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Abstract
Consider a stationary Poisson process in a d-dimensional hyperbolic space. For R > 0 
define the point process �(k)

R
 of exceedance heights over a suitable threshold of the 

hyperbolic volumes of kth nearest neighbour balls centred around the points of the 
Poisson process within a hyperbolic ball of radius R centred at a fixed point. The point 
process �(k)

R
 is compared to an inhomogeneous Poisson process on the real line with 

intensity function e−u and point process convergence in the Kantorovich-Rubinstein 
distance is shown. From this, a quantitative limit theorem for the hyperbolic maximum 
kth nearest neighbour ball with a limiting Gumbel distribution is derived.

Keywords  Geometric extreme value theory · Hyperbolic stochastic geometry · 
Nearest neighbour balls · Poisson process approximation

AMS 2000 Subject Classifications  Primary—52A55 · Secondary—60D05, 60G55

1 � Introduction

The study of extreme values, or more generally processes of exceedance heights 
and associated order statistics, is a classical topic in probability theory. A system-
atic study of extreme values for random geometric systems is more recent and we 
refer, for example, to (Bonnet and Chenavier  2020; Calka and Chenavier  2014; 
Chenavier and Hemsley 2016; Chenavier and Robert 2018) for particular results 
on the Poisson-Voronoi, -Delaunay or -line tessellation, to (Jammalamadaka and 
Janson  2015; Schrempp  2019) for distinguished results on random interpoint 
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distances, and to (Bobrowski et  al.  2021; Decreusefond et  al.  2016; Pianoforte 
and Schulte  2021, 2022; Schulte and Thäle  2012, 2016) for general approaches 
leading to various other stochastic-geometric applications. A systematic study of 
random processes of exceedance heights in stochastic geometry is the content of 
(Bobrowski et al. 2021; Decreusefond et al. 2016; Otto 2020).

In this paper we are interested in quantitative limit theorems for so-called large 
kth nearest neighbour balls, another classical stochastic geometry model whose 
investigation goes back to Henze (1982) and which has recently been studied in 
Bobrowski et  al. (2021); Chenavier et  al. (2022); Györfi et  al. (2019). In particu-
lar, nearest neighbour balls (that is, kth nearest neighbour balls with k = 1 ) can be 
regarded as spatial analogues of the concept of spacings in dimension one. In its 
simplest form the model can be described as follows: Take a sequence (Xi)i∈ℕ of 
independent random points which are uniformly distributed on the d-dimensional 
unit cube [0, 1]d ⊂ ℝ

d . For n ≥ 1 , k ∈ {1,… , n} and i ∈ {1,… , n} let r(i, n) be the 
distance of Xi to its kth nearest neighbour among the points X1,… ,Xn , where the 
distance is understood in the Euclidean sense. Then for t ∈ ℝ define the random 
variable

where Hd
e
 stands for the d-dimensional Hausdorff measure and Be(Xi, r(i, n)) for 

the d-dimensional ball of radius r(i, n) centred at Xi with respect to the Euclidean 
structure on ℝd . In other words, Cn counts the number of exceedances of volumes 
of kth nearest neighbour balls that are larger than the threshold (t + log n)∕n . It 
follows from the results in (Bobrowski et  al.  2021; Chenavier et  al.  2022; Györfi 
et  al.  2019) that, after suitable normalization, Cn converges in distribution, as 
n → ∞ , to a Poisson random variable with mean e−t . Moreover, the rate of con-
vergence, measured in the total variation distance, is of order (log log n)∕ log n . 
This result immediately leads to a limit theorem for the maximum volume 
Mn ∶= max{Hd

e
(Be(Xi, r(i, n))) ∶ 1 ≤ i ≤ n} of the kth nearest neighbour balls, 

which says that nMn converges, after suitable centring, to a Gumbel distribution, 
as n → ∞ . A similar result holds if the sample of n independent random points is 
replaced by a homogeneous Poisson process in [0, 1]d with intensity n.

While the results and references just mentioned deal with kth nearest neigh-
bour balls in a d-dimensional Euclidean space, we follow another line of cur-
rent research in stochastic geometry and introduce and study a similar model in 
a d-dimensional hyperbolic space ℍd of constant negative curvature −1 . Random 
geometric systems in such a non-Euclidean set-up have so far been studied in the 
context of random polytopes (Besau et al. 2021; Besau and Thäle 2020; Godland 
et  al.  2022), random graphs (Bode et  al.  2015; Fountoulakis and Müller  2018; 
Fountoulakis et  al.  2021; Owada and Yogeshwaran  2022+) and tessellations 
(Godland et  al.  2022; Isokawa  2000). However, the study of extreme values in 
hyperbolic stochastic geometry has so far left no trace in the existing literature. 
The present paper can be understood as a first attempt in this direction. Moreover, 

Cn ∶=

n∑

i=1

1

{
H

d
e
(Be(Xi, r(i, n))) ≥ t + log n

n

}
,
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since the results for kth nearest neighbour balls in Euclidean space have found 
applications in goodness-of-fit testing for point processes (Henze  1982, 1983), 
our contributions can also be of interest for similar studies in hyperbolic space.

In principle it is possible to rephrase the Euclidean model of large kth nearest 
neighbour balls in a hyperbolic space, where the cube (which does not exist in 
hyperbolic geometry) is replaced by a hyperbolic ball of radius one, say. However, 
in this case, one can localize the problem and work with approximations in the 
corresponding tangent spaces. Within these tangent spaces the model is Euclidean 
again and we get back a result similar to that in Bobrowski et al. (2021); Chenavier 
et  al. (2022); Györfi et  al. (2019). For this reason, we modify the set-up as fol-
lows: We start with a stationary Poisson process in ℍd and look at large kth nearest 
neighbour balls associated with points in a family of hyperbolic balls of radius 
R → ∞ . Up to a rescaling, in a Euclidean space this set-up is the same as fixing 
the radius of the ball and increasing the intensity of the Poisson process (or equiv-
alently the number of points). However, this is no more the case in a hyperbolic 
space. Even more, since the problem in this form cannot locally be approximated 
by Euclidean models in tangent spaces, we will arrive at results which are of a dif-
ferent nature and ‘feel’ the negative curvature of the underlying space.

