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Abstract
The conditional extremes framework allows for event-based stochastic modeling of 
dependent extremes, and has recently been extended to spatial and spatio-temporal 
settings. After standardizing the marginal distributions and applying an appropri-
ate linear normalization, certain non-stationary Gaussian processes can be used as 
asymptotically-motivated models for the process conditioned on threshold exceed-
ances at a fixed reference location and time. In this work, we adapt existing con-
ditional extremes models to allow for the handling of large spatial datasets. This 
involves specifying the model for spatial observations at d locations in terms of a 
latent m ≪ d dimensional Gaussian model, whose structure is specified by a Gauss-
ian Markov random field. We perform Bayesian inference for such models for datasets 
containing thousands of observation locations using the integrated nested Laplace  
approximation, or INLA. We explain how constraints on the spatial and spatio-
temporal Gaussian processes, arising from the conditioning mechanism, can be  
implemented through the latent variable approach without losing the computation-
ally convenient Markov property. We discuss tools for the comparison of models via 
their posterior distributions, and illustrate the flexibility of the approach with grid-
ded Red Sea surface temperature data at over 6,000 observed locations. Posterior 
sampling is exploited to study the probability distribution of cluster functionals of 
spatial and spatio-temporal extreme episodes.
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1 Introduction

1.1  Statistical modeling of spatial extremes

The availability of increasingly detailed spatial and spatio-temporal datasets has moti-
vated a recent surge in methodological developments to model such data. In this work, 
we are concerned with modeling extreme values of spatial or spatio-temporal processes, 
which we denote by {Y(s) ∶ s ∈ S ⊆ ℝ

2} and {Y(s, t) ∶ (s, t) ∈ S × T ⊆ ℝ
2 ×ℝ+} . 

The goal of modeling spatio-temporal extremes is often to enable extrapolation from 
observed extreme values to future, more intense episodes, and consequently requires 
careful selection of models suited to this delicate task.

Early work on spatial extremes focused almost exclusively on max-stable pro-
cesses (Smith 1990; Coles 1993; Schlather 2002; Padoan et al. 2010; Davison and 
Gholamrezaee 2012). These are the limiting objects that arise through the operation  
of taking pointwise maxima of n weakly dependent and identically distributed cop-
ies of a spatial process. However, this is a poor strategy when data exhibit a property 
known as asymptotic independence, which means that the limiting process of max-
ima consists of everywhere-independent random variables. Moreover, even when the 
process is asymptotically dependent, meaning that the limit has spatial coherence, 
the fact that the resulting process is formed from many underlying original events 
(Dombry and Kabluchko 2018) can hinder both interpretability and inference. More 
recently, analogues of max-stable processes suited to event-level data have been 
developed (Ferreira and de Haan 2014; Dombry and Ribatet 2015; Thibaud and 
Opitz 2015; de Fondeville and Davison 2021), but use of these generalized Pareto 
or r-Pareto processes also requires strong assumptions on the extremal dependence 
structure.

Broadly, spatial process data can be split according to whether they exhibit 
asymptotic independence or asymptotic dependence. As mentioned, these can be 
characterized by whether the data display independence or dependence in the limit-
ing distribution of pointwise maxima, but when considering threshold exceedances 
other definitions are more useful. Consider two spatial locations s, s + h ∈ S . For 
Y(s) ∼ Fs , define the tail correlation function (Strokorb et al. 2015) as

If �(s, s + h) = 0 for all h ≠ 0 then Y is asymptotically independent, or asymp-
totically dependent where limit (1) is positive for all h. Intermediate scenarios of 
asymptotic dependence up to a certain distance are also possible. Asymptotic 
dependence is a minimum requirement for use of max-stable or Pareto process mod-
els, but in practice more rigid assumptions are imposed as these models do not allow 
for any weakening of dependence with the level of the event — a feature common in 
most environmental datasets.

Recent work on modeling of spatial extremes has focused on the twin challenges 
of incorporating flexible extremal dependence structures, and developing models and  
inference techniques that allow for large numbers of observation locations. Huser  
et al. (2017, 2021) suggest Gaussian scale mixture models, for which both types of 

(1)𝜒(s, s + h) = lim
q→1

Pr{Fs+h(Y(s + h)) > q|Fs(Y(s)) > q}.
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extremal dependence can be captured depending on the distribution of the scaling 
variable. The model of Huser and Wadsworth (2019) was the first to offer a smooth 
transition between dependence classes, meaning it is not necessary to make a choice 
before fitting the model. However, owing to complicated likelihoods, each of these 
models is limited in practice to datasets with tens of observation locations. Modifi-
cations in Zhang et al. (2021) suggest that hundreds of sites might be possible, but 
further scalability looks elusive for now.

Wadsworth and Tawn (2022) proposed an alternative approach based on a spa-
tial adaptation of the multivariate conditional extreme value model (Heffernan and  
Tawn 2004; Heffernan and Resnick 2007), which has been further extended to the 
space-time case by Simpson and Wadsworth (2021). Both types of extremal depend-
ence can be handled and the likelihoods involved are much simpler. However, appli-
cation thus far has still been limited to hundreds of observation locations. In this  
work, we seek to exploit the power of Gaussian Markov random fields and the inte-
grated nested Laplace approximation (INLA) in this context in order to permit sub-
stantially higher dimensional inference and prediction, and to achieve more flexible  
modeling by replacing parametric structures with semi-parametric extensions. We 
note that, in the restricted case of Pareto processes, de Fondeville and Davison (2018)  
perform inference for a 3600-dimensional problem via a gradient-score algorithm. 
In this work, we handle inference for problems of comparable dimension, using the 
more flexible conditional extremes models with likelihood-based inference. Opitz 
et al. (2018) have previously used INLA in an extreme value analysis context, focus-
ing on regression modeling of threshold exceedances, but this is the first time it has 
been utilized in the conditional extremes framework.

In the remainder of the introduction, we provide background on the conditional 
extremes approach, and introduce briefly the idea of the INLA methodology. In Sec-
tion 2, we detail modifications to the conditional modeling approach that allow for 
inference through a latent variable framework using INLA; it is these tools that ena-
ble inference to become feasible at thousands of observation locations.

1.2  Conditional extremes models

The aforementioned conditional extremes approaches, originating with Heffernan 
and Tawn (2004) in the multivariate case, involve the construction of models by con-
ditioning on exceedances of a high threshold in a single variable. The spatial setting 
studied by Wadsworth and Tawn (2022), and subsequent spatio-temporal extension 
of Simpson and Wadsworth (2021), require conditioning on threshold exceedances 
at a single spatial or spatio-temporal location, with additional structure being intro-
duced by exploiting the proximity of the other locations to this conditioning site.

In the spatial setting, denote by {X(s) ∶ s ∈ S} a stationary and isotropic pro-
cess with marginal distributions possessing exponential-type upper tails, i.e., 
Pr{X(s) > x} ∼ ce−x as x → ∞, c > 0 . This is achieved in practice via a marginal 
transformation, explained further in Section  4.2. Let s0 denote the conditioning  
site. We assume that {X(s)} possesses a joint density, so that conditioning on the 
events {X(s0) > u} or {X(s0) = u} as u → ∞ leads to the same limiting process 
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(Wadsworth and Tawn 2022); see also Drees and Janßen (2017) for further dis-
cussion on the conditioning event in a multivariate setting. We comment on han-
dling anisotropy in Section 7.

The assumption of stationarity of the process {X(s)} is usually convenient to 
derive flexible conditional extremes models, as done by Wadsworth and Tawn 
(2022), but also to obtain stationarity with respect to the choice of the condition-
ing location s0 , such that inference carried out for a given and observed s0 can be  
generalized conveniently to other conditioning locations. However, stationarity with 
respect to s0 is not strictly necessary for the model to work, and if there is a particu-
lar location of interest to study this should be chosen as the conditioning location.

For a finite set of locations s1,… , sd , Wadsworth and Tawn (2022) assume that 
there exist normalizing functions as−s0(⋅) and bs−s0(⋅) such that as u → ∞,

where z = (z1,… , zd) , and the vector {Z0(s1),… ,Z0(sd)} represents a finite-dimen-
sional distribution of some stochastic process {Z0(s)} , referred to as the residual 
process. Several theoretical examples are provided therein to illustrate this assump-
tion. The first of the normalizing functions is constrained to take values a0(x) = x 
and as−s0(x) ∈ [0, x] , and is usually non-increasing as the distance between s and s0 
increases: the residual process therefore satisfies Z0(s0) = 0 . Furthermore, under 
assumption (2), the excess of the conditioning variable X(s0) − u ∣ X(s0) > u is expo-
nentially distributed, and independent of the residual process.

Assumption (2) is exploited for modeling by assuming that it holds approximately 
above a high threshold u. In particular, we can assume that

Suitable choices for as−s0(⋅), bs−s0(⋅) and {Z0(s)} lead to models with different charac-
teristics. Wadsworth and Tawn (2022) propose a theoretically-motivated parametric 
form for the normalizing function as−s0(⋅) , as well as three different parametric mod-
els for bs−s0(⋅) that are able to capture different tail dependence features. They pro-
pose constructing the residual process by first considering some stationary Gaussian 
process {Z(s)} , and either subtracting Z(s0) or conditioning on Z(s0) = 0 to ensure 
the condition Z0(s0) = 0 on {Z0(s)} is satisfied. Marginal transformations of {Z0(s)} 
are considered therein in order to increase the flexibility of the models.

We note that assumptions (2) and (3) depend on the choice of s0 . In some applica-
tions, there may be a location of particular interest that would make a natural can-
didate for s0 , but for other scenarios the choice is not evident. However, under the 
assumption that {X(s)} possesses a stationary dependence structure, in the sense that 
the joint distributions are invariant to translation, the form of the normalization func-
tions as−s0 , bs−s0 and the form of the residual process {Z0(s)} do not in fact depend on  
s0 , so that inference made using one conditioning location is applicable at any loca-
tion. We discuss this issue further in Section 4.6.

(2)

Pr

([
X(si) − asi−s0

{
X(s0)

}

bsi−s0

{
X(s0)

}
]

i=1,…,d

≤ z| X(s0) = u

)
→ Pr

(
{Z0(si)}i=1,…,d ≤ z

)
,

(3)
{X(s) ∶ s ∈ S} ∣

[
X(s0) = x

]
= as−s0(x) + bs−s0(x){Z

0(s) ∶ s ∈ S}, x > u.
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The approach to inference taken by Wadsworth and Tawn (2022) involves a com-
posite likelihood. This allows different locations to play the role of the conditioning 
site, and combines information across each of these. Inference under this “vanilla” 
version of the model, with {Z0(s)} constructed from a Gaussian process and paramet-
ric forms for the normalizing functions, can currently be performed for hundreds of  
observation locations. However, scalability to thousands of locations is impeded by 
the O(d3)-complexity of matrix inversion in the Gaussian process part of the likeli-
hood. Additionally, in contrast to other areas of spatial statistics, we have n repli-
cates of the process to be used for inference; this is less problematic than having 
large d, since computation time increases linearly in n assuming the replicates are 
independent.

1.3  INLA and the latent variable approach

In order to facilitate higher dimensional inference, we represent our model for obser-
vations at d locations in terms of an m-dimensional latent Gaussian model, where 
m ≪ d . This has the effect of creating a model that is amenable to use of the INLA 
framework, which allows for fast and accurate inference on the Bayesian posterior 
distribution of a parameter vector of interest, � . It is particularly computationally 
convenient when the m-dimensional latent Gaussian component is endowed with a 
Gaussian Markov covariance structure, so that the precision matrix is sparse.

The general form of the likelihood for models amenable to inference via INLA is

where the observations v = (v1,… , vd)
⊤ ∈ ℝ

d , but the vector � = (�1,… , �d) with 
�i = �i(W) a linear function of the m-dimensional latent Gaussian process. This  
specification of the distribution of � , via a sparse precision matrix, allows for infer-
ence on the posterior distribution of interest, �(�|v) , through a Laplace approximation  
to the necessary integrals. Note that the vector � also includes parameters of the 
latent Gaussian model, and is usually termed the hyperparameter vector.

A benefit of this Bayesian approach to statistical modeling with latent variables, 
over alternatives like the EM algorithm or Laplace approximations applied in a fre-
quentist setting, is that parameters, predictions and uncertainties can be estimated 
simultaneously, and prior distributions can be used to incorporate expert knowledge 
and control the complexity of the model or its components with respect to simpler 
baselines. Moreover, the availability of the R software package R-INLA (Rue et al. 
2017) facilitates the implementation, reusability and adaptation of our models and 
code, making them suitable for use with datasets other than the one considered in 
this paper. One of the main challenges we face is reconciling the form of the con-
ditional extremes models with the formulation in Eq. (4) that is allowed under this 
framework. We outline our general strategy in Section  2, but defer more detailed 
computational and implementation details to Section 6. Our motivation for this is 
to provide readers with a general understanding of the methodology, unimpeded by 

(4)�(v|�,�) =
d∏
i=1

�(vi|�i(W),�),
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extensive technical details. However, we note that implementation is a substantial 
part of the task and therefore Section 6 provides interested parties with the neces-
sary particulars.

