2 ,… , xim),

Mn =
∑

1≤i1<i2<…<im≤p
𝜀(i∕p,Ti)

d
−→M , n → ∞ ,

𝜂
( m+1

⊗
l=1

(rl, sl)
)
= m!𝜆m

( m

⊗
l=1

(rl, sl)
)
𝜇(rm+1, sm+1),

S = S1 × (v,w) = {(z1, z2,… , zm) ∶ 0 < z1 < z2 < … < zm ≤ 1} × (v,w)
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Theorem  2.1 Let x1,… , xp be n-dimensional, independent and identically distrib-
uted random vectors and p = pn is some sequence of positive integers tending to 
infinity as n → ∞ . Additionally, let g = gn ∶ ℝ

mn → (v,w) be a measurable and 
symmetric function, where v,w ∈ ℝ̄ = ℝ ∪ {∞,−∞} and v < w . Assume that there 
exists a function � ∶ (v,w) → ℝ

+ with limx→v �(x) = ∞ and limx→w �(x) = 0 such 
that, for x ∈ (v,w) and n → ∞,

(A1) 
(

p

m

)
ℙ(gn(x1, x2,… , xm) > x) → 𝜇(x) and

(A2) ℙ(gn(x1, x2,… , xm)>x, gn(xm−l+1,… , x2m−l)>x)=o(p−(2m−l)) for 
l =1,… ,m−1.

Then we have Mn

d
−→M.

Note that (A1) ensures the correct specification of the mean measure, while (A2) 
is an anti-clustering condition. Both conditions are standard in extreme value theory. 
It is worth mentioning that

where we use the conventions �(x) = 0 if x > w , �(x) = ∞ if x < v , and exp(−∞) = 0 . 
The typical distribution functions H are the Fréchet, Weibull and Gumbel distribu-
tions. In these cases, the limiting process M has a representation in terms of the trans-
formed points of a homogeneous Poisson process. Let (Ui)i be an iid sequence of ran-
dom vectors uniformly distributed on S1 and Γi = E1 +…+ Ei , where (Ei)i is an iid 
sequence of standard exponentially distributed random variables, independent of (Ui)i.

It is well–known that NΓ ∶=
∑∞

i=1
�Γi

 is a homogeneous Poisson process and 
hence it holds for every A ⊂ (0,∞) that NΓ(A) is Poisson distributed with parameter 
�1(A) (see for example Embrechts et al. 1997, Example 5.1.10). For the mean meas-
ure � of M we get for a product of intervals 

m

⊗
l=1

(rl, sl] ⊂ S1

where we used in the second line that

as Ui is uniformly distributed on S1 for every i and

lim
n→∞

ℙ

(
max

1≤i1<i2<…<im≤p
Ti ≤ x

)
= exp(−𝜇(x)) =∶ H(x), x ∈ ℝ,

𝜂
( m+1

⊗
l=1

(rl, sl]
)
= m!𝜆m

( m

⊗
l=1

(rl, sl]
)
(𝜇(rm+1) − 𝜇(sm+1))

=

∞∑
i=1

ℙ

(
Ui ∈

m

⊗
l=1

(rl, sl]
)
𝔼[𝜀Γi

(𝜇(sm+1),𝜇(rm+1)]

= 𝔼

[ ∞∑
i=1

𝜀(Ui,Γi)

( m

⊗
l=1

(rl, sl] × (𝜇(sm+1),𝜇(rm+1)]
)]

,

ℙ

(
Ui ∈

m

⊗
l=1

(rl, sl]
)
= m!

m∏
l=1

(sl − rl)
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We get the following representations for the limiting processes M.

• Fréchet case: For 𝛼 > 0 the Fréchet distribution is given by Φ�(x) = exp(−x−�) , 
x > 0 . For 0 < r < s < ∞ we have �Φ�

(r, s] = r−� − s−� and therefore, we can 
write 

• Weibull case: For 𝛼 > 0 the Weibull distribution is given by Ψ�(x) = exp(−|x|�) , 
x < 0 . For −∞ < r < s < 0 we have �Ψ�

(r, s] = |r|� − |s|� and 

• Gumbel case: The Gumbel distribution is given by Λ(x) = exp(− e −x) for all 
x ∈ ℝ . For −∞ < r < s < ∞ we have �Λ(r, s] = e −r − e −s and 

Besides the points Ti , time components i∕p = (i1∕p,… , im∕p) with 1 ≤ i1 ≤
… ≤ i

m
≤ p are considered in the definition of the point process Mn . Whenever we 

do not need the time components in the following, we will use the shorthand notation

Under the conditions of Theorem  2.1, Nn converges in distribution to 
N(⋅) ∶= M(S1 × ⋅) which is a PRM with mean measure �.

A direct consequence of the point process convergence is the convergence of the 
joint distribution of a fixed number of upper order statistics. In the Fréchet, Weibull 
and Gumbel cases the limit function can be described as the joint distribution func-
tion of transformations of the points Γi.

Corollary 2.2 Let Gn,(j) be the j-th upper order statistic of the random variables 
(gn(xi1 , xi2 ,… , xim )) , where 1 ≤ i1 < i2 < … < im ≤ p . Under the conditions of The-
orem 2.1 and for a fixed k ≥ 1 the distribution function

where xk < … < x1 ∈ (v,w) , converges to

�[NΓ(�(sm+1),�(rm+1))] = �1(�(sm+1),�(rm+1)).

M = MΦ�
=

∞∑
i=1

�
(Ui,Γ

−1∕�
i

)
.

M = MΨ�
=

∞∑
i=1

�
(Ui,−Γ

1∕�
i

)
.

M = MΛ =

∞∑
i=1

�(Ui,− logΓi)
.

(2.3)Nn(⋅) ∶= Mn(S1 × ⋅) =
∑

1≤i1≤…≤im≤p
�Ti(⋅).

ℙ(Gn,(1) ≤ x1,… ,Gn,(k) ≤ xk),

ℙ

(
N(x1,w) = 0,N(x2,w) ≤ 1… ,N(xk,w) ≤ k − 1

)
,
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as n → ∞ . In particular, in the Fréchet, Weibull and Gumbel cases, it holds that

Proof Since Nn(x,w) is the number of vectors i = (i1,… , im) with 1 ≤ i1 < i2

< … < i
m
≤ p , for which gn(xi1 , xi2 ,… , xim) ∈ (x,w) , we get by Theorem 2.1 as n → ∞

By the representation of the limiting point process in the Fréchet, Weibull and 
Gumbel cases, (2.4) is equal to one of the three distribution functions in the corollary.

One field, where point processes find many applications, is stochastic geometry. 
The paper Schulte and Thäle (2012), for example, considers order statistics for Pois-
son k-flats in ℝd , Poisson polytopes on the unit sphere and random geometric graphs.

Setting k = 1 in Corollary 2.2 we obtain the convergence in distribution of the 
maximum of the points Ti.

Corollary 2.3 Under the conditions of Theorem 2.1 we get

Example 2.4 (Interpoint distances) Let xi = (Xi1,… ,Xin)
⊤, i = 1,… , p be n-dimensional 

random vectors, whose components (Xit)i,t≥1 are independent and identically distributed 
random variables with zero mean and variance 1. We are interested in the asymptotic 
behavior of the largest interpoint distances

where ‖ ⋅ ‖2 is the Euclidean norm on ℝn . Figure 1 shows the four largest interpoint 
distances of 500 points on ℝ2 with independent standard normal distributed compo-
nents. Note that three of the largest four distances involve the same outlying vector xi.

We assume that there exists s > 2 such that �[|X11|2s(log(|X11|))s∕2] < ∞ and 
�[X4

11
] ≤ 5 and that p = pn → ∞ satisfies p = O(n(s−2)∕4) . Additionally, we let (bn)n 

and (cn)n be sequences given by

ℙ

�
N(x1,w) = 0,N(x2,w) ≤ 1… ,N(xk,w) ≤ k − 1

�

=

⎧
⎪⎨⎪⎩

ℙ(Γ
−1∕�
1

≤ x1,… ,Γ
−1∕�
k

≤ xk), if � = �Φ�
,

ℙ(−Γ
1∕�
1

≤ x1,… ,−Γ
1∕�
k

≤ xk), if � = �Ψ�
,

ℙ(− logΓ1 ≤ x1,… ,− logΓk ≤ xk), if � = �Λ.