In the next section we formally describe the framework we work with and pre-
sent our results.

2 � Set‑up and results

Fix a dimension parameter d ∈ ℕ and consider a d-dimensional hyperbolic space 
ℍ

d together with the intrinsic (Riemannian) metric dh and the corresponding 
d-dimensional Hausdorff measure Hd . Although all our results are independent 
of a concrete model for ℍd (as can be seen from the fact that non of our arguments 
or computations rely on a specific model), for concreteness one may consider the 
Beltrami-Klein model in which ℍd is identified with the open Euclidean unit ball 
�
d and the Riemannian metric is given by

see (Cannon et al. 1997; Ratcliffe 2019) for details and further models for ℍd . While 
in this model hyperbolic hyperplanes are non-empty intersections of Euclidean 
hyperplanes with �d , hyperbolic balls are represented by Euclidean ellipsoids, see 
Fig. 1. For z ∈ ℍ

d and r > 0 let B(z, r) ∶= {x ∈ ℍ
d ∶ dh(x, z) ≤ r} denote the closed 

hyperbolic ball of radius r centred at z. We abbreviate Br ∶= B(p, r) , where p ∈ ℍ
d 

is some arbitrary fixed point, referred to as the origin of ℍd.
Let � be a Poisson process in ℍd , d ≥ 2 , with intensity measure Hd . We note 

that � is stationary in the sense that its distribution is invariant under all iso-
metries of the hyperbolic space. For R > 0 and k ∈ ℕ let

ds2 =
dx2

1
+…+ dx2

d

1 − x2
1
−…− x2

d

+
(x1dx1 +…+ xddxd)

2

(1 − x2
1
−…− x2

d
)2

,
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where �d =
2�d∕2

Γ(
d

2
)
 is the surface area of the (d − 1)-dimensional Euclidean unit 

sphere. For x ∈ ℍ
d , k ∈ ℕ and a general, locally finite and simple counting measure 

� on ℍd let r(x, k,�) denote the hyperbolic distance to the kth nearest neighbour of x 
in � . In the focus of our results is the point process

on the real line ℝ . This process describes the exceedance heights over the threshold 
vk(R) of the volumes of kth nearest neighbour balls centred around the points of � 
within a ball BR of radius R, see Fig. 1. We give a brief heuristic argument which 
explains at least for k = 1 that vk(R) given in (2.1) is the correct threshold to expect 
Poisson approximation for �(k)

R
 . Given some point of the Poisson process � , the prob-

ability that the hyperbolic ball of volume v1(R) + c around this point does not con-
tain any further points of � is exp(−v1(R) + c) . Assuming that all such balls around 
all points of � ∩ BR behave asymptotically independently (which is, of course, not 
true and requires justification), the probability ℙ[E(R)] of the event E(R) that in 
� ∩ BR there is no 1-nearest neighbour ball of radius larger than v1(R) + c should be 
approximately equal to exp(−Hd(BR) exp(−v1(R) − c)) , where Hd(BR) is for large R 
approximately the number of points of � ∩ BR . Using that Hd(BR) exp(−v1(R)) → 1 
as R → ∞ (see (3.3)) we obtain from the classical Poisson limit theorem that ℙ[E(R)] 
converges to the Gumbel limit exp(−e−c) as R → ∞.

(2.1)

vk(R) ∶= R (d − 1) + (k − 1) log(R (d − 1)) − log

(
(k − 1)!2d−1(d − 1)

�d

)
,

(2.2)𝜉
(k)

R
∶=

∑

x∈𝜂∩BR

𝛿
H

d(Br(x,k,𝜂−𝛿x )
)−vk(R)

, R > 0,

Fig. 1   Construction of nearest 
neighbour balls ( k = 1 ) in the 
Beltrami-Klein model for the 
hyperbolic plane. The ball BR 
is shown in black with a white 
centre, the black points are 
points from � together with their 
nearest neighbour balls. The 
area of the two blue balls exceed 
the value v

1
(R)
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Our main results quantify on the positive real half-axis ℝ+ the approximation of �(k)
R

 
by a suitable Poisson process, where we distinguish the cases k = 1 and k ≥ 2 . The dis-
tance is thereby measured by means of the so-called Kantorovich-Rubinstein distance 
which for two finite simple counting measures �1 and �2 on ℍd is given by

where the supremum is taken over all measurable 1-Lipschitz functions with respect 
to the total variation distance on the space of finite simple counting measures on ℍd.

Theorem 1  Let � be an inhomogeneous Poisson process on ℝ with intensity measure 
�� given by 𝔼�((u,∞)) = e−u, u ∈ ℝ . Let c ∈ ℝ . 

	 (i)	 Suppose that k = 1 . Then there are constants C1,d,R1,d > 0 only depending on 
d and c such that for all R ≥ R1,d , 

	 (ii)	 Suppose that k ≥ 2 . Then there are constants Ck,d,Rk,d > 0 only depending on 
d, k and on c such that for all R ≥ Rk,d , 

In particular, for any k ∈ ℕ the point process �(k)
R

 converges in distribution to the 
Poisson process � , as R → ∞.

