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Abstract
Statistical methods are proposed to select homogeneous regions when analyzing 
spatial block maxima data, such as in extreme event attribution studies. Here, homo-
geneitity refers to the fact that marginal model parameters are the same at differ-
ent locations from the region. The methods are based on classical hypothesis testing 
using Wald-type test statistics, with critical values obtained from suitable paramet-
ric bootstrap procedures and corrected for multiplicity. A large-scale Monte Carlo 
simulation study finds that the methods are able to accurately identify homogeneous 
locations, and that pooling the selected locations improves the accuracy of subse-
quent statistical analyses. The approach is illustrated with a case study on precipita-
tion extremes in Western Europe. The methods are implemented in an R package 
that allows for easy application in future extreme event attribution studies.

Keywords Extreme event attribution · Extreme value statistics · Homogeneity tests · 
Multiple comparison problem · Parametric bootstrap · Max-stable processes

1 Introduction

Extreme event attribution studies on precipitation extremes are typically moti-
vated by the occurrence of an extreme event which causes major impacts such 
as damages to infrastructure and agriculture, or even fatalities, see, for instance, 
van der Wiel et al. (2017), van Oldenborgh et al. (2017), Otto et al. (2018) and 
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Kreienkamp et  al. (2021). A key task for attributing the event to anthropogenic 
climate change consists of a statistical analysis of available observational data 
products at the location or region of interest (Philip et  al. 2020). Typically, the 
observed time period is short, often less than 100 years, which ultimately leads to 
large statistical uncertainties. One possibility to reduce those uncertainties is to 
incorporate observations from nearby locations/regions, given that their meteoro-
logical characteristics are sufficiently similar and governed by the same underly-
ing processes as those from the region affected by an extreme event. The selec-
tion of surrounding areas for which these criteria are met can be based on expert 
knowledge of the meteorological characteristics and dynamics, for instance pro-
vided by experts from the national meteorological and hydrological service of the 
affected country, like the Deutsche Wetterdienst in Germany. The expert knowl-
edge-based suggestion may next be assessed statistically, which, to the best of our 
knowledge, has been done based on ad hoc methods in the past. In this paper, we 
propose profound statistical methods that can complement the expert’s knowledge 
and which are based on statistically evaluating observational data from the past. 
Once regions with sufficiently similar characteristics of the analysed variable, 
e.g., the yearly maximum of daily rainfall, have been identified, the time series 
of all identified regions can be combined, thereby extending the available time 
series for the benefit of a more efficient statistical analysis.

The building blocks for the new approach are classical Wald-type tests statistics 
(Lehmann and Romano 2021) for testing the null hypothesis that the time-varying 
distribution functions at multiple locations of interest are the same. Spatial correla-
tion is accounted for by using appropriate consistent estimates of the spatial estima-
tion covariance matrix. Unlike in the classical text-book case, and motivated by the 
fact that standard likelihood-based inference for extreme value distributions requires 
unreasonably large sample sizes for sufficient finite-sample accuracy, we employ 
a parametric bootstrap device to approximate the distribution of the test statistics 
under the null hypothesis. This approach is motivated by results in Lilienthal et al. 
(2022) for respective stationary extreme value models. Based on suitable decom-
positions of a global null hypothesis, we then propose to test for carefully selected 
sub-hypotheses, possibly after correcting the individual tests’ level for multiple 
comparisons. The results from the last-named paper are hence both generalized to 
non-stationary models and extended to a method that allows for pooling locations 
into a homogeneous region.

The new methods are illustrated by a large-scale Monte Carlo simulation study 
and by an application to the severe flooding event in Western Europe during July 
2021 for which spatial pooling was applied in an attribution study following the 
event (Kreienkamp et al. 2021; Tradowsky et al. 2023). For the benefit of research-
ers who would like to use this spatial pooling approach, an implementation of the 
method in the statistical programming environment R (R Core Team 2022) is pub-
licly available as an R package called findpoolreg on GitHub (Zanger 2022).

Attribution analysis of precipitation extremes is especially challenging due to short 
observational time series as well as their often limited spatial extent, which further 
complicates the detection of a trend and estimation of return periods based on the lim-
ited time series (see Tradowsky et al. 2023, for a discussion on this). Therefore, we will 
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in the following present the suggested approach for a heavy rainfall event, however, the 
method could equally be applied to other variables.

The remaining parts of this paper are organized as follows. Section 2 explains the 
mathematical concept of the proposed methods, starting with a detailed description of 
the underlying model assumptions and a strategy for the detection of a possible pool-
ing region in Section 2.1. In Sections 2.2 and 2.3, mathematical details on the applied 
estimators and test statistics are given. Next, the ideas of the bootstrap procedures that 
allow us to draw samples from the distribution under the null hypothesis are explained 
(Section 2.4). Section 2.5 goes into detail about the detection strategy of possible pool-
ing regions and the treatment of the related multiple testing problem. Next, Section 3 
gives the results of the simulation study that was performed in order to evaluate the 
performance of the proposed methods. These results serve as a basis for the case study 
conducted in Section 4. Section 5 then discusses several extensions of the proposed 
methods: we provide a method for estimating region-wise return periods and exten-
sions to different model assumptions that suit e.g. other variables such as temperature. 
Last but not least, we come to a conclusion in Section 6. Some mathematical details 
and further illustrations on the simulation study and the case study are postponed to a 
supplement.

2  Assessing spatial homogeneities for precipitation extremes

2.1  A homogeneous model for precipitation extremes

The observational data of interest consists of annual or seasonal maximal precipita-
tion amounts (over some fixed time duration, e.g., a day) collected over various years 
and at various locations (in practice, each location may correspond to a spatial region; 
we separate these two terms from the outset to avoid misunderstandings: subsequently, 
a region shall be a set of locations). More precisely, we denote by m(t)

d
 the observed 

maximal precipitation amount in season t and at location d, with t = 1,… , n and 
d = 1,… ,D . The location of primary interest shall be the one with index d = 1 . Note 
that the choice of d = 1 is made for illustrative purposes only and can be replaced by 
any index d ∈ {1,… ,D}.

In view of the stochastic nature, we assume that m(t)

d
 is an observed value of some 

random variable M(t)

d
 . Since M(t)

d
 is generated by a maxima operation, standard extreme 

value theory (Coles 2001) suggests to assume that M(t)

d
 follows the generalized extreme 

value (GEV) distribution, i.e.,

for some 𝜇d(t), 𝜎d(t) > 0, 𝛾d(t) ∈ ℝ , where the GEV(�, �, �) distribution with loca-
tion parameter 𝜇 > 0 , scale parameter 𝜎 > 0 and shape parameter � ∈ ℝ is defined 
by its cumulative distribution function

M
(t)

d
∼ GEV(�d(t), �d(t), �d(t))

(1)G(�,�,�)(x) = exp
{
−
(
1 + �

x − �

�

)−1∕�}
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for x such that 1 + 𝛾 x−𝜇

𝜎
> 0 . Due to climate change, the temporal dynamics at loca-

tion d, which are primarily driven by the function t ↦ (�d(t), �d(t), �d(t)) , are typi-
cally non-constant. Any proxy for climate change qualifies as a suitable temporal 
covariate, and a standard assumption in extreme event attribution studies, motivated 
by the Clausius-Clapeyron relation, postulates that

for certain parameters 𝛼d, 𝛾d ∈ ℝ,𝜇d, 𝜎d > 0 . Here, GMST�(t) denotes the smoothed 
global mean surface temperature anomaly, see Philip et  al. (2020). Note that (2) 
implies

hence the model may be identified as a temporal scaling model. It is further assumed 
that any temporal dependence at location d is completely due to GMST�(t) , which 
we treat as deterministic and which implies that M(1)

d
,… ,M

(n)

d
 are stochastically 

independent, for each d = 1,… ,D . For the moment, the spatial dependence will be 
left unspecified.

Recall that the location of interest is the one with d = 1 , which is characterised by 
the four parameters �1, �1, �1, �1 . As described before, estimating those parameters 
based on the observations from location d = 1 only may be unpleasantly inaccu-
rate, which is why one commonly assumes that the D locations have been carefully 
selected by experts to meet the following space-time homogeneity assumption:

where Θ ∶= (0,∞)2 ×ℝ
2 and � = (𝜇, 𝜎, 𝛾 , 𝛼)⊤,�d = (𝜇d, 𝜎d, 𝛾d, 𝛼d)

⊤ , and where the 
upper index ED stands for ‘equal distribution’, since, in short, Eq. (3) states that the 
location-wise GEV parameters coincide for the D locations.

