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1 � Wildfires and their extremes: a challenging problem

The papers in this Special Issue describe the contributions of teams participating in 
a data competition that took place prior to the 12th Extreme-Value Analysis (EVA) 
conference. It started in December 2020 with final predictions of participants due 
in May 2021. During a dedicated session of the EVA conference held from June 
28th to July 2nd of 2021 and taking place online because of the difficult and uncer-
tain sanitary situation due to Covid, the results of the challenge were presented and 
prizes were awarded to the top teams.

Wildfires are defined as uncontrolled fires of combustible material composed 
of natural vegetation, such as forests or shrubland. They represent an environmen-
tal hazard with major impacts worldwide, and their frequency of occurrence and 
size is expected to further increase with global warming (Jones et al. 2020). Each 
year, wildfires cause many direct human casualties, and they are at the origin of 
extreme air pollution episodes and the loss of biodiversity and other ecosystem ser-
vices. They further contribute an important fraction of global greenhouse gas emis-
sions each year, such that they could further exacerbate climate change. Wildfire 
modeling has been tackled with a wide variety of approaches from statistics and 
machine learning [see, e.g., Preisler et al. (2004), Pereira and Turkman (2019), and 
Xi et al. (2019)], some of them invoking extreme-value theory [see, e.g., Pereira and 
Turkman (2019), and Koh et al. (2023)].

As to the origin of wildfire ignitions, lightning is the principal natural cause, but 
in the majority of cases human activities are responsible. They may be intentional 
(arson) or accidental (debris burning, agricultural activities, campfires, smoking). 
Typically, wildfires are the result of the concurrence of the presence of combusti-
ble material (e.g. forest), its easy flammability (e.g. resulting from extreme weather 
conditions such as droughts), and a trigger (e.g. lightning or human activity). In 
most wildfire-prone areas over the globe, wildfire activity shows seasonal cycles 
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due to the seasonality of favorable weather conditions modifying the vulnerability 
of forests.

To aid in wildfire management, it is crucial to understand and predict how vari-
ous risk factors interact in contributing to wildfire behavior and its spatio-temporal 
variation. Wildfire management includes a multitude of tasks, including monitoring 
of forest ecosystems, deployment of preventive measures, firefighting logistics, as 
well as short-term forecasting and long-term projections of wildfire activity.

The data challenge focused on two important components of wildfire activity: 
wildfire occurrence, and wildfire size. Given a region of space and a period of time 
(e.g. a voxel in a regular spatiotemporal grid), we consider the number of spatially 
separated (i.e., spatially and temporally non contiguous) wildfire events as an obser-
vation with respect to the first aspect (occurrence), and the aggregated burnt area of 
wildfires originating in the area of interest as an observation with respect to the sec-
ond aspect (size). In light of the non-Gaussian nature and the relatively heavy tails 
in observations of both of these variables, and of the lack of strong autocorrelation 
of such variables across space and time, their accurate prediction is a challenging 
task. The most extreme impacts and the biggest difficulties in wildfire management 
are associated to large values of burnt area and/or of wildfire counts, for both of 
which prediction is highly challenging. Therefore, extreme-value theory is a promis-
ing conceptual and methodological framework for studying such data.

2 � Description and preprocessing of original data

The dataset provided for the competition has been composed using several data 
sources. Here we provide some background. Data are provided for the continen-
tal United States, excluding the state of Alaska and islands such as Hawaiï. Spatial 
coordinates are given in the WGS84 system, that is, the usual longitude and latitude 
coordinates. All data are aggregated to a monthly 0.5o × 0.5o grid of longitude and 
latitude coordinates (roughly 55 by 55 km) covering the study area, and we explain 
in the following how this has been achieved. Only the months between March and 
September are considered for wildfire data.

2.1 � Original datasets

2.1.1 � US wildfires

We use a comprehensive dataset of wildfires covering the period from 1993 to 2015 
for the continental United States, which has been gathered from various wildfire 
inventories in Short (2017). It reports a set of unified attributes available for each 
wildfire. In this data competition, we specifically use the geographic position, the 
time of occurrence and the burnt area of individual wildfires. This information is 
aggregated towards a monthly longitude-latitude grid at 0.5-degree resolution 
(roughly 55 km) by counting the number of wildfires within each grid point (vari-
able CNT), and by summing up the burnt areas of these wildfires (variable BA). 
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Figure 1 shows spatial maps of these two variables where they have been further 
aggregated over all months of the study period. The heavy-tailed nature of the BA 
variable becomes obvious from the histograms in Fig. 2 of positive BA values (left 
histogram) and logarithms of positive BA values (right histogram).