Remark 2 

	 (i)	 As a generalization of Theorem 1, one can prove that the marked point processes 

 restricted to some interval (c,∞) converge to a Poisson process on the prod-
uct space ℍd ×ℝ , as R → ∞.

	 (ii)	 The distinction between k = 1 and k ≥ 2 and the qualitatively different results 
in these cases reflect, in a sense, the growth of vk(R) − R(d − 1) . While 
v1(R) − R(d − 1) is constant in R > 0 , we find that vk(R) − R(d − 1) grows 
logarithmically in R for k ≥ 2.

	 (iii)	 We leave it as an open problem to decide whether (or not) the bounds in Theo-
rem 1 are optimal. However, we remark at this point that the bound in Theo-
rem 1 for k ≥ 2 are in accordance with the bounds of the analogous problem in 
a Euclidean space (see (Bobrowski et al. 2021, Theorem 6.4) and (Chenavier 
et al. 2022, Theorem 1.2)). Indeed, note that by Lemma 1 the statement of 
Theorem 1(ii) is equivalent to 

�
��

(�1,�2) ∶= sup
h

(
�[h(�1)] − �[h(�2)]

)
,

d
KR

(�
(1)

R
∩ (c,∞), � ∩ (c,∞)) ≤

{
C1,d Re

−R(d−1)∕2 ∶ d ≤ 5

C1,d e
−2R ∶ d ≥ 6.

d
KR

(�
(k)

R
∩ (c,∞), � ∩ (c,∞)) ≤ Ck,d

logR

R
.

∑

x∈𝜂∩BR

𝛿(x,Hd(Br(x,k,𝜂−𝛿x )
)−vk(R))

, R > 0,
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 with some positive constants C̃k,d depending on c, k and d.
	 (iv)	 If we replace v1(R) in (2.1) by ṽ1(R) ∶= logHd(BR) , then the bound in Theo-

rem 1(i) can be improved to 

 or equivalently, 

 for all d ≥ 2 , where C̃1,d, Ĉ1,d, R̃1,d ∈ (0,∞) are constants only depending on 
c and d. In this form, the bound is in accordance with Bobrowski et al. (2021) 
if in the proof of Theorem 6.4 therein one systematically exploits that k = 1
1. We note that the numerically much more tractable expression v1(R) in (2.1) 
can be regarded as a first-order approximation of ṽ1(R) . It is the error in this 
approximation, which makes the case distinction in Theorem 1(i) unavoid-
able. We decided to work with vk(R) as given by (2.1) in order to ease com-
parison with the Euclidean case.

The following extreme value statement for the distribution of the maximum vol-
ume of kth nearest neighbour balls in � ∩ BR is a direct consequence of Theorem 1. 
It can be understood as the hyperbolic analogue to results for the asymptotic distri-
bution of maximum kth nearest neighbour balls in Euclidean space, see Bobrowski 
et al. (2021), Section 6.2, and Chenavier et al. (2022) for general k ∈ ℕ as well as 
Györfi et al. (2019) for an elementary proof in the special case k = 1.

Corollary 3  Let k ∈ ℕ , c ∈ ℝ and denote by Ck,d,Rk,d > 0 the constants appearing in 
Theorem 1. 

	 (i)	 Suppose that k = 1 . Then for all R ≥ R1 we have that 

	 (ii)	 Suppose that k ≥ 2 . Then for all R ≥ Rk we have that 

�
��

(𝜉
(k)

R
∩ (c,∞), 𝜁 ∩ (c,∞)) ≤ C̃k,d

log logHd(BR)

logHd(BR)
, R > Rk,d,

�
��

(𝜉
(1)

R
∩ (c,∞), 𝜁 ∩ (c,∞)) ≤ C̃1,d Re

−R(d−1)∕2, R > R̃1,d,

�
��

(𝜉
(1)

R
∩ (c,∞), 𝜁 ∩ (c,∞)) ≤ Ĉ1,d

logHd(BR)

H
d(BR)

1∕2
, R > R̃1,d,

|||ℙ
(

max
x∈�∩BR

H
d(Br(x,1,�−�x)

) − v1(R) ≤ c
)
− exp(−e−c)

|||≤
{

C1,d Re
−R(d−1)∕2 ∶ d ≤ 5

C1,d e
−2R ∶ d ≥ 6.

1  In fact, in (Bobrowski et al. 2021, Equation (6.12)) the integral term vanishes and the two remaining 
terms decay exponentially in n. The bounds E1 ≤ c1n

−1 and E2 ≤ c2n
−1 log n remain unchanged, while 

E3,1 = 0 and E3,2 ≤ c3n
−1∕2 log n in the terminology of Bobrowski et al. (2021). This eventually yields a 

bound of order n−1∕2 log n for the Kantorovich-Rubinstein distance.
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In particular, for any k ∈ ℕ the random variable maxx∈�∩BR
H

d(Br(x,k,�−�x)
) − vk(R) 

converges in distribution to a Gumbel distribution, as R → ∞.

Proof  In view of the inequality

the claim follows directly from Theorem 1.

The remaining parts of this paper are structured as follows. In Section 3 we provide 
some necessary background material from hyperbolic geometry and prove some auxil-
iary geometric estimates. We also rephrase there a general bound for quantitative Pois-
son approximation from Bobrowski et al. (2021) on which the proof of Theorem 1 is 
based. The latter is provided in Section 4.