In the subsequent sections, we aim at testing the validity of the expert’s hypoth-
esis HED

0
 . Here, it is not only of interest to test the hypothesis for the whole set 

{1,… ,D} , but also to find a (maximal) subset A ⊂ {1,… ,D} with 1 ∈ A and 
|A| = k ≥ 2 on which the space-time homogeneity assumption holds. Here, for an 
arbitrary index set A, the latter assumption may be expressed through

with Θ as in Eq. (3) and �A = (𝜇A, 𝜎A, 𝛾A, 𝛼A)
⊤ , meaning that the location-wise GEV 

parameters coincide for all locations with index in the set A, making the respective 
locations a possible pooling region.

Now, a maximal subset A for which Eq. (4) holds may be determined with 
the following strategy: Since we are interested in finding all locations that 
‘match’ the location of primary interest with index d = 1 , we test for each pair 
Ad = {1, d}, d = 2,… ,D , whether the null hypothesis HED

0
(Ad) holds. This will 

(2)

�d(t) = �d exp

(
�dGMST�(t)

�d

)
, �d(t) = �d exp

(
�dGMST�(t)

�d

)
, �d(t) = �d

GEV(�d(t), �d(t), �d(t)) = exp

(
�dGMST�(t)

�d

)
GEV(�d, �d, �d),

(3)HED
0

∶ ∃� ∈ Θ ∀ d ∈ {1,… ,D} ∶ �d = �,

(4)HED
0

(A) ∶ ∃�A ∈ Θ ∀ d ∈ A ∶ �d = �A,
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provide us with a set of p-values based on which we can decide which locations 
to reject and which not to reject. Those locations that are not rejected can then be 
assumed to be sufficiently homogeneous and are thus included in the suggestion of a 
pooling region of maximal extent. For further details on this strategy and the impact 
of the induced multiple testing problem, see Section 2.5.

2.2  Coordinate‑wise maximum likelihood estimation

The starting point for the subsequent test statistics are the coordinate-wise maxi-
mum likelihood estimators for the model specified in (2). Writing c(t) = GMST�(t) 
for brevity, the log-likelihood contribution of observation (M(t)

d
, c(t)) is given by 

�
�d
(M

(t)

d
, c(t)) , where

with g(� ,�,�)(x) =
�

�x
G(�,�,�)(x) the probability density function of the GEV(�, �, �)

-distribution. The maximum likelihood estimator for �d at location d is then defined as

The arg-maximum cannot be calculated explicitly, but may be found by suitable 
numerical optimization routines. We denote the gradient and the Hessian matrix of 
� ↦ �

�
(x, c) by �̇

�
(x, c) ∈ ℝ

4 and �̈
�
(x, c) ∈ ℝ

4×4 , respectively. Under appropriate 
regularity assumptions, standard asymptotic expansions (van  der Vaart  1998, see 
also Bücher and Segers  2017 for the stationary GEV family) imply that 
�̂ = (�̂

⊤

1
,… , �̂

⊤

D
)⊤ ∈ ΘD is approximately Gaussian with mean � = (�⊤

1
,… ,�⊤

D
)⊤ 

and covariance n−1�n , where �n = (�n;j,k)
D
j,k=1

∈ ℝ
4D×4D is defined as

with Jn,j,� =
1

n

∑n

t=1
𝔼[�̈

�
(M

(t)

j
, c(t))] ∈ ℝ

4×4 . We refer to Section A.1 in the supple-
ment for details and Section A.2 for a suitable estimator �̂n for �n.

2.3  Wald‑type test statistics

We define test statistics which allow to test for the sub-hypotheses HED
0

(A) of HED
0

 
from Eq. (4), where A ⊂ {1,… ,D} . For that purpose, we propose to use classical 
Wald-type test statistics; see Section 14.4.2 in Lehmann and Romano (2021) for a  
general discussion and Lilienthal et  al. (2022) for a similar approach in tem- 
porally stationary GEV models, i.e., with �d fixed to �d = 0.

(5)�
�d
(x, c) = log g(�d exp(�dc∕�d),�d exp(�dc∕�d),�d)

(x)

(6)�̂d ∈ argmax
�d∈Θ

n∑
t=1

�
�d
(M

(t)

d
, c(t)).

(7)�n;j,k = J−1
n,j,�j

(
1

n

n∑
t=1

Cov
[
�̇
�j
(M

(t)

j
, c(t)), �̇

�k
(M

(t)

k
, c(t))

])
J−1
n,k,�k

∈ ℝ
4×4
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Write A = {d1,… , dk} with 1 ≤ d1 < ⋯ < dk ≤ D and let hA ∶ ℝ
4D

→ ℝ
4(k−1) be 

defined by

We may then write HED
0

(A) equivalently as

Hence, significant deviations of hA(�̂) from 0 with �̂ from Section 2.2 provide evi-
dence against HED

0
(A) . Such deviations may be measured by the Wald-type test statistic

where HA = ḣA(�) ∈ ℝ
4(k−1)×4D denotes the Jacobian matrix of � ↦ hA(�) , which is a 

matrix with entries in {−1, 0, 1} that does not depend on � . It is worthwhile to mention 
that the test statistic does not depend on the order of the coordinates, which is due to 
hA being a linear function. In view of the asymptotic normality of �̂ , see Section 2.2, 
the asymptotic distribution of Tn(A) under the null hypothesis HED

0
(A) is the chi-square 

distribution �2
4(k−1)

 with 4(k − 1) degrees of freedom; see also Section 4 in Lilienthal 
et  al. (2022). Hence, rejecting HED

0
(A) if Tn(A) exceeds the (1 − �)-quantile of  

the �2
4(k−1)

-distribution provides a statistical test of asymptotic level � ∈ (0, 1) . The 
finite-sample performance of the related test in the stationary setting was found to be 
quite inaccurate (see Lilienthal et  al.  2022). To overcome this issue, we propose  
a suitable bootstrap scheme in the next section.

2.4  Parametric bootstrap devices for deriving p‑values

Throughout this section, we propose two bootstrap devices that allow to simulate 
approximate samples from the HED

0
(A)-distribution of the test statistic Tn(A) from 

Eq. (8). Based on a suitably large set of such samples, one can compute a reliable 
p-value for testing HED

0
(A) , even for short sample sizes.

The first method is based on a global fit of a max-stable process model to the 
entire region under consideration, while the second one is based on fitting multiple 
pairwise models. The main difference of the two approaches is that the first one can 
test the hypothesis HED

0
(A) for arbitrary subsets A ⊂ {1,… ,D}, while the second 

approach is restricted to testing the null hypothesis on subsets of cardinality two, 
i.e., it can only test whether a pair of locations is homogeneous. Depending on the 
question that is asked, applying the one or the other method may be advantageous.

hA(�) = hA(�1,… ,�D) = (�⊤
d1
− �

⊤
d2
,�⊤

d2
− �

⊤
d3
,… ,�⊤

dk−1
− �

⊤
dk
)⊤

= (𝜇d1
− 𝜇d2

, 𝜎d1 − 𝜎d2 , 𝛾d1 − 𝛾d2 , 𝛼d1 − 𝛼d2 ,

… , 𝛾dk−1 − 𝛾dk , 𝛼dk−1 − 𝛼dk )
⊤.

HED
0

(A) ∶ hA(�) = 0.

(8)Tn(A) = n (hA(�̂))
⊤
(
HA �̂n H

⊤
A

)−1

hA(�̂),
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2.4.1  Global bootstrap based on max‑stable process models

The subsequent bootstrap device is a modification of the parametric bootstrap proce-
dure described in Section 5.3 of Lilienthal et al. (2022). Fix some large number B, say 
B = 200 , noting that larger numbers are typically better, but going beyond B = 1000 
is usually not worth the extra computational effort.

The basic idea is as follows: for each b = 1,… ,B , simulate artificial bootstrap samples

that have a sufficiently similar spatial dependence structure as the observed data 
D = {M

(t)

d
∶ t ∈ {1,… , T}, d ∈ {1,… ,D}} and that satisfy the null hypothesis 

HED
0

 . For each fixed A ⊂ {1,… ,D} with k = |A| ≥ 2 , the test statistics computed on  
all bootstrap samples, say (T∗

n,b
(A))b=1,…,B , are then compared to the observed test 

statistic Tn(A) . Since the bootstrap samples do satisfy HED
0

(A) , the observed test sta-
tistic Tn(A) should differ significantly from the bootstrapped test statistics in case 
HED

0
(A) is not satisfied on the observed data.

Here, for simulating the bootstrap samples, we assume that the spatial depend-
ence structure of the observed data can be sufficiently captured by a max-stable 
process model. Max-stable processes provide a natural choice here, since they are 
the only processes that can arise, after proper affine transformation, as the limit of 
maxima of independent and identically distributed random fields {Yi(x) ∶ x ∈ ℝ

p} 
(Coles 2001, Section 9.3). Parametric models for max-stable processes are usually 
stated for unit Fréchet (i.e., GEV(1, 1, 1) ) margins. Therefore, the first steps in our 
algorithm below aim at transforming the margins of our observed data to be approx-
imately unit Fréchet.

