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Abstract
Conditionally specified models are often used to describe complex multivariate data. 
Such models assume implicit structures on the extremes. So far, no methodology 
exists for calculating extremal characteristics of conditional models since the copula 
and marginals are not expressed in closed forms. We consider bivariate conditional 
models that specify the distribution of X and the distribution of Y conditional on X. 
We provide tools to quantify implicit assumptions on the extremes of this class of 
models. In particular, these tools allow us to approximate the distribution of the tail 
of Y and the coefficient of asymptotic independence � in closed forms. We apply 
these methods to a widely used conditional model for wave height and wave period. 
Moreover, we introduce a new condition on the parameter space for the conditional 
extremes model of Heffernan and Tawn (Journal of the Royal Statistical Society: 
Series B (Methodology) 66(3), 497-547,  2004), and prove that the conditional 
extremes model does not capture � , when 𝜂 < 1.
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1 Introduction

Extreme value theory is a topic of growing interest because of its many important 
applications in for example risk management (Embrechts et  al. 1999) or ocean 
engineering (Castillo et al. 2005). For instance, in the design or assessment of off-
shore facilities it is crucial to understand the distribution of extreme sea states. Such 
extreme sea states are quantified in terms of extreme wave heights, wave periods 
possibly associated with resonant frequencies, and extreme wind speeds. In risk 
management, it is important to identify which stocks are likely to suffer extreme 
losses simultaneously, and to which extent this might happen. In general, we need 
to use well-estabilished extreme value methods to model such events. Traditionally, 
such multivariate extreme value methods are composed of marginal models and a 
dependence copula, each having parametric forms for the tails.

In other areas of statistics, however, it is common to use conditional models for 
multidimensional data. Intuitively, this is the most sensible approach. We observe X 
that partially explains Y. So, we define a model for X and a model for Y conditional 
on X. There exist many examples in the literature of models within this conditional 
framework with applications in extremes, e.g., the conditional extreme value model 
(Heffernan and Tawn 2004; Fougeres and Soulier 2012), the Weibull-log normal 
distribution (Haver and Winterstein 2009, henceforth the Haver-Winterstein distri-
bution), and hierarchical models (Eastoe 2019). Although conditional models are 
easy to interpret, it can be rather difficult to study the extremes of both Y and (X, Y) 
within this class. Recently, Engelke and Hitz (2020) developed graphical models for 
extremes. However, we do not know of any literature that links existing conditional 
models directly to extremal dependence measures.

There are two extremal dependence measures that are key in identifying and 
measuring the degree of asymptotic dependence or asymptotic independence (Coles 
et al. 1999). Identifying the correct asymptotic dependence class is important since 
extrapolation of models from different classes is different. To define asymptotic 
dependence, we first define � ∈ [0, 1] , with

where FX and FY denote the marginal distribution functions of X and Y. We say 
that these random variables are asymptotically dependent if 𝜒 > 0 , i.e., when the 
joint probability that both random variables are large is of the same magnitude as 
when one is large. If the coefficient of asymptotic dependence � = 0 , we say that 
the variables are asymptotically independent. In this case, � does not give us infor-
mation on the level of asymptotic independence. So, we additionally define the 
coefficient of asymptotic independence � ∈ (0, 1] (Ledford and Tawn 1996). This 
coefficient describes the rate of decay to zero of the joint exceedance probability 
ℙ{X > F−1

X
(p), Y > F−1

Y
(p)} as p tends to 1. More specifically, � is defined to satisfy

(1)𝜒 ∶= lim
p↑1

𝜒(p) ∶= lim
p↑1

ℙ
{
Y > F−1

Y
(p) ∣ X > F−1

X
(p)

}
,

(2)ℙ
{
X > F−1

X

[
FE(u)

]
, Y > F−1

Y

[
FE(u)

]}
∼ L(eu)e−u∕𝜂
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as u → ∞ , where FE(u) = 1 − exp(−u) is the distribution function of a standard 
exponential, and where L is a slowly varying function. Here, we write f (x) ∼ g(x) as 
x → ∞ when f (x)∕g(x) → 1 as x → ∞ . We rewrite definition (2) as

If the variables are asymptotically dependent, then � = 1 ; if the variables are 
asymptotically independent, then � ∈ (0, 1) or � = 1 and L(u) → 0 as u → ∞.