(2.4)

ℙ(Gn,(1) ≤ x1,… ,Gn,(k) ≤ xk) = ℙ

(
Nn(x1,w) = 0,Nn(x2,w) ≤ 1,… ,Nn(xk,w) ≤ k − 1

)

→ ℙ

(
N(x1,w) = 0,N(x2,w) ≤ 1… ,N(xk,w) ≤ k − 1

)
.

lim
n→∞

ℙ

(
max

1≤i1<i2<…<im≤p
gn(xi1 , xi2 ,… , xim) ≤ x

)
= exp(−𝜇(x)) , x ∈ ℝ .

Dij = ‖xi − xj‖22 =
n�
t=1

(Xit − Xjt)
2 , 1 ≤ i < j ≤ p ,



 J. Heiny, C. Kleemann 

1 3

where dn =
√
2 log p̃ −

log log p̃+log 4𝜋

2(2 log p̃)1∕2
 with p̃ = p(p − 1)∕2 . For x ∈ ℝ one can check that

as n → ∞ (see Heiny and Kleemann (2023) for details). Therefore, the conditions (A1)  
and (A2) in Theorem 2.1 hold for m = 2 , gn(xi, xj) = cn(Dij − bn) and �(x) = e −x . By 
virtue of Theorem 2.1 we have

Finally Corollary 2.2 yields for a fixed k ≥ 1 that

where Dn,(�) is the �-th upper order statistic of the random variables cn(Dij − bn) for 
1 ≤ i < j ≤ p.

2.1  Record times

In Theorem 2.1 we showed convergence of point processes including time compo-
nents. Therefore, we can additionally derive results for the record times L(k), k ≥ 1 

bn = 2n +
√
2n(�[X4] + 1)dn and cn =

dn√
2n(�[X4] + 1)

,

p̃ℙ
(
cn(D12 − bn) > x

)
→ e −x and ℙ

(
cn(D12 − bn) > x, cn(D23 − bn) > x

)
= o(p−3)

∑
1≤i<j≤p

𝜀cn(Dij−bn)

d
−→NΛ =

∞∑
i=1

𝜀− logΓi
.

(Dn,(1),… ,Dn,(k))
d
−→(− logΓ1,… ,− logΓk),

Fig. 1  Four largest dis- 
tances between 500 normal 
distributed points
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of the running maxima of the points Ti = gn(xi1 , xi2 ,… , xim) for i = (i1,… , im) , 
which are recursively defined as follows:

(c.f.  Sections  5.4.3 and 5.4.4 of Embrechts et  al.  1997). To prove point process 
convergence for the record times we need the convergence in distribution of the 
sequence of processes (Yn(t), 0 < t ≤ 1) in D(0,  1], the space of right continuous 
functions on (0, 1] with finite limits existing from the left, defined by

where ⌊x⌋ = max{y ∈ ℤ ∶ y ≤ x} for x ∈ ℝ , towards an extremal process. We call 
Y = (Y(t))t>0 an extremal process generated by the distribution function H, if the 
finite-dimensional distributions are given by

where k ≥ 1 , 0 < t1 < … < tk , xi ∈ ℝ and 1 ≤ i ≤ k (see Embrechts et al. 1997, Def-
inition 5.4.3). To define convergence in distribution in D(0, 1] we first need to intro-
duce a metric D on D(0, 1]. To this end, let Λ[0,1] be a set of homeomorphisms

Then for f , g ∈ D[0, 1] the Skorohod metric D̃ is defined by (see Billingsley 
1999, Section 12)

Now set

where f̃  and g̃ are the right continuous extensions of f and g on [0, 1].The space of  
functions D[0, 1] and therefore D(0, 1] is separable under the Skorohod metric but  
not complete. However, one can find an equivalent metric, i.e., a metric which gener- 
ates the same Skorohod topology, under which D[0, 1] is complete (see Billingsley 
1999, Theorem 12.2). In particular, the Skorohod metric and the equivalent metric  
generate the same open sets and thus the �-algebras of the Borel sets, which are gen- 
erated by these open sets, are the same. Therefore, a sequence of probability measures  
on D(0, 1] is relatively compact if and only if it is tight (Billingsley 1999, Section 13).  
Hence, for every tight sequence of probability measures on D(0, 1] the convergence 

L(1) = 1 ,

L(k + 1) = inf{j > L(k) ∶ max
1≤i1<…<im≤j

Ti > max
1≤i1<…<im≤L(k)

Ti}, k ∈ ℕ,

Yn(t) =

�
max

1≤i1<i2<…<im≤⌊pt⌋
gn(xi1 , xi2 ,… , xim),

m

p
≤ t ≤ 1

gn(x1, x2,… , xm), otherwise,

(2.5)

ℙ(Y(t1) ≤ x1,… , Y(tk) ≤ xk) = Ht1

( k⋀
i=1

xi

)
Ht2−t1

( k⋀
i=2

xi

)
…Htk−tk−1(xk),

Λ[0,1] = {� ∶ [0, 1] → [0, 1] ∶ �(0) = 0, �(1) = 1, � is continuous and strictly increasing}.

D̃(f , g) ∶= inf{𝜖 > 0 ∶ there exists a 𝜆 ∈ Λ[0,1] such that

sup
0≤t≤1

|𝜆(t) − t| ≤ 𝜖, sup
0≤t≤1

|f (t) − g(𝜆(t))| ≤ 𝜖}.

D(f , g) ∶= D̃(f̃ , g̃), f , g ∈ D(0, 1],
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of the finite dimensional distributions on all continuity points of the limit distribution  
implies convergence in distribution (Billingsley 1999, Theorem 13.1).

For the PRM M =
∑∞

i=1
�(Ui,Δi)

 , where (Ui)i is an iid sequence of random vec-
tors uniformly distributed on S1 and

we set

where U(m)

i
 is the m-th component of Ui . Then the process Y has the finite dimen-

sional distributions in (2.5) for k ≥ 1 , 0 < ti ≤ 1 , xi ∈ ℝ and 1 ≤ i ≤ k . Therefore, Y 
is an extremal process generated by H restricted to the interval (0, 1]. For these pro-
cesses we can show the following invariance principle by application of the continu-
ous mapping theorem (see Billingsley 1999, Theorem 2.7 or Resnick 2008, p. 152).

Proposition 2.5 Under the conditions of Theorem 2.1 and if H(⋅) = exp(−�(⋅)) is an 
extreme value distribution it holds that

in D(0, 1] with respect to the metric D.

Since Y is a nondecreasing function, which is constant between isolated 
jumps, it has only countably many discontinuity points. Now let (�n)n be the 
sequence of these discontinuity points of Y. Notice that by Embrechts et  al. 
(1997), Theorem 5.4.7 the point process 

∑∞

k=1
��k is a PRM with mean measure 

�(a, b) = log(b∕a) for 0 < a < b ≤ 1 . We are ready to state our result for the point 
process of record times.

Theorem 2.6 Under the conditions of Theorem 2.1 and if H(⋅) = exp(−�(⋅)) is an 
extreme value distribution it holds that

in M(0, 1] , the space of point measures on (0, 1].

Based on Theorem 2.6 we can make statements about the time points of the last and 
second last record at or before p.

Δi =

⎧
⎪⎨⎪⎩

− log(Γi) if H = Λ,

Γ
−1∕�
i

if H = Φ� ,

−Γ
1∕�
i

if H = Ψ� ,

Y(t) = sup{Δi ∶ U
(m)

i
≤ t, i ≥ 1} , t ∈ (0, 1] ,

Yn
d
−→Y , n → ∞ ,

Jn ∶=

p∑
k=1

�p−1L(k)
d
−→J ∶=

∞∑
k=1

��k ,
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Corollary 2.7 Assume the conditions of Theorem 2.6 and let �(p) be the number of 
records among the random variables

Then the following statements hold for x, y ∈ (0, 1] as n → ∞ . 

(1) ℙ(p−1L(�(p)) ≤ x) = ℙ(Jn(x, 1] = 0) → ℙ(J(x, 1] = 0) = x.
(2) ℙ(p−1L(�(p)) ≤ x, p−1L(�(p) − 1) ≤ y) → y + y log(x∕y) for x > y.
(3) ℙ(p−1(L(�(p)) − L(�(p) − 1)) ≤ x) → x(1 − log(x)).

Proof Let 0 < y < x ≤ 1 . Part (1) is a direct consequence of the definitions of � and 
L. Part (2) follows by

as n → ∞ and

To prove part (3) we assume that � (1) and � (2) are the first and the second upper 
order statistics of (�n)n . These upper order statistics exist since for every a > 0 there 
are only finitely many �n ∈ [a, 1] . Then, we know by part (2) that

Since

we need to calculate ℙ(� (1) − � (2) ≤ x) . The joint density of � (1) and � (2) can be 
deduced from (2.6), it is

Hence, we get the following distribution function of � (1) − � (2)

which completes the proof.

max
1≤i1,…,im≤m

Ti,… , max
1≤i1,…,im≤p

Ti.