1.4  Overview of paper

The remainder of the paper is structured as follows. In Section 2, we provide a dis-
cussion on flexible forms for the conditional spatial extremes model that are pos-
sible under the latent variable framework. We discuss details of our inferential  
approach in Section 3, then apply this to a dataset of Red Sea surface temperatures in 
Section 4, considering a range of diagnostics to aid model selection and the assess-
ment of model fit. A spatio-temporal extension is presented in Section 5. Section 6 
is aimed at those readers interested in the specifics of implementation, and includes 
more detail on INLA, the construction of Gauss-Markov random fields with approxi-
mate Matérn covariance, and implementation of our models in R-INLA. Section 7 
concludes with a discussion. Supplementary Material contains code for implement-
ing the models we develop, and is available at https:// github. com/ essim pson/ INLA- 
condi tional- extre mes.

2  The latent variable approach and model formulations

2.1  Overview

In this section, we begin by outlining details of the latent variable approach. We then 
build on the conditional extremes modeling assumption given in Eq. (3) to allow for  
higher-dimensional inference under this latent variable framework. We discuss spe-
cific variants of the conditional extremes model that are possible in this case, sum-
marizing the options in Section 2.5.

2.2  Generalities on the latent variable approach

Here, we provide some general details on the latent variable approach for spatial 
modeling, denoting the observed data generically by V = (V1,… ,Vd)

⊤ , which in our 
context will correspond to observations at d spatial locations. When modeling spa-
tial extreme values, it is always necessary to have replications of the spatial process 
in question in order to distinguish between marginal distributions and dependence 
structures, and to define extreme events. We comment further on the handling of 
temporal replication in Sections 6.5 and 6.6; we will later also explicitly model tem-
poral, as well as spatial, dependence.

In hierarchical modeling with latent Gaussian processes, we define a latent, unob-
served Gaussian process W = (W1,… ,Wm)

⊤ , with m denoting the number of ‘loca-
tions’ of the latent process. These could encompass the spatial locations used to  
discretize the spatial domain, or the knots used in spline functions, for example. We 
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assume conditional independence of the observations V with respect to W, and use 
the so-called observation matrix A ∈ ℝ

d×m to define a linear predictor

that linearly combines the latent variables in W into components �i associated with 
Vi, i = 1,… , d . The components �i represent a parameter of the probability distribu-
tion of Vi . The matrix A is deterministic and is fixed before estimating the model. 
For instance, A handles the piecewise linear spatial interpolation from the m loca-
tions represented by the latent Gaussian vector W towards the d observed sites; for 
this, W may contain the values of a spatial field at locations  s̃1,… , s̃m , and A has 
i-th line Ai = (0,… , 0, 1, 0,… , 0) if the observation location si of Vi coincides with 
one of the locations s̃j0 , where the 1-entry is at the j0 th position. Otherwise, several  
entries of Ai could have non-zero weight to implement interpolation between the s̃j
-locations. The distribution of � is also multivariate Gaussian due to the linear trans-
formation. The univariate probability distribution of Vi , often referred to as the likeli-
hood model, can be Gaussian or non-Gaussian and is parametrized by the linear pre-
dictor �i , and potentially by other hyperparameters. The vector of hyperparameters  
(i.e., parameters that are not components of one of the Gaussian vectors W and � ),  
such as those related to variance, spatial dependence range, or smoothness of a spline 
curve, is denoted by � . Following standard practice from the Bayesian literature, we  
use �(⋅) to denote various generic probability distributions. Then, the hierarchical 
model is structured as follows:

The matrix Q(�) denotes the precision matrix of the latent Gaussian vector W, 
whose variance-covariance structure may depend on some of the hyperparameters 
in � that we seek to estimate. In the case of observations Vi having a Gaussian  
distribution, we can set the Gaussian mean as the linear predictor �i . Then, the con-
ditional variance �2 of Vi given �i is a hyperparameter, and we define

Under the latent variable framework, if d > m as in our setting, we always need 
a small positive variance 𝜎2

> 0 in Eq. (5), since there is no observation matrix 
A that would allow for an exact solution to the equation V = AW with given V . 
The presence of this independent component with positive variance is therefore 
a necessity for the latent variable approach. In some modeling contexts it can  
be interpreted as a useful model feature, e.g., to capture measurement errors. We  
discuss the consequences of this �2 parameter on our conditional model in Sec-
tion 2.3. With the Gaussian likelihood (5), the multivariate distribution of V given  
�
2 is still Gaussian, and in this case the Laplace approximation to the posterior 

�(�|v) with the observation v of V is exact and therefore does not induce any 
approximation biases.

� = �(W) = AW

� ∼ �(⋅) hyperparameters,

W ∣ � ∼ Nm

(
0,Q(�)−1

)
latent Gaussian components,

Vi ∣ W,� ∼ �(⋅ ∣ �i,�), independent likelihood of observations.

(5)Vi ∣ �i, �
2 ∼ N(�i, �

2), i = 1,… , d.
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A major benefit of the construction with latent variables is that the dimen-
sion of the latent vector W is not directly determined by the number of observa-
tions d. The computational complexity and stability of matrix operations (e.g.,  
determinants, matrix products, solution of linear systems) arising in the likelihood 
calculations for the above Bayesian hierarchical model is therefore mainly deter-
mined by the tractability of the precision matrix Q(�) , whose dimension can be  
controlled independently from the number of observations. Such matrix opera-
tions can be implemented very efficiently if precision matrices are sparse (Rue 
and Held 2005). If data are replicated with dependence between replications, such 
as spatial data observed at regular time steps in spatio-temporal modeling, the 
sparsity property can be preserved in the precision matrix of the latent space-time 
process W. In this work, we will make assumptions related to the separability of 
space and time, which allows us to generate sparse space-time precision matrices 
by combining sparse precision matrices of a purely spatial and a purely temporal 
process using the Kronecker product of the two matrices; see Sections 6.5 and 6.6 
for further details.

2.3  The latent variable approach for conditional extremes model inference

Here, we explain how the latent variable approach can be used within the condi-
tional extremes framework to reduce the dimension of the residual process {Z0(s)} 
for inferential purposes. We begin by presenting the conditional extremes model 
with parametric forms for the normalizing functions as−s0 and bs−s0 , following the 
approach of Wadsworth and Tawn (2022). In Section 2.4, we propose a more flexible  
semi-parametric form for as−s0 that further exploits the latent variable framework.

Consider the conditional extremes model presented in Eq. (3). Fixing as−s0(x) = x 
and bs−s0(x) = 1 enforces asymptotic dependence, but setting as−s0(x) = x�(s − s0) 
and allowing the form of �(s − s0) to depend on the distance from the conditioning 
location is the key aspect that enables modeling of asymptotic independence as well. 
To capture asymptotic independence, Wadsworth and Tawn (2022) propose a para-
metric form for �(⋅) , defining

The resulting function as−s0 satisfies the constraint that a0(x) = x and has as−s0(x) 
decreasing as the distance to s0 increases. Wadsworth and Tawn (2022) propose 
three different parametric forms for the normalizing function bs−s0 , each with differ-
ent modeling aims. We focus on the option of bs−s0(x) = x� , with � ∈ [0, 1) , through-
out the rest of the paper, including the simple special case where we fix � = 0.

The existing conditional extremes approach must be simplified and slightly modi-
fied to allow for inference using the latent variable framework. First, in Section 1.2, 
we discussed that Wadsworth and Tawn (2022) consider marginal transformations 
of the residual process to increase the flexibility of their approach. A special case of 
this is to simply restrict {Z0(s)} to have Gaussian margins. The approach we take to 
adopt the framework described in Section 2.2 is to assume that

(6)𝛼(s − s0) = exp
�
−
�‖s − s0‖∕𝜆

�
𝜅
�
, 𝜆 > 0, 0 ≤ 𝜅 ≤ 2.
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We will represent the terms as−s0(x) and Z0(s) using basis functions and latent 
Gaussian variables, using a semi-parametric formulation of as−s0(x) , as we will fur-
ther explain in the following two subsections. Moreover, as highlighted in Eq. (5),  
the use of a latent process of dimension m < d to facilitate computation requires 
the introduction of a small additive noise term, with variance 𝜎2

> 0 common to 
each of the observation locations. Taking this into consideration, the numerical 
representation of the conditional extremes model (7) that we actually implement 
in the INLA framework is

for i = 1,… , d , where we set �0 = 0 at s0 . A key point here is that the Gaussian noise 
does not represent a model feature to capture measurement error or add extra rough-
ness to the process; it is simply included for computational feasibility.

The latent variable approach described in Section  2.2 can be applied to the 
residual process in Eq. (7), providing us with a “low-rank” representation of 
{Z0(s)} . The constraint that Z0(s0) = 0 can be enforced by manipulating the obser-
vation matrix A; further detail on this is provided in Section  6.4. In this case, 
assuming the parametric form (6) for �(s − s0) in as−s0(x) = x�(s − s0) requires 
estimation of the parameters (�, �) , in addition to the parameter � of the bs−s0 func-
tion. Under the latent variable framework, these can be included as part of the 
hyperparameter vector � . The dimension of � must remain moderate (say, at most  
10 to 20 components), since INLA requires numerical integration with integrand 
functions defined on the hyperparameter space. In the implementation of INLA 
using R-INLA, estimation of the three parameters (�, �, �) requires the use of spe-
cific user-defined (“generic”) models, which we describe in Section 6.6. We  
emphasize that the use of generic R-INLA models allows for the implemen-
tation of other relevant parametric forms for the functions as−s0 and bs−s0 , if the 
above choices do not provide a satisfactory fit.

For the function as−s0(x) , which is part of the mean function of the Gaussian pro-
cess that we use as model for X(s) ∣ [X(s0) = x] , an alternative to parametric forms is 
to adopt a semi-parametric approach by constructing as−s0(x) as an additive contribu-
tion to the linear predictor with multivariate Gaussian prior distribution. However, the 
function bs−s0(x) , which arises as part of the variance function of the Gaussian process 
that we use as model for X(s) ∣ [X(s0) = x] , must have a parametric form with a small 
number of parameters included in the hyperparameter vector � . Indeed, in the current 
implementation of the INLA framework in R-INLA it is not possible to represent both 
bs−s0(x) and {Z0(s)} as latent Gaussian components, given the restriction of using a lin-
ear transformation from W to � . This parametric form is achieved by our choice to set 
bs−s0(x) = x� . Some frequentist estimation approaches for generalized additive mod-
els implement Laplace approximation techniques where semi-parametric forms of the 
variance of the Gaussian likelihood are possible (Wood 2011). However, this approach 
is currently not available within R-INLA and may come at the price of less stable esti-
mation due to identifiability problems and less accurate Laplace approximations, and 

(7)X(s) ∣ [X(s0) = x] = as−s0(x) + x�Z0(s).

(8)X(s
i
) ∣ [X(s0) = x] = a

s−s0
(x) + x

�
Z
0(s

i
) + �

i
, �

i
∼ N(0, �2) i.i.d.,
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estimation can become particularly cumbersome with large datasets, such that we do 
not pursue it here.

2.4  Semi‑parametric modeling of a
s−s0

In subsequent sections we focus on semi-parametric forms of as−s0(x) (that con-
tinue to include the term �(s − s0)x ) for their novelty, increased flexibility and  
computational convenience. Such semi-parametric forms can be implemented by 
using a B-spline function for �(s − s0) , which appears as an additive component of 
the linear predictor � . This is computationally convenient since INLA can handle 
a large number of latent Gaussian variables in W when calculating accurate deter-
ministic approximations to posterior distributions, via the Laplace approximation. 
We constrain this function to have �(0) = 1 , ensuring that a0(x) = x for the form 
as−s0(x) = x�(s − s0).

In extension to the models for conditional spatial and spatio-temporal extremes 
developed by Wadsworth and Tawn (2022) and Simpson and Wadsworth (2021), 
we can further increase the flexibility of the conditional mean model by explicitly  
including a second spline function, denoted �(s − s0) and with �(0) = 0 , that is not 
multiplied by the value of the process at the conditioning site. To clarify, this implies  
that we have

with �(s − s0) also incorporated as a component of the linear predictor � . An exam-
ple where such a deterministic component arises is given by the conditional extremes 
model corresponding to the Brown–Resnick type max-stable processes (Kabluchko 
et  al. 2009) with log-Gaussian spectral function (see Proposition 4 of Dombry  
et al. 2016), which are widely used in statistical approaches based on the asymptoti-
cally dependent limit models mentioned in Section 1; in this case, we obtain

with a centered Gaussian process {Z(s)} . Therefore, by setting �(s − s0) = 1 , in this 
model the �-term corresponds to the semi-variogram, Var(Z(s) − Z(s0))∕2 . We note 
that for the Brown–Resnick process, �  should indeed correspond to a valid semi- 
variogram, although we will not constrain it as such in our implementation to allow 
for greater flexibility. However, we underline that in the INLA framework there 
is no impediment to using parametric forms of � with parameters included in the 
hyperparameter vector �.

2.5  Proposed new models and their latent variable representation

To summarize, in the implementation of the conditional spatial extremes modeling  
assumption (7) using R-INLA, we propose to explore several options for the  
form of the model: setting �(s − s0) = 1 everywhere or using a spline function; 
whether or not to include the second spline term �(s − s0) ; and whether to include 

as−s0(x) = �(s − s0)x + �(s − s0),

X(s) ∣ [X(s0) = x]
d
=x + Z(s) − Z(s0) − Var(Z(s) − Z(s0))∕2,
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the parameter � or to fix it at 0. Together, this means that all models can be written 
as special cases of the representation

where we require �(s − s0) ≤ 1 as a necessary condition for stationarity, and we 
suppose that {Z0(s)} has a Gaussian structure, further described in Sections  6.3 
and 6.4; and �i ∼ N(0, �2) i.i.d.. This opens up the framework of conditional Gauss-
ian models and the potential for efficient inference via INLA, while closely fol-
lowing the conditional extremes formulation. In particular, the joint distribution of 
{X(si) ∶ i = 1,… , d} , not conditional on the value of X(s0) , is non-Gaussian.