3 � Preliminaries

3.1 � Hyperbolic geometry

In this section we collect some preliminary materials from hyperbolic geometry, which 
are relevant in our context, and refer to the monograph Ratcliffe (2019) and the survey 
article Cannon et al. (1997) for further information. We recall that B(z, r) stands for a 
d-dimensional geodesic ball of radius r > 0 centred at z ∈ ℍ

d . If z = p we simply write 
Br for B(p, r). The volume of Br is given by

where we recall that �d is the surface area of the (d − 1)-dimensional Euclidean unit 
sphere, see (Ratcliffe 2019, Eq. (3.26)). Identity (3.1) is a consequence of the polar 
integration formula in hyperbolic geometry (Chavel 1993, pp. 123-125), which says 
that

where �d−1
p

 is the (d − 1)-dimensional unit sphere in the tangent space Tp at p, �p the 
normalized spherical Lebesgue measure on �d−1

p
⊂ Tp and expp(uv) stands for the 

point in ℍd arising by applying the exponential map expp ∶ Tp → ℍ
d to the point 

uv ∈ Tp . In particular, we have the following bounds for Hd(Br).

|||ℙ
(

max
x∈�∩BR

H
d(Br(x,k,�−�x)

) − vk(R) ≤ c
)
− exp(−e−c)

|||≤ Ck,d

logR

R
.

|ℙ(�(k)
R

∩ (c,∞) = �) − ℙ(� ∩ (c,∞) = �)| ≤ �
��

(�
(k)

R
∩ (c,∞), � ∩ (c,∞)),

(3.1)H
d(Br) = �d ∫

r

0

sinhd−1(u) du,

(3.2)∫
ℍd

f (x)Hd(dx) = �d ∫
𝕊d−1
p

∫
∞

0

sinhd−1(u) f (expp(uv)) du�p(dv),
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Lemma 4  Let d ≥ 2 . Then there are constants Γd, 𝛾d > 0 only depending on d such 
that �der(d−1) ≤ H

d(Br) ≤ Γde
r(d−1) for all r ≥ 2.

Proof  It is elementary to check that sinh(u) ≥ u for any u ≥ 0 and that sinh(u) ≥ eu∕3 
for u ≥ 1 . Since d ≥ 2 we conclude that

with the choice �d =
�d

2(d−1)3d−1
 , where for the last inequality we used that r ≥ 2 . On 

the other hand, sinh(u) ≤ eu∕2 for all u ≥ 0 and we obtain

with Γd =
�d

(d−1)2d−1
.

The following lemma is an essential ingredient of the proof of Theorem 1. It pro-
vides a bound for the volume of the difference of two nearby hyperbolic balls with 
the same radius.

Lemma 5  Let x, z ∈ ℍ
d and 0 < s ∶= dh(x, z) ≤ r with r − s∕2 ≥ 2 . 

	 (i)	 It holds that 

 where �1, �2 ∈ (0,∞) are constants only depending on d.
	 (ii)	 For s > 0 we have 

Proof  We start by observing that the boundary of the intersection B(z, r) ∩ B(x, r) is a 
(d − 2)-dimensional sphere of radius r ∶= arcosh

(
cosh(r)

cosh(s∕2)

)
 according to Ratcliffe 

(2019), Theorem 3.5.3]. Let Br(z, x) be the corresponding (d − 1)-dimensional ball. For 
each y ∈ Br(z, x) let L(y) be the hyperbolic line through y which is orthogonal to the hyper-
bolic hyperplane containing Br(z, x) . By construction, the set (B(z, r) ⧵ B(x, r)) ∩ L(y) is a 
hyperbolic segment of length r − (r − s) = s and it follows that

H
d(Br) ≥ �d �

1

0

ud−1 du +
�d

3d−1 �
r

1

e(d−1)u du

=
�d

d
+

�d

(d − 1)3d−1
(er(d−1) − ed−1)

≥ �d

(d − 1)3d−1
(er(d−1) − ed−1)

≥ �de
r(d−1)

H
d(Br) ≤ �d

2d−1 �
r

0

e(d−1)u du ≤ Γde
r(d−1)

�1se
(d−1)(r−s∕2) ≤ H

d(B(z, r) ⧵ B(x, r)) ≤ �2se
(d−1)r,

(3.3)�d

[
es(d−1)

(d − 1)2d−1
−

(d − 1)es(d−3)

(d − 3)2d−1

]
≤ H

d(Bs) ≤ �d

es(d−1)

(d − 1)2d−1
.
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see Fig. 2, where m stands for the centre of Br(z, x) and dh(L(y),m) for the hyperbolic 
distance from L(y) to m.

To derive a lower bound for the integral we use that r ≥ r − s∕2 according to 
Herold et al. (2021), Lemma 6 and our assumption. Using the polar integration for-
mula (3.2) within the hyperbolic hyperplane containing Br(x, z) this leads to

which implies the asserted lower bound for d = 2 , since cosh(t) is the deriva-
tive of sinh(t) and sinh(t) ≥ et−3 for t ≥ 2 . For d ≥ 3 we use now additionally that 
cosh(t) ≥ et∕2 for all t ≥ 0 and that sinh(t) ≥ t for all 0 ≤ t ≤ 2 . This gives

H
d(B(z, r) ⧵ B(x, r)) ≥ �Br(z,x)

H
1((B(z, r) ⧵ B(x, r)) ∩ L(y)) cosh(dh(L(y),m))H

d−1(dy)

= s�Br(z,x)

cosh(dh(L(y),m))H
d−1(dy),

∫Br(z,x)

cosh(dh(L(y),m))H
d−1(dy) = �d−1 ∫

r−s∕2

0

cosh(t) sinhd−2(t) dt,

H
d(B(z, r) ⧵ B(x, r)) ≥ s�d−1

(
�

r−s∕2

2

cosh(t) sinhd−2(t) dt + �
2

0

cosh(t) sinhd−2(t) dt
)

≥ s�d−1

2

(
e−3(d−2) �

r−s∕2

2

e(d−1)t dt + �
2

0

td−2 dt
)

=
s�d−1

2(d − 1)