More precisely, the parametric bootstrap algorithm is defined as follows:

Algorithm 1 (Bootstrap based on max-stable processes). 

1. For each d ∈ {1,… ,D} , calculate �̂d from Section 2.2.
2. For each d ∈ {1,… ,D} , transform the observations to approximately i.i.d.  

Fréchet-distributed data, by letting 

3. Fit a set of candidate max-stable process models with standard Fréchet margins 
to the observations (Y (t)

1
,… , Y

(t)

D
)t=1,…,n and choose the best fit according to the 

composite likelihood information criterion (CLIC), which is a model selection 
criterion that is commonly applied when fitting max-stable process models. 
Throughout, we chose the following three models: 

D
∗
b
=
{
M

(t),∗

d,b
∶ t ∈ {1,… , n}, d ∈ {1,… ,D}

}

(9)Y
(t)

d
=

⎧⎪⎨⎪⎩
1 + �̂�d

M
(t)

d
− �̂�d exp

�
�̂�dGMST�(t)

�̂�d

�

�̂�d exp
�

�̂�dGMST�(t)

�̂�d

�
⎫⎪⎬⎪⎭

1∕𝛾d

+

(t ∈ {1,… , n}).
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(a) Smith’s model (3 parameters);
(b) Schlather’s model with a powered exponential correlation function (3 param-

eters including a sill effect, see Section A.3 in the supplement for details);
(c) the Brown-Resnick process (2 parameters).

   For further details on max-stable processes, the mentioned models and the 
CLIC, see Sections A.3 and A.4 in the supplement, Davison et al. (2012) and 
Davison and Gholamrezaee (2012). Respective functions are implemented in the 
R package SpatialExtremes (Ribatet 2022).

4. For b ∈ {1,… ,B} and t ∈ {1,… , n} , simulate spatial data with unit Fréchet mar-
gins from the chosen max-stable process model, denoted by 

 Note that until now we haven’t used the particular hypothesis HED
0

(A) . Subse-
quently, fix A = {d1,… , dk} with 1 ≤ d1 < ⋯ < dk ≤ D.

5. Assume that HED
0

(A) from Eq. (4) is true, and estimate the four dimensional model 
parameters �A = (𝜇A, 𝜎A, 𝛾A, 𝛼A)

⊤ ∈ Θ by (pseudo) maximum likelihood based on 
the pooled sample 

 Denote the resulting parameter vector as �̂A = (�̂�A, �̂�A, �̂�A, �̂�A)
⊤ , and note that �̂A 

should be close to �̂d for each d ∈ A , if HED
0

(A) is met.
6. Transform the margins of the bootstrap samples to the ones of a GEV-model 

satisfying HED
0

(A) , by letting 

 for t ∈ {1,… , n}, d ∈ A and b ∈ {1,… ,B} . For each resulting bootstrap sam-
ple D∗

b
(A) = {M

(t),∗

d,b
∶ t ∈ {1,… , n}, d ∈ A} , compute the value t∗

n,b
(A) of the test  

statistic Tn(A) from Eq. (8). Note that Tn(A) only depends on the coordinates 
with d ∈ A.

7. Compute the value tn(A) of the test statistic Tn(A) from Eq. (8) on the observed sample.
8. Compute the bootstrapped p-value by 

In a classical test situation, one may now reject HED
0

(A) for a fixed set A at sig-
nificance level � ∈ (0, 1) if p(A) ≤ � . In the current pooling situation, we would 

(Y
(t),∗

1,b
, Y

(t),∗

2,b
,… , Y

(t),∗

D,b
).

(M
(1)

d1
, c(1)),… , (M

(n)

d1
, c(n)), (M

(1)

d2
, c(1)),… , (M

(n)

d2
, c(n)),…

… , (M
(1)

dk
, c(1)),… , (M

(n)

dk
, c(n)).

(10)M
(t),∗

d,b
= �̂�A exp

(
�̂�AGMST�(t)

�̂�A

)
+ �̂�A exp

(
�̂�AGMST�(t)

�̂�A

) (Y
(t),∗

d,b
)�̂�A − 1

�̂�A

p(A) =
1

B + 1

B∑
b=1

1(tn(A) ≤ t∗
n,b
(A)).

8
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need to apply the test to multiple pooling regions A, which hence constitutes a 
multiple testing problem where standard approaches yield inflated levels. We dis-
cuss possible remedies in Section 2.5.

2.4.2  Pairwise bootstrap based on bivariate extreme value distributions

Recall that the location of primary interest is the one with index d = 1.
As stated in Section  2.1, it is of interest to test for all bivariate hypotheses 

HED
0

({1, d}) with d = 2,… ,D . For that purpose, we may apply a modification of the 
bootstrap procedure from the previous section that makes use of bivariate extreme 
value models only. By doing so, we decrease the model risk implied by imposing a 
possibly restrictive global max stable process model.

The modification only affects step (3) and (4) from Algorithm  1. More pre-
cisely, for testing the hypothesis HED

0
(Ad) with Ad = {1, d} for some fixed value 

d = 2,… ,D , we make the following modifications:

Algorithm  2 (Pairwise bootstrap based on bivariate extreme value distributions). 
Perform step (1) and (2) from Algorithm 1 with the set {1,… ,D} replaced by Ad.

(3a) Fit a set of bivariate extreme value distributions to the bivariate sample 
(Y

(t)

1
, Y

(t)

d
)t=1,…,n , assuming the marginal distributions to be unit Fréchet. Choose 

the best fit according to the Akaike information criterion (AIC), a model selec-
tion criterion that rewards a good fit of a model and penalises the model’s com-
plexity at the same time (Akaike 1973). Possible models are: 

(a) the Hüsler-Reiss model (1 parameter);
(b) the logistic model (1 parameter);
(c) the asymmetric logistic model (3 parameters).

 Note that all models are implemented in Stephenson (2002).
(4a) For b ∈ {1,… ,B} and t ∈ {1,… , n} , simulate bivariate data with unit 
Fréchet margins from the chosen bivariate extreme value model, denoted by 
(Y

(t),∗

1,b
, Y

(t),∗

d,b
).

Perform Steps (5)-(8) from Algorithm 1 with A = Ad.
Note that Algorithm 2 is computationally more expensive than Algorithm 1 since 

model selection and fitting of dependence models and its subsequent simulation 
must be performed separately for each hypothesis HED

0
(Ad) of interest.

2.5  Combining test statistics

As already addressed at the end of Section 2.1, it is not only of interest to test the 
global hypothesis HED

0
 , since a possible rejection of HED

0
 gives no indication about 

which locations deviate from the one of primary interest. Instead, one might want to 

9
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test hypotheses on several subsets and then pool those subsets for which no signal 
of heterogeneity was found. In this subsection, we provide the mathematical frame-
work of testing sub-hypotheses and discuss how to deal with the induced multiple 
testing problem.

Mathematically, we propose to regard HED
0

 as a global hypothesis that is built 
up from elementary hypotheses of smaller dimension. A particularly useful 
decomposition is based on pairwise elementary hypotheses: recalling the notation 
HED

0
(A) from Eq. (4), we clearly have

i.e., HED
0

 holds globally when it holds locally for all pairs {1, d} with d ∈ {2,… ,D}. 
We may now either apply Algorithms 1 or 2 to obtain a p-value, say praw

d
= p({1, d}) , 

for testing HED
0

({1, d}) , for any d ∈ {2,… ,D} . Each p-value may be interpreted as 
a signal for heterogeneity between locations 1 and d, with smaller values indicating 
stronger heterogeneity. The obtained raw list of p-values may hence be regarded as 
an exploratory tool for identifying possible heterogeneities.

Since we are now dealing with a multiple testing problem, it might be advisable 
to adjust for multiple comparison in order to control error rates. This can be done 
by interpreting the raw list based on classical statistical testing routines, in which 
p-values are compared with suitable critical values to declare a hypothesis signifi-
cant. Several methods appear to be meaningful, and we discuss three of them in the 
following. For this, let � ∈ (0, 1) denote a significance level, e.g., � = 0.1.

IM (Ignore multiplicity) reject homogeneity for all pairs {1, d} for which praw
d

≤ � . 
In doing so, we do not have any control over false rejections. In particular, in case 
D is large, false rejections of some null hypotheses will be very likely. On the other 
hand, the procedure will have decent power properties, and will likely detect most 
alternatives. Hence, in a subsequent analysis based on the pooled sample of homo-
geneous locations, we can expect estimators to exhibit comparably little bias and 
large variance.