ℙ(p−1L(�(p)) ≤ x, p−1L(�(p) − 1) ≤ y) = ℙ(Jn(x, 1] = 0, Jn(y, 1] ≤ 1)

→ ℙ(J(x, 1] = 0, J(y, 1] ≤ 1)

ℙ(J(x, 1] = 0, J(y, 1] ≤ 1) = ℙ(J(x, 1] = 0)ℙ(J(y, x] ≤ 1) = y + y log(x∕y).

(2.6)

ℙ(𝜏(1) ≤ x, 𝜏(2) ≤ y) = ℙ(J(x, 1] = 0, J(y, 1] ≤ 1) =

{
y + y log(x∕y), x > y

x, otherwise.

lim
n→∞

ℙ(p−1(L(�(p)) − L(�(p) − 1)) ≤ x) = ℙ(� (1) − � (2) ≤ x)

f𝜏(1)𝜏(2) (u, v) =

{
1∕u u > v

0, otherwise.

ℙ(�(1) − � (2) ≤ x) = �
x

0 �
1−w

0

f�(1)�(2) (w + v, v)dv dw

= �
x

0 �
1−w

0

1∕(w + v)dv dw = �
x

0

log(1∕w)dw = x(1 − log(x)),
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3  Applications

3.1  Relative ranks

In recent years, maximum-type tests based on the convergence in distribution of 
the maximum of rank statistics of a data set have gained significant interest for 
statistical testing (Han et  al.  2017). Let y1,… , yn be p-dimensional iid random 
vectors with yt = (X1t,… ,Xpt) following a continuous distribution to avoid ties. 
We write Qit for the rank of Xit among Xi1,… ,Xin . Additionally, let R(t)

ij
 be the rel-

ative rank of the j-th entry compared to the i-th entry; that is R(t)

ij
= Qjt� with t′ 

such that Qit� = t for t = 1,… , n.
A simpler explanation of R(t)

ij
 is that we look at the j-th and i-th rows of (Qit) 

and find the location of t in the i-th row. Then we choose the value in the j-th row 
at this location.

Many important statistics are based on (relative) ranks; we consider two classes 
of such statistics in this section. First, we introduce the so–called simple linear 
rank statistics, which are of the form

where g is a Lipschitz function (also called score function), and (cnt) with 
cnt = n−1f (t∕(n + 1)) for a Lipschitz function f and 

∑n

t=1
c2
nt
> 0 are called the regres-

sion constants. An example of such a simple linear rank statistic is Spearman’s � , 
which will be discussed in detail in Section 3.1.2. For 1 ≤ i < j ≤ p the relative ranks 
(R

(t)

ij
)n
t=1

 depend on the vectors xi and xj , where xk = (Xk1,… ,Xkn) for 1 ≤ k ≤ p . We 
assume that the vectors x1,… xp are independent. It is worth mentioning that the 
ranks (Qit) remain the same if we transform the marginal distributions to the (say) 
standard uniform distribution. Thus, the joint distribution of (R(t)

ij
)n
t=1

 , and thereby the 
distribution of Vij , does not depend on the distribution of xi or xj . Therefore, we may 
assume without loss of generality that the random vectors x1,… , xp are identically 
distributed. We can write Vij = gn,V (xi, xj) for a measurable function gn,V ∶ ℝ

2n → ℝ.
Next, we consider rank-type U-statistics of order m < n of the form

where the symmetric kernel h is such that Uij depends only on (R(t)

ij
)n
t=1

 . An important 
example of a rank-type U- statistic is Kendall’s � , which will be studied in Sec-
tion 3.1.1. For more examples we refer to Han et al. (2017) and references therein. 
As for simple linear rank statistics, we are able to write Uij = gn,U(xi, xj) , where 
gn,U ∶ ℝ

2n → ℝ is a measurable function and x1,… xp are iid random vectors.
An interesting property of rank-based statistics is the following pairwise inde-

pendence. We also note that they are generally not mutually independent.

Vij =

n∑
t=1

cnt g(R
(t)

ij
∕(n + 1)) , 1 ≤ i < j ≤ p ,

Uij =
1

n(n − 1)⋯ (n − m + 1)

∑
1≤t1≠⋯≠tm≤n

h((Xit1
,Xjt1

),… , (Xitm
,Xjtm

)) ,



1 3

Point process convergence for symmetric functions…

Lemma 3.1 (Lemma C4 in Han et al. 2017) For 1 ≤ i < j ≤ p , let Ψij be a function of 
the relative ranks {R(t)

ij
, t = 1,… , n} . Assume x1,… , xp are independent. Then for 

any (i, j) ≠ (k, l) , i < j, k < l , the random variables Ψij and Ψkl are independent.

As an immediate consequence we obtain pairwise independence of (Uij) and 
(Vij) , respectively.

Lemma 3.2 For any (i, j) ≠ (k, l) , i < j, k < l , the random variables Vij and Vkl are 
independent and identically distributed. Moreover, Uij and Ukl are independent and 
identically distributed.

We now want to standardize Uij and Vij . By independence of (Xit) , we have

where gn = n−1
∑n

t=1
g(t∕(n + 1)) is the sample mean of g(Q11∕(n + 1)),… , g(Q1n∕

(n + 1)) and cn =
∑n

t=1
cnt . Expectation and variance of Uij can also be calculated 

analytically. We set

and define the standardized versions of Uij and Vij by

It is well–known that Ṽij and Ũij are asymptotically standard normal and the fol-
lowing lemma provides a complementary large deviation result.

Lemma 3.3 (Kallenberg 1982,  p.404-405) Suppose that the kernel function h is 
bounded and non-degenerate. Then we have for x = o(n1∕6) that

Assume that the score function g is differentiable with bounded Lipschitz constant 
and that the constants (cnt)t satisfy

where C is some constant. Then it holds for x = o(n1∕6)

For a discussion of (3.1), see (Kallenberg 1982, p.405). To proceed we need to 
find a suitable scaling and centering sequences for Ṽij and Ũij , respectively, such that 

�[Vij] = gn

n∑
t=1

cnt , Var(Vij) =
1

n − 1

n∑
t=1

(g(t∕(n + 1)) − gn)
2

n∑
s=1

(cns − cn)
2 ,

�V = �[V12] , �
2
V
= Var(V12) and �U = �[U12] , �

2
U
= Var(U12) ,

�Vij = (Vij − 𝜇V )∕𝜎V and �Uij = (Uij − 𝜇U)∕𝜎U , 1 ≤ i < j ≤ p.

ℙ(�U12 > x) = Φ(x)(1 + o(1)), n → ∞ .

(3.1)

max
1≤t≤n |cnt − cn|2 ≤ C2

n2∕3

n∑
t=1

(cnt − cn)
2 ,

|||
n∑
t=1

(cnt − cn)
3|||

2 ≤ C2

n

|||
n∑
t=1

(cnt − cn)
2|||

3

,

ℙ(�V12 > x) = Φ(x)(1 + o(1)), n → ∞ .
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the conditions of Theorem 2.1 are fulfilled. For an iid standard normal sequence (Xi) 
it is known that

where d̃p =
√
2 log p −

log log p+log 4�

2(2 log p)1∕2
 ; see Embrechts et  al. (1997, Example 3.3.29). 

Since we are dealing with p(p − 1)∕2 random variables (Vij) and (Uij) , respectively, 
which are asymptotically standard normal, dp = d̃p(p−1)∕2 seems like a reasonable 
choice for scaling and centering sequences.

Our main result for rank-statistics is the following.

Theorem 3.4 

(a) Suppose that the kernel function h is bounded and non-degenerate. If 
p = exp(o(n1∕3)) , the following point process convergence holds 

 where Γi = E1 +⋯ + Ei , i ≥ 1 , and (Ei) are iid standard exponential, i.e., N is a 
Poisson random measure with mean measure �(x,∞) = e −x , x ∈ ℝ.