(
e(d−1)(r−s∕2)

e3(d−2)
− e−d+4 + 2d−1

)

≥ �1se
(d−1)(r−s∕2),

Fig. 2   Illustration in the 
Beltrami-Klein model for the 
hyperbolic plane of the argument 
used in the proof of Lemma 5. 
Shown are the two balls B(x, r) 
and B(z, r) with dh(x, z) < r , 
as well as two perpendiculars 
through points of Br(z, x)
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where we used the fact that 2d−1 − e−d+4 > 0 for d ≥ 3.
To obtain an upper bound, let B̃r(z, x) be the (d − 1)-dimensional ball with radius 

r that is contained in the hyperbolic hyperplane through Br(z, x) . We use the polar 
integration formula (3.2) in the hyperbolic hyperplane containing Br(z, x) and obtain

where we additionally applied the inequalities cosh(t) ≤ et and sinh(t) ≤ et∕2 for all 
t ≥ 0 . We thus conclude the proof of part (i). The inequalities in (ii) follow from 
(3.1) and the fact that sinh(t) = et−e−t

2
 for t ∈ ℝ.

3.2 � Poisson approximation

In this section we rephrase a special case of Bobrowski et  al. (2021),  Theorem  4.1 
which we will use to prove Theorem 1. We work with a Polish space � and denote by 
N

�
 the space of locally finite, simple counting measures on � . As usual, we identify 

each element in N
�
 with its support. Let f ∶ 𝕏 × N

𝕏
→ ℝ and g ∶ � × N

�
→ {0, 1} 

be a measurable functions and define for � ∈ N
�
 the random point process

whose intensity measure is denoted by ��[�]( ⋅ ) . Let F  denote the system of closed 
sets in � endowed with the Fell topology, see (Last and Penrose 2017, p. 256). To 
each point x ∈ � we associate in a measurable way a stopping set S(x, ⋅ ) ∶ N

�
→ F  

as well as a closed set Sx ⊂ � with x ∈ Sx , where we recall that the stopping prop-
erty of S(x, ⋅ ) means that {𝜇 ∈ N

�
∶ S(x,𝜇) ⊆ K} = {𝜇 ∈ N

�
∶ S(x,𝜇 ∩ K) ⊆ K} 

for all compact K ⊆ � . It is assumed that f and g are localized in the sense that for 
S(x,𝜇) ⊂ Sx,

To rephrase the result from Bobrowski et al. (2021) we need the total variation dis-
tance �

��
(�1, �2) between two measures �1, �2 on � , which is defined as

H
d(B(z, r) ⧵ B(x, r)) ≤ s�B̃r(z,x)

cosh(dh(L(y),m))H
d−1(dy)

= s𝜔d−1 �
r

0

cosh(t) sinhd−2(t) dt

≤ s𝜔d−1

2d−2 �
r

0

e(d−1)t dt

=
s𝜔d−1

(d − 1)2d−2
(e(d−1)r − 1)

≤ 𝛼2se
(d−1)r,

(3.4)�[�] ∶=
∑

x∈�

g(x,�)�f (x,�),

g(x,�) = g(x,� ∩ Sx)

f (x,�) = f (x,� ∩ Sx) if g(x,�) = 1.
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where the supremum runs over all Borel subsets B of � satisfying 𝜈1(B), 𝜈2(B) < ∞ . 
Now, let � be a Poisson process on � with intensity measure ��( ⋅ ) , and define the 
quantities

where �(⋅) denotes the Dirac measure. Assuming finally that 𝔼𝜉[𝜂](ℝ) < ∞ , 
(Bobrowski et al. 2021, Theorem 4.1) says that the Kantorovich-Rubinstein distance 
�
��

(�[�], �) between �[�] and a Poisson process � on ℝ with finite intensity measure 
��( ⋅ ) can be estimated from above by

We refer to (Bobrowski et al. 2021; Decreusefond et al. 2016) for a a dual formu-
lation as well as more details on the Kantorovich-Rubinstein distance between ran-
dom points measures. Let us also remark that if in (3.5) the Kantorovich-Rubinstein 
distance is replaced by the total variation distance, the result without the factor 2 on 
the right-hand side can be found in Barbour and Brown (1992).

4 � Proof of Theorem 1

Our goal is to apply the Poisson approximation bound (3.5). To this end, we need to 
specify � , � , the functions f and g as well as the sets S(x, ⋅ ) and Sx . For the space � 
we take the d-dimensional hyperbolic space ℍd and for � a Poisson process on ℍd with 
intensity measure Hd . To ensure finiteness of the involved intensity measures we fix 
some arbitrary c ∈ ℝ and define the two functions g, f ∶ ℍ

d × N
ℍd → ℝ by

where we recall that r(x, k,�) denotes the distance to the kth nearest neighbour 
of a point x in the support of a simple counting measure � . Then the point pro-
cess of exceedances (2.2) restricted to the interval (c,∞) has the same distribu-
tion as �[�] in (3.4) using the functions f and g as just defined. Next, for x ∈ ℍ

d let 
S(x,�) ∶= B(x, r(x, k,�)) and Sx ∶= B(x, rc� ) be the closed ball with centre at x and 
H

d-measure c� + vk(R) > 0 for some c� > max(c, 0) to be specified below. We empha-
size that this choice implicitly determines the radius rc′ via (3.1). By construction, the 
functions f and g are localized to the sets S(x,�).