Holm (Control the family‑wise error rate) apply Holm’s stepdown procedure (Holm, 1979). 
For that purpose, sort the p-values pj = praw

1+j
= p({1, 1 + j}) with j = 1,… ,D − 1 ; 

denote them by p(1) ≤ ⋯ ≤ p(D−1) . Starting from j = 1 , determine the smallest index j 
such that

If j = 1 , then reject no hypotheses. If no such index exists, then reject all hypoth-
eses. Otherwise, if j ∈ {2,… ,D − 1} , reject the hypotheses that belong to the p-val-
ues p(1),… , p(j−1).

The procedure can be equivalently expressed by adjusted p-values. Recursively 
defining p̃(1) = min{1, (D − 1)p(1)} and

(11)HED
0

=

D⋂
d=2

HED
0

({1, d}),

p(j) > 𝛼j ∶= 𝛼∕(D − j).

10
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for j = 2,… ,D − 1 , we simply reject those hypotheses that belong to the adjusted 
p-values with p̃(j) ≤ 𝛼.

Holm’s stepdown procedure is known to asymptotically control the family-wise 
error rate (FWER) at level � , i.e.,

see Theorem 9.1.2 in Lehmann and Romano (2021).
In general, controlling the family-wise error rate will result in comparably lit-

tle power, i.e., we might falsely identify some pairs of locations as homogeneous. 
Hence, in a subsequent analysis based on the pooled sample of homogeneous loca-
tions, we can expect estimators to exhibit comparably large bias and little variance.

BH (Control the false discovery rate) apply the Benjamini Hochberg stepup proce-
dure (Benjamini and Hochberg 1995). For that purpose, sort the p-values 
pj = praw

1+j
= p({1, 1 + j}) with j = 1,… ,D − 1 ; denote them by p(1) ≤ ⋯ ≤ p(D−1) . 

Starting from j = D − 1 , determine the largest index j such that

If no such index exists, then reject no hypotheses. Otherwise, if j ∈ {1,… ,D − 1} , 
reject the hypotheses that belong to the p-values p(1),… , p(j).

Again, one can compute adjusted p-values p̃(j) such that the procedure is 
equivalent to rejecting those hypotheses for which p̃(j) ≤ 𝛼 . For that purpose, let 
p̃(D−1) = min{1, (D − 1)p(D−1)} and recursively define, for j = D − 2,… , 1,

Under an additional assumption on the p-values that belong to the true null 
hypotheses (they must exhibit some positive dependence), the BH procedure is 
known to asymptotically control the false discovery rate (FDR) at level � , i.e.,

see Theorem  9.3.3 in Lehmann and Romano (2021). Control of the FDR will be 
confirmed by the simulation experiments in Section 3.

If one were interested in guaranteed theoretical control of the FDR rate, one 
might alternatively apply the Benjamini Yekutieli (BY) stepup procedure, see 
(Benjamini and Yekutieli 2001) and Theorem  9.3.3 in Lehmann and Romano 
(2021). In view of the fact that the procedure is much more conservative than BH, 
we do not recommend its application in the current setting.

p̃(j) = min
{
1,max{p̃(j−1), (D − j)p(j)}

}

FWER ∶= Pr
(
reject any true null hypothesis HED

0
({1, d})

)
≤ �,

p(j) ≤ �j ∶=
j�

(D − 1)
.

p̃(j) = min

{
1,min

{
(D − 1)

p(j)

j
, p̃(j+1)

}}
.

FDR ∶= �

[Number of false rejections

Number of all rejections
1(at least one rejections)

]
≤ �,

11
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Concerning a subsequent analysis, estimators based on a pooled sample 
obtained from the BH procedure can be expected to exhibit bias and variance to 
be somewhere between the IM and Holm procedure.

Remark 1 The decomposition of HED
0

 into hypotheses of smaller dimensionality is 
not unique. For instance, we may alternatively write

where {1} ⊂ B1 ⊂ B2⋯ ⊂ BK = {1,… , d} denotes an increasing sequence of 
regions with 2 ≤ |B1| < |B2| < ⋯ < |BK| = d (for instance, Bk = {1, 2,… , 1 + k} 
with k = 1,… ,D − 1 ). In practice, the sequence is supposed to be derived from 
some expert knowledge of the region of interest; it shall represent a sequence of 
possible pooling regions where Bk is constructed from Bk−1 by adding the locations 
which are a priori ‘most likely’ homogeneous to the locations in Bk . Note that, nec-
essarily, K ≤ D − 1 , which provides an upper bound on the number of hypotheses to 
be tested.

The derivation of respective testing methods is straightforward. In view of the 
facts that the choice of the sequence is fairly subjective and that the eventual results 
crucially depend on that choice, we do not pursue the method any further.

3  Simulation study

A large-scale Monte Carlo simulation study was conducted to assess the perfor-
mance of the proposed bootstrap procedures in finite sample situations. We aim at 
answering the following questions: 

(a) Regarding the test’s power: What percentage of locations that are heterogeneous 
w.r.t. the location of primary interest can be expected to be identified correctly?

(b) Regarding the test’s error rates: What percentage of locations that are homo-
geneous w.r.t. the location of primary interest can be expected to be wrongly 
identified as heterogeneous (FDR)? What is the probability of wrongly identi-
fying at least one location that is homogeneous w.r.t. the location of interest as 
heterogeneous (FWER)?

(c) Regarding the chosen pooling regions: How does return level (RL) estimation 
based on the pooling regions proposed by the bootstrap procedures compare to 
RL estimation based on the location of interest only or the whole (heterogene-
ous) region?

The data was generated in such a way that the temporal spatial dynamics from 
the case study in Section  4 are mimicked. To achieve this, we started by fitting 
the scale-GEV model from Eq. (2) to annual block-maxima of observations from 
1950–2021 at 16 spatial locations in Western Europe (i.e., n = 72 and D = 16 ) that 

(12)HED
0

=

K⋂
k=1

HED
0

(Bk),

12
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are arranged in a 4 × 4 grid; see Fig. 1 and the additional explanations in Section 4. 
The locations correspond to the center points of the grid cells; the distance between 
the center points of two neighbouring grid cells is approximately 140 km. The loca-
tion-wise GEV parameter estimates �̂d exhibit the following approximate ranges 
over d ∈ {1,… , 16} : �̂�d ∈ (18.1, 30.8) with a mean of 20.85, �̂�d ∈ (4.185, 7.92) 
with a mean of 5.3, �̂�d ∈ (−0.13, 0.36) with a mean of 0.08 and �̂�d ∈ (−2.3, 5.08) 
with a mean of 1.5. Fitting the scale-GEV model to the full pooled sample of size 
n ⋅ D = 1152 , we obtained parameter estimates that were close to the means over the 
location-wise parameter estimates, with 20.37, 5.8, 0.1, 1.5 for location, scale, shape 
and trend parameter, respectively. Next, we transformed the margins to (approxi-
mate) unit Fréchet by applying the transformation from Eq. (9), such that we can fit 
several max-stable process models to the transformed data. The best fit was Smith’s 
model with approximate dependence parameters �11 = 0.4, �12 = 0.2, �22 = 0.9 ; see 
Davison et al. (2012) for details on the model.

Based on these model fits, we chose to generate data with the following speci-
fications: first, the sample size was fixed to n = 75 and the regional 4 × 4 grid was 
chosen as described before, i.e., d = 16 . The grid cell/location labelled ‘10’ is cho-
sen as the one of primary interest. Further, the dependence structure is fixed to that 
of Smith’s model with (approximately) those parameters that gave the best fit on 
the observed data, i.e. �11 = 0.4, �12 = 0.2, �22 = 0.9 (results based on samples from 
an anisotropic version of the Brown-Resnick model can be found in Section B.3 in 
the supplement). For simulating data, we first simulate from this max-stable process 
model (Ribatet 2022) and then transform the margins to scale-GEV distributions, 
either in a homogeneous or in a heterogeneous manner. Here, the globally homo-
geneous model is defined by fixing the marginal scale-GEV parameters to approxi-
mately the mean values of the location-wise GEV parameters obtained for the real 
observations, i.e.,

(13)�d = 20, �d = 5.5, �d = 0.1, �d = 1.5

Fig. 1  Illustration of the grid used for the simulation. The regions contained in A
dev

 are shaded in blue, 
with |A

dev
| = 2 shown in the left plot and |A

dev
| = 7 shown on the right. The region of interest is the one 

labelled 10

13
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for each d ∈ {1,… , 16}.
Starting from this homogeneous model, we consider two different heterogeneous 

scenarios. In the first scenario, we fix �d = (𝜇d, 𝜎d, 𝛾d, 𝛼d)
⊤ as in Eq. (13) for all 

d ∈ Ahom = {1,… , 16} ⧵ {4, 8} , while

for d ∈ Adev = {4, 8} with (c�, c� , c� , c�) ≠ (0, 0, 0, 0) . Note that this defines 
5 ⋅ 5 ⋅ 3 ⋅ 3 − 1 = 224 different heterogeneous models. In the second scenario, 
we consider the same construction with Ahom = {5, 6, 7, 9, 10, 11, 13, 14, 15} and 
Adev = {1, 2, 3, 4, 8, 12, 16} . An illustration of the grid cells and their partition into 
homogeneous and non-homogeneous areas can be found in Fig.  1. Overall, we 
obtain 448 different heterogeneous models and one homogeneous model.