2.1.2 � Land cover

The land monitoring service of the European Union’s COPERNICUS service for 
remote sensing produces global land cover classification maps at 300 m spatial res-
olution and annual temporal resolution. Data are free of access and are provided 
online through the COPERNICUS Climate Data Store. The classification uses 
38 classes whose definition is based on the United Nations Food and Agriculture 
Organization’s (UN FAO) Land Cover Classification System (LCCS). Of these 38 
categories, only 18 are observed with nonnegligible proportion in the study area 
defined by the contiguous US. For illustration, a map with classes of land cover 
in the US is shown in Fig. 3. For the data competition, data are aggregated to the 
0.5o × 0.5o grid of longitude and latitude by considering the proportion of each of 
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Fig. 1   Wildfire data for the US, aggregated over the study period for each pixel. Left: Counts. Right: 
Burnt areas
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Fig. 2   Histogram of positive burnt areas (left) and of logarithms of positive burnt areas (right)
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these 18 categories within each grid cell. Proportions of the following categories 
are considered and are named lc1 to lc18 in the dataset provided for the competition. 
Their denominations as given in the original dataset are as follows: 1) cropland rain-
fed; 2) cropland rainfed herbaceous cover; 3) mosaic cropland; 4) mosaic natural 
vegetation; 5) tree broadleaved deciduous closed to open; 6) tree broadleaved decid-
uous closed; 7) tree needleleave evergreen closed to open; 8) tree needleleave ever-
green closed; 9) tree mixed; 10) mosaic tree and shrub; 11) shrubland; 12) grass-
land; 13) sparse vegetation; 14) tree cover flooded fresh or brakish water; 15) shrub 
or herbaceous cover flooded; 16) urban; 17) bare areas; 18) water.

The area proportions lc1 to lc18 do not always sum to exactly 1 for each pixel and 
month since a few classes with quasi-0 proportion have been removed. These 18 pre-
dictors are therefore almost collinear, i.e., lci0 ≈ 1 −

∑18

i= 1, i≠ i0
lci for i0 = 1,… , 18.

2.1.3 � Meteorological variables

The meteorological variables provided in the dataset of the competition are based 
on the gridded output of monthly means obtained within the ERA5-reanalysis on 
Land surface, available for a global grid of resolution 0.1o × 0.1o and download-
able from the COPERNICUS Climate Data Store. The following 10 variables, 
called clim1 to clim10 , respectively, in the provided data, are considered for this 
data competition, with their units given in parentheses: 1) 10 m U-component of 
wind (the wind speed in Eastern direction) (m/s); 2) 10 m V-component of wind 
(the wind speed in Northern direction) (m/s); 3) Dewpoint temperature (tempera-
ture at 2 m from ground to which air must be cooled to become saturated with 
water vapor, such that condensation ensues) (Kelvin); 4) Temperature (at 2 m 
from ground) (Kelvin); 5) Potential evaporation (the amount of evaporation of 

Fig. 3   Map of the land cover classes for the US
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water that would take place if a sufficient source of water were available) (m) 6) 
Surface net solar radiation (net flux of shortwave radiation; mostly radiation com-
ing from the sun) (J/m2 ); 7) Surface net thermal radiation (net flux of longwave 
radiation; mostly radiation emitted by the surface) (J/m2 ); 8) Surface pressure 
(Pa); 9) Evaporation (of water) (m); 10) Precipitation (m).

2.1.4 � Variables related to altitude

Finally, two variables related to altitude are made available. The variable called 
altiMean provides the mean altitude for each cell of the longitude-latitude grid, 
and the variable called altiSD provides the corresponding standard deviation. 
Original gridded data were provided by the Shuttle Radar Topography Mission 
(SRTM) at 90 m spatial resolution.

2.2 � Split into training and validation datasets

The dataset has been split into a training dataset and a validation dataset. Valida-
tion is carried out based on the predictions for the variables of aggregated burnt 
areas (BA) and counts (CNT). Only training data were provided to the teams 
participating in the data challenge. No data have been masked for uneven years  
(1993, 1995,...,2015). For even years (1994, 1996,..., 2014), overall 80,000  
observations of each of the two variables are kept for validation; that is, they have 
been masked by setting them to a missing value flag in the dataset. The spatial 
and temporal positions of validation data are not completely random, but they 
tend to be clustered in space and time. Moreover, the validation locations for 
BA and CNT are not the same, but they are positively correlated. This has been 
achieved by defining masked locations as the exceedance locations of a bivari-
ate space-time Gaussian process with positive spatiotemporal correlation and 
positive cross-correlation. Therefore, the probability of having to predict both BA  
and CNT for a given grid cell and month is higher than the product of the two 
probabilities of having to validate BA or CNT. The training data values and vali-
dation data locations for a given month of the study period are shown in Fig. 4.
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Fig. 4   Example of training data for a given month. Left: Counts. Right: Burnt areas
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3 � Prediction goal and benchmark model

3.1 � Prediction goal

The aim of this challenge was to estimate predictive distributions for the BA and CNT  
validation data, i.e., for the data masked in the training dataset. More precisely,  
the value of the predictive distribution function of each masked observation of  
BA and CNT must be estimated for a list of severity thresholds. The list of thresh-
olds was chosen to put relatively strong focus on exceedances of extreme levels.