(b) Assume that the score function g is differentiable with bounded Lipschitz constant 
and that the constants (cnt)t satisfy (3.1). Then if p = exp(o(n1∕3)) , it holds that 

Proof We start with the proof of (3.3) for which we will use Theorem  2.1, as 
x1,… xp are iid and gn,V is a measurable function. Therefore, we only have to show 
that for x ∈ ℝ it holds 

(1) p(p−1)

2
ℙ(�V12 > xp) → e −x as n → ∞,

(2) p3ℙ(�V12 > xp,
�V13 > xp) → 0 as n → ∞,

where xp = x∕dp + dp . We will begin with the proof of (1). Since xp ∼ dp = o(n1∕6) 
we get by Lemma 3.3

and by Mill’s ratio we have (writing p̃ =
p(p−1)

2
)

lim
p→∞

ℙ

(
d̃p
(
max

i=1,…,p
Xi − d̃p

) ≤ x
)
= exp(−e −x) = Λ(x) , x ∈ ℝ ,

(3.2)NU
n
∶=

∑
1≤i<j≤p

𝜀dp(�Uij−dp)

d
−→N ∶=

∞∑
i=1

𝜀− logΓi
, n → ∞ ,

(3.3)NV
n
∶=

∑
1≤i<j≤p

𝜀
dp(

�Vij−dp)

d
−→N , n → ∞ .

p(p − 1)

2
ℙ(�V12 > xp) =

p(p − 1)

2
Φ̄(xp)(1 + o(1))

p̃ Φ̄(xp) ∼ p̃
1√
2𝜋xp

e
−x2

p
∕2 ∼ p̃

1√
2𝜋

√
2 log p̃

e − log p̃+(log log p̃)∕2+(log(4𝜋))∕2 e −x = e −x.
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Regarding (2), we note that, by Lemma 3.2, Ṽ12 and Ṽ13 are independent. Thus, 
we get

where we used Lemma 3.3 and Mill’s ratio in the last two steps. That completes the 
proof of (3.3). The proof of (3.2) follows by analogous arguments.  ◻

Remark 3.5 Theorem  3.4 is a generalization of Theorems 1 and 2 in Han et  al. 
(2017) who proved under the conditions of Theorem 3.4 and if p = exp(o(n1∕3)) that

and

As in Theorem 2.6, we additionally conclude point process convergence for the 
record times of the maxima of Vij and Uij . To this end, we investigate the sequence 
(max1≤i<j≤k Uij)k≥1 . This sequence jumps at time k if one of the random variables 
U1k,… ,Uk−1,k is larger than every Uij for 1 ≤ i < j ≤ k − 1 . Between these jump (or 
record) times the sequence is constant.

Let LU be this sequence of record times defined by

and let LV be constructed analogously.

Theorem 3.6 Under the conditions of Theorem 3.4 it holds that

in M(0, 1] , the space of point measures on (0,  1], where J is a Poisson random 
measure with mean measure �(a, b) = log(b∕a) for 0 < a < b ≤ 1.

As in Corollary 2.7, we can draw conclusions on the index of the last and 
second last jump before or at p. Let �U(p) be the number of records among 
max1≤i<j≤2 Uij,… , max1≤i<j≤p Uij . Then, as n → ∞ , we have for x, y ∈ (0, 1]

(1) ℙ(p−1LU(�U(p)) ≤ x) → ℙ(J(x, 1] = 0) = x,
(2) ℙ(p−1LU(�U(p)) ≤ x, p−1LU(�U(p) − 1) ≤ y) → y + y log(x∕y) for x > y,
(3) ℙ(p−1(LU(�U(p)) − LU(�U(p) − 1)) ≤ x) → x(1 − log(x)),

p3ℙ(�V12 > xp,
�V13 > xp) = p3ℙ(�V12 > xp)

2 = p3(Φ̄(xp)(1 + o(1)))2 → 0, n → ∞,

lim
n→∞

ℙ

�
max

1≤i<j≤p
�V2
ij
− 4 log p + log log p ≤ x

�
= exp

�
−

1√
8𝜋

e −x∕2
�
, x ∈ ℝ

lim
n→∞

ℙ

�
max

1≤i<j≤p
�U2
ij
− 4 log p + log log p ≤ x

�
= exp

�
−

1√
8𝜋

e −x∕2
�
, x ∈ ℝ .

LU(1) = 1,

LU(k + 1) = inf{� > LU(k) ∶ max
1≤i<j≤�Uij > max

1≤i<j≤LU (k)Uij}, k ∈ ℕ,

p∑
k=1

�p−1LV (k)
d
−→J and

p∑
k=1

�p−1LU (k)
d
−→J,
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where (3) gives information about how much time elapses between the second 
last and the last jump of (max1≤i<j≤k Uij)k≥1 before or at p.

3.1.1  Kendall’s tau

Kendall’s tau is an example of a rank-type U-statistic with bounded kernel. For 
i ≠ j Kendall’s tau �ij measures the ordinal association between the two sequences 
(Xi1,… ,Xin) and (Xj1,… ,Xjn) . It is defined by

where the function sign ∶ ℝ → {1, 0,−1} is given by sign(x) = x∕|x| for x ≠ 0 and 
sign(0) = 0 . An interesting property of Kendall’s tau is that there exists a representa-
tion as a sum of independent random variables. We could not find this representa- 
tion in the literature. Therefore, we state it here. The proof can be found in Section 4.

Proposition 3.7 We have

where (Di)i≥1 are independent random variables with Di being uniformly distributed 
on the numbers −i∕2,−i∕2 + 1,… , i∕2.

From Proposition  3.7 we deduce �[�ij] = 0 and Var(�ij) =
2(2n+5)

9n(n−1)
 . The next 

result is a corollary of Theorem 3.4.

Corollary 3.8 Under the conditions of Theorem 3.4 we have

3.1.2  Spearman’s rho

An example of a simple linear rank statistic is Spearman’s rho, which is a meas-
ure of rank correlation that assesses how well the relationship between two vari-
ables can be described using a monotonic function. Recall that Qik and Qjk are 
the ranks of Xik and Xjk among {Xi1,… ,Xin} and {Xj1,… ,Xjn} , respectively, and 

𝜏ij =
2

n(n − 1)

∑
1≤t1<t2≤n

sign(Xit1
− Xit2

)sign(Xjt1
− Xjt2

)

=
2

n(n − 1)

∑
1≤t1<t2≤n

sign(R
(t2)

ij
− R

(t1)

ij
),

�12
d
=

4

n(n − 1)

n−1∑
i=1

Di ,

N𝜏
n
∶=

�
1≤i<j≤p

𝜀
dp(𝜏ij∕

√
Var(𝜏ij)−dp)

d
−→N =

∞�
i=1

𝜀− logΓi
, n → ∞ .
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write qn = (n + 1)∕2 for the average rank. Then for 1 ≤ i ≠ j ≤ p Spearman’s rho 
is defined by

For mean and variance we get

Therefore, we obtain the following corollary of Theorem 3.4.

Corollary 3.9 Under the conditions of Theorem 3.4 it holds that

The next auxiliary result allows us to transfer the weak convergence of a 
sequence of point processes to a another sequence of point processes, provided 
that the maximum distance between their points tends to zero in probability.

Proposition 3.10 For arrays (Xi,n)i,n≥1 and (Yi,n)i,n≥1 of real-valued random variables, let 
NX
n
=
∑p

i=1
�Xi,n

 and assume that NX
n

d
−→N . Consider a point process NY

n
=
∑p

i=1
�Yi,n . If

then NY
n

d
−→N.

Example 3.11 It turns out that there is an interesting connection between Spearman’s 
rho and Kendall’s tau. By Hoeffding (1948, p.318) we can write Spearman’s rho as

where

is the major part of Spearman’s rho. Therefore, rij is a U-statistic of degree three 
with an asymmetric bounded kernel and with

�ij =

∑n

k=1
(Qik − qn)(Qjk − qn)�∑n

k=1
(Qik − qn)

2
∑n

k=1
(Qjk − qn)

2
�1∕2

=
12

n(n2 − 1)

n�
k=1

�
k −

n + 1

2

��
R
(k)

ij
−

n + 1

2

�
.

(3.4)�[�ij] = 0 and Var(�ij) = 1∕(n − 1).

N𝜌
n
∶=

�
1≤i<j≤p

𝜀
dp(𝜌ij∕

√
Var(𝜌ij)−dp)

d
−→N .

max
i=1,…,p

|Xi,n − Yi,n|
ℙ

−→0,

(3.5)�ij =
n − 2

n + 1
rij +

3�ij

n + 1
, 1 ≤ i ≠ j ≤ p,

rij =
3

n(n − 1)(n − 2)

∑
1≤t1≠t2≠t3≤n

sign(Xit1
− Xit2

)sign(Xjt1
− Xjt3

)

(3.6)�[rij] = 0 and Var(rij) =
n2 − 3

n(n − 1)(n − 2)
, 1 ≤ i ≠ j ≤ p.
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We now use Proposition 3.10 and Corollary 3.9 to show that

For this purpose we consider the following difference

By (3.4), (3.6) and (3.5) this expression is asymptotically equal to

Since |�ij| and |rij| are bounded above by constants, we deduce that

which verifies the condition in Proposition 3.10. Since N�
n

d
−→N by Corollary 3.9, we 

conclude the desired (3.7).