Finally, we give an illustration, linking model (9) to the general nota-
tion and principles outlined in Section  2.2. Our observation vector V is 
the process {X(s)} observed at d locations: X = (X(s1),… ,X(sd))

⊤ . The 
latent Gaussian component W consists of components for �, � , and {Z0(s)} : 
W = (W⊤

𝛼
,W⊤

𝛾
,W⊤

Z
)⊤ ∈ ℝ

m
𝛼 ×ℝ

m
𝛾 ×ℝ

mZ , with m
�
+ m

�
+ mZ = m . The observation  

matrix A ∈ ℝ
d×m is the concatenation of matrices for each component: A

�
∈ ℝ

d×m
�,  

A
�
∈ ℝ

d×m
� , and AS ∈ ℝ

d×mZ . We include the x�-term into the process WZ if we want 
to estimate the parameter � , such that it does not appear in the fixed, observation  
matrix AS ; if � is fixed, we could instead include the x�-term into AS.

We emphasize that the model is applied to replicates of the observed process X 
and that while the �, � and � components are fixed, the residual process and error 
term generally vary across replicates. All together for the jth replicate Xj , we get

with i.i.d. Gaussian components in �j = (𝜖1,j,… , 𝜖d,j)
⊤ , and where the j-subscripts 

highlight the components that vary with replicate. Therefore, using general notations 
from Section  2.2, the components of the linear Gaussian predictor of the INLA- 
model related to replicate j are �j = AjWj , with Aj = (xjA�

,A
�
,AS) and 

Wj = (W⊤

𝛼
,W⊤

𝛾
,W⊤

Z,j
)⊤ , and the full linear predictor is � = (�⊤

1
, �⊤

2
,…)⊤ . To imple-

ment model (9) in an efficient manner for a large number of observation locations, 
we need to carefully consider computations related to the residual process {Z0(s)} ; 
this is explained in detail in Section 6.4.

3  Inference for conditional spatial extremes

3.1  Overview

In Section 4, we apply variants of model (9) to the Red Sea surface temperature 
data, with the different model forms summarized in Table  1. In this section, we 
discuss certain considerations necessary to carry out inference and techniques to 
compare the candidate models. In Section 3.2, we begin with a discussion of the 
transformation to exponential-tailed marginal distributions that are required for con-
ditional extremes modeling. We discuss construction of the observation matrix A  

(9)
X(si) ∣ [X(s0) = x] = 𝛼(si − s0)x + 𝛾(si − s0) + x𝛽Z0(si) + 𝜖i, x > u, i = 1,… , d,

(10)Xj|[Xj(s0) = xj] = (xjA𝛼
,A

𝛾
,AS)(W

⊤

𝛼
,W⊤

𝛾
,W⊤

Z,j
)⊤ + �j,
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and choices of prior distributions for the hyperparameters in Section 3.3. In Sec-
tions 3.4  and 3.5, we present two approaches for model selection and validation, 
both of which are conveniently implemented in the R-INLA package and therefore 
straightforward to apply in our setting.

3.2  Marginal transformation

To ensure the marginal distributions of the data have the required exponential upper 
tails, we suggest transforming to Laplace scale, as proposed by Keef et al. (2013). 
This is achieved using a semi-parametric transformation. Let Y denote the surface 
temperature observations at a single location. We assume these observations follow 
a generalized Pareto distribution above some high threshold v to be selected, and use 
an empirical distribution function below v, denoted by F̃(⋅) . That is, we assume the 
distribution function

for �v = 1 − F(v), 𝜎v > 0 and y+ = max(y, 0) . Having fitted this model, we obtain 
standard Laplace margins via the transformation

This transformation should be applied separately for each spatial location, and we 
estimate the parameters of the generalized Pareto distributions using the ismev 
package in R (Heffernan and Stephenson 2018). It is possible to include covariate 
information in the marginal parameters and impose spatial smoothness on these, but 
we do not take this for instance by using flexible generalized additive models (see 
Castro-Camilo et al. (2021) for details), but we do not take this approach.

3.3  Spatial discretization and prior distributions for hyperparameters

We now discuss the distribution of the latent processes W
�
,W

�
 and WZ , as defined 

in Section 2.5. Gauss–Markov distributions for these components, with approximate 
Matérn covariance, are achieved through the stochastic partial differential equation 
(SPDE) approach of Lindgren et al. (2011). The locations of the components of the 
multivariate Gaussian vector WZ defining the latent spatial process are placed at the 
nodes of a triangulation covering the study area. To generate this spatial discretiza-
tion of the latent Gaussian process, and the spatial observation matrix AS to link it 
to observations, we use a mesh. An example of this will be discussed for our Red 
Sea application in Section 4.3 and demonstrated pictorially in Fig. 2. Full technical 
details of the construction of spatial and spatio-temporal precision matrices Q for 
each component, and the observation matrix A, are provided in Section 6.

(11)F(y) =

{
1 − 𝜆v

{
1 +

𝜉(y−v)

𝜎v

}−1∕𝜉

+
, y ≥ v

F̃(y), y < v,

X =

{
log {2F(Y)}, F(Y) ≤ 1∕2,

− log [2{1 − F(Y)}], F(Y) > 1∕2.
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For the model components �(s − s0) and �(s − s0) , we propose the use of one-
dimensional splines, since they are functions only of the distance to the conditioning 
site, s − s0 . Therefore, in contrast to the multivariate vector WZ , the latent processes 
W

�
 and W

�
 correspond to Gaussian variables anchored at the spline knots used to 

discretize the interval [0, dmax) with an appropriately chosen maximum distance  
dmax . In each case, we suggest choosing equally-spaced knots, with the left boundary  
knot placed at the distance s − s0 = 0 where we enforce the constraints that �(0) = 1 
and �(0) = 0 . For both �(s − s0) and �(s − s0) , we interpolate between the knots using  
quadratic spline functions, which we have found to provide more flexibility than their 
linear counterparts. For the SPDE priors corresponding to these spline components,  
we suggest fixing the range and standard deviation, since we consider that estimating  
these parameters is not crucial. This avoids the very high computational cost that 
can arise when we estimate too many hyperparameters with R-INLA.

For specifying the prior distributions of the hyperparameters (e.g., variances, spa-
tial ranges, autocorrelation coefficients for the space-time extension) we use the con-
cept of penalized complexity (PC) priors (Simpson et al. 2017), which has become  
the standard approach in the INLA framework. PC priors control model complex-
ity by shrinking model components towards a simpler baseline model, using a con-
stant rate penalty expressed through the Kullback-Leibler divergence of the more 
complex model with respect to the baseline. In practice, only the rate parameter has 
to be chosen by the modeler, and it can be determined indirectly—but in a unique 
and intuitive way—by setting a threshold value r and a probability p ∈ (0, 1) such 
that Pr(hyperparameter > r) = p , with > replaced by < in some cases, depending on 
the role of the parameter. For example, the standard baseline model for a variance  
parameter of a latent and centered Gaussian prior component W contributing to the 
linear predictor � is a variance of 0, which corresponds to the absence of this com-
ponent from the model, and the PC prior of the standard deviation corresponds to 
an exponential distribution. Analogously, we can set the PC prior for the variance 
parameter �2 of the observation errors �i in Eq. (9). The parameter �2 could instead 
be fixed to a very small value, but to ensure we have the right amount of variance 
associated with � to obtain a numerically stable estimation procedure, we prefer 
to estimate its value from the data. For the Matérn covariance function, PC priors 
are defined jointly for the range and the variance, with the baseline given by infi-
nite range and variance 0; in particular, the inverse of the range parameter has a PC 
prior given by an exponential distribution, see Fuglstad et al. (2019) for details. As 
explained by Simpson et al. (2017), PC priors are not useful to “regularize” models, 
i.e., to select a moderate number of model components among a very large number 
of possible model components. Rather, they are used to control the complexity of 
a moderate number of well-chosen components that always remain present in the 
posterior model, and they do not put any positive prior mass on the baseline model.

3.4  Model selection using WAIC

Conveniently, implementation in R-INLA allows for automatic estimation of certain  
information criteria that can be used for model selection. Two such criteria are the  
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deviance information criterion (DIC), and the widely applicable or Watanabe-Akaike  
information criterion (WAIC) of Watanabe (2013). We favour the latter since it cap-
tures posterior uncertainty more fully than the DIC. This, and other, benefits of the 
WAIC over the DIC are discussed by Vehtari et al. (2017), where an explanation of 
how to estimate the WAIC is also provided. Using our general notation for latent 
variable models, as in Section 2.2, suppose that the posterior distribution of the vec-
tor of model parameters �̃� = (𝜽⊤,W⊤)⊤ is represented by a sample �̃s, s = 1,… , S , 
with the corresponding sample variance operator given by � S

s=1
(⋅) . Given the obser-

vations vi, i = 1,… , d , the WAIC is then estimated as

with the first term providing an estimate of the log predictive density, and the second  
an estimate of the effective number of parameters. Within R-INLA, we do not gener-
ate a representative sample, but the sample means and variances with respect to �̃s 
in the above equation are estimated based on R-INLA’s internal representation of 
posterior distributions; see also the estimation technique for the DIC explained in 
Rue et al. (2009, Section 6.4). Smaller values of the WAIC indicate more successful 
model fits, and we will use this criterion to inform our choice of model for the Red 
Sea data in Section 4.4.

3.5  Cross validation procedures

As mentioned previously, the main aim of fitting conditional extremes models is 
usually to extrapolate extreme event probabilities and related quantities to levels 
that have not been previously observed. However, the INLA framework also lends 
itself to the task of interpolation, e.g., making predictions for unobserved locations. 
Although interpolation is not our aim, here we discuss some procedures that allow 
for the assessment of models in this setting. For model selection, we can use cross-
validated predictive measures, based on leave-one-out cross-validation (LOO-CV). 
These are relatively quick to estimate with INLA without the need to re-estimate the  
full model; see Rue et al. (2009, Section 2007 6.3). Here, one possible summary measure  
is the conditional predictive ordinate (CPO), corresponding to the predictive density 
of observation vi given all the other observations v−i i.e.,

for i = 1,… , d . Log-transformed values of CPO define the log-scores often used in  
the context of prediction and forecasting (Gneiting and Raftery ). A model with 
higher CPO values usually indicates better predictions. We note that the CPO is not 
usually used for extreme value models where interpolation is often not considered 
the main goal. It will not be particularly informative in our application since the 
loss of information from holding out a single observation is negligible in the case 
of densely observed processes with very smooth surface. However, we include it as 
it may be useful for other applications where spatial and temporal interpolation are 

d∑
i=1

log

{
1

S

S∑
s=1

𝜋(vi ∣ �̃
s
)

}
−

d∑
i=1

�
S
s=1

{
log𝜋(vi ∣ �̃

s
)
}
,

CPOi = �(vi ∣ v−i),
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important, for example when data are observed at irregularly scattered meteorologi-
cal stations, and due to the simplicity of its calculation in R-INLA.

One can also consider the probability integral transform (PIT) corresponding to 
the distribution function of the predictive density, evaluated at the observed value vi , 
i.e.,

If the predictive model for single hold-out observations appropriately captures the 
variability in the observed data, then the PIT values will be close to uniform. If in a 
histogram of PIT values, the mass concentrates strongly towards the boundaries, then  
two-sided predictive credible intervals (CIs) will be too narrow; by contrast, if mass 
concentrates in the middle of the histogram, then these predictive CIs will be too 
large. We refer the reader to Czado et al. (2009) for more background on PITs. We 
discuss such cross validation procedures in Section 4.4.

4  Application to modeling Red Sea surface temperature extremes

4.1  Overview

In this section, we propose specific model structures for the general model (9) and 
illustrate an application of our approach using a dataset of Red Sea surface tempera-
tures, the spatio-temporal extremes of which have also been studied by Hazra and 
Huser (2021) and Simpson and Wadsworth (2021), for instance. We focus on the 
purely spatial case here, and consider further spatio-temporal modeling extensions 
for this dataset in Section 5. We use the methods discussed in Sections 3.4 and 3.5 
to assess the relative suitability of the proposed models for the Red Sea data. For 
the best-fitting model, we present additional results, and conclude with a discussion 
of consequences of using a single, fixed conditioning site. Throughout this section, 
the threshold u in conditional model (9) is taken to be the 0.95 quantile of the trans-
formed data, following Simpson and Wadsworth (2021). For the sake of a brevity, 
we do not compare results for different thresholds in the following.

4.2  Red Sea surface temperature data

The surface temperature dataset comprises daily observations for the years 1985 to 
2015 for 16703 locations across the Red Sea, corresponding to 0.05◦ × 0.05◦ grid 
cells. We focus only on the months of July to September to approximately elimi-
nate the effects of seasonality. More information on the data, which were obtained  
from a combination of satellite and in situ observations, can be found in Donlon et al.  
(2012). Extreme events in this dataset are of interest, since particularly high water 
temperatures can be detrimental to marine life, e.g., causing coral bleaching, and in 
some cases coral mortality.