Evaluating � for a bivariate random variable (X,  Y) is relatively straightfor-
ward. First, define for each z ∈ ℝ,

Although this formulation looks complex, it is simply an analogue of the spec-
tral measure (Engelke and Hitz 2020) in Fréchet margins but here it is expressed 
as a representation in exponential margins, see Sect. 4. We then apply the domi-
nated convergence theorem to get

In particular, 𝜒 > 0 if and only if limz→−∞ H(z) > 0.
Additionally calculating � is straightforward for distributions when the joint 

distribution function is specified parametrically, e.g., a bivariate extreme value 
distribution (Ledford and Tawn 1996), or when the joint density function is speci-
fied parametrically (Nolde and Wadsworth 2021), e.g., a multivariate normal 
distribution. In this paper, we consider models specified within the conditional 
framework. For these cases, it is hard to calculate � analytically, and numerical 
estimation can be difficult since convergence of �(p) to � can be exceptionally 
slow. We set up methodology to calculate � in closed form within this framework 
and demonstrate the techniques on two widely used examples specified below. We 
support these limiting results using numerical integration.

First, we consider the model described in Haver and Winterstein (2009), used to 
explain the dependence between extreme significant wave height and their associated 
wave periods. Secondly, we investigate the model of Heffernan and Tawn (2004). 
This is a conditional model which describes the distribution of Y ∣ X for large X, 
where both X and Y are on standard margins. As the Heffernan-Tawn model focusses 
on normalising the distribution of Y|X = x as x → ∞ to give a non-degenerate limit, 
it asymptotically focusses on a different aspect of the joint distribution to the events 
which determine � , i.e., {X > x, Y > x} as x → ∞ , when the variables are asymp-
totically independent. As a consequence, it seems reasonable to expect that the upper 
tail of Y|X = x for large x does not give � . We will show by giving an example that 
there exist distributions that share the same Heffernan-Tawn normalization but do not 
share the same � . More theoretical examples, like Y ∣ X ∶= X�Z and Y ∣ X ∶= |Z||X| 

(3)� ∶= lim
p↑1

�(p) ∶= lim
p↑1

log(1 − p)

log
[
(1 − p)�(p)

] .

H(z) ∶= lim
p↑1

ℙ

(
log

(
1 − FX(X)

1 − FY (Y)

)
> z

||| FX(X) > p

)
.

� = ∫
∞

0

H(−x)e−x dx.
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where Z is some random variable independent of X, can be found in the Ph.D. thesis 
of Tendijck (2023).

The layout of the article is as follows. In Sect.  2, we demonstrate novel tech-
niques for calculating the coefficient of asymptotic independence � and illustrate the 
techniques with some examples. In Sects. 3 and 4, we apply these techniques to the 
Haver-Winterstein model and the Heffernan-Tawn model, respectively. Proofs are 
found in the Appendix and Supplementary Material.

2  Methodology

2.1  Motivation

We aim to investigate the extremal properties of the bivariate distribution of (X, Y), 
for which the distribution of X and the distribution of Y ∣ X are specified. In particu-
lar, we aim to investigate the tail of the distribution of Y and joint extremes of X and 
Y via the coefficient of asymptotic independence � . Deriving such extremal quanti-
ties in closed form within this class is not trivial. In this section, we provide a set of 
tools, derived from the Laplace approximation, to calculate such properties for any 
conditional model.

First, we consider the tail of the distribution of Y. Because the distributions of X 
and Y ∣ X are specified, it is natural to write

where fX is the density of X. In general, this integral is analytically intractable. In 
Sect. 2.2, we present the tools with which we can derive the asymptotic properties of 
this integral as y tends to the upper end point of the distribution of Y.

To derive the coefficient of asymptotic independence, we additionally need the 
inverse distribution F−1

Y
(p) for values of p close to 1, and

This integral is also intractable in general; the tools from Sect. 2.2 can again be 
applied to derive the asymptotic decay to 0 as p tends to 1.

2.2  Extension to the Laplace approximation

Here we present our theory to calculate asymptotic rates of decay of integrals, that 
can be used to compute extremal properties, such as � , of conditional models. We 
first recall the Laplace approximation, a technique commonly used in Bayesian 
inference for approximating intractable integrals. This asymptotic approximation 
forms the basis of our main result. We then state that result, and illustrate key differ-
ences with the Laplace approximation by comparing examples.