For each of the 449 models, we now apply the following three bootstrap proce-
dures, each carried out with B = 300 bootstrap replications (recall that the grid cell 
of interest is the one labelled with 10):

(B1) The bootstrap procedure from Algorithm 1 with A = {1,… , 16}.
(B2) The bootstrap procedure from Algorithm  1 for all sets Ad = {10, d} with 
d ∈ {1,… , 16} ⧵ {10}.
(B3) The bootstrap procedure from Algorithm  2 for all sets Ad = {10, d} with 
d ∈ {1,… , 16} ⧵ {10}.

Note that the second and third method both yield 15 raw p-values. Each proce-
dure was applied to 500 simulated samples from all models under consideration.

Regarding (B1), we compute the percentage of rejections among the 500 replica-
tions, which represents the empirical type I error of the test under the homogeneous 
model and the empirical power under the heterogeneous models. The results can be 
found in Fig. 2. The null hypothesis is met in the central square only, and we observe 
that the nominal level of � = 0.1 is perfectly matched. All non-central squares cor-
respond to different alternatives, and we observe decent power properties in both 
scenarios. Note that a rejection only implies that the entire region {1,… , 16} is not 
homogeneous; there is no information on possible smaller subgroups that are homo-
geneous to the location of interest.

Regarding (B2) and (B3), rejection decisions were obtained for each hypothesis 
HED

0
({10, d}) by one of the three methods from Section 2.5. The empirical family-

wise error rate is then the percentage of cases (over 500 replications) for which at 
least one null hypothesis was rejected. Likewise, for the false discovery rate, we cal-
culate, for each replication, the number of false rejections and divide that by the 
total number of rejections (when the number of total rejections is 0, this ratio is set 
to 0). The empirical false discovery rate is obtained by taking the mean over all 500 
replications. Similarly, for assessing the power properties, we calculate the empirical 

(14)

�d = 20 + c�, c� ∈ {−3,−1.5, 0, 1.5, 3},

�d = 5.5 ⋅ c� , c� ∈ {0.7, 0.85, 1, 1.15, 1.3},

�d = 0.1 + c� , c� ∈ {−0.1, 0, 0.1},

�d = 1.5 + c� , c� ∈ {−1, 0, 1},
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proportion of correct rejections (i.e., among the 2 or 7 locations that deviate, the 
proportion of detected heterogeneous locations) over all 500 replications.

Results for the false discovery and family-wise error rate are given in Table 1. We 
find that the p-value combination methods from Section 2.5 are sufficiently accu-
rate: the BH method controls the false discovery rate, while Holm’s method controls 
the family-wise error rate. This holds exactly for procedures (B3), where the maxi-
mal FDR (FWER) of the BH (Holm) method is at 9.4% (8.7%), and approximately 
for (B2), where the maximal FDR (FWER) is at 12.2% (12.6%). Further, we see that 
the IM procedure neither controls the FWER nor the FDR.
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Fig. 2  Rejection rates in % obtained for (B1), in the setting where either 2 (left plot) or 7 (right plot) 
regions deviate from the others. Each coloured square contains the rejection rate for one of the 225 dif-
ferent models, with the central square with c� = c� = 0 corresponding to the null hypothesis. The x- and 
y-axis and the facets determine the values of the scale-GEV parameter vector of the deviating locations 
through Eq. (14)

Table 1  False Discovery Rate (FDR) and family-wise Error Rate (FWER) for the three p-value combina-
tion methods from Section 2.5 and the two bootstrap methods (B2) and (B3). The stated values are the 
minimum, maximum and mean across the 224 alternative models from each scenario

Method min FDR max FDR mean FDR min FWER max FWER mean FWER

(B2) (B3) (B2) (B3) (B2) (B3) (B2) (B3) (B2) (B3) (B2) (B3)

Scenario 1: |Adev| = 2

BH 7.3 5.6 12.2 9.4 9.4 7.5 9.1 6.9 21.2 19.0 14.4 11.8
Holm 3.0 2.3 11.7 8.3 7.1 5.1 6.9 5.0 12.6 8.7 9.5 6.6
IM 25.8 25.3 61.7 60.1 37.7 37.2 53.4 53.4 64.5 62.8 59.1 58.3
Scenario 2: |Adev| = 7

BH 3.6 2.4 12.1 8.9 5.6 4.9 6.2 4.2 32.0 29.8 18.6 16.8
Holm 1.0 0.9 11.3 7.9 3.4 2.6 3.8 2.4 11.3 7.9 7.1 5.1
IM 7.9 7.8 61.5 60.1 16.0 15.8 40.9 40.9 61.5 60.1 47.3 46.4
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The power properties for procedure (B2) combined with the BH method are 
shown in Fig. 3. We see that the procedure is able to detect some of the deviations 
of the null hypothesis, with more correct rejections the stronger the deviation is. The 
method is particularly powerful when the location and scale parameters deviate into 
opposite directions, i.e. when c𝜇 > 0 and c𝜎 < 1 or c𝜇 < 0 and c𝜎 > 1 . There is no 
obvious pattern regarding the deviations of the shape and trend parameter. Further, 
we analogously show the power properties of the IM method with bootstrap (B2) 
in Fig. 3. As expected, this method has more power against all alternatives under 
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Fig. 3  Proportion of correct rejections in % obtained with the BH procedure (upper row) and the IM pro-
cedure (lower row) at a level of 0.1, in the setting where two stations deviate from the rest (left column) 
or 7 locations deviate from the rest (right column), with the bootstrap procedure based on max-stable 
processes. The axis and facets are as described in Fig. 2
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consideration. However, this comes at the cost of more false discoveries, as can be 
seen in Table 1.

The results for bootstrap scheme (B3) were very similar and are therefore not 
shown here, but can be found in Section  B of the supplementary material. Like-
wise, we omit the results for the more conservative Holm procedure, which exhib-
its, as expected, less power against all alternatives. Further, we repeated the simula-
tion study with an increased location-wise sample size of n = 100 . As one would 
expect, the tests have more power in this case. Finally, additional results under mis-
specfication of the max-stable dependence models in the bootstrap are presented in 
Section B.3 in the supplement; they reveal that the methods are rather robust with 
respect to misspecification.

The results presented so far show that the proposed pooling methods work ‘as 
intended’, since the theoretical test characteristics are well approximated in finite 
sample situations, and since we observe decent power properties. In practical applica-
tions however, spatial pooling of locations is usually the starting point for subsequent 
analyses. For instance, one may be interested in estimating return levels at the location 
of interest based on the data from all locations that were identified as homogeneous. 
Moreover, the analysis of alternative data sets like climate model data may be based on 
the homogeneous locations identified within the analysis of observations.

This suggests that the methods should be examined with regard to their quality in 
subsequent analyses. For that purpose, we consider, as an example, the problem of 
return level estimation at the location of interest. The state-of-the-art method would 
consist of GEV fitting at the location of interest only, which results in (asymptoti-
cally) unbiased estimators that suffer from large variance. Basing the estimator on 
pooled regions will decrease the variance, but at the same time increase its bias if 
some heterogeneous locations have been wrongly identified as homogeneous.

In particular, pooling based on a conservative testing approach like the BH proce-
dure leads to the acceptance of many locations and thus to a large pooling area and 
low estimation variance. Most likely, some of the chosen locations will be violating 
the null hypothesis though, which yields a rather large estimation bias. For pooling 
based on a more liberal rejection approach like the IM procedure, the estimation 
bias and variance behave exactly opposite: since the null hypotheses are more likely 
to be rejected, the resulting pooling sample is smaller (i.e., larger estimation vari-
ance) but ‘more accurate’ (i.e., smaller estimation bias).

For our comparison, we consider fitting the scale-GEV model based on pooled 
locations that have been obtained from one of the following eight methods

Here, LOI refers to considering the location of interest only (no pooling), full 
refers to pooling all available locations, and the last six methods encode pooling 
based on any combination of the proposed p-value combination methods and boot-
strap approaches.