3.2  Sample covariances

An important field of current research is the estimation and testing of high-dimensional 
covariance structures. It finds application in genomics, social science and financial eco-
nomics; see Cai (2017) for a detailed review and more references. Under quite general 
assumptions (Xiao and Wu 2013) investigated the maximum off-diagonal entry of a 
high-dimensional sample covariance matrix. We impose the same model assumptions 
(compare Xiao and Wu 2013, p. 2901-2903), but instead of the maximum we study the 
point process of off-diagonal entries.

We start by describing the model and spelling out the required assumptions. 
Let x1,… , xn be p-dimensional iid random vectors with xi = (X1i,… ,Xpi) , where 
�[Xji] = 0 for 1 ≤ j ≤ p and X̄j ∶=

1

n

∑n

k=1
Xjk . Denote Σ = (�i,j)1≤i,j≤p as the covari-

ance matrix of the vector x1 and assume �i,i = 1 for 1 ≤ i ≤ p . The empirical 
covariance matrix (�̂�i,j)1≤i,j≤p is given by

A fundamental problem in high-dimensional inference is to derive the asymp-
totic distribution of max1≤i<j≤p |�̂�i,j − 𝜎i,j| . Since the �̂�i,j ’s might have different var-
iances we need to standardize �̂�i,j by �i,j = Var(Xi1Xj1) , which can be estimated by

(3.7)Nr
n
∶=

�
1≤i<j≤p

𝜀
dp(rij∕

√
Var(rij)−dp)

d
−→N ∶=

∞�
i=1

𝜀− logΓi
, n → ∞ .

dp

( �ij√
Var(�ij)

− dp

)
− dp

( rij√
Var(rij)

− dp

)
= dp

( �ij√
Var(�ij)

−
rij√

Var(rij)

)
.

dp√
n
(�ij − rij) =

3dp√
n(n + 1)

(�ij − rij).

max
1≤i<j≤p

���
3dp√
n(n + 1)

(𝜏ij − rij)
���
ℙ

−→0 , n → ∞,

�̂�i,j =
1

n

n∑
k=1

(Xik − X̄i)(Xjk − X̄j), 1 ≤ i, j ≤ p.
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We are interested in the points

Let In = {(i, j) ∶ 1 ≤ i < j ≤ p} be an index set. We use the following notations 
to formulate the required conditions:

Now, we can draft the following conditions.

(B1) lim inf
n→∞

𝜃n > 0.
(B2) lim sup

n→∞

𝛾n < 1.

(B3) �n(bn) log(bn) = o(1) for any sequence (bn) such that bn → ∞.
(B3’) �n(bn) = o(1) for any sequence (bn) such that bn → ∞ and for some 𝜀 > 0

(B4) For some constants t > 0 and 0 < r ≤ 2 , lim sup
n→∞

Kn(t, r) < ∞ , and 

(B4’) log p = o(nr∕(4+3r)) , lim sup
n→∞

Kn(t, r) < ∞ for some constants t > 0 and r > 0.

(B4”) p = O(nq) and lim sup
n→∞

Mn(4q + 4 + 𝛿) < ∞ for some constants q > 0 and 

𝛿 > 0.

To be able to adopt parts of the proof of Theorem 2 in Xiao and Wu (2013) we con-
sider (instead of (Mi,j) ) the transformed points (Wi,j) given by

�̂�i,j =
1

n

n∑
k=1

[
(Xik − X̄i)(Xjk − X̄j) − �̂�i,j

]2
.

Mi,j ∶=
|�̂�i,j − 𝜎i,j|√

�̂�i,j

, 1 ≤ i < j ≤ p.

Kn(t, r) = sup
1≤i≤p

�[exp(t|Xi1|r)],
Mn(r) = sup

1≤i≤p
�[|Xi1|r],

𝜃n = inf
1≤i<j≤p 𝜃i,j,

𝛾n = sup

𝛼, 𝛽 ∈ In

𝛼 ≠ 𝛽

|Cor(Xi1Xj1, Xk1Xl1)|, for 𝛼 = (i, j), 𝛽 = (k, l),

𝛾n(b) = sup
𝛼∈In

sup

A ⊂ In|A| = b

inf
𝛽∈A

|Cor(Xi1Xj1, Xk1Xl1)| for 𝛼 = (i, j), 𝛽 = (k, l).

∑
�,�∈In

(Cov(Xi1Xj1, Xk1Xl1))
2 = O(p4−�) for � = (i, j), � = (k, l).

log p =

{
o(nr∕(4+r)), if 0 < r < 2,

o(n1∕3(log n)−2∕3), if r = 2.
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and we define the point processes

Theorem 3.12 Let �[x1] = 0 and �i,i = 1 for all i, and assume (B1) and (B2). Then 
under any one of the following conditions: 

 (i) (B3) and (B4),
 (ii) (B3’) and (B4’),
 (iii) (B3) and (B4”),
 (iv) (B3’) and (B4”),

it holds, that

where Γi = E1 +⋯ + Ei , i ≥ 1 , and (Ei) are iid standard exponential, i.e., N is a 
Poisson random measure with mean measure �(x,∞) = e −x , x ∈ ℝ.

Proof Under condition (i) set En = n−(2−r)∕(4(r+4)) if 0 < r < 2 , and E
n
= n

−1∕6

(log n)1∕3(log p)1∕2 if r = 2 . Under condition (ii) let En = (log p)1∕2n−r∕(6r+8) . Under 
(i) or (ii) we set

where Tn = En(n∕(log p)
3)1∕4 . Under conditions (iii) and (iv) we set

Additionally, we define �̃�i,j = �[X̃i1X̃j1] and 𝜃i,j = Var[X̃i1X̃j1] . We consider

and the transformed points

We will show that N(W1)
n ∶=

∑
1≤i<j≤p 𝜀W1;i,j

d
−→N and thus by Proposition 3.10 

N(W)
n

d
−→N.

Wi,j ∶=
1

2
(nM2

i,j
− 4 log p + log log p + log 8𝜋), 1 ≤ i < j ≤ p,

N(W)
n

∶=
∑

1≤i<j≤p
𝜀Wi,j

.

N(W)
n

d
−→N =

∞∑
i=1

�− logΓi
, n → ∞ ,

X̃ik = Xik1{|Xik|≤Tn} − �[Xik1{|Xik|≤Tn}], 1 ≤ i ≤ p, 1 ≤ k ≤ n,

X̃ik = Xik1{|Xik|≤n1∕4∕ log n}, 1 ≤ i ≤ p, 1 ≤ k ≤ n.

M1;i,j =
1√
𝜃i,j

|||
1

n

n∑
k=1

X̃ikX̃jk − �̃�ij
|||

W1;i,j =
1

2
(nM2

1;i,j
− 4 log p + log log p + log 8�).
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Therefore, we first apply Kallenberg’s Theorem as in the proof of Theorem 2.1. 
We set

with disjoint intervals Bk = (rk, sk] and show 

(1) lim
n→∞

�
(W1)
n (B) = �(B),

(2) lim
n→∞

ℙ(N
(W1)
n (B) = 0) = e −�(B),

where �(W1)
n (B) = �[N

(W1)
n (B)] and � is defined by �(Bk) = e −rk − e −sk.

From the proof of Theorem 2 of Xiao and Wu (2013, p. 2910, 2913-2914) we 
know that the conditions of Xiao and Wu (2013, Lemma 6) are satisfied. Further-
more, from the proof of Lemma 6 (Xiao and Wu 2013, p. 2909-2910) we get that for 
z ∈ ℝ and

and d ∈ ℕ

which is equivalent to

where A = {(i1, j1),… , (id, jd)} . Therefore, we get for d = 1

which proves (1). Regarding (2), we use that 1 − ℙ(N
(W1)
n (B) = 0) = ℙ

�⋃
1≤i<j≤p Ai,j

�
 , 

where Ai,j = {W1;i,j ∈ B} . By Bonferroni’s inequality we have for every k ≥ 1,

B =

q⋃
k=1

Bk ⊂ ℝ

zn = (4 log p − log log p − log 8� + 2z)1∕2

lim
n→∞

�
A ⊂ In�A� = d

ℙ(
√
nM1;i1,j1

> zn,… ,
√
nM1;id ,jd

> zn) =
e −dz

d!
,

(3.8)
lim
n→∞

∑
A ⊂ In|A| = d

ℙ(W1;i1,j1
> z,… ,W1;id ,jd

> z) =
e −dz

d!
,

lim
n→∞

�(W1)
n

(B) = lim
n→∞

q∑
k=1

∑
(i,j)∈In

ℙ(W1;i,j ∈ Bk) =

q∑
k=1

( e −rk − e −sk ) = �(B).