PITi = ∫
vi

−∞

�(v ∣ v−i)dv.
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Simpson and Wadsworth (2021) apply their conditional spatio-temporal 
extremes model to a subset of 54 grid cells located across the north of the Red 
Sea. In this paper, we instead focus on a southern portion of the Red Sea, where 
coral bleaching is currently more of a concern (Fine et  al. 2019). We demon-
strate our approach using datasets of two different spatial dimensions; the first  
dataset contains 6239 grid cells, corresponding to all available locations in our 
region of interest, while the second dataset is obtained by taking locations at every 
third longitude and latitude value in this region, leaving 678 grid cells to consider. 
These two sets of spatial locations are shown in Fig. 1. Simpson and Wadsworth  
(2021) consider their 54 spatial locations at five time-points, resulting in a lower 
dimensional problem than both the datasets we consider here. On the other hand, 
Hazra and Huser (2021) model the full set of 16703 grid cells, but they ensure 
computational feasibility by implementing so-called ‘low-rank’ modeling tech-
niques using spatial basis functions given by the dominant empirical orthogo-
nal functions, obtained from preliminary empirical estimation of the covariance 
matrix of the data.

There are two transformations that we apply to these data as a preliminary step. 
First, as our study region lies away from the equator, one degree in latitude and one  
degree in longitude correspond to different distances. To correct for this we apply 
a transformation, multiplying the longitude and latitude values by 1.04 and 1.11, 
respectively, such that spatial coordinates are expressed in units of approximately 
100 km. Our resulting spatial domain measures approximately 400 km between 
the east and west coasts and 500 km from north to south. We use the Euclid-
ean distance on these transformed coordinates to measure spatial distances in the 
remainder of the paper. We also transform the margins to Laplace scale using the 
approach outlined in Section 3.2. We take v in (11) to be the empirical 0.95 quan-
tile of Y, here representing the observed sea surface temperature at an individual 
location, so that �v = 0.05 . Any temporal trend in the marginal distributions could 

Fig. 1  Location of the Red Sea (grey), and the subsets of grid cells in the two datasets we consider (black)
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also be accounted for at this stage, e.g., using the approach of Eastoe and Tawn 
(2009), but we found no clear evidence that this was necessary in our case.

In the remainder of this section, we apply a variety of conditional spatial extremes  
models to the Red Sea data with the large spatial dataset in Fig. 1, and apply sev-
eral model selection and diagnostic techniques. For the conditioning site, we select 
a location lying towards the centre of the spatial domain of interest. We discuss this  
choice further in Section 4.6, where we present additional results based on the mod-
erate dataset. In Appendix A, we provide an initial assessment of the spatial extremal  
dependence properties of the sea surface temperature data, based on the tail correla-
tion function defined in Eq. (1). These results demonstrate that there is weakening 
dependence in the data at increasingly extreme levels, which provides an initial indi-
cation that models exhibiting asymptotic independence should be more appropriate 
here.

4.3  The mesh and prior distributions for the Red Sea data application

As discussed in Section  3.3, in order to carry out our latent variable approach to 
model inference, we require a triangulation of the area of interest. The mesh we use 
for the spatial domain in the southern Red Sea is shown in Fig. 2. This was gen-
erated using R-INLA, requiring the selection of tuning parameters related to the 
maximum edge lengths in the inner and outer sections of the mesh; these were cho-
sen such that the dimension of the resulting mesh is much less than the number of 
spatial locations, and so that the most dense region corresponds to the area where 
we have observations. Our spatial triangulation mesh has 541 nodes, i.e., the dimen-
sion of the latent process is approximately 8.7% of the size of the large dataset, and  

Fig. 2  The large set of spatial 
locations (red dots) and the cor-
responding triangulation mesh 
used for the SPDE model with 
an inner and outer boundary 
(blue lines). The inner boundary 
delimits a high-resolution zone 
covering the study area, while 
the outer boundary delimits 
an extension zone with lower 
resolution to prevent effects of 
SPDE boundary conditions in 
the study area
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similar in size to the moderate dataset. In this case, the extension of the mesh beyond 
the study region is reasonably big, in order to avoid boundary effects of the SPDE for  
the sea surface temperatures, whose spatial dependence range is known to be rela-
tively large; see Simpson and Wadsworth (2021). We use a coarser resolution in the 
extension region to keep the number of latent Gaussian variables as small as reason-
ably possible.

Due to the availability of many observations in the Red Sea dataset, we found 
the hyperparameter priors to only have a small impact on posterior inference  
in our application, and that the credible intervals of the hyperparameters are very 
narrow. We have chosen moderately informative PC priors through the following 
specification:

where �Z and �Z are the standard deviation and the empirical range, respectively, of  
the unconstrained spatial Matérn fields {Z(s)} . Where the �-parameter is to be esti-
mated as part of a specified model, we choose a log-normal prior where the nor-
mal has mean − log(2) and variance 1. This does not guarantee estimates of 𝛽 < 1 , 
but such a constraint could be included within the generic-model framework if 
required. The Matérn covariance function is also specified by a shape parameter � . 
We fix � = 0.5 , corresponding to an exponential correlation function. Sensitivity to �  
can be checked by comparing fitted models across different values, as demonstrated 
in Appendix B. We find this to have little effect on the results for our data.

As discussed in Section 3.3, for each spline function, we place one knot at the 
boundary where s = s0 and use a further 14 equidistant interior knots. This quan-
tity provides a reasonable balance between the reduced flexibility that occurs when 
using too few knots, and the computational cost and numerical instability (owing 
to near singular precision matrices) that may arise with using too many. For these 
spline components, we have fixed the range to 100 km and the standard deviation to 
0.5. If we wished to obtain very smooth posterior estimates of the spline function, we  
could choose parameters that lead to stronger constraints on the (prior) variability of 
the spline curve. We will demonstrate the estimated spline functions for some of our 
models in Section 4.5.

4.4  Variants of the spatial model and model comparison

In Section 2.4, we discussed choices of the normalizing functions as−s0(x) and bs−s0(x)  
that are possible under the INLA framework. In Table 1, we summarize the mod-
els we consider based on the structures outlined in Eq. (9). We fit models with  
these different forms and subsequently select the best model for our data. Model 0 
has �(s − s0) = 1, � = 0 , resulting in a very simple asymptotically dependent model. 
Model 2 is also asymptotically dependent, but allows for weaker dependence than 
in Model 0 due to the drift that is captured by the �(s − s0) term, supposed to be 
negative in practice. In Model 6, the residual process has been removed, so that all 
variability is forced to be captured by the term �i in Eq. (9). Models  0  and  6 are 
meant to act as simple baselines to which we can compare the other models, but 

Pr(𝜎 > 0.1) = 0.5, Pr(𝜎Z > 1) = 0.5, Pr(𝜌Z > 100 km) = 0.5,
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we would not expect them to perform sufficiently well in practice. As mentioned 
in Section 1.2, Wadsworth and Tawn (2022) propose two options for constructing 
the residual process {Z0(s)} , each based on manipulation of a stationary Gaussian 
process {Z(s)} . For all models in Table 1, we focus on a residual process of the form 
{Z0(s)} = {Z(s)} − Z(s0) , further detail on which is given in Section 6.4.

Alongside the models in Table 1, we provide the corresponding WAIC and CPO 
values, as discussed in Sections 3.4 and 3.5, respectively. The computation times for  
each model are also included, as this information may also aid model selection where  
there is similar performance under the other criteria.

Beginning with the WAIC, we first recall that smaller values of this criterion are 
preferred. Models 1 and 3 are simplified versions of Models 5 and 4, respectively, in  
that the value of � is fixed to 0 rather than estimated directly in R-INLA. In both  
cases, the results are very similar whether � is estimated or fixed, suggesting the sim-
pler models with � = 0 are still effective. The estimated WAIC values suggest Mod-
els 3 and 4 provide the best fit for our data. The common structure in these models  
are the terms �(s − s0)x and �(s − s0) , indicating that their inclusion is important. In 
Model 4, the posterior mean estimate of � is 0.29, but despite simplifying the model, 
setting � = 0 as in Model 3 provides competitive results.

On the other hand, the CPO results are relatively similar across Models 0 to 5, but 
clearly substantially better than Model 6, which we include purely for comparison. 
Model  6 performs poorly here since all spatially correlated residual variation has 
been removed. We provide a histogram of PIT values for Model 3 in Appendix C, 
with equivalent plots for Models 0 to 5 being very similar. The histogram has a peak 
in the middle, suggesting that the posterior predictive densities for single observa-
tions are generally slightly too “flat”; however, here the variability in the posterior 
predictive distributions is very small throughout. Therefore, the fact of slightly over-
estimating the true variability, which is very small, does not cause too much concern 
about the model fit. If the PIT values concentrated strongly at 0 and 1, this would 
indicate that posterior predictive distributions would not allow for enough uncer-
tainty, i.e., the model would be overconfident with its predictions; however, this is not  

Table 1  Summary of conditional spatial models, model selection criteria, and total run-times (minutes). 
The minimum WAIC value (-1460982 for Model 4); maximum CPO value (3.0305 for Model 4); and 
minimum RMSE value (0.862 for Model 3) have been subtracted from their respective columns. We esti-
mate � as 0.29 with a 95% credible interval of (0.27, 0.31) (Model 4) and 0.33 (0.31, 0.34) (Model 5)

Model 
number

Model form WAIC CPO RMSE Run-time

0 x + {Z0(s)} 2438 -0.0061 0.019 20
1 x ⋅ �(s − s0) + {Z0(s)} 614 -0.0028 0.001 22
2 x + �(s − s0) + {Z0(s)} 743 -0.0035 0.005 35
3 x ⋅ �(s − s0) + �(s − s0) + {Z0(s)} 4 -0.0018 0 32
4 x ⋅ �(s − s0) + �(s − s0) + x

� ⋅ {Z0(s)} 0 0 0.003 107
5 x ⋅ �(s − s0) + x

� ⋅ {Z0(s)} 611 -0.0004 0.010 86
6 x ⋅ �(s − s0) + �(s − s0) 4394961 -2.8042 0.514 43
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the case here. Due to the smoothness of our data we essentially have perfect predic-
tions using Models 0 to 5, and these plots are not particularly informative, but again 
may be useful in settings where spatio-temporal interpolation is a modeling goal.

Finally, we consider using a further cross validation procedure to compare the dif-
ferent models. This involves removing all data for locations lying in a quadrant to  
the south-east of the conditioning site, and using our methods to estimate these val-
ues. The difference between the estimates and original data, on the Laplace scale, can  
be summarized using the root mean square error (RMSE). These results are also 
provided in Table 1, where Model 3 gives the best results, although is only slightly 
favoured over the other Models 0 to 5.

4.5  Results for Model 3

For our application, it is difficult to distinguish between the performance of Models 
0 to 5 using the cross validation approaches, but Models 3 and 4 both perform well 
in terms of the WAIC. We note that the run-time for Model 3, provided in Table 1, is 
less than one third of the run-time of Model 4 for this data, so we choose to focus on 
Model 3 here due to its simplicity. In general, simpler models have quicker computa-
tion times, but this is not necessarily always the case; we comment further on this 
in Section 5.3. We provide a summary of the fitted model parameters for Model 3, 
excluding the spline functions, in Table 2. The estimated value of �2 is very small, 
as expected. The Matérn covariance of the process {Z(s)} has a reasonably large 
dependence range, estimated to be 428.2 km.

We now consider the estimated spline functions �(s − s0) and �(s − s0) for 
Model 3; these are shown in Fig. 3. For comparison, we also show the estimate of 
�(s − s0) for Model 1 and �(s − s0) for Model 2. These two models are similar to 
Model 3, in that � = 0 , but �(s − s0) = 0 for Model 1 and �(s − s0) = 1 for Model 2, 
for all s ∈ S . For Model 1, the �(s − s0) spline function generally decreases mono-
tonically with distance, as would be expected in spatial modeling. For Model 3, the 
interaction between the two spline functions makes this feature harder to assess, but 
further investigations have shown that although �(s − s0) and �(s − s0) are not mono-
tonic in form, the combination �(s − s0)x + �(s − s0) is usually decreasing for x ≥ u ; 
i.e., there is posterior negative correlation, and transfer of information between the 
two spline functions. Some examples of this are given in Fig.  6 and will be dis-
cussed in Section 4.6. The behaviour of the �(s − s0) spline function for Model 2 
is similar to that of the �(s − s0) functions for Models 1 and 3, highlighting that all  
three models are able to capture similar features of the data despite their differ-
ent forms. The success of Model  3 over Models  1  and  2 can be attributed to the 

Table 2  Estimated parameters 
for Model 3

Parameter Posterior mean 95% credible interval

�
2 0.0107 (0.0106 0.0107)

�
Z

1.557 (1.496 1.618)
�
Z

428.2 (409.5 446.8)
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additional flexibility obtained via the inclusion of both spline functions. We note 
that in terms of representing the data, there may be little difference between suitable 
models, as we see here. However, we should also consider the diagnostics relating 
to our specific modeling purpose, which in our case is extrapolation. The results in 
Appendix A demonstrate that there is weakening dependence in the Red Sea data. 
The asymptotic dependence of Model 2 means that it cannot capture this feature, and  
is therefore unsuitable here. In Appendix A, we compare the empirical tail correlation 
estimates to ones obtained using simulations from our fitted Model 3. This model  
goes some way to capturing the observed weakening dependence, although the esti-
mates do not decrease as quickly as for the empirical results. We comment further 
on this issue below.

Our fitted models can be used to obtain estimates of quantities relevant to the 
data application. For sea surface temperatures, we may be interested in the spatial 
extent of extreme events. High surface water temperatures can be an indicator of 
potentially damaging conditions for coral reefs, so it may be useful to determine how 
far-reaching such events could be. To consider such results, we fix the model hyper-
parameters and spline functions to their posterior means, and simulate directly from 
the spatial residual process of Model 3. If a thorough assessment of the uncertainty 
in these estimates was required, we could take repeated samples from the posterior 
distributions of the model parameters fixed to their posterior mean, and use each of 
these to simulate from the model. However, assessing the predictive distribution in 
this way is computationally more expensive, so we proceed without this step.