For CNT, 28 severity thresholds are fixed as follows:

For each CNT validation data point i and each u ∈ UCNT , the probability p
CNT , i

(u) =

ℙ(CNT
i
≤ u) must be estimated. For BA, the following 28 severity thresholds are used:

For each BA validation data point i and each u ∈ U
BA

 , the probability p
BA,i

(u) = ℙ (BA
i
≤ u)  

must be estimated.

3.2 � Prediction scores

The performance of predictions of the different teams was compared using a pre-
diction score, and teams were ranked based on the prediction score, with lower 
scores resulting in better rank. Separate prediction scores were calculated for BA 
and CNT, resulting in separate rankings of teams participating in one or both of 
the sub-competitions of predicting BA and CNT, respectively. The overall predic-
tion score, used to determine the overall ranking and the winning teams, resulted 
from adding up these two separate scores and ranking them. A relatively lower 
score is better and leads to a better ranking of the corresponding team.

The scores used for the competition are variants of weighted rank probabil-
ity scores, which put relatively strong weight on good prediction in the extremes 
of the distribution of counts and burnt areas. We denote by p̂CNT , i(u) the pre-
dicted probability for ℙ(CNTi ≤ u) and by p̂BA, i(u) the predicted probability for 
ℙ(BAi ≤ u) . There were kCNT = kBA = 80, 000 values to be predicted for CNT and 
BA, respectively. For the counts in CNT to be predicted, the score

was used, where the weight function is given as

UCNT = {u1, u2,… , u28} = {0, 1, 2,… , 9, 10, 12, 14,… , 30, 40, 50,… , 100}.

UBA = {u1, u2,… , u28} = {0, 1, 10, 20, 30,… , 100, 150, 200, 250, 300, 400, 500,

1000, 1500, 2000, 5000, 10000, 20000, 30000, 40000, 50000, 100000}.

SCNT =

kCNT
∑

i= 1

∑

u∈UCNT

𝜔CNT (u)
(

I(u ≥ CNTi) − p̂CNT , i(u)
)2

𝜔
CN T

(u) =
𝜔̃
CN T

(u)

𝜔̃
CN T

(u
28
)
, 𝜔̃

CN T
(u) = 1 − (1 + (u + 1)2∕1000)−1∕4,
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and I is the indicator function defined as

The division by 𝜔̃CNT (u28) above ensures that the largest weight �CNT (u28) is 1. By 
analogy, the score for burnt areas in BA is

where

The overall score was then given as STOTAL = SCNT + SBA . The weights were deter-
mined through preliminary analyses to ensure that the contributions of the two 
scores to the overall score were approximately of the same order. Each participat-
ing team had to provide two numerical matrices of predictions for counts and burnt 
areas, each of dimension 80, 000 × 28 , where the (i,  j)-th entry corresponds to the 
prediction p̂BA, i(uj) or p̂CNT , i(uj) , respectively.

3.3 � Benchmark model

Moreover, a benchmark score was provided. For CNT, it was obtained by estimating 
a generalized linear model with Poisson response distribution and log-link using all 
available covariates, and the exceedance probabilities were calculated from the pre-
dictive distributions of the model. For positive values of BA, the benchmark score 
was obtained by estimating a generalized linear model with log-Gaussian response 
and log-link function using all available covariates. The probability predictions of 
BA are obtained by multiplying the predictions of exceedance probabilities for the 
log-Gaussian BA model (estimated using only the observations with BA > 0 ) with 
the predicted probability of CNT > 0 obtained from the Poisson model. Note that 
this benchmark model does not exploit the information that BA = 0 if the observed 
CNT = 0 , but the teams were allowed to use this information.

4 � Ranking of the teams participating in the competition

More than 60 participants from around 20 countries worked on the prediction task 
of the competition, and 13 teams submitted final predictions. These teams were 
invited to submit a paper for the present Special Issue of the Extremes journal to 
describe their approach, and finally seven papers were submitted and have under-
gone the usual peer-review process. These seven papers are presented in this issue of 

I(u ≤ x) =

{

1, if u ≤ x

0, if u > x.

SCNT =

kBA
∑

i= 1

∑

u∈UBA

𝜔BA(u)
(

I((u ≥ BAi) − p̂BA, i(u)
)2

𝜔BA(u) =
𝜔̃BA(u)

𝜔̃BA(u28)
, 𝜔̃BA(u) = 1 − (1 + (u + 1)∕1000)−1∕4.
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Extremes and bear witness of the large variety of statistical approaches devised and 
implemented by the teams.