�
��

(�1, �2) ∶= sup
B

|�1(B) − �2(B)|,

E1 ∶= �
�

�[g(x, 𝜂 + 𝛿x)1{S(x, 𝜂) ⊄ Sx}]�𝜂(dx),

E2 ∶= �
�
�
�

1{Sx ∩ Sz ≠ ∅}�[g(x, 𝜂 + 𝛿x)]�[g(z, 𝜂 + 𝛿z)]�𝜂(dz)�𝜂(dx),

E3 ∶= �
�
�
�

1{Sx ∩ Sz ≠ ∅}�[g(x, 𝜂 + 𝛿x + 𝛿z)g(z, 𝜂 + 𝛿x + 𝛿z)]�𝜂(dz)�𝜂(dx),

(3.5)�
��

(�[�], �) ≤ �
��

(��[�],��) + 2(E1 + E2 + E3).

g(x,𝜇) ∶= 1{x ∈ BR}1{H
d(Br(x,k,𝜇)) − vk(R) > c},

f (x,𝜇) ∶= H
d(Br(x,k,𝜇)) − vk(R),
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Taking s ∶= rc� in Lemma 5(ii) we obtain

Finally, we let � be an inhomogeneous Poisson process on ℝ with intensity meas-
ure ��((u,∞)) = e−u , u > c , as in the statement of Theorem 1. We can now apply 
(3.5) to conclude that for all R > 0,

where the error terms E1 , E2 and E3 are given by

The remaining parts of the proof bound individually the four terms on the right 
hand side of (4.2).

Bounding the total variation distance. In a first step we investigate the inten-
sity measure of �(k)

R
 . Let rc > 0 be such that Hd(Brc

) = vk(R) + c and note that 
H

d(Br(x,k,𝜇)) > vk(R) + c if and only if �(B(x, rc)) ≤ k − 1 . From the Mecke equation 
for Poisson processes Last and Penrose (2017), Theorem 4.1 we obtain that for all 
u > c,

Since the distribution of � is invariant under hyperbolic isometries and 
H

d(Br(x,k,𝜂)) > u + vk(R) if and only if there are at most k − 1 points of � in a ball 
with Hd-measure u + vk(R) around x, the expression is equal to

(4.1)
log(c� + vk(R)) ≤ rc� (d − 1) + log

(
�d

(d − 1)2d−1

)

≤ log

(
(d − 3)e2r

�
c

(d − 3)e2r
�
c − (d − 1)2

)
+ log(c� + vk(R)).

(4.2)
�
��

(�
(k)

R
∩ (c,∞), � ∩ (c,∞)) ≤ �

��
(��

(k)

R
∩ (c,∞),�� ∩ (c,∞)) + 2(E1 + E2 + E3),

E1 ∶= �
ℍd

1{x ∈ BR}ℙ[H
d(Br(x,k,𝜂)) > c + vk(R), r(x, k, 𝜂) > rc� ]H

d(dx),

E2 ∶= �
ℍd �ℍd

1{x, z ∈ BR,B(x, rc� ) ∩ B(z, rc� ) ≠ �}

× ℙ[Hd(Br(x,k,𝜂)) > c + vk(R)]ℙ[H
d(Br(z,k,𝜂)) > c + vk(R)]H

d(dz)Hd(dx),

E3 ∶= �
ℍd �ℍd

1{x, z ∈ BR,B(x, rc� ) ∩ B(z, rc� ) ≠ �}

× ℙ[Hd(Br(x,k,𝜂+𝛿z)
) > c + vk(R), H

d(Br(z,k,𝜂+𝛿x)
) > c + vk(R)]H

d(dz)Hd(dx).

𝔼𝜉
(k)

R
((u,∞)) = ∫

ℍd

1{x ∈ BR}ℙ[H
d(Br(x,k,𝜂)) > u + vk(R)]H

d(dx).

H
d(BR)e

−u−vk(R)

k−1∑

�=0

(u + vk(R))
�

�!

= e−uHd(BR)
(k − 1)!2d−1(d − 1)e−R(d−1)

�d(R(d − 1))k−1

k−1∑

�=0

(
u + vk(R)

)�

�!
,
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where we used the definition (2.1) of vk(R) and the Poisson property of � . Hence, the 
Lebesgue density � of ��(k)

R
∩ (c,∞) is given by

Now, (3.3) gives for R > 0 large enough

for constants 𝛽1, 𝛽2, 𝛽3 > 0 only depending on k and d.
Bounding E1 . Note that r(x, k, 𝜂) > rc� if and only if Hd(Br(x,k,𝜂)) > c� + vk(R) . 

Hence, we find from (3.3) similarly to the estimate leading to (4.3) that for all 
c� > max(c, 0),

where the constant 𝛽4 > 0 depends only on k.
Bounding E2 . Since B(x, rc) ∩ B(z, rc) ≠ � if and only if the hyperbolic distance 

of x and z is at most 2rc , we obtain from the invariance of � under hyperbolic iso-
metries that E2 is bounded by

From (4.1) we have for R > 0 large enough that

for some constant 𝛽5 > 0 only depending on d. Hence, using the definition of vk(R) , 
there is another constant 𝛽6 > 0 only depending on d such that for all R > 0,

𝜚(u) = e−uHd(BR)
2d−1(d − 1)e−R(d−1)(u + vk(R))

k−1

𝜔d(R(d − 1))k−1
, u > c.

(4.3)

dTV(��
(k)

R
∩ (c,∞),�� ∩ (c,∞)) ≤ �

∞

c

|�(u) − e
−u| du

= �
∞

c

|||e
−u
H

d(BR)
2d−1(d − 1)e−R(d−1)(u + vk(R))

k−1

�d(R(d − 1))k−1
− e

−u||| du

≤ e
−c
[
(1 + �1e

−2R)

(
1 +

c + �2 logR

R(d − 1)

)k−1

− 1
]

≤
{

�1e
−c
e
−2R ∶ k = 1

�3e
−c(c + �2 logR)R

−1 ∶ k ≥ 2

(4.4)E1 = ��
(k)

R
∩ (c�,∞) ≤

{
(1 + �1e

−2R)e−c
�

∶ k = 1

�4e
−c�

(
c�+vk(R)

R(d−1)

)k−1

∶ k ≥ 2

𝔼𝜉
(k)

R
((c,∞))ℙ[Hd(Br(p,k,𝜂)) > c + vk(R)]�

ℍd

1{B(p, rc� ) ∩ B(z, rc� ) ≠ �}Hd(dz)

≤ (𝔼𝜉
(k)

R
((c,∞)))2

H
d(B2rc�

)

H
d(BR)

.