For each method, we compute the maximum likelihood estimate �̂ = (�̂�, �̂�, �̂� , �̂�)⊤ 
of the scale-GEV model parameters and transform this to an estimate of the T-year 
return level (RL) in the reference climate of year t by

m ∈ {LOI, full,MS IM,MS Holm,MS BH, biv. IM, biv. Holm, biv. BH}.

17



L. Zanger et al.

1 3

where �̂�(t) = �̂� exp(�̂�GMST�(t)∕�̂�) and �̂�(t) = �̂� exp(�̂�GMST�(t)∕�̂�) and where G is 
the cumulative distribution function of the GEV-distribution, see Eq. (1). Now, in 
our simulation study, we know that the true value of the target RL is given by 
RLt(T) = G−1

(�0(t),�0(t),�0)
(1 − 1∕T) with

From the 500 replications we can therefore compute the empirical Mean 
Squared Error (MSE) of method m as

where R̂L
(m,j)

t
(T) denotes the estimated RL obtained in the j-th replication with 

method m. Note that we have suppressed the MSE’s dependence on T and t from the 
notation.

In Fig.  4 we compare MSEs of the 100-year RL with reference climate as 
in year 2021, which is given by RL2021(100) = 55.87 , by plotting the differ-
ence MSE(m1) −MSE(m2) with m1 ∈ {MSBH,MS IM} and m2 ∈ {full, ROI} as 
obtained for the setting where |Adev| = 7 . The plots reveal that both the MS BH 
and the MS IM method are superior to the the LOI fit for almost all scenarios. 
Comparing the two methods to the full fit reveals that there are certain scenarios 
for which the full fit performs substantially worse, mostly when the shape and 
scale parameter deviate towards the same direction for the alternatives. For those 
scenarios where the full fit outperforms the two methods, the discrepancy is not 
very large, with the BH method performing slightly better than the IM method.

A comparison between MS BH and MS IM is shown in Fig.  5 for 
|Adev| ∈ {2, 7} . The results reveal that the BH method slightly outperforms the 
IM method in the case |Adev| = 2 for almost all alternative scenarios. In case 
|Adev| = 7 , the results are quite mixed, with the IM method becoming clearly 
superior when the shape, scale and location parameters deviate jointly to the top. 
In all other scenarios, the differences are only moderate, sometimes favoring one 
method and sometimes the other. Corresponding results for the bootstrap methods 
based on bivariate extreme value distributions are very similar and therefore not 
shown. Further, the results were found to be robust against the choices of t = 2021 
and T = 100 that were made here for the return level estimation.

Overall, the results suggest the following practical recommendation: if the 
full sample is expected to be quite homogeneous a priori (for instance, because it 
was built based on expert knowledge), then estimation based on BH-based pool-
ing is preferable over the other options (LOI, the full and the IM-based fit). If 
one expects to have a larger number of heterogeneous locations, it is advisable 
to apply the IM procedure (or any other liberal procedure), which likely rejects 
most of the heterogeneous locations and hence reduces the bias. In general, the 

�RLt(T) = G−1
(�̂�(t),�̂�(t),�̂�)

(1 − 1∕T),

�0(t) = 20 exp

(
1.5GMST�(t)

20

)
, �0(t) = 5.5 exp

(
1.5GMST�(t)

20

)
, �0 = 0.1.

MSE(m) =
1

500

500∑
j=1

(
R̂L

(m,j)

t
(T) − RLt(T)

)2

,
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liberal behavior of IM-based pooling suggests its use when it is of highest prac-
tical interest to obtain a pooled region that is as homogeneous as possible (as 
a trade-off, one has to accept that the region is probably much smaller than the 
initial full region).

4  Severe flooding in Western Europe during July 2021 revisited

We illustrate the new pooling methods in a case study by revisiting the extreme 
event attribution study for the heavy precipitation event that led to severe flooding 
in Western Europe during July 2021, see Kreienkamp et al. (2021) and Tradowsky 
et al. (2023). In that study, observational data were pooled together based on expert 
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knowledge and on ad hoc tests, with the ultimate goal of assessing the influence 
of human-made climate change on the likelihood and severity of similar events in 
Western and Central Europe.

The full region under investigation in Kreienkamp et al. (2021) and Tradowsky 
et  al. (2023) consists of sixteen (2.0◦ × 1.25◦) (i.e. about (140 km × 140 km) ) 
grid cells reaching from the northern Alps to the Netherlands, see Fig.  5 in 
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Fig. 6  Regions analysed within this case study and the respective numbering used here. The data con-
sists of April-September block maxima of tile-wise averaged daily precipitation sums (RX1day) from 
1950–2021
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Kreienkamp et al. (2021) or the right-hand side of Fig. 6. Two of the 16 locations 
were rejected in that study due to expert knowledge and too large deviations in 
fitted GEV-parameters (grid cells 17 and 11 of Fig. 6). Among other things, our 
illustrative application of the methods explained above will reveal that grid cell 
11 has been rightfully dismissed, while grid cell 17 might have been considered 
homogeneous. Further, there is no clear evidence that any other grid cell that has 
been declared homogeneous should rather be considered non-homogeneous.

For illustrative purposes, we apply our methods to two different initial areas: 

(A) An area consisting of 6 × 6 grid cells covering a large part of Western/ Central 
Europe, as shown in Fig. 6 on the left.

(B) The original 4 × 4 grid cells from Kreienkamp et al. (2021) as shown in Fig. 6 
on the right.

Note that homogeneity for the 20 grid cells at the boundary of the larger area in 
(A) has been dismissed based on expert knowledge in Kreienkamp et al. (2021); 
the larger area is included here for illustrative purposes only.

The data used throughout the study consists of April-September block-maxima 
of tile-wise averaged 1-day accumulated precipitation amounts of the E-OBS data 
set (Cornes et al. (2018), Version 23.1e). In both cases, the grid cell with label 
21 is the one of primary interest, since it is the one containing the target location 
of the study, i.e., the region that accumulated the highest precipitation sum and 
experienced the largest impacts during the flooding of July 2021. The time series 
are shown in Fig. C.1 in the supplementary material. There, we also plot values 
of �̂�(t) = �̂� exp

(
�̂�GMST�(t)∕�̂�

)
 obtained from different data sets: once from data 

of location 21 only, once from data of the respective location only, and once from 
the pooled data of the respective pair (21, d) for d ∈ {1,… , 36}⧵{21}.

We apply the two proposed bootstrap procedures to areas (A) and (B). Note that 
the raw p-values obtained with the bootstrap based on bivariate extreme value dis-
tributions should be very similar (or even identical when using the same seed for 
random number generation) for those grid cells that appear in both areas, while 
they may differ to a greater extent for the MS bootstrap. This is because the p-value 
for a given pair obtained with the bivariate bootstrap procedure only depends on the 
observations of the pair, while the respective p-value obtained with the MS boot-
strap also depends on the spatial model that was fitted to the whole area. However, 
even if the raw p-value of a given pair obtained for setting (B) coincides with the 
raw p-value obtained for setting (A), the adjustment for multiple testing can lead 
to slightly different rejection decisions of the pair at a given level � . The bootstrap 
procedures are applied with B = 2000 bootstrap replications.

We start by discussing the results of the application to the larger grid in (A). 
Recall that, for a given significance level � , one rejects the null hypothesis for all 
grid cells whose p-value is smaller than � . To visualise the results, we therefore 
shade the grid cells according to the magnitude of their (adjusted) p-value. Here, 
we divide the colour scale into three groups: [0, 0.05],  (0.05, 0.1] and (0.1, 1], 
with a dark red tone assigned to the first group, a brighter red tone for Group 
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2 and an almost transparent shade for Group 3. This allows us to see the test 
decisions for significance levels of � ∈ {0.05, 0.1} : when the significance level is 
chosen as � = 0.1 , all tiles with a reddish shade are rejected, while when working 
with a level of � = 0.05 only tiles shaded in the dark shade are rejected.

Results for both the conservative BH procedure and the liberal IM procedure are 
shown in Fig. 7. For completeness, results on Holm’s method, which is even more 
conservative than BH, as well as the BH and IM p-values themselves can be found 
in the supplementary material, Tables C.2 and C.3. One can see that, for a given 
rejection method (i.e. BH or IM), the MS and bivariate procedures mostly agree on 
the rejection decisions that would be made at a level of 10% (compare the rows of 
Fig. 7 to see this). The same holds when working with a significance level of 5%.

Further, as expected, the IM method rejects more hypotheses than the BH 
method. However, according to the results of the simulation study, it is quite likely 
that at least one of these rejections is a false discovery.