(3.9)

2k∑
d=1

(−1)d−1
∑

A ⊂ In|A| = d

PA,B ≤ ℙ

( ⋃
1≤i<j≤p

Ai,j

) ≤
2k−1∑
d=1

(−1)d−1
∑

A ⊂ In|A| = d

PA,B,
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where A = {(i1, j1),… , (id, jd)} and PA,B = ℙ(W1;i1,j1
∈ B,… ,W1;id ,jd

∈ B) . First let-
ting n → ∞ and then k → ∞ , we deduce from (3.8) and (3.9) that

This proves (2) and we get N(W1)
n

d
−→N . By Proposition 3.10 it remains to show

Fortunately, this is shown in the course of the proof of Theorem 2 of Xiao and 
Wu (2013, p. 2911-2916).  ◻

The following examples are motivated by Xiao and Wu (2013, p. 2903-2905).

Example 3.13 (Physical dependence). Assume that x1 = (X11,… ,Xp1) is distributed 
as a stationary process of the following form. For a measurable function g and a 
sequence of iid random variables (�i)i∈ℤ we set x1 = (X11,… ,Xp1) with

and let xk , 2 ≤ k ≤ n , be iid copies of x1 . Moreover, for an iid copy (��
i
)i∈ℤ of (�i)i∈ℤ 

and

we define the physical dependence measure of order q (see Wu (2005))

Then, we conclude from Lemma 3 of Xiao and Wu (2013) and Theorem 3.12 the 
following statement.

Assume that 0 < Ψ4(0) < ∞ and Var(Xi1Xj1) > 0 for all i, j ∈ ℤ and |Cor(Xi1Xj1,

X
k1Xl1)| < 1 for all i, j, k, l, such that they are not all the same. Then, if either one of 

the conditions 

 (i) Ψq(k) = o(1∕ log k) as k → ∞ and one of the assumptions (B4) and (B4’) or
 (ii) 

∑p

j=0
(Ψ4(j))

2 = O(p1−�) for some 𝛿 > 0 and one of the assumptions (B4’) or (B4”)

is satisfied, we have

lim
n→∞

ℙ(N(W1)
n

(B) = 0) = 1 −

∞∑
d=1

(−1)d−1
(�(B))d

d!
=

∞∑
d=0

(−1)d
(�(B))d

d!
= e −�(B).

max
1≤i<j≤p |W1;i,j −Wi,j| = n

2
max

1≤i<j≤p |M
2
1;i,j

−M2
i,j
| ℙ

−→0.

Xi1 = g(�i, �i−1,…), i ≥ 1,

X�
i1
= g(�i,… , �1, �

�
0
, �−1,…)

�q(i) = �
[|Xi1 − X�

i1
|q]1∕q and Ψq(k) =

[ ∞∑
i=k

(�q(i))
2
]1∕2

.

N(W)
n

d
−→N, n → ∞.
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As a special case we consider the linear process Xi1 =
∑∞

j=0
aj�i−j , where the �j are iid 

with �[�j] = 0 and �[|𝜖j|q] < ∞ with q ≥ 4 and for aj ∈ ℝ it holds that 
∑∞

j=0
a2
j
∈ (0,∞) . 

Then the physical dependence measure is given by �q(j) = |aj|�
[|�0 − ��

0
|q]1∕q . Moreo-

ver, the conditions 0 < Ψ4(0) < ∞ and Var(Xi1Xj1) > 0 for all i, j ∈ ℤ and 
|Cor(Xi1Xj1,Xk1Xl1)| < 1 for all i, j, k, l, such that they are not all the same, are fulfilled. If 
aj = j−��(j) , where 1∕2 < 𝛽 < 1 and � is a slowly varying function, then (Xi1) is a long 
memory process. The smaller the value of � , the stronger is the dependence between the 
(Xi1) . If one of the assumptions (B4) or (B4’) is satisfied, then condition (i) is fulfilled for 
every � ∈ (1∕2, 1).

Example 3.14 (Non-stationary linear processes). As in the previous example, x1,… , xn 
are iid random vectors. Now x1 = (X11,… ,Xp1) is given by

where (�i)i∈ℤ is a sequence of iid random variables with mean zero, variance one and 
finite fourth moment and the sequences (fi,t)t∈ℤ satisfy 

∑
t∈ℤ f 2

i,t
= 1 . Let �4 be the 

fourth cumulant of �0 and

Assume that 𝜅4 > −2 and

By Section 3.2 of Xiao and Wu (2013, p. 2904-2905) and Theorem 3.12 we get 
the following result. If either 

 (i) hn(kn) log kn = o(1) for any positive sequence kn such that kn → ∞ as n → ∞ 
and one of the assumptions (B4) and (B4’) or

 (ii) 
∑p

k=1
(hn(k))

2 = O(p1−�) for some 𝛿 > 0 and one of the assumptions (B4’) or 
(B4”)

holds, then we have N(W)
n

d
−→N as n → ∞.

To illustrate these assumptions we consider the special case x1 ∶= (�1,… , �p)An , 
where An ∈ ℝ

p×p is a deterministic, symmetric matrix with (An)i,j = aij for 1 ≤ i, j ≤ p . 
We assume that 

∑p

t=1
a2
it
= 1 for every 1 ≤ i ≤ p.

The covariance matrix of x1 is given by Cov(x1) = AnA
T
n
 with (AnA

T
n
)ij =

∑p

t=1
aitajt . 

Observe that the diagonal entries are equal to 1. To satisfy assumption (3.10) we have 
to assume that the entries except for the diagonal are asymptotically smaller than 1, i.e.

Xi1 =
∑
t∈ℤ

fi,t�i−t, i ≥ 1,

hn(k) = sup
1≤i≤p

� ∞�
�t�=⌊k∕2⌋

f 2
i,t

�1∕2

.

(3.10)lim sup
n→∞

sup
1≤i<j≤p

|||
∑
t∈ℤ

fi,i−tfj,j−t
||| < 1.
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We set

as a measure of how close the matrices An are to diagonal matrices. For the point 
process convergence either (i) or (ii) has to be satisfied for hn.

4  Proofs of the results

4.1  Proofs of the results in Section 2

Proof of Theorem 2.1 . We will follow the lines of the proof of Theorem 2.1 in Dabrowski 
et al. (2002). Since the mean measure � has a density, the limit process M is simple and 
we can apply Kallenberg’s Theorem (see for instance Embrechts et al. (1997), p.233, 
Theorem 5.2.2) or Kallenberg 1983, p.35, Theorem 4.7). Therefore, it suffices to prove 
that for any finite union of bounded rectangles

it holds that 

(1) lim
n→∞

�n(R) = �(R),
(2) lim

n→∞
ℙ(Mn(R) = 0) = e −�(R).

Without loss of generality we can assume that the Ak ’s are chosen to be disjoint. 
First we will show (1). Set T ∶= T(1,2,…,m) = gn(x1, x2,… , xm) . If q = 1 we get

Since assumption (A1) implies pm∕(m!)ℙ(T ∈ B1) → �(B1) , we obtain the con-
vergence �n(R) → �(R) as n → ∞ . The case q ≥ 1 follows by

lim sup
n→∞

sup
1≤i<j≤p

|||
p∑
t=1

aitajt
||| < 1.

hn(k) = sup
1≤i≤p

� i−⌊k∕2⌋�
t=1

a2
it
+

p�
t=⌊k∕2⌋+i

a2
it

�1∕2

R =

q⋃
k=1

Ak × Bk ⊂ S, with Ak =
m

⊗
l=1

(r
(l)

k
, s

(l)

k
], Bk = (r

(m+1)

k
, s

(m+1)

k
],

�n(R) = 𝔼[Mn(A1 × B1)] =
∑

i∶i∕p∈A1

ℙ(Ti ∈ B1)

∼ pm
m∏
l=1

(s
(l)

1
− r

(l)

1
)ℙ(T ∈ B1) .
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To show (2), we let Pn be the probability mass function of the Poisson distribu-
tion with mean �n(R) . Then we have

where the last equality holds by (1). Therefore, we only have to estimate 
|ℙ(Mn(R) = 0) − Pn(0)| . For this we employ the Stein-Chen method (see Barbour 
et  al. (1992) for a discussion). The Stein equation for the Poisson distribution Pn 
with mean �n(R) is given by

This equation is solved by the function

By (4.11) we see that

Therefore, we only have to estimate the right hand side of (4.12) and to this end 
we set

For k ∈ D let

Then we have the disjoint union D = D1k

.