We separate the spatial domain into the 17 regions demonstrated in the left panel 
of Fig.  4. Given that the value at the conditioning site exceeds the 0.95 quantile, 
we estimate the proportion of locations in each region that also exceed this quan-
tile. Results obtained via 10,000 simulations from Model 3 are shown in the right  
panel of Fig. 4, alongside empirical estimates from the data. These results suggest that  
Model 3 provides a successful fit of the extreme events, particularly within the first 

Fig. 3  Posterior mean estimates of the spline functions �(s − s0) (left) and �(s − s0) (right) for Model 1 
(blue), Model 2 (orange) and Model 3 (black). The dashed lines show approximate 95% pointwise cred-
ible intervals in each case

689High dimensional modeling of spatial and spatio temporal…‑ ‑



1 3

ten regions, which correspond to distances up to approximately 200 km from the con-
ditioning site. At longer distances, the results do differ, which may be due to the com-
paratively small number of locations that contribute to the model fit in these regions 
and to some mild non-stationarities arising close to the coastline. The spatial depend-
ence range of extreme events appears to be relatively long, since even for region 17, 
the empirical estimates are approximately 0.2 and are therefore much higher than 
the value of 0.05 expected for classical independence of {X(s)} at large distances.  
In Appendix C, we present a similar diagnostic where we instead extrapolate to the 
0.99 quantile. Comparing the empirical results to those in Fig. 4, we again see that the 
data exhibits weakening dependence as we increase the threshold level. This suggests 
that an asymptotically independent model, as we have with Model 3, is appropriate; an  
asymptotically dependent model would not have captured this feature. However, these 
diagnostics do suggest that the dependence does not weaken quickly enough in our 
fitted model. It is possible that this could have been improved by a different threshold 
choice, but investigating this is beyond the scope of the paper.

4.6  Sensitivity to the conditioning site

A natural question when applying the conditional approach to spatial extreme value 
modeling, is how to select the conditioning location. Under an assumption of spa-
tial stationarity in the dependence structure, the parameters of the conditional model 
defined in Eq. (3) should be the same regardless of the location s0 . However, since 
the data are used in slightly different ways for each conditioning site, and because the  
stationarity assumption is rarely perfect, we can expect some variation in parameter 
estimates for different choices of s0.

Fig. 4  Left: the spatial domain separated into 17 regions; the region labels begin at 1 in the centre of the 
domain, and increase with distance from the centre. The conditioning site s0 is shown in red. Right: the 
estimated proportion of locations that exceed the 0.95 quantile, given it is exceeded at s0 using Model 3 
(green) and equivalent empirical results (purple)
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In Wadsworth and Tawn (2022) and Simpson and Wadsworth (2021), this issue 
was circumvented by using a composite likelihood that combined all possible indi-
vidual likelihoods for each conditioning site, leading to estimation of a single set  
of parameters that reduced sampling variability and represented the data well on 
average. However, bootstrap methods are needed to assess parameter uncertainty, 
and as the composite likelihood is formed from the product of d full likelihoods,  
the approach scales poorly with the number of conditioning sites. Composite likeli-
hoods do not tie in naturally to Bayesian inference as facilitated by the INLA frame-
work, and so to keep the scalability, and straightforward interpretation of parameter 
uncertainty, we focus on implementations with a single conditioning location. Sensi-
tivity to the particular location can be assessed similarly to other modeling choices, 
such as the threshold above which the model is fitted.

In particular, different conditioning sites may lead us to select different forms of 
the models described in Table  1, as well as the resulting parameter estimates. To 
assess this, we fit all seven models to the moderate dataset, using 39 different con-
ditioning sites on a grid across the spatial domain, with the mesh and prior distribu-
tions selected as previously. We compare the models using the WAIC, as described 
in Section 3.4. The results are shown in Fig. 5, where we demonstrate the best two 
models for each conditioning site. For the majority of cases, Model 4 performs the 
best in terms of the WAIC, and in fact, it is in the top two best-performing models for 
all conditioning sites. The best two performing models are either Models 3 and 4 or  
Models 4 and 5 for all conditioning locations. This demonstrates that there is rea-
sonable agreement across the spatial domain, and suggests that using just one condi-
tioning location should not cause an issue in terms of model selection.

To further consider how restrictive it is to only fit models at one condition-
ing site, we can compare the spline functions estimated using different locations 
for s0 . We again focus on results for Model  3, as in Section  4.5, and consider 
estimates of �(s − s0)u + �(s − s0) , with u representing the threshold used for fit-
ting. We demonstrate the estimates of this function in Fig.  6, for the same 39 

Fig. 5  Maps showing the ‘best’ and ‘second best’ models using different conditioning sites, based on 
minimizing the WAIC: Model 3 blue; Model 4, orange; Model 5, purple
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conditioning sites used in Fig. 5, highlighting results for four of these sites situ-
ated across the spatial domain. Overall, the estimated functions are reasonably 
similar, particularly for shorter distances. There is one function that appears to 
be an outlier, corresponding to a conditioning site located on the coast. Although 
the other coastal conditioning sites we consider do not have this issue, it does 
suggest that some care should be taken here.

As a final test on the sensitivity to the conditioning site, we consider the 
implications if we fit Model 3 at one conditioning site, and use this for infer-
ence at another location. In particular, we take the results from Section 4.5, using  
a conditioning site near the centre of the spatial domain, and use these to make 
inference at a conditioning site located on the coast. We use a method analo-
gous to the one used to create Fig. 4. That is, we separate the spatial domain into 
regions, and for each one, we estimate the proportion of locations that take values  
above their 0.95 quantile, given that this quantile is exceeded at the condition-
ing location. In Fig.  7, we compare results based on simulations from the fit-
ted model to empirical estimates. Although a different conditioning location was 
used to obtain the model fit, the results are still good, particularly up to moder-
ate distances, supporting our use of a single conditioning site for inference. One 
issue that is highlighted here is that by fitting the model at a central conditioning 
site, the maximum distance to s0 is around 391 km, so we are not able to make 
inference about the full domain for a conditioning site near the boundary, where 
the maximum distance to other locations is much larger. This aspect should be 
taken into account when choosing a conditioning site for inference. This issue is 
specific to the use of spline functions for �(s − s0) and �(s − s0) , and there is no 
such problem for parametric functions such as the one proposed by Wadsworth 
and Tawn (2022) for �(s − s0) . There is therefore a trade-off here between the 
flexbility of the splines and the spatial extrapolation possible using parametric 
functions.

Fig. 6  Posterior mean estimates of �(s − s0)u + �(s − s0) for Model 3 (right), with u representing the  
threshold used in the model fits. The colours of the lines correspond to the conditioning sites used, as 
shown in the left panel
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5  Inference for conditional space‑time extremes

5.1  Conditional spatio‑temporal extremes models

Simpson and Wadsworth (2021) extend assumption (2) to a spatio-temporal set-
ting. The aim is to model the stationary process {X(s, t) ∶ (s, t) ∈ S × T} which 
also has marginal distributions with exponential upper tails. The conditioning site 
is now taken to be a single observed space-time location (s0, t0) , and the model is 
constructed for a finite number of points (s1, t1), (s1, t2),… , (sd, t�) pertaining to the 
process at d spatial locations and � points in time, where data may be missing for 
some of the space-time points. The structure of the conditional extremes assumption  
is very similar to the spatial case, in particular, it is assumed that there exist functions  
a(s,t)−(s0,t0)(⋅) and b(s,t)−(s0,t0)(⋅) such that as u → ∞,

Pr

⎛
⎜⎜⎜⎜⎝

�
X(si, tj) − a(si ,tj)−(s0 ,t0)

�
X(s0, t0)

�

b(si ,tj)−(s0 ,t0)
�
X(s0, t0)

�
�

i = 1,… , d,
j = 1,… ,�

≤ z � X(s0, t0) = u

⎞⎟⎟⎟⎟⎠
→ Pr

⎡⎢⎢⎢⎣
{Z0(si, tj)}

i = 1,… , d,
j = 1,… ,�

≤ z

⎤⎥⎥⎥⎦
,

for {Z0(si, tj)} i = 1,… , d,

j = 1,… ,�

 representing finite-dimensional realizations of a spatio-

temporal residual process {Z0(s, t)} . Once more the excesses X(s0, t0) − u|X(s0, t0) > u  
are independent of the residual process as u → ∞ , and the constraints on the residual 
process {Z0(s, t)} and normalizing function a(s,t)−(s0,t0)(⋅) are analogous to the spatial 
case. We consider spatio-temporal variants of spatial models 1, 3, 4, and 5, which pro-
vided the best WAIC values, in Section 4.4; see the model summary in Table 3. In  

Fig. 7  Left: the spatial domain separated into regions; the region labels begin at 1 at s0 (red), and increase  
with distance from this location. Right: the estimated proportion of locations that exceed the 0.95 quan-
tile, given it is exceeded at s0 using Model 3 (green) and equivalent empirical results (purple)

693High dimensional modeling of spatial and spatio temporal…‑ ‑



1 3

order to preserve sparsity in the precision matrix of the relevant latent variables, a 
simple autoregressive structure is employed for the temporal aspect of the residual 
process; further details are provided in Section 6.5. Specifically, we construct the pro-
cess {Z0(s, t)} as {Z(s, t)} − Z(s0, t0) using the first-order autoregressive structure in 
combination with the spatial SPDE model as described in Eq. (14). For the temporal 
auto-correlation coefficient � in Eq. (14), we use the same type of prior distribution as 
for the other hyperparameters, and therefore opt again for a PC prior. The baseline 
could be either � = 0 (no dependence) or � = 1 (full dependence); here, we choose 
� = 0 and a moderately informative prior through the specification Pr(𝜌 > 0.5) = 0.5 . 
The prior distributions for �(s − s0, t − t0) and �(s − s0, t − t0) are constructed accord-
ing to Eq. (14), with a one-dimensional SPDE model for a quadratic spline with 14  
interior knots deployed for spatial distance and replicated for each of the � time  
points, with prior temporal dependence of spline coefficients for consecutive time  
lags controlled by a first-order autoregressive structure; the resulting Gaussian prior 
processes are conditioned to have �(0, 0) = 1 and �(0, 0) = 0 . Contrary to Z0 , the com-
ponents � and � are deterministic in the conditional extremes framework, but through 
the semi-parametric formulation we can handle them in the same way within the 
INLA framework. Using Gaussian process priors for spline coefficients allows for 
high modeling flexiblity through a relatively large number of basis functions, where 
hyperparameters ensure an appropriate smoothness of estimated functions.

5.2  Spatio‑temporal Red Sea surface temperature data

Since the spatio-temporal models are more computationally intensive than their spa-
tial counterparts due to a larger number of hyperparameters, and more complex pre-
cision matrices, we focus only on the moderate set of spatial locations demonstrated 
in Fig. 1, which contains 678 spatial locations; this will still result in a substantial 
number of dimensions when we also take the temporal aspect into account.

To carry out inference for the conditional spatio-temporal model, we must sepa-
rate the data into temporal blocks of equal length, with the aim that each block cor-
responds to an independent observation from the process {X(s, t)} . We first apply 
a version of the runs method of Smith and Weissman (1994) to decluster the data. 
Each cluster corresponds to a series of observations starting and ending with an 

Table 3  Summary of conditional space-time models, model selection criteria, and total run-times (min-
utes). The minimum WAIC value ( −215973 for Model 4); maximum CPO value (2.92 for Model 3); and 
minimum RMSECV value (1.09 for Model 3) have been subtracted from their respective columns. We 
estimate � as 0.55 with a 95% credible interval of (0.49, 0.64) (Model 4) and 0.55 (0.50, 0.65) (Model 5)

Model 
number

Model form WAIC CPO RMSECV Run-time

1 x ⋅ �(s − s0, t − t0) + {Z0(s, t)} 108 -0.0003 0.001 99
3 x ⋅ �(s − s0, t − t0) + �(s − s0, t − t0) + {Z0(s, t)} 59 0 0 206
4 x ⋅ �(s − s0, t − t0) + �(s − s0, t − t0) + x

� ⋅ {Z0(s, t)} 0 -0.0018 0.091 71
5 x ⋅ �(s − s0, t − t0) + x

� ⋅ {Z0(s, t)} 47 -0.0004 0.094 89
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exceedance of the threshold u at the conditioning site, with clusters separated by 
at least r non-exceedances of u. Once these clusters are obtained, we take the first 
observation in each one as the start of an extreme episode, with the following six 
days making up the rest of the block. Declustering is applied only with respect to 
the spatial conditioning site s0 , but we still consider observations across all spatial 
locations at the corresponding time-points. We select the tuning parameter in the 
runs method to be r = 12 ; this is chosen following the approach of Simpson and 
Wadsworth (2021), who check for stability in the number of clusters obtained using 
different values of r, and note that since we focus only on summer months, blocks 
should not be allowed to span multiple years. This declustering approach yields 
28 non-overlapping blocks of seven days to which we can apply our four spatio-
temporal models.

5.3  Model selection, forecasting and cross validation

We compare the four models using similar criteria as in the spatial case. The WAIC 
and average CPO values are presented in Table 3, where the most complex Model 4 
performs best in terms of the WAIC, while a slightly better CPO value arises for 
Model 3. We note that the model selected using the WAIC has the same form in both 
the spatial and spatio-temporal cases.