Each team could submit up to two preliminary predictions to compare their 
approach to the predictions of other teams. The final ranking was based solely on the  
final prediction. Final rankings were published during the EVA 2021 conference and 
are reported in Table 1 for 12 teams. Note that teams could choose not to appear in 
the published rankings. All ranked teams were successful in substantially outper-
forming the benchmark model through their approaches. The best team BlackBox 
managed to improve on the benchmark score by almost 40% , and its performance is 
particularly impressive since it also achieved the highest absolute improvement over 
the next lower-ranking team among the 8 top-ranked teams.

5 � Discussion of implemented approaches and results

For details on the various implemented approaches, we refer the reader to the cor-
responding papers in this Special Issue. The top-ranked team BlackBox (Ivek & 
Vlah) implemented a deep learning approach with adaptations to take into account 
the heavy-tailed distributions with singular mass at 0 and the incomplete spati-
otemporal coverage of observations due to masked data. The second-ranked team 
Kohrrelation (Koh) developed a gradient-boosting algorithm with the choice of the 
loss function guided by the extreme-value setting. The third-ranked team Bedouins 
(Hazra et  al.) developed a multi-stage modeling approach, including Bayesian 
hierarchical models and Random Forests as its components, and the team ranked 
fifth, RedSea (Zhang et al.), also resorted to hierarchical Bayesian modeling. The 

Table 1   Final ranking of the participating teams that accepted publication of their results. The right-
most column indicates the author reference if there is a paper describing the team’s approach in this 
Special Issue

Team name S
CNT

rank
CNT

S
BA

rank
BA

S
total

rank
total

SI paper

BlackBox 2805 1 3316 1 6121 1 Ivek & Vlah
Kohrrelation 2990 3 3446 3 6436 2 Koh
Bedouins 3146 4 3408 2 6554 3 Hazra et al.
KUNGFUPANDA 3166 5 3513 5 6679 4 Makowski
RedSea 3419 7 3467 4 6886 5 Zhang et al.
NaiveTom 3403 6 3565 7 6968 6 –
THEFIRETASTICFOUR 2979 2 4133 11 7111 7 –
EdX 3520 8 3595 8 7115 8 –
SNUBRL 4074 9 3530 6 7604 9 Kim et al.
MayLaB 4418 11 3765 10 8182 10 –
LancasterDucks 4926 12 3719 9 8645 11 D’Arcy et al.
FUFighters 4329 10 4863 13 9191 12 –
BENCHMARK 5565 13 4244 12 9810 13 –
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use of a classical Random Forest algorithm, without specific extreme-value fea-
tures but appropriate for high-dimensional datasets, ensured the fourth place for 
team KUNGFUPANDA (Makowski). Finally, the SNUBRL team of Kim et  al. 
used spatial quantile autoregressive models, and team LancasterDucks (D’Arcy 
et al.) first grouped similar locations using clustering algorithms before fitting dis-
tributions motivated by extreme-value theory with different parameter values for 
the different clusters.

In conclusion, some general observations can be made based on the analysis of 
the implemented approaches and the corresponding prediction performances: 

1.	 Assessing and comparing predictions for heavy-tailed phenomena remains chal-
lenging. This is particularly true if data do not provide enough information to 
construct much lighter-tailed predictive distributions, such that predictions remain 
heavy-tailed. Good and simple tools to score predictions in this framework still 
seem to be lacking, but recent results in the literature hint at potential solutions 
invoking extreme-value theory [e.g., Taillardat et al. (2022)].

2.	 State-of-the-art techniques for machine learning and artificial intelligence can be 
successfully adapted to improve extreme-value predictions thanks to appropriate 
choices of cost functions to be minimized, i.e., by making them aware of the spe-
cific data structures induced by observations of extreme events (e.g. generalized 
Pareto distributions, censoring techniques).

3.	 Another important aspect of successful prediction of environmental extremes is 
efficient use of spatiotemporal dependencies, either explicitly by defining sto-
chastic processes with spatiotemporal autocorrelation, or implicitly by appropriate 
choice of spatiotemporal data features used for prediction when training machine 
learning models.

4.	 The prediction setting of this competition was challenging due to heterogeneous 
data structures (e.g. discrete and continuous) and the requirement to predict over the 
whole range of values of the data, and not only in the tail. Therefore, direct use of 
standard extreme-value limit processes (max-stable processes, r-Pareto processes) 
was not implemented by any team, and such models would certainly have been 
too unwieldy to yield competitive predictions without major modeling extensions. 
Nevertheless, most approaches have incorporated concepts and tools from extreme-
value theory to improve the prediction performance, especially in the tail.
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