∪ D2k

.

∪ {k} , and therefore,

Now, we bound (4.12) by

�n(R) =
q∑

k=1

�n(Ak × Bk) →

q∑
k=1

�(Ak × Bk) = �(R), n → ∞.

|ℙ(Mn(R) = 0) − ℙ(M(R) = 0)| ≤ |ℙ(Mn(R) = 0) − Pn(0)| + |Pn(0) − ℙ(M(R) = 0)|
= |ℙ(Mn(R) = 0) − Pn(0)| + o(1),

(4.11)�n(R)x(j + 1) − jx(j) = 1{j=0} − Pn(0), j ≥ 0.

x(0) = 0

x(j + 1) =
j!

�n(R)
j+1

e �n(R)(Pn({0}) − Pn({0})Pn({0,… , j}) , j = 0, 1,…

(4.12)|ℙ(Mn(R) = 0) − Pn(0)| = |𝔼[�n(R)x(Mn(R) + 1) −Mn(R)x(Mn(R))]|.

D ∶= {k ∶ k = (k1, k2,… , km), 1 ≤ k1 < k2 < … < km ≤ p},

Ik ∶=

q∑
i=1

1Ai
(k∕p)1Bi

(Tk),

𝜂k ∶= �[Ik].

D1k ∶= {� ∈ D ∶ �i ≠ kj, i, j = 1, 2,… ,m} and

D2k ∶= {� ∈ D ∶ � ≠ k, �i = kj for some i, j = 1, 2,… ,m}.

Mn(R) =
∑
�∈D

I
�
=

∑
�∈D1k

I
�
+
(
Ik +

∑
�∈D2k

I
�

)
=∶ M(1)

n
(k) +M(2)

n
(k).
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It suffices to show that both terms in (4.13) tend to zero as n → ∞ . From Barbour 
and Eagleson (1984, p.400) we have the following bound for the increments of the 
solution of Stein’s equation

Using (4.14) the first term of (4.13) is bounded above by

Using the definitions of �k and M(2)
n
(k) , we get

Since by assumption (A1) it holds that pmℙ(T ∈ Bi) → m!(�(r(m+1)
i

) − �(s(m+1)
i

)) 
as n → ∞ , and

(4.15) and thus the first term of (4.13) tend to zero as n → ∞ . As every Ik only 
depends on Tk and because D1� only contains elements which have no component 
in common with � , M(1)

n
(�) and I

�
 are independent. Therefore, the second term of 

(4.13) equals

where the last inequality follows from (4.14). Since Ik ≤ 1 because the Ai are dis-
joint, the right-hand side in (4.16) is bounded above by

(4.13)

|||
∑
k∈D

�[�kx(Mn(R) + 1) − Ikx(Mn(R))]
|||

≤ |||
∑
k∈D

�k�[x(Mn(R) + 1) − x(M(1)
n
(k) + 1)]

||| +
|||
∑
k∈D

[�[Ikx(Mn(R))] − �k�[x(M
(1)
n
(k) + 1)]]

|||.

(4.14)Δx ∶= sup
j∈ℕ0

|x(j + 1) − x(j)| ≤ min(1, 1∕�n(R)).

∑
k∈D

�k|�[x(M(1)
n
(k) +M(2)

n
(k) + 1) − x(M(1)

n
(k) + 1)]| ≤ ∑

k∈D

�k�[M
(2)
n
(k)].

(4.15)

∑
k∈D

�k𝔼[M
(2)
n
(k)]

=
∑
k∈D

( q∑
i=1

1Ai
(
k

p
)ℙ(T ∈ Bi)

)(∑
�∈D

q∑
j=1

1Aj

(
�

p

)
ℙ(T ∈ Bj) −

∑
�∈D1k

q∑
j=1

1Aj
(
�

p
)ℙ(T ∈ Bj)

)

=

q∑
i=1

q∑
j=1

ℙ(T ∈ Bi)ℙ(T ∈ Bj)
∑
k∈D

1Ai
(
k

p
)
∑
�∈D

1Aj
(
�

p
)

−

q∑
i=1

q∑
j=1

ℙ(T ∈ Bi)ℙ(T ∈ Bj)
∑
k∈D

1Ai
(
k

p
)
∑

�∈D1k

1Aj
(
�

p
).

1

pm

∑
k∈D

1Ai
(
k

p
) → �m(Ai), n → ∞

1

p2m

∑
k∈D

∑
�∈D1k

1Ai
(
k

p
)1Aj

(
�

p
) → �m(Ai)�m(Aj) n → ∞,

(4.16)
|||
∑
k∈D

�[Ik(x(Mn(R)) − x(M(1)
n
(k) + 1)]

||| ≤ Δx
∑
k∈D

�[Ik(M
(2)
n
(k) − 1)],
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We set D2k,r ∶= {� ∈ D ∶ |{�1,… ,�m, k1,… , km}| = 2m − r} . Notice that ⋃̇m−1

r=1
D2k,r = D2k . Therefore, (4.17) is equal to

By assumption (A2), we have p2m−rℙ(Tk ∈ Bi, T� ∈ Bj) → 0 for r = 1,…m − 1 
as n → ∞ . Additionally, it holds that

Consequently the second term of (4.13) tends to zero as n → ∞ . This completes 
the proof.  ◻

Proof of Proposition 2.5 We proceed similarly to the proof of Proposition 4.20 of 
Resnick (2008). We want to show that Yn

d
−→Y  . Therefore, we define a map from the 

space of point measures M(S) to D(0, 1], the space of right continuous functions on 
(0, 1] with finite limits existing from the left, and show that this map is continuous. 
Then, the Proposition follows by the continuous mapping theorem.

To this end, for a point measure m =
∑∞

k=1
�(tk ,yk) ∈ M(S) we define V1 ∶ M(S)

V1 ∶ M(S) → D(0, 1] through

where t∗ = sup{s > 0 ∶ m(((0, 1]m−1 × (0, s] × (v,w)) ∩ S) = 0} . V1 is well-defined 
except at m ≡ 0 . Recalling the definition of Nn in (2.3), we note that V1(Nn)(t) = Yn(t) 
and V1(N)(t) = Y(t) for 0 < t ≤ 1.

We will start by proving the continuity of V1 in the case, where �(x) = − log(H(x)) 
and H is the Gumbel distribution. In this case, N has a.s. the following properties

(4.17)

Δx
∑
k∈D

𝔼[Ik
∑

�∈D2k

I
�
]

= Δx
∑
k∈D

∑
�∈D2k

𝔼

[( q∑
i=1

1Ai
(
k

p
)1Bi

(Tk)
)( q∑

j=1

1Aj
(
�

p
)1Bj

(T
�
)
)]

= Δx

q∑
i=1

q∑
j=1

∑
k∈D

∑
�∈D2k

1Ai
(
k

p
)1Aj

(
�

p
)ℙ(Tk ∈ Bi, T� ∈ Bj)

Δx

q∑
i=1

q∑
j=1

m−1∑
r=1

∑
k∈D

∑
�∈D2k,r

1Ai
(
k

p
)1Aj

(
�

p
)ℙ(Tk ∈ Bi, T� ∈ Bj).

1

p2m−r

∑
k∈D

∑
�∈D2k,r

1Ai
(
k

p
)1Aj

(
�

p
) = O(1), n → ∞.

V1(m) = V1

� ∞�
k=1

𝜀(tk ,yk)

�
=

⎧
⎪⎪⎨⎪⎪⎩

vm ∶ (0, 1] → (v,w)

vm(t) =

⎧⎪⎨⎪⎩

⋀
k∶tk≤t

yk, m(((0, 1]m−1 × (0, t] × (v,w)) ∩ S) > 0

⋀
k∶tk=t

∗

yk, otherwise,
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for any 0 < s < t < 1 and x ∈ ℝ . Therefore, we only have to show continuity at 
m ∈ M(S) with these properties. Let (mn)n be a sequence of point measures in 
M(S) , which converges vaguely to m ( mn

v
−→m ) as n → ∞ (see Resnick 2008, p. 140).  