Fig. 7  (Adjusted) p-values obtained with the BH (left) and the IM (right) method on the 6 × 6 grid, with 
the bootstrap based on max-stable processes (top row) and the bootstrap based on bivariate extreme value 
distributions (bottom row)
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Analogous results for the 4 × 4 grid in (B) are shown in Fig.  8. As discussed 
above, except for the MS BH method, the results are consistent with the results 
obtained for the 6 × 6 grid in the sense that for those locations which are contained 
in both grids, the locations with p-values of critical magnitude ( < 10% ) coincide 
(compare the plot in the upper right corner of Fig. 8 to the plot in the upper right 
corner of Fig. 7 to see this for the MS IM method, and similar for the other meth-
ods). For the MS BH method, grid cells 10, 14, 15, and 16 are not significant any-
more at a level of 10 %, but we recorded an adjusted p-value of 0.106 for those four 
grid cells, so this is a rather tight decision. The p-values obtained for the 4 × 4 grid 
can be found in Table C.1 in the supplementary material.

Let us now move on to the interpretation: considering the larger grid first, some 
grid cells for which the characteristics of extreme precipitation are different (accord-
ing to expert opinion) from the grid cell of the target location are detected as hetero-
geneous. These rejected grid cells are located along the coast and in the mountainous 

Fig. 8  Adjusted p-values obtained with the BH (left) and the IM (right) method on the 4 × 4 grid, 
obtained with the bootstrap based on max-stable processes (top row) and the bootstrap based on bivariate 
extreme value distributions (bottom row)
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terrain. Comparing the results with Kreienkamp et al. (2021) and Tradowsky et al. 
(2023), we observe that grid cell 11 has been rejected in their study based on expert 
knowledge. For grid cell 17, however, we do not detect any statistical evidence that 
the probabilistic behavior of extreme precipitation is different from the grid cell of 
the target location, even when applying the liberal IM procedure. We would like to 
stress though that non-rejection of a null hypothesis does not provide any evidence 
of the null hypothesis, even when ignoring the multiple testing issue. Hence, expert 
knowledge that leads to rejection should, in general, outweigh any statistical non-
rejection. This particularly applies to the eastern (continental) grid cells in the larger 
6 ×6-grid, which can be influenced by heavy precipitation caused by different synop-
tic situations compared to the target region.

Moreover, as the results for locations 10, 14, 15, and 16 showed some discrep-
ancy across the different testing procedures, we suggest that the final decision on 
the exclusion or inclusion of these locations in a spatial pooling approach should be 
based on expert knowledge of the meteorological characteristics, and the willing-
ness to trade possible bias for variance (with a possibly larger bias when including 
the locations – note that statistical evidence against homogeneity in the bivariate 
extreme value distribution-based bootstrap is only weak, and wrongly declaring the 
regions as homogeneous is possibly not too harmful). The same holds for locations 
9, 20, 23 and 27 for which only the IM method yielded p-values between 5% and 
10%. Again, these rather small p-values could be subject to false discoveries though, 
and since the heterogeneity signal is also not too strong, there is no clear evidence 
that these need to be excluded from pooling.

For a last evaluation of results from pairwise tests, we estimated the 100-
year RLs in the reference climate of the year 2021, i.e. with reference value 
GMST’(2021) = 0.925 ◦ C, on five different data sets obtained from the 4 × 4 grid. 
Here, we use the data sets consisting of data from

• the location of interest only
• pooling those grid cells suggested by the results of the case study (i.e., all cells but 

11, or all cells but 10, 11, 14, 15, 16) or expert opinion (i.e., all cells but 11, 17)
• pooling all grid cells of the 4 × 4 grid.

The results can be found in Table 2 and reveal that excluding cell 11 has a clear 
effect on the estimated RL. Ex- or including grid cell 17 once 11 is excluded does 
not have a large effect, while excluding cells 10, 14, 15 and 16 additionally to cell 11 
has a moderate effect.

Table 2  Estimated parameters 
and estimate of RL2021(100) 
obtained when pooling the grid 
cells given in the first column

Pooling cells �̂� �̂� �̂� �̂� R̂L2021(100)

all 20.37 5.80 0.1039 1.50 58.43
all but 11 20.01 5.44 0.0676 1.45 52.74
all but 11, 17 20.01 5.40 0.0760 1.29 52.82
all but 10, 11, 14, 15, 16 19.90 5.41 0.0484 1.79 51.93
only 21 21.92 6.08 0.0634 -0.00 54.37
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Finally, we would like to mention that similar results were obtained when apply-
ing the BH test procedures to all triples containing the pair of grid cells (20, 21), 
i.e., the extended target region considered in the study of Kreienkamp et al. (2021) 
and Tradowsky et al. (2023), consisting of those regions in Germany and Belgium 
affected worst by the July 2021 flooding.

5  Extensions

In this section, we discuss how to estimate region-wise return levels under homo-
geneity assumptions (Section 5.1). We also propose two possible extensions of the 
pooling approach from the previous sections to other hypotheses (Section  5.2) or 
other underlying model assumptions (Section 5.3).

5.1  Estimation of regional return levels and return periods

As pointed out in Kreienkamp et al. (2021) and Tradowsky et al. (2023) among oth-
ers, an estimated return period (RP) of T years for a given event and in a fixed ref-
erence climate (e.g., the preindustrial climate), obtained based on a fit of the GEV 
distribution to a pooled homogeneous sample, has the following interpretation: for 
each fixed location/tile within the region, one can expect one event of the same or 
larger magnitude within T (imaginary) years of observing the reference climate. We 
refer to this quantity as the local return period. Obviously, one would expect more 
than one event of similar magnitude happening at at least one of the locations of 
the pooling region. Likewise, for a given T, one would expect a higher T-year return 
level for the whole region. The latter corresponds to the value that is expected to be 
exceeded only once in T years at at least one of the locations.

Mathematically, using the notation from Section 2.1, the exceedance probability 
of value r at at least one among D ≥ 2 locations in the reference climate correspond-
ing to year t is given by

such that the return period for event r of the region is RPregt (r) =
1

pt(r)
 . Further, the 

T-year return level of the region in the climate corresponding to year t is the mini-
mal value RLreg

t (T) for which

holds. Both quantities could be computed (exactly) if one had access to the distribu-
tion of maxd=1,…,D M

(t)

d
 . For example, if the random variables M(t)

d
, d = 1,… ,D 

were independent, pt(r) could be further simplified to

pt(r) = P
(
∃ j ∈ {1,… ,D} ∶ M

(t)

j
≥ r

)
= P

(
max

d=1,…,D
M

(t)

d
≥ r

)
,

P
(

max
d=1,…,D

M
(t)

d
≥ RL

reg
t (T)

)
≤

1

T

pt(r) = 1 − P
(

max
d=1,…,D

M
(t)

d
≤ r

)
= 1 − (G(�(t),�(t),�)(r))

D,
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where G is the distribution function of the GEV distribution and where �(t), �(t) and 
� denote the parameters at reference climate of year t from Eq. (2) under the homo-
geneity assumption from Eq. (3).

The locations are, however, usually not independent in applications. In the fol-
lowing, we propose a simulation-based estimation method that involves max-stable 
process models to account for the spatial dependence. As before, the R package 
SpatialExtremes (Ribatet 2022) allows for fitting and simulating max-stable 
process models.

Algorithm 3 (Simulation-based estimation of the regionwise RL and RP) 

1. Fit the scale-GEV parameters to the pooled homogeneous sample, resulting in 
the parameter vector �̂ = (�̂�, �̂�, �̂� , �̂�)⊤.

2. Transform the margins of the pooled data to approximately unit Fréchet by apply-
ing transformation from Eq. (9) with the parameter estimate from Step 1. Then 
fit several max-stable process models to the obtained data and choose the best fit 
according to the information criterion CLIC.

3. Replicate for b = 1,… ,B the following steps: 

 (i) Generate one random observation (y(t),∗
1,b

,… , y
(t),∗

D,b
) from the chosen max-

stable process model.
 (ii) Transform the margins to GEV margins, by applying the transformation in 

(10) with parameters as estimated in Step 1, resulting in the observation 
(m

(t),∗

1,b
,… ,m

(t),∗

D,b
).

 (iii) Compute the maximum m(t),∗

max,b
= maxd=1,…,D m

(t),∗

d,b
.

4. The regionwise T-year return level RLt,reg(T) and the return period RPt,reg(r) of an 
event with value r can now be estimated from the empirical cumulative distribu-
tion function F̂∗

t
 of the sample (m(t),∗

max,b
)b=1,…,B through 

Especially, when we have estimated the local 100-year RL, we can get an esti-
mate of the return time this event has for the whole region. Likewise, when we have 
an estimate of the local return period of an event with value r, we can estimate what 
the event value for that return period would be for the whole region.