We also compare fitted and observed values using a variant of the root mean 
square error (RMSE). The results of within-sample RMSEs are almost identical for 
the four models, and therefore not included in Table 3, yielding a value of 0.077. 
To assess predictive performance, it is more interesting to consider an additional 
variant of cross validation in the spatio-temporal case to test the forecasting abil-
ity of the models. We carry out seven-fold cross validation by randomly separat-
ing our 28 declustered blocks into groups of four, and for each of these groups we 
remove the observations at all locations for days two to seven. We then fit the model 
using the remaining data in each case, and obtain predictions for the data that have 
been removed. This cross validation procedure is straightforward to implement, as 
in R-INLA it is possible to obtain predictions (e.g., posterior predictive means), 
including for time-points or spatial locations without observations. We compare  
the predicted values with the observations that were previously removed, present-
ing the cross validation root mean square error (RMSECV ) in Table 3. Again, the  
results are quite similar, but Model 3 performs slightly better than the others. Finally, 
run-times are reported in the table and range between 1 hour and 4 hours, using 2 
cores on machines with 32Gb of memory. When comparing the spatial models with 
the corresponding space-time models having the same spatial component, the order 
of run-times changes in our results. We emphasize that, on average, more complex 
latent models will require longer run-times with INLA if the observations remain  
the same. However, the Laplace approximations conducted by INLA require iterative 
optimization steps to find modes of high-dimensional functions, and in some cases  
these optimization steps may be substantially more computer-intensive for a simpler 
model, for instance when the mode is relatively hard to identify. Therefore, there is no  
contradiction in the reported results.
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6  Computational and implementation details

6.1  Introduction

This section provides further details on INLA, the SPDE approach, and specifics of 
implementation that are necessary to gain a full understanding of our methods, but 
not to appreciate the general ideas behind the approach.

6.2  Bayesian inference with the integrated nested Laplace approximation

The integrated nested Laplace approximation (INLA; Rue et al. 2009; Rue et al. 2017; 
Opitz 2017; van Niekerk et  al. 2021) provides relatively fast and accurate analytical 
approximations for posterior inference in models with latent Gaussian processes. The 
distribution of the observed variables may be non-Gaussian conditional on the latent 
Gaussian process. Although here the focus of our modeling approach for conditional 
extremes is on Gaussian responses, this does not imply a joint Gaussian assumption on 
our data, as explained in Section 2.3. The method astutely combines Laplace approxi-
mations (Tierney and Kadane 1986), used to compute expectations with respect to high- 
dimensional multivariate Gauss–Markov random vectors (denoted by W in Section 2.2,  
with up to tens of thousands of components), with efficient numerical integration 
schemes for integration with respect to a relatively small number of hyperparameters  
(denoted by � ) governing variance and correlation of Gaussian components, and the  
shape of the distribution of observations. Therefore, it bypasses issues that may arise  
with simulation-based Markov chain Monte Carlo (MCMC) inference, where the design 
of stable algorithms for fast exploration of the posterior distribution may be hampered 
by intricate dependencies between the components of the model (e.g., Rue and Held  
2005). With Gaussian distributions for the likelihood as in our model assumption in 
Eq. (9), the Laplace approximation is exact. INLA is implemented in the INLA pack-
age (Lindgren and Rue 2015) of the R statistical software, also referred to as R-INLA, 
and over the last decade it has been widely adopted for Bayesian additive regression 
modeling of spatial and spatio-temporal data due to its integration with the stochastic 
partial differential equation (SPDE) approach (Lindgren et al. 2011; Krainski Gómez- 
Rubio et al. 2018), which provides convenient Gauss–Markov approximations to the 
Matérn covariance function. The Bayesian framework of INLA allows for joint estima-
tion and uncertainty assessment of latent components, hyperparameters and predictions.  
Recently, the speed and stability of INLA with high-dimensional latent Gaussian struc-
tures were further leveraged through its integration with the sparse matrix computation 
library PARDISO (van Niekerk et al. 2021). We further point out that the approach of  
generalized additive models (GAMs) in the frequentist setting bears some resemblance 
to INLA. GAMs work with quadratic penalty terms on coefficients W , which play a 
similar role as Gaussian prior distributions, but there are no prior distribution on � , such 
that inference is not Bayesian. Indeed, in GAMs the interpretation of W as a Gaussian 
process is useful to achieve estimation of hyperparameters � and regression coefficients 
W through Laplace approximation (Wood 2011), similar to what is implemented in the 
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INLA method. However, standard GAM implementations, such as the mgcv package of 
R, would require important extensions to allow them to provide appropriate structure for  
fitting conditional extremes models, and we do not pursue this approach here.

For a concrete example of how Laplace approximation of integrals representing pos-
terior estimates (i.e., certain expectations) works, we show how to use it for obtaining 
the posterior distribution of �1 , the first component of the hyperparameter vector � . We 
denote by �−1 = (�2,…)T the hyperparameter vector with the component to estimate 
removed. Since the function arguments are considered as non-stochastic, we here use 
lower-case notation v and w for V and W , respectively. We have

where the outer integral d�−1 can be disregarded if � = �1 has only one component. 
The joint posterior density of w and � can be calculated up to a constant as follows,

where the proportionality factor �(v)−1 is constant for a fixed dataset v . Writing

for the function in the exponent, we replace it by a quadratic approximation 
using its second-order Taylor expansion around its modal configuration w⋆ , with 
g(w⋆) = maxw g(w) , i.e.,

with the Hessian matrix g��(w⋆) of g. This defines an approximation of the integrand 
�(�,w ∣ v) via a multivariate Gaussian density, and therefore the value of the integral 
with respect to dw can be calculated straightforwardly. If the likelihood �(vj ∣ �,w) is 
Gaussian, then the approximation of g��(w⋆) through a Gaussian density is exact and 
easy to calculate directly. In the general case, numerical implementations such as the 
R-INLA software use iterative algorithms to find w⋆ . Finally, the outer integral with 
respect to d�−1 in relatively small dimension is calculated through an appropriate 
discretization scheme. Note that the Laplace approximation of the inner integral has 
to be calculated for each discretization point of �−1 . A similar approximation scheme 
can then be applied for posterior densities of some component wj of w , or of some 
linear combination of components of w (e.g., components of the linear predictor � ), 
where Laplace approximation is used to calculate the integral with respect to dw−j . 
When the likelihood is Gaussian as in our case, then one can simply use the exact 
conditional distributions �(wj ∣ w−j, v,�) , which are univariate Gaussian.

�(�1 ∣ v) = ∫
�−1

∫
ℝm

�(�,w ∣ v) dwd�−1,

�(�,w ∣ v) ∝ �(v ∣ �,w) × �(w ∣ �) × �(�)

= exp

(
log�(w ∣ �) +

d∑
j=1

log�(Vj ∣ �,w)

)
× �(�),

g(w) = log�(w ∣ �) +

d∑
j=1

log�(vj ∣ �,w)

g(w) = g(w⋆) + (w − w
⋆)Tg��(w⋆)(w − w

⋆)
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6.3  The SPDE approach

The latent variable framework allows us to choose the spatial resolution of the latent 
model separately from that of the observed locations. Moreover, we can use the 
results of Lindgren et al. (2011), known as the stochastic partial differential equation 
(SPDE) approach, to work with numerically convenient Markovian approximations 
to the Matérn covariance function, leading to sparse precision matrices. We consider 
random fields defined on ℝD ; for the residual process {Z0(s)}, D = 2 , but we will also  
use this framework with D = 1 to define the spline functions with respect to the dis-
tance to the conditioning site. The SPDE is given by

with the Laplace operator Δy =
∑D

j=1
�
2y∕�2xj , a standard Gaussian white noise pro-

cess {B(s)} , and parameters 𝜅 > 0 (controlling correlation range) and 𝜏 > 0 (control-
ling the variance). It has a unique stationary solution given by a zero-mean Gaussian  
process {W(s)} with Matérn covariance function. Here, � is the shape parameter of 
the Matérn, with � = 0.5 yielding the exponential covariance model. The marginal  
variance of {W(s)} is �2

Z
= Γ(�)∕(Γ(� + D∕2)(4�)D∕2�2�

�
2) , and the empirical range,  

where a correlation of approximately 0.1 is attained between two points, is approxi-
mately �Z =

√
8�∕�2 . Note that this range parameter is different from the range in 

the classical Matérn parametrization.
In practice, the domain is finite, i.e., different from ℝD , and appropriate boundary con-

ditions must be imposed to ensure a solution that is unique in terms of finite-dimensional  
distributions. An approximation to the exact solution satisfying the boundary conditions 
is constructed through the representation W(s) =

∑m

j=1
WjΨj(s) with locally supported 

basis functions Ψj(s) (e.g., linear or quadratic B-splines for D = 1 , and finite elements 
for D = 2 ). The basis functions do not depend on SPDE parameters. The stochastic solu-
tion {W(s)} of the SPDE in the subspace of functions spanned by the linear combina-
tion of basis functions then yields W = (W1,… ,Wm)

T ∼ Nm(0,Q
−1) with precision 

matrix Q known in analytical form. We emphasize that {W(s)} here could represent the 
splines used for �(s − s0) or �(s − s0) , or the spatial process {Z(s)} used in the construc-
tion of {Z0(s)} . In Section 2.4, we labelled the corresponding latent variables W

�
∈ ℝ

m
�,  

W
�
∈ ℝ

m
� and WZ ∈ ℝ

mZ . For D = 2 , we use Neumann boundary conditions where the  
outward derivative of the realizations of the Gaussian field is zero, which is the default 
choice for spatial modeling with INLA; these boundary conditions are chosen for their 
computational convenience and because they have little influence on the behaviour in 
the interior of the mesh. For D = 1 and a support given by an interval, a unique approxi-
mation to the SPDE solution exists with free boundaries. In our models where spline 
functions are constrained to value zero at the origin, we use constructions with a Dir-
ichlet boundary on the left side of the interval, such that the solution satisfies the con-
straint. Theoretical results in Lindgren et al. (2011) show that the approximation to the 
solution is good in general and can be made arbitrarily close by choosing a finer finite 
element mesh.

The value of � in Eq. (12) determines how the approximate solution of the SPDE can 
be constructed in practice (Lindgren et al. 2011), and it must be fixed when estimating 

(12)
(
�
2 − Δ

)
�∕2

�{W(s) ∶ s ∈ ℝ
D} = {B(s) ∶ s ∈ ℝ

D}, � = � + D∕2,
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the model with INLA. The INLA implementation currently supports using � ∈ [1, 2] 
i.e., � ∈ [0, 1] for D = 2.

The vector WZ contains the variables used to represent a single replicate of the  
Gaussian process. When modeling conditional extremes, we usually extract n > 1 
extreme episodes satisfying X(s0) > u . To represent the unconstrained residual spatial 
process {Z(s)} , we therefore need independent replicates WZ,j, j = 1,… , n, of WZ . More-
over, for the purpose of space-time modeling, we may assume that single episodes span  
� ≥ 1 time steps. Then, for the unconstrained residual process {Z(s)} associated with 
each episode, we will define a Gaussian vector with � × mZ components, and there will 
be n replicates of this vector. We will write the precision matrices of Gaussian vectors 
comprising several blocks of the initial variables WZ through Kronecker products of 
matrices; see Section 6.5.

6.4  Imposing the condition Z0(s
0
) = 0 on the residual process

As mentioned in Section  1.2, the residual process {Z0(s)} in the spatial conditional 
extremes model can be constructed by starting with a Gaussian process {Z(s)} and 
imposing the ( Z(s0) = 0)-constraint in some way. Wadsworth and Tawn (2022) pro-
pose two options: either subtract the value at the conditioning site, i.e., set the residual 
process to be {Z(s)} − Z(s0) ; or use the conditional process {Z(s)} ∣ Z(s0) = 0.

In the latent variable framework, we can obtain a residual process of form 
{Z(s)} − Z(s0) without losing the latent Markovian structure, since we only need to 
manipulate the representation for {Z(s)} , which has a sparse precision matrix. The 
latent variables representing {Z(s)} are handled as usual, but we modify the observation 
matrix AS of the spatial process {Z(s)} to obtain A0

S
 , the observation matrix associated 

with the process {Z(s)} − Z(s0) . Therefore, let As0
 denote the observation matrix for the 

conditioning site of dimension 1 × mZ , and AS the observation matrix for the observa-
tion locations with dimension d × mZ . Then, we apply the transformation

to obtain the new observation matrix.
The alternative approach is to impose the ( Z(s0) = 0)-constraint via conditioning, in 

the sense of the conditional probability distribution. In general, if W ∼ Nm(0,Q
−1) is  

an m-dimensional Gaussian random vector with precision matrix Q, we may want to 
impose a linear constraint of the form

where k is small. For instance, B = (1, 0,… , 0) and e = 0 if we constrain the Gauss-
ian vector to satisfy W1 = 0 , or B = (1∕m,… , 1∕m) and e = 0 if we constrain the 
average value to 0. The linear transformation

(13)A0
S
= AS −

⎛⎜⎜⎝

As0

⋮

As0

⎞⎟⎟⎠
∈ ℝ

d×mZ

BW = e, B ∈ ℝ
k×m, e ∈ ℝ

k,
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of the unconstrained vector W imposes this constraint in the sense of generating a 
realization of the conditional distribution given BW = e . In practice, one can calcu-
late BQ−1 , by solving k linear systems without explicitly calculating and storing Q−1 , 
and fast implementations exist when Q is sparse and k is very small. This approach  
is known as conditioning by kriging (see, e.g., equation (8) in Rue et al. 2009; Cressie 
1993); it is available in R-INLA, and we use it for the implementation of the models 
presented here. Another possibility, applicable in a more specific setting by allowing 
us to directly condition the Gaussian vector W on W1 = 0 (here using the first com-
ponent without loss of generality), is to remove W1 from W , resulting in W−1 . The pre-
cision matrix of W−1 conditional on W1 = 0 then corresponds to Q but with the first  
row and the first column removed. Since this approach is less general (specifically, in  
order to impose Z0(s0) = 0 , we require that a knot is placed at s0 ), we here prefer the 
approach of conditioning through kriging. With respect to model structure, the dif-
ference between the two approaches is that conditioning through kriging does not fix 
the constraint in the prior model, but imposes it in the posterior model by applying 
the conditioning transformation during the Laplace approximations of INLA, while 
the second approach directly fixes the constraint in the prior model. In both cases, 
the condition is appropriately incorporated into the posterior model, and no notable 
differences arise in the posterior models returned by R-INLA.