Since V1(m) is right continuous there exists a right continuous extension on [0, 1], 
which we denote with Ṽ1(m) . Now choose 𝛽 < �V1(m)(0) such that m(S1 × {�}) = 0 . 
As mn

v
−→m , we can conclude from Resnick (2008, Proposition 3.12) that there exists 

a 1 ≤ q < ∞ such that for n large enough

We enumerate and designate the q points in the following way ((t(n)
i
, j
(n)

i
), 1 ≤ i ≤ q) 

with 0 < t
(n)

1,m
< … < t(n)

q,m
< 1 , where t(n)

i,m
 is the m-th component of t(n)

i
 , such that by 

Resnick (2008, Proposition 3.13)

where ((ti, ji), 1 ≤ i ≤ q) is the analogous enumeration of points of m in S1 × (�,∞) . 
Now choose

small enough so that the �-spheres of the distinct points of the set {(ti, ji)} are dis-
joint and in S1 × [�,∞) . Pick n so large that every �-sphere contains only one point 
of mn . Then set �n ∶ [0, 1] → [0, 1] with �n(0) = 0 , �n(1) = 1 , �n(ti,m) = t

(n)

i,m
 and �n is 

linearly interpolated elsewhere on [0, 1]. For this �n it holds that

Thereby, we get

which finishes the proof. The Fréchet and the Weibull case follow by similar arguments. 
 

◻

Proof of Theorem  2.6 We will proceed similarly as in (Resnick 2008,  p.  217-218) 
using the continuous mapping theorem again. Since Y is the restriction to (0, 1] of 
an extremal process (see Resnick 2008, Section 4.3), it is a nondecreasing function, 
which is constant between isolated jumps. Let D↑(0, 1] be the subset of D(0, 1] that 
contains all functions with this property. Set

N(((0, 1]m−1 × {1} × (−∞,∞)) ∩ S) = 0,

N(((0, 1]m−1 × (0, t] × (x,∞)) ∩ S) < ∞,

N(((0, 1]m−1 × [s, t] × (−∞, x)) ∩ S) = ∞,

mn(S1 × (�,∞)) = m(S1 × (�,∞)) = q.

lim
n→∞

((t
(n)

i
, j
(n)

i
), 1 ≤ i ≤ q) = ((ti, ji), 1 ≤ i ≤ q),

𝛿 <
1

2
min
1≤i,j≤q ‖ti − tj‖2

sup
0≤t≤1

| �V1(mn)(t) −
�V1(m)(𝜆n(t))| < 𝛿 and sup

0≤t≤1
|𝜆n(t) − t| < 𝛿.

D̃( �V1(mn),
�V1(m)) = D(V1(mn),V1(m)) < 𝛿,
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where {ti} are the discontinuity points of x. Then V2(Yn) =
∑p

k=1
�p−1L(k) and 

V2(Y) =
∑∞

k=1
��k , where (�k)k is the sequence of discontinuity points of the extre-

mal process generated by the Gumbel distribution H = Λ , c.f. above Theorem 2.6. 
By (Embrechts et  al. 1997,  Theorem  5.4.7) the point process 

∑∞

k=1
��k is a PRM 

with mean measure �(a, b) = log(b∕a) for 0 < a < b ≤ 1 . According to Proposition 
2.5, it suffices to show that V2 is continuous. Let (xn)n be a sequence of functions in 
D↑(0, 1] with D(xn, x) → 0 as n → ∞ for an x ∈ D↑(0, 1] . Then there exist �n ∈ Λ[0,1] 
such that

where x̃n and x̃ are the right continuous extensions of xn and x on [0, 1]. We want to 
prove the vague convergence

where {t(n)
i
} and {ti} are the discontinuity points of xn and x, respectively. Consider an  

arbitrary continuous function f on (0, 1] with compact support contained in an inter-
val [a, b] with 0 < a < b ≤ 1 , and x is continuous at a and b. It suffices to show that

The functions xn, x ∈ D↑(0, 1] have only finitely many discontinuity points in [a, b]. 
Therefore, only a finite number of terms in the sums are not equal to zero. Because of 
(4.18) and (4.19) the jump times on [a, b] of xn are close to those of x, which proves 
(4.20). Hence, V2 is continuous, which finishes the proof.

4.2  Proof of Proposition 3.7

Let � denote the permutation of {1,… , n} induced by the order statistics of 
X21,… ,X2n , i.e.,

V2 ∶D
↑(0, 1] → M(0, 1]

x ↦

∞∑
i=1

�ti ,

(4.18)sup
0≤t≤1

|x̃n(𝜆n(t)) − x̃(t)| → 0 and

(4.19)sup
0≤t≤1

|�n(t) − t| → 0, n → ∞ ,

V2(xn) =

∞∑
i=1

�
t
(n)

i

v
−→V2(x) =

∞∑
i=1

�ti ,

(4.20)lim
n→∞

∞∑
i=1

f (t
(n)

i
)1[a,b](t

(n)

i
) =

∞∑
i=1

f (ti)1[a,b](ti).

X2𝜋(1) > X2𝜋(2) > ⋯ > X2𝜋(n) a.s. ,
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where the continuity of the distribution of X was used to avoid ties. We can rewrite 
�12 as

Let qn = (q1,… , qn) be a permutation of the set {1,… , n} . If i < j and qi > qj , we 
call the pair (qi, qj) an inversion of the permutation qn.

Since the X11,… ,X1n are iid, the permutation

consisting of the ranks is uniformly distributed on the set of the n! permutations of 
{1,… , n} . By In we denote the number of inversions of qn . For s < t , we have

In view of (4.21), this implies

By Kendall and Stuart (1973, p. 479) or Margolius (2001, p. 3) (see also Sachkov 1997) 
the moment generating function of In is

We recognize that 1− e jt

j(1− e t)
 is the moment generating function of a uniform distribu-

tion on the integers 0, 1,… , j − 1 . Let (Ui)i≥1 be a sequence of independent random 
variables such that Ui is uniformly distributed on the integers 0, 1,… , i . We get

establishing the desired result.

4.3  Proof of Proposition 3.10

Our idea is to transfer the convergence of NX
n

 onto NY
n

 . To this end, it suffices to 
show (see Kallenberg 1983, Theorem 4.2) that for any continuous function f on ℝ 
with compact support,

(4.21)

𝜏12 =
2

n(n−1)

∑
1≤s<t≤n

sign(X1s − X1t)sign(X2s − X2t)

=
2

n(n−1)

∑
1≤s<t≤n

sign(X1𝜋(s) − X1𝜋(t)) sign(X2𝜋(s) − X2𝜋(t))
�����������������������

=1 a.s.

d
=

2

n(n−1)

∑
1≤s<t≤n

sign(X1s − X1t).

qn = (Q11,Q12,… ,Q1n)

sign(X1s − X1t) =

{
1, if Q1s < Q1t ,

−1, if Q1s > Q1t ⇔ inversion at (s, t) .

𝜏12
d
=

�
n

2

�−1 ∑
1≤s<t≤n sign(X1s − X1t) =

�
n

2

�−1��
n

2

�
− 2 In

�
= 1 −

4

n(n−1)
In .

𝔼

[
e tIn

]
=

n∏
j=1

1 − e jt

j(1 − e t)
, t ∈ ℝ .

1 −
4

n(n−1)
In

d
=1 −

4

n(n−1)

∑n−1

i=1
Ui

d
=

4

n(n−1)

∑n−1

i=1
(Ui − i∕2) ,
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Suppose the compact support of f is contained in [K + �0,∞) for some 𝛾0 > 0 and K ∈ ℝ . 
Since f is uniformly continuous, �(�) ∶= sup{|f (x) − f (y)| ∶ x, y ∈ ℝ, |x − y| ≤ �} 
tends to zero as � → 0 . We have to show that for any 𝜀 > 0,

On the sets

we have

Therefore, we see that, for � ∈ (0, �0),

By assumption, it holds limn→∞ ℙ(Ac
n,� ) = 0 . Thus, letting � → 0 establishes (4.22).
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∫ f dNY
n
− ∫ f dNX

n

ℙ

−→0 , n → ∞ .

(4.22)lim
n→∞

ℙ

(|||
p∑
i=1

(
f (Yi,n) − f (Xi,n)

)||| > 𝜀
)
= 0 .

An,� =
{

max
i=1,…,p

||Yi,n − Xi,n
|| ≤ �

}
, � ∈ (0, �0) ,

||f (Yi,n) − f (Xi,n)
|| ≤ 𝜔(𝛾)1{Xi,n>K}

.

ℙ

(|||
p∑
i=1

(
f (Yi,n) − f (Xi,n)

)||| > 𝜀,An,𝛾

)

≤ ℙ

(
𝜔(𝛾) #{1 ≤ i ≤ p ∶ Xi,n > K} > 𝜀

)

≤ 𝜔(𝛾)

𝜀
𝔼
[
#{1 ≤ i ≤ p ∶ Xi,n > K}

]

=
𝜔(𝛾)

𝜀
𝔼NX

n
((K,∞])

→
𝜔(𝛾)

𝜀
𝔼N((K,∞]), n → ∞.
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