(4.5)rc� ≤ 1

d − 1
log(c� + vk(R)) + �5

(4.6)E2 ≤ �6(c
� + R)2e−R(d−1).
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Bounding E3 . First we consider the case k = 1 . Note that (� − �x)(B(x, rc)) = 0 and 
(� − �z)(B(z, rc)) = 0 implies for x, z ∈ � that dh(z, x) ≥ rc . Hence, we obtain for E3 
the upper bound

Let z ∈ ℍ
d ⧵ B(p, rc) and observe that Hd(B(z, rc) ⧵ B(p, rc)) ≥ H

d(Brc
)∕2 . Thus,

This gives for (4.7) the bound

for some constant 𝛽7 > 0 only depending on d.
Next we consider the case k ≥ 2 and let a ∈ (0, 1] , its precise value will be speci-

fied later. In order to bound E3 we distinguish the situations that z ∈ B(x, arc� ) 
and z ∉ B(x, arc� ) . In the first case we have that Hd(Br(x,k,𝜂+𝛿z)

) > vk(R) + c and 
H

d(Br(z,k,𝜂+𝛿x)
) > vk(R) + c if and only if �(B(x, rc)) ≤ k − 2 and �(B(z, rc)) ≤ k − 2 . 

This allows us to bound E3 by

By invariance of � under hyperbolic isometries, the first term (4.9) is equal to

where we applied the polar integration formula (3.2) with z ∶= expp(sv) for some 
arbitrary v ∈ �

d−1
p

 in (4.11). Note that we always have that 2(rc − 2) > rc ≥ s if 

(4.7)

E3 ≤�
ℍd �ℍd

1{z ∈ BR, x ∈ BR ∩ B(z, 2rc� ) ⧵ B(z, rc)}ℙ[�(B(z, rc)) = 0]

× ℙ[�(B(z, rc) ⧵ B(x, rc)) = 0]Hd(dz)Hd(dx)

≤ 𝔼�
(1)

R
((c,∞))�

ℍd

1{x ∈ B(p, 2rc� ) ⧵ B(p, rc)}ℙ[�(B(z, rc) ⧵ B(x, rc)) = 0]Hd(dx).

ℙ[�(B(z, rc) ⧵ B(x, rc)) = 0] = exp(−Hd(B(z, rc) ⧵ B(x, rc))) ≤ exp(−Hd(Brc
)∕2).

(4.8)��
(1)

R
((c,∞))Hd(B2rc�

)e−R(d−1)∕2 ≤ �7e
2(d−1)rc� e−R(d−1)∕2

(4.9)�
ℍd �ℍd

1{x ∈ BR, z ∈ BR ∩ B(x, arc� )}ℙ[�(B(x, rc)) ≤ k − 2]

× ℙ[�(B(z, rc) ⧵ B(x, rc)) ≤ k − 2]Hd(dz)Hd(dx)

(4.10)

+ �
ℍd �ℍd

1{x ∈ BR, z ∈ BR ∩ (B(x, 2rc� ) ⧵ B(x, arc� ))}ℙ[�(B(x, rc)) ≤ k − 1]

× ℙ[�(B(z, rc) ⧵ B(x, rc)) ≤ k − 1]Hd(dz)Hd(dx).

(4.11)

𝔼�
(k)

R
((c,∞))

ℙ[�(Brc
) ≤ k − 2]

ℙ[�(Brc
) ≤ k − 1] �ℍd

1{z ∈ Barc�
}ℙ[�(B(z, rc) ⧵ Brc

) ≤ k − 2]Hd(dz)

= �d𝔼�
(k)

R
((c,∞))

ℙ[�(Brc
) ≤ k − 2]

ℙ[�(Brc
) ≤ k − 1]

×

k−2∑

�=0
�

arc�

0

sinhd−1(s) exp
(
−Hd(B(z, rc) ⧵ Brc

)
) (Hd(B(z, rc) ⧵ Brc

))�

�!
ds,
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rc ≥ 5 , which can be achieved by choosing the parameter R large enough. Thus, for 
such R we find by Lemmas 4 and 5(i) that

which takes the maximum value �8e
−(d−1)

2rc−a(k−1)rc�

2  for � = k − 2 , where 𝛽8 > 0 is a 
constant only depending on d.

Next, we recall that for a general Poisson random variable X with mean 𝜆 > 0 and 
any bounded function h ∶ {0, 1,…} → ℝ one has that

in fact, this is the famous Chen-Stein characterization of the Poisson distribution. In 
particular, applying this to the function h(n) = 1{n ≤ k} we see that

Applying this to the Poisson random variable �(Brc
) which has mean 

H
d(Brc

) = vk(R) + c we find from (2.1) that

Hence, we obtain from (4.11) and (4.12) that (4.9) is bounded by

where 𝛽9, 𝛽10 > 0 are constants only depending on d and k.
Now, we consider (4.10). By invariance of � under hyperbolic isometries, (4.10) is 

the same as

where we again applied the polar integration formula (3.2) with z ∶= expp(sv) for 
some arbitrary v ∈ �

d−1
p

 . Using that Hd(B(z, rc� ) ⧵ Brc
) ≥ H

d(Bs∕2) for dh(p, z) = s , 
we find from Lemma 4 that Hd(B(z, rc) ⧵ Brc

) ≥ �de
(d−1)s∕2 (the result can indeed be 

(4.12)