For our Red Sea data application, we found that the choice of residual process 
does not have a large impact on results. The option of using the form {Z(s)} − Z(s0) 
performed slightly better overall, and we therefore used this method for the results 
presented in Sections  3 and  5. A comparison of results using the two different 
approaches is provided in Appendix B.

6.5  Space‑time Gauss‑Markov models

Inference on spatial conditional extremes is usually based on replicated observa-
tions, corresponding to extreme events of the spatial process {X(s)} , and in the case 
of space-time conditional extremes on replicated observations of extreme episodes 
stretching over several time steps. In this section, we detail how to combine Kro-
necker products of precision matrices, appropriate observation matrices, and the con-
ditioning approaches outlined in Section 6.4, to generate the latent variable represen-
tations of the residual processes {Z0(s)} using sparse precision matrices.

In a setting with � ≥ 1 independent and identically distributed replicates of spa-
tial Gaussian fields, the joint precision matrix of the � fields considered at a fixed 
set of spatial locations can be represented as the Kronecker product QST = I� ⊗ QS ,  
where I� is the � × � identity matrix and QS is a purely spatial precision matrix. 
More general time-stationary but temporally dependent sparse precision matrices 
are possible using the assumption of separable space-time dependence. Given sparse 
precision matrices QS and QT , the latter representing the purely temporal covariance 
structure, the precision matrix for � time steps of the space-time process corresponds 

W ∣ (BW = e)
d
= W − Q−1BT

(
BQ−1BT

)−1
(BW − e)
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to the Kronecker product QST = QT ⊗ QS . The precision matrix QT corresponds  
to a stationary Gaussian time series (e.g., of a first-order auto-regressive process), 
assumed to have variance 1 for the sake of identifiability of variance parameters; see 
Section 6.6 for further details.

With R-INLA, the standard choice for modeling spatio-temporal dependence is 
temporal auto-correlation for QT . Using discrete and equidistant time steps, we con-
sider the stationary space-time process {W(s, t)} , with auto-correlation parameter 
� ∈ (−1, 1) , given as

where �t t = 1, 2,… are Gaussian random fields with Matérn covariance, and 
{W(s, t)} and {�(s, t)} possess the same variance. In our setting, this auto-regressive 
structure is only used to model temporal dependence within single extreme episodes,  
and there is no assumption of dependence between different extreme events. The 
space-time precision matrix for the Cartesian product of a collection of sites and 
times corresponds to the Kronecker product of the corresponding purely spatial 
Matérn precision matrix QS , and the purely temporal � × � precision matrix QAR1

T
 of 

a stationary first-order auto-regressive process with marginal variance 1, defined as 
follows for � ≥ 1 time steps:

The Kronecker product QAR1
T

⊗ QS then has the following form:

We can modify the spatio-temporal Gaussian process to enforce Z0(s0, t0) = 0 
in the corresponding residual process by analogy with the spatial setting in Sec-
tion  6.4. The procedure for conditioning on Z(s0, t0) = 0 also does not present 
notable differences, and we now detail the alternative approach of using the con-
struction {Z0(s, t)} = {Z(s, t)} − Z(s0, t0) . Assume, without loss of generality, that 
the time t0 with the observed conditioning value corresponds to the first time step 
of each extreme episode, as outlined in Section 5.2, and that the same locations are  
observed during the � time steps. We first define As0,t0

 as the observation matrix 
for the conditioning site and time with dimension 1 × (mZ × �) , where mZ is the 

(14)
{W(s, 1)} = {�1(s)},

{W(s, t + 1)} = �{W(s, t)} +
√
1 − �

2{�t+1(s)}, t = 1, 2,… ,

QAR1
T

=
1

1 − �
2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − �

−� 1 + �
2 − �

− � 1 + �
2 − �

⋱ ⋱ ⋱

− � 1 + �
2 − �

− � 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

QST =
1

1 − �
2

⎛
⎜⎜⎜⎜⎝

QS − �QS ⋯ ⋯ 0

−�QS (1 + �
2)QS − �QS ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ − �QS (1 + �
2)QS − �QS

0 ⋯ ⋯ − �QS QS

⎞
⎟⎟⎟⎟⎠
.
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number of latent variables for a single spatial replicate, as before. For instance, if 
Z(s0, t0) corresponds to the first latent variable, then As0,t0

= (1, 0,… , 0) . Using the 
notation for spatial observation matrices as defined in Eq. (13), the observation 
matrix A0

ST
 for one episode of the residual process {Z0(s, t)} = {Z(s, t)} − Z(s0, t0) 

is given by the modified block-diagonal matrix

with � blocks on the diagonal, and one or several columns with the same non-nega-
tive entries for all rows to represent the term −Z(s0, t0) . Then, the representation A0

ST
 

coincides with A0
S
 in the case of purely spatial extreme episodes ( � = 1).

Finally, we take into account the replication structure with n observed repli-
cates of extreme spatial or spatio-temporal episodes. By assuming that each rep-
licate has the same design of spatial locations observed over � time steps, we can 
write the overall observation matrix as the Kronecker product Arepl = In ⊗ A0

ST
 

with the n × n identity matrix In.
We emphasize that we use the constructions of spatio-temporal processes based  

on Eq. (14) for two purposes. First, we can specify the residual process {Z0(s, t)} 
by using {Z0(s)} , with s ∈ S ⊂ ℝ

2 , in Eq.  (14). Second, we can define the prior 
structure for the functions �(s − s0, t − t0) or �(s − s0, t − t0) by using independ-
ent copies of �(s − s0) or �(s − s0) , respectively, for the innovation process �  
in Eq.  (14), with t running from 1 to � . The latter case can be seen as the use 
of a Gaussian process prior for the coefficients of a tensor product spline basis, 
defined with respect to the dimensions of spatial distance and time lag.

The form of the process {W(s, t)} used here exhibits separable dependence in 
space and time. At present, there are no other, more flexible non-separable models 
indexed over continuous space and readily implemented within R-INLA, although 
the possibility of such models has been discussed by Bakka et al. (2018). Simpson 
and Wadsworth (2021) consider the case for using non-separable dependence forms 
within spatio-temporal conditional extremes models. They conclude that allowing 
for non-separability in the normalizing functions (e.g., where a(s,t) cannot be decom-
posed additively or multiplicatively into a purely spatial and a purely temporal term) 
is more important than in the residual process since these capture more of the struc-
ture in the model. Within R-INLA, the semi-parametric specification of the first 
normalizing function a(s,t)−(s0,t0) allows for flexible, non-separable structure in the 
posterior estimate of the function (which is not to be confounded with the fact that 
its prior dependence structure is separable). More complex, non-separable paramet-
ric forms of the function b(s,t)−(s0,t0) could be estimated by analogy with the spatial 
case. We conclude that using a separable form of {W(s, t)} here should be sufficient.

A0
ST

=

⎛
⎜⎜⎜⎜⎝

AS 0 ⋯ ⋯ 0

0 AS 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 AS 0

0 ⋯ ⋯ 0 AS

⎞
⎟⎟⎟⎟⎠
−

⎛
⎜⎜⎜⎜⎜⎝

As0,t0

⋮

⋮

⋮

As0,t0

⎞
⎟⎟⎟⎟⎟⎠

,
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6.6  Implementation using the R-INLA software

For examples of the implementation of our proposed approach in R-INLA, we have 
made annotated code available on GitHub (https:// github. com/ essim pson/ INLA-  
condi tional- extre mes). When fitting models using this approach, the default R-INLA  
output consists of discretized versions of univariate posterior densities for the com-
ponents of the latent Gaussian model terms (including the linear predictor compo-
nents) and hyperparameters of the model. Moreover, standard summaries of these 
univariate posteriors are provided, including posterior means, medians and 95% cred-
ible intervals. It is also possible to request further specific outputs when calling the  
inla function, which carries out the estimation in R, such as estimates of the WAIC 
and CPO values. If required, one can also obtain approximate posterior samples after 
having estimated the model, which allows for posterior inference using Monte Carlo  
estimation for more complex quantities that are not part of the output that can be 
provided directly.

While standard functionality available in the R-INLA library allows for straight-
forward implementation of the unconstrained SPDE model and auto-regressive 
structures for dimensions D = 1, 2 , as presented in Sections 6.3 and 6.5, respectively, 
more specific extensions are required for imposing the condition Z0(s0, t0) = 0.

The R-INLA package provides the precision matrices of the unconstrained latent 
spatial process {Z(s)} . Space-time processes {Z(s, t)} , and independent replications 
of spatial or spatio-temporal processes, are then handled internally by R-INLA. To 
estimate model components of type x�

[
{Z(s, t)} − Z(s0, t0)

]
 where the parameter � 

does not need to be estimated through INLA, we can simply modify the observa-
tion matrix Arepl and give it as an input to the estimation routine. As to imposing the  
constraint where we condition on Z(s0, t0) = 0 , the conditioning-by-kriging approach 
using a matrix B and a vector e is already implemented for the spatial {Z(s)} pro-
cess ( D = 2 ), and can be used for spatial extreme episodes with � = 1 . Similarly, 
for D = 1 the condition Z(0) = 0 can be set through a flag in R-INLA, and we will 
deploy this mechanism to constrain priors of spline functions used to model the func-
tions �(s − s0) and �(s − s0) in Eq.  (9). However, space-time models ( � > 1 ) with  
temporal auto-regression, where the condition is active only for exactly one of the � 
time steps, are not possible through this mechanism in R-INLA. Similarly, variances  
of the residual space-time process x�{Z0(s, t)} that vary over the � time steps, with 
non-stationarity expressed through hyperparameters to be estimated, are not directly 
available.

Many additive components of the latent model that are not directly available 
through standard mechanisms in R-INLA can be implemented manually through its  
rgeneric function. This requires us to manually define functions that return the 
precision matrix, the (deterministic) mean function (if different from 0), and the prior 
densities of the hyperparameters of the component to be set up. In particular, the 
parameter � may be treated as a hyperparameter to be estimated. Moreover, we could 
estimate a parametric mean function a(s,t)−(s0,t0)(x) in a(s,t)−(s0,t0)(x) + x�{Z0(s, t)} , 
where a(s,t)−(s0,t0)(x) depends on hyperparameters but does not involve any of the 
latent Gaussian components gathered in the vector W . Finally, the conditioning on 
Z(s0, t0) = 0 in the spatio-temporal setting ( � > 1 ) can be imposed by combining an 
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unconditional rgeneric-model with the conditioning through kriging technique 
available as a standard mechanism within R-INLA. In all operations involving large 
precision matrices, it is crucial to use appropriate sparse matrix objects and sparse 
matrix operations in the R language.

In Section 4.4, we proposed a cross validation procedure that involved removing 
and subsequently predicting observations in a particular region of the spatial domain.  
We now highlight that in R-INLA, this is straightforward to achieve by replacing the  
data for the cross validation by missing data flags, since these values will automati-
cally be estimated, e.g., through the posterior mean of the “fitted values”.

7  Discussion

The aim of this paper was to develop an inferential approach for spatial and spatio-
temporal conditional extremes models, by exploiting latent Gaussian processes within 
the SPDE framework, and with efficient inference carried out using R-INLA. A 
benefit of this method is that we are able to handle more spatial or spatio-temporal 
locations than is possible using existing likelihood-based techniques. In principle, the 
Laplace approximations carried out within INLA could also be used for frequentist  
inference without specifying prior distributions for hyperparameters, but we emphasize 
that the Bayesian framework comes with some valuable benefits, such as the control  
of model complexity via the use of penalized complexity priors. High-dimensional 
inference was facilitated by accepting some modest restrictions on the modeling set 
up. Firstly, we only considered inference based on a single conditioning location. As 
mentioned in Section 4.6, in other contexts sensitivity to the choice of conditioning 
location has been reduced by use of composite likelihoods to incorporate all potential 
conditioning locations. However, this comes at a computational cost, with a further 
much larger cost to assess uncertainty via the bootstrap. Secondly, we only allow for 
the residual process to have a Gaussian form. In many applications this is likely to 
be adequate, but may lead to problems if the domain of the data is sufficiently large 
that there is approximate independence in the extremes at long distances. This is 
because under independence, we expect �(s − s0) = 0, �(s − s0) = 0 and � = 0 , such 
that {X(s)}|[X(s0) = x] = {Z0(s)} , but there is a mismatch between the marginals of 
{X(s)} (Laplace) and {Z0(s)} (Gaussian). Wadsworth and Tawn (2022) dealt with this 
by allowing more general forms for the margins of {Z0(s)} , but where this is not neces-
sary, use of untransformed Gaussian processes is certainly more efficient. In princi-
ple, non-Gaussian responses can be handled within R-INLA by using a response dis-
tribution (i.e., a “likelihood model”) different from the Gaussian; however, due to the  
conditional independence assumption with respect to the latent Gaussian process, it 
may be difficult to obtain models that realistically reflect the spatio-temporal smooth-
ness of observations. In contrast to the existing inferential approach, INLA allows us to  
estimate flexible semi-parametric specifications for the functions arising in the mean 
of the Gaussian process of conditional extremes, and the estimation and uncertainty 
assessment is performed jointly with all other model parameters. As mentioned in Sec-
tion 2.3, even more flexible models would be achieved by having a latent Gaussian pre-
dictor incorporated into a semi-parametric form of the bs−s0-function to better control  
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the nonstationarity of the variance of the conditional extremes model with respect to 
s − s0 , but this is not possible with the current implementation of R-INLA.