We illustrate the estimators for the pooled data sets from Section  4. The esti-
mates are based on B = 100 000 simulation replications and are shown in Table 3. 
We see that the local 100-year return levels have substantially shorter region-wise 
return periods. In the region with 15 tiles (only cell 11 excluded), the estimated local 
100-year RL at reference climate of 2021 can be expected to be exceeded once in 
approximately 19 years in at least one of the 15 tiles. We find a similar region-wise 
return period for the pooling region consisting of 14 tiles. In the pooling region con-
sisting of 11 tiles, the local 100-year return level becomes a region-wise 33-year 

�RL
reg

t
(T) = (F̂∗

t
)−1(1 − 1∕T), �RP

reg

t
(r) =

1

1 − F̂∗
t (r)

.
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event. This comparably larger value arises from the smaller region that is consid-
ered: the smaller the region, the less likely it is that one of the locations exceeds a 
high threshold. Further, as expected, we find that the region-wise 100-year return 
levels at reference climate of 2021 are larger than their local counterparts. For the 
regions consisting of 15 and 14 tiles, this increase is approximately 26%, while it is 
approximately 17.3% for the region consisting of 11 tiles.

5.2  A homogeneous scaling model with location‑wise scaling factor

In this section, we maintain the temporal dynamics from the scale-GEV model from 
Eq. (2). However, instead of testing for the homogeneity assumption from Eq. (3), 
we additionally allow for a location-wise scaling factor under the null hypothesis. 
Such an approach can be useful when it is known that observations from different 
locations occur on different scales, but, apart from that, show a common probabilis-
tic behaviour. In fact, a stationary version of the following model is commonly used 
in hydrology, where it is known as the Index Flood approach (Dalrymple 1960).

More precisely, suppose that

where cd > 0 is a location-specific scaling factor that we may fix to 1 at the location 
of primary interest (say d = 1 , i.e., c1 = 1 ). Writing �d = cd�, �d = cd�, �d = cd� , 
the model in Eq. (15) can be rewritten as

where

Note that the parameters �1,… ,�D, �1,… , �D, �1,… , �D satisfy the relationships

(15)Mt,d ∼ cd exp

(
�GMST�(t)

�

)
GEV(�, �, �) ∀t, d,

Mt,d ∼ GEV(�d(t), �d(t), �) ∀t, d,

(16)�d(t) = �d exp

(
�dGMST�(t)

�d

)
, �d(t) = �d exp

(
�dGMST�(t)

�d

)
.

�d

�d
≡ �,

�d
�d

≡ �,
�d
�d

≡ �

Table 3  Estimated local (second column) and regional (fourth column) 100-year RLs for reference cli-
mate 2021, for three possible choices of pooling regions as indicated by the first column. Column 3 
shows the regional return periods of the local 100-year events

Pooling cells RL2021(100) RP
reg

2021
(RL2021(100)) RL

reg

2021
(100)

all but 11 52.74 18.90 66.40
all but 11, 17 52.82 18.32 67.08
all but 10, 11, 14, 15, 16 51.93 32.76 60.93
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for certain parameters �, �, � ; in particular, �1,… ,�D, �1,… , �D, �1,… , �D can 
be retrieved from �1,… ,�D, �, � (note that the constraint on �d∕�d is not needed, 
but comes as a consequence of the first two relations). Fitting this model instead 
of fitting the scale-GEV distribution to each location separately has the advan-
tage of reducing the number of parameters that need to be estimated substantially 
( 4 + (D − 1) = D + 3 instead of 4D parameters). Once the local scaling factors are 
identified, we can bring all observations to the same scale by dividing each location 
by its location-specific scaling factor.

Now one can test whether such a local scaling model holds on a subset 
A = {d1,… , dk} ⊂ {1,… ,D} with cardinality k = |A| ≥ 2 , by testing the hypothesis

with a Wald-type test statistic. In this case, the latter is defined as

where gA ∶ ℝ
4D

→ ℝ
3(k−1) is given by

with Jacobian matrix GA(�) ∈ ℝ
3(k−1)×4D , since the hypothesis in Eq. (17) may be 

rewritten as HLS
0
(A) ∶ gA(�) = 0.

When considering this kind of modification, the bootstrap algorithms from Sec-
tion 2.4, steps (5)-(7), must be adapted accordingly. In step (5), one has to estimate 
the parameter under the constraint of the considered null hypothesis by adapting the 
log-likelihood accordingly. The estimated parameters are then used during the trans-
formation step (6). Further, the test statistic in steps (6) and (7) is replaced by TLS

n
(A) 

from (18). Further details are omitted for the sake of brevity.

5.3  General homogeneous models with smooth parametrization

In this section, we consider general GEV models in which the location, scale and shape 
parameters are allowed to depend in a (fixed) differentiable way on some parameter 
vector � ∈ ℝ

q and some temporal covariate c(t) ∈ ℝ
p with p, q ∈ ℕ . More precisely, 

suppose that f�, f� and f� are (known) real-valued functions of � and c that are differ-
entiable with respect to their first argument � . We assume that, for each d = 1,… , d , 
there exists an unknown parameter �d such that M(t)

d
∼ GEV(�d(t), �d(t), �d(t)) with

The global null hypothesis of interest within this model is assumed to be express-
ible as h(�1,… ,�D) = 0 for a differentiable function h ∶ ℝ

qD
→ ℝ

s with s ∈ ℕ.

(17)HLS
0
(A) ∶ ∃ �A, �A, �A ∀d ∈ A ∶

�d

�d
= �A,

�d
�d

= �A, �d = �A,

(18)TLS
n
(A) = n(gA(�̂))

⊤
(
GA(�̂)�̂nGA(�̂)

⊤
)−1

gA(�̂),

gA(�) =

(
𝜇d1

𝜎d1
−

𝜇d2

𝜎d2
, 𝛾d1 − 𝛾d2 ,

𝛼d1
𝜇d1

−
𝛼d2
𝜇d2

,… , 𝛾dk−1 − 𝛾dk ,
𝛼dk−1
𝜇dk−1

−
𝛼dk
𝜇dk

)⊤

,

�d(t) = f�(�d;c
(t)), �d(t) = f�(�d;c

(t)), �d(t) = f� (�d;c
(t)).
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An example is given by the linear shift model that is frequently considered when 
modelling temperature extremes in Extreme Event Attribution studies (see Philip 
et al. 2020), where

A possible global null hypothesis of interest could be

where � = (𝜇, 𝜎, 𝛾 , 𝛼)⊤ and �d = (𝜇d, 𝜎d, 𝛾d, 𝛼d)
⊤.

When considering this kind of extension, one has to adapt the maximum likeli-
hood estimator as well as the estimator of its covariance matrix, hence steps (1)-(2) 
and (5)-(7) in the bootstrap algorithms are affected. Further details are omitted for 
the sake of brevity.

6  Conclusion

Extreme event attribution studies can build upon a GEV scaling model. Depending 
on the analysed variable, it may be useful to apply spatial pooling and fit the GEV 
distribution to a pooled sample of observations collected at sufficiently homogeneous 
spatial locations as it has been done in Kreienkamp et al. (2021), Tradowsky et al. 
(2023) and Vautard et al. (2015), among others. Here, we propose several statistical 
methods that enable the selection of a homogeneous pooling region from a larger 
initial region. The BH approach was found to be quite conservative, hence some het-
erogeneous locations are likely to be declared homogeneous. The IM approach is a 
more liberal alternative with a higher proportion of rejected locations that may con-
tain some homogeneous ones. In subsequent analyses, the selected pooling region 
typically results in a classical bias-variance trade-off: the larger the pooling region, 
the smaller the variance. At the same time, the bias may be larger, given that some 
heterogeneous regions may have been declared homogeneous. In practice, the tests 
should always be complemented by expert knowledge on the driving meteorological/
climatological background processes.

To make the statistical approach to select homogeneous pooling regions for attri-
bution studies as described here usable for the extreme event attribution community, 
we have developed a software package that can be freely downloaded and used by 
applied researchers (Zanger 2022). The selection of spatial pooling regions for attri-
bution studies may hence be based on a combination of expert knowledge and thor-
ough statistical tests. The experts applying the methods can thereby decide between 
a conservative approach, which tends to reject more locations and a liberal approach 
which tends to accept more locations as being homogeneous. This decision depends 
on the a priori knowledge about the meteorology of the analysed area and the spe-
cific requirements of the study.

If the ultimate interest is estimation of, for example, return levels, one may, as an 
alternative to the classical approach based on pooling selected locations, consider 
penalized maximum likelihood estimators with a penalty on large heterogeneities 

�d(t) = �d + �dGMST�(t), �d(t) ≡ �d, �d(t) ≡ �d.

H0 ∶ ∃� ∈ ℝ × (0,∞) ×ℝ
2 ∀d ∈ {1,… ,D} ∶ �d = �,
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(Bücher et al. 2021). A detailed investigation of the resulting bias-variance trade-off 
would be a worthwhile topic for future research.
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