�
arc�

0

sinhd−1(s) exp
(
−Hd(B(z, rc) ⧵ Brc

)
) (Hd(B(z, rc) ⧵ Brc

))�

�!
ds

≤ 1

2d−1 �
arc�

0

e(d−1)s exp
(
− �1se

(d−1)(rc−
s

2
)
) (�2se(d−1)rc )�

�!
ds

≤ 1

2d−1

(�2e
(d−1)rc )�

�! �
∞

0

exp
(
− s

(
�1e

(d−1)(2rc−arc�
)

2 − (d − 1)
))

s� ds

≤ �8exp
(
− (d − 1)

2rc − a(� + 1)rc�

2

)
,

�[�h(X + 1)] = �[Xh(X)];

�ℙ(X ≤ k − 1) = 𝔼[X1{X ≤ k}] ≤ kℙ(X ≤ k).

ℙ[�(Brc
) ≤ k − 2]

ℙ[�(Brc
) ≤ k − 1]

≤ k − 1

vk(R) + c
.

�9��
(k)

R
((c,∞))

k − 1

vk(R) + c
e
−(d−1)

2rc−a(k−1)rc�

2 ≤ �10R
−1e

−(d−1)
2rc−a(k−1)rc�

2 ,

𝔼�
(k)

R
((c,∞))�

ℍd

1{z ∈ B2rc�
⧵ Barc�

}ℙ[�(B(z, rc) ⧵ Brc
) ≤ k − 1]Hd(dz)

= �d𝔼�
(k)

R
((c,∞))

k−1∑

�=0
�

2rc�

arc�

sinhd−1(s) exp
(
−Hd(B(z, rc) ⧵ Brc

)
) (Hd(B(z, rc) ⧵ Brc

))�

�!
ds,
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applied, since s∕2 ≥ arc∕2 ≥ 2 for large enough R), see Fig. 3. Since the function 
u ↦ e−uu� is decreasing for u ≥ u0 large enough, we obtain for M > 0 to be speci-
fied below and R large enough,

where we have used the substitution t = se(d−1)s∕2 for the last inequality and 𝛽11 > 0 
is a constant depending on d and on M .

Summarizing, we have shown that for large enough R,

Thus, choosing a ∶=
rc

krc�
∈ (0, 1] and M > 0 so large that Ma > 2 , we find for 

k ≥ 2 that

�
2r

c�

ar
c�

sinhd−1(s) exp
(
−Hd(B(z, rc) ⧵ Brc

)

) (Hd(B(z, rc) ⧵ Brc
))�

�!
ds

≤ 1

2d−1 �
2r

c�

ar
c�

e
(d−1)s exp

(
− �dse

(d−1)s∕2
) (�dse

(d−1)s∕2)�

�!
ds

≤ e
−r

c�
M(d−1)a

2

2d−2(d − 1)(arc� )
M+2 �

2r
c�

ar
c�

(
1 +

s(d − 1)

2

)
e
(d−1)s∕2 exp

(
− �dse

(d−1)s∕2
) ��

d
(se(d−1)s∕2)�+1+M

�!
ds

≤ �11r
−M−2
c�

e
−r

c�
M(d−1)a

2 ,

(4.13)E3 ≤
{

�7e
2(d−1)rc� exp(−�1rce

(d−1)rc∕2) ∶ k = 1

�10R
−1exp

(
−(d − 2)

2rc−a(k−1)rc�

2

)
+ �11e

−rc�
M(d−1)a

2 ∶ k ≥ 2.

Fig. 3   Illustration in the 
Beltrami-Klein model for the 
hyperbolic plane of the argument 
used in the estimate of (4.10). 
Shown are the balls B(p, rc) and 
B(z, rc) , where dh(p, z) = rc . The 
blue ball has radius rc∕2
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where �12 is a constant depending on c, d and on k.
Completing the proof. After having estimated all terms in (4.2) we first con-

clude for k = 1 from (4.3), (4.4), (4.6) and (4.13) that for all sufficiently large R,

Choosing c� = c + logR and using (4.5) we see that

where C1,d > 0 is some constant only depending on c and on d, which is the result of 
Theorem 1(i).

On the other hand, for k ≥ 2 and using again (4.3), (4.4), (4.6) and this time 
(4.14) we arrive at the bound

Choosing again c� = c + logR we conclude that

where Ck,d > 0 is some constant depending on c, k and on d. This is the assertion of 
Theorem 1(ii) and completes the proof.
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(4.14)E3 ≤ �12R
−1,

�
��

(�
(1)

R
∩ (c,∞), � ∩ (c,∞))

≤ �1e
−ce−2R + 2

{
(1 + �1e

−2R)e−c
�

+ �9(c
� + R)2e−R(d−1) + �7e

2(d−1)rc� e−R(d−1)∕2
}
.

�
��

(�
(1)

R
∩ (c,∞), � ∩ (c,∞)) ≤

{
C1,d Re

−R(d−1)∕2 ∶ d ≤ 5

C1,d e
−2R ∶ d ≥ 6.

�
��

(�
(k)

R
∩ (c,∞), � ∩ (c,∞))

≤ �3e
−c(c + �1 logR)R

−1 + 2
{
�4e

−c�
(c� + vk(R)

R(d − 1)

)k−1

+ �9(c
� + R)2e−R(d−1) + �12R

−1
}
.

�
��

(�
(k)

R
∩ (c,∞), � ∩ (c,∞)) ≤ Ck,d

logR

R
,
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