Since we construct models using a single conditioning site, s0 , but may subse-
quently assume that the fitted model applies at other conditioning locations, another 
important consideration is the choice of a suitable position for s0 . There are cer-
tain aspects to take into account here, as highlighted in Section 4.6. For instance, 
one may wish to choose s0 so that maxi=1,…,d ‖si − s0‖ takes its largest value, as this 
will provide more reliable estimates for the spline functions �(s − s0) and �(s − s0) at  
the longest distances. On the other hand, choosing s0 towards the edge of the spatial 
domain may mean that it is less likely to be representative of the full set of loca-
tions. These two considerations should be balanced in the selection of s0 . Even when  
inference on parameters has been made using a single conditioning location, our 
assumption of spatial stationarity means that it is still possible to infer conditional 
probabilities or expectations for alternative conditioning sites or events. In particular,  
Wadsworth and Tawn (2022) demonstrate how to make inference on quantities of 
the form

for a function g(⋅) of interest, which could be exploited in our setting just as easily.
In other application contexts, the analysis of non-stationarities in conditional 

extremes with respect to s0 may be of interest, such that the assessment of differences  
between models fitted at different conditioning locations s0 is an inferential goal in 
itself. The local modeling suggested by the conditional extremes approach makes 
sense if we have a large study area with possible non-stationarities, but are mostly 
interested in inferences on local features. For example, with the Red Sea surface tem-
perature data, one could choose s0 as a representative site of one coral reef, or several  
closely located coral reefs, although we have not done this here. In climate studies, 
characteristics of the marginal distributions are routinely used to describe the local 
climate. With the conditional extremes models, we could also consider the properties  
of the s0-conditioned model as a way to more fully characterize the climate proper-
ties at location s0.

As discussed in Section  4.6, Wadsworth and Tawn (2022) and Simpson and 
Wadsworth (2021) use a composite likelihood approach to combine information 
across several conditioning sites. While this is also a possibility in our setting, we 
would lose some of the benefits over the classical likelihood framework since the 
uncertainty estimation becomes awkward in a Bayesian context, though consistency 
of estimators is preserved (Soubeyrand and Haon-Lasportes 2015). An alternative 
may be to obtain separate estimates for different conditioning locations, and com-
bine these via some weighted approach, i.e., perform model averaging either in the 
domain of the models’ likelihood or in the domain of their predictions. This pro-
vides a potential avenue for further work.

While this was not necessary for our Red Sea data example, it would be rela-
tively straightforward to include covariates within the latent Gaussian structure. 
For instance, a distant-dependent variance model may be more appropriate in cer-
tain cases, and such an adaptation would be possible within the INLA framework  

E[g({X(s)})| max
1≤i≤d X(si) > u],
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by suitable modification of the models outlined in Table 1. As is generally the case 
with covariate modeling, the difficulty here is in choosing relevant covariates whose 
influence can be easily interpreted. For some scenarios, the effect of a particular 
covariate may already be known, and the modeling may benefit from this approach. 
Another technique that may be useful in certain settings is censoring, which is also  
possible within the INLA framework via the inclusion of a censored Gaussian 
response for the likelihood of observations in Section 2.2; see Zhang et al. (2021) 
for an MCMC-implementation in a similar context.

A further issue linked to modeling non-stationarity is the assumption of isotropy 
that we place on the underlying spatial process. Indeed, the results in Appendix A 
show that there is some violation of this assumption in our application. Wadsworth 
and Tawn (2022) deal with anisotropy by including a transformation of the spa-
tial coordinates within the modeling procedure. This approach is also adopted by 
Simpson and Wadsworth (2021), and the resulting transformation for the sea surface 
temperature data in the northern Red Sea is very small. Such a transformation is 
not incorporated within the standard R-INLA set-up, but the anisotropy parameters 
could be estimated using a generic model. In the spatial setting, Richards and 
Wadsworth (2021) propose a deformation technique to deal with non-stationarity in 
extremal dependence features. This allows for anisotropy to be handled as a prelimi-
nary modeling step, which it would be possible to do in the context of conditional 
spatial extremes.

Our approach is not fully Bayesian, since the marginal transformation of data at 
each spatial location to a standard Laplace distribution is carried out separately to  
the dependence modeling. This approach appears sufficient, particularly since simul-
taneous estimation of the margins and the dependence within the INLA framework  
would be intricate. This would result in us resorting to MCMC estimation, but here 
we do not want to sacrifice the simplicity and speed of the INLA-implementation 
with big datasets.

There are several aspects that we have had to consider as part of the implementa-
tion of the conditional extremes models in INLA, with some of these being more 
important than others. We found the priors of the hyperparameters to have minimal 
importance, as indicated by posteriors with small credible intervals. This is likely 
due to the large number of observations we had available. We also observed very 
similar results when setting the SPDE parameter to � = 1.5 or � = 2 so for our data, 
the smoothness of the Gaussian field does not have a significant impact compared to 
other aspects of the model. As we may have expected choosing appropriate normal-
izing functions is hugely important, and the forms of these may need to be tailored to  
the specific data application.

Appendix A: Extremal dependence properties of the Red Sea data

In this section, we aim to assess some of the extremal dependence properties of the 
Red Sea data. To do this, we consider a non-limiting version of the tail correlation 
function �(s, s + h) introduced in Eq. (1). In particular, we define
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for FL denoting a standard Laplace distribution, s, s + h ∈ S with X(s),X(s + h) ∼ FL ,  
and q ∈ [0, 1] . We are interested in values of q close to 1 in order to focus on extre-
mal dependence properties. In Fig. 8, we provide empirical estimates of �q(s, s + h) 
for the Red Sea data, with q = 0.9, 0.95, 0.99 , and s chosen to be the conditioning site  
s0 used for inference in Sections 4.4 to 4.5. Estimates are shown for s + h being each 
of the spatial locations in our dataset.

There are two reasons why we are interested in these plots. The first is to assess 
the type of extremal dependence exhibited by the data, so we can better understand 
the types of models that will be appropriate here. As the level q increases, it is clear 
that there is weakening dependence in the data. This suggests that models for asymp-
totic independence will be more appropriate than those for asymptotic dependence 
here, a finding that is reflected in the models we favour in both the spatial and spatio-
temporal cases. Estimates of �0.95(s, s + h) and �0.99(s, s + h) based on simulations  
from our fitted spatial Model 3 are also included in Fig. 8. These demonstrate that 
the model indeed exhibits dependence that weakens as the threshold increases, albeit 
at a slower rate than in the empirical estimates. The second use of these plots is to 
assess our assumption of isotropy. To do this, the spatial domain have been sepa-
rated into eight sections, as shown in the top-left panel of Fig. 8, and we consider 
whether the extremal dependence behaviour differs within these sections. It appears 

𝜒q(s, s + h) = Pr
{
FL(X(s + h)) > q ∣ FL(X(s)) > q

}
,

Fig. 8  Estimates of �q(s, s + h) for all spatial locations, using one conditioning site (highlighted in 
orange), and for q = 0.9, 0.95, 0.99 . The locations in the top-left panel have been divided into eight sec-
tions, with the �q(s, s + h) estimates in the remaining plots coloured accordingly. The black lines in the 
plots of the bottom row show the corresponding �q(s, s + h) estimates from our fitted Model 3
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that there is some violation of this assumption, since the results in the bottom-left 
quadrant are different to the others. Some ways to deal with this issue are discussed 
in Section 7.

Appendix B: Additional model comparisons

A comparison of the two residual processes

In Section 6.4, we discussed the implementation of two different structures for the 
spatial residual process {Z0(s)} , both of which ensure the constraint that Z0(s0) = 0 
is fulfilled. Throughout the paper, we use a process of the form {Z(s)} − Z(s0) , but 
the alternative is to use {Z(s)} ∣ Z(s0) = 0 . In Table 4 we present WAIC results for 
the models described in Table 1 of Section 4.4 using both residual processes. Mod-
els 0 to 5 are applied to the moderate set of spatial locations shown in the right 
panel of Fig. 1 (Model 6 is omitted as it involves no modeling of the residual pro-
cess), with the threshold u taken as the 0.95 quantile of observations on the Laplace 
scale. The conditioning site lies towards the centre of the spatial domain, and the 
mesh and remaining tuning parameters are chosen as previously. Model 3 with the 
{Z(s)} − Z(s0) residual process, which is the one we focus on in Section 4.5, performs  
the best here. For any given model, the WAIC values are quite similar using the two 
residual processes, although the {Z(s)} − Z(s0) construction we have used throughout  
our analysis is favoured overall. This indicates that the choice of {Z0(s)} is not so 
critical here, and that we have made a reasonable choice in our modeling.

Sensitivity of model fits to SPDE parameter �

In Section 6.3, we gave an introduction to the SPDE approach, with parameter � rep-
resenting the shape parameter of the Matérn covariance. In the SPDE framework, 
this links to the parameter � = � + D∕2 , i.e., in the spatial case � = � + 1 . The value 
of � must be fixed when implementing the INLA methodology, with � = 1.5 cor-
responding to an exponential covariance, and � = 2 providing smoother Gaussian 
realizations.

Table 4  Comparison of WAIC values for models fitted with different residual processes. The minimum 
WAIC value ( −95298 for Model  3 with residual process {Z(s)} − Z(s0) ) has been subtracted from all 
other values. Results in bold demonstrate the minimum WAIC value achieved for each model

Model {Z(s)} − Z(s0) {Z(s)} ∣ Z(s0) = 0

0 337 298
1 43 65
2 80 71
3 0 18
4 20 23
5 55 61
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In Table 5, we compare WAIC values for each of the models in Table 1, for � = 1.5 
and � = 2 ; all other modeling choices fixed as in Section 3. Model 4 with � = 1.5  
remains the most successful model, although selecting � = 1.5 or � = 2 is shown to 
have little effect for any of the models. We opt to fix � = 1.5 throughout the paper, as 
we find this to perform slightly better overall, although the form of the model clearly 
has more of an effect on the results.

Appendix C: Additional diagnostic plots

Histogram of PIT values for Model 3

In Section  3.5, we discussed the use of the probability integral transform as a 
model fitting diagnostic. The idea is that the closer the PIT values are to being 
uniform in distribution, the better the model captures variability in predictive dis-
tributions when predicting a single data point. In Fig. 9, we present a histogram of  
these results for Model 3, with equivalent plots for the Models 0 to 5 being very 

Table 5  Comparison of 
WAIC values for models fitted 
with different values of � . 
The minimum WAIC value 
(-1460982 for Model 4 with 
� = 1.5 ) has been subtracted 
from all other values. Results in 
bold demonstrate the minimum 
WAIC value achieved for each 
model

Model � = 1.5 � = 2

0 2438 2447
1 614 624
2 743 746
3 4 15
4 0 12
5 611 639
6 4394961 4394960

Fig. 9  Histogram of PIT values 
for Model 3
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similar to this one. We recall that since Model 6 does not allow for any residual 
variation, we are not suggesting it as a serious model contender, and do not con-
sider an equivalent PIT histogram here.

Since we here have smooth, gridded data and a flexible residual process, Mod-
els 0  to 5 provide almost perfect predictions in the setting of leaving out a sin-
gle observation. Plots such as this, relating to leave-one-out cross-validation, are 
therefore less relevant here than in other cases. The peak in the middle of the PIT 
histogram suggests that the posterior predictive densities �(xi ∣ x−i) are usually 
slightly too “flat” in many cases, but since the posterior predictive variance is 
very small for each of the Models 0  to  5, we do not consider this as problem-
atic. One should therefore consider PIT-based diagnostics alongside information 
on the predictive variance. Indeed, having small predictive variances with a less 
uniform PIT histogram is usually preferable to having large predictive variances 
with a more uniform PIT histogram. To wit, this variability (as measured by the 
RMSE) is much smaller for Model 3 than Model 6.

Extension of Fig. 4 with extrapolation

In Fig. 4 of Section 4.5, we presented a diagnostic plot demonstrating the propor-
tion of locations that exceed the 0.95 quantile in different regions of the spatial 
domain, given that it is exceeded at the conditioning site. In Fig. 10, we present an  
equivalent plot for exceedances of the 0.99 quantile. Model 3 gives reasonable 
results for the most central regions, but the dependence is overestimated as we 
move further from the conditioning site. This is discussed further in Section 4.5.

Fig. 10  Left: the spatial domain separated into 17 regions; the region labels begin at 1 in the centre of the 
domain, and increase with distance from the centre. The conditioning site s0 is shown in red. Right: the 
estimated proportion of locations that exceed the 0.99 quantile, given it is exceeded at s0 using Model 3 
(green) and equivalent empirical results (purple)
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