1 − FY (y) ∶= ℙ(Y > y) = ∫
∞

−∞

ℙ(Y > y ∣ X = x)fX(x) dx,

ℙ(X > F−1
X
(p), Y > F−1

Y
(p)) = ∫

∞

F−1
X
(p)

ℙ(Y > F−1
Y
(p) ∣ X = x)fX(x) dx.
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Proposition 1 (Laplace approximation) Let a < b . Suppose g ∶ [a, b] → ℝ is twice 
continuously differentiable and assume there exists a unique x∗ ∈ (a, b) such that 
g(x∗) = maxx∈[a,b] g(x) and g��(x∗) < 0 . Then

as n → ∞.

The main disadvantage of the Laplace approximation is that it can only be 
used to approximate integrals where the integrands are of the form f (x)n , where 
f (x) = eg(x) is a positive function. However, we are interested in calculating inte-
grals with integrand fn(x) = egn(x) , for some sequence of functions {gn}n∈ℕ . Now 
we extend the Laplace approximation under the assumptions that: (i) the analogue 
x∗
n
 of x∗ is allowed to depend on n; (ii) x∗

n
 can be equal to either a or b; (iii) g��

n
(x∗

n
) 

does not need to be negative.

Proposition 2 Let I ⊆ ℝ be connected with non-zero Lebesgue mass, k0 ≥ 1 an inte-
ger, and gn ∈ Ck0 (I) a sequence of real-valued (at least) k0-times continuously dif-
ferentiable functions defined on I. For 1 ≤ i ≤ k0 , we define g(i)

n
 as the ith deriva-

tive of gn . We assume that for all n ∈ ℕ , there exists a unique x∗
n
∈ I such that 

gn(x
∗
n
) > gn(x) for all x ∈ I ⧵ {x∗

n
} . Moreover, we assume that k0 is the smallest inte-

ger such that g(k0)n (x∗
n
) < 0 and limn→∞ g(i)

n
(x∗

n
)[−g

(k0)
n (x∗

n
)]−i∕k0 = 0 for all 1 ≤ i < k0 . 

Additionally, assume that there exists a 𝛿 > 0 for which there exists an 𝜀 > 0 such 
that for all |x| < 𝛿

Then, for n > N , there exists a constant C1 > 0 such that

The proof of Proposition 2 can be found in Appendix 1. One disadvantage of 
our extension is that it only gives an asymptotic lower bound. In many practical 
applications, an upper bound can be found directly using inequalities like that in 
Eq. (8).

Functions for which Proposition 2 is applicable include functions gn with a 
single mode x∗

n
 that are approximated well with a Taylor expansion of some order 

on a large enough neighbourhood of the mode. For example, for gn(x) = −|x|p 
with p ∈ ℝ , the proposition is applicable if and only if p ∈ ℤ . We specify further 
that the first set of assumptions ensures that the k0 th order Taylor approximation 
of gn around x∗

n
 has at most two significant terms (the 0th and the k0 th term) by 

setting a limit on the size of the ith terms in this Taylor approximation, where 

∫
b

a

eng(x)−ng(x
∗) dx ⋅

√
n(−g��(x∗)) ∼

√
2�

lim
n→∞

g
(k0)
n

{
x∗
n
+ x

[
−g

(k0)
n (x∗

n
)
]− 1

k0

}

g
(k0)
n (x∗

n
)

< 1 + 𝜀.

�I

egn(x)−gn(x
∗
n
) dx ⋅

[
−g

(k0)
n (x∗

n
)
] 1

k0 ≥ C1.
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1 ≤ i ≤ k0 − 1 . The second set of assumptions defines if the Taylor approximation 
is good enough on a neighbourhood of x∗

n
 , see the second example in Sect. 2.3

2.3  Examples

We demonstrate the use of Proposition 2 in three cases. Firstly, let gn(x) = −nxm for 
n ∈ ℕ , m ∈ ℤ≥1 and I = [0,∞) . It is then valid to apply Proposition 2 with x∗

n
= 0 

and k0 = m . Applying the proposition yields a constant C1 > 0 such that for suffi-
ciently large n,

This lower bound is tight for each m ≥ 1 . We verify this by using the variable 
transformation y = nxm to give

After recognizing that the integral over [0,∞) is equal to half of the integral over 
ℝ , we see that Proposition 1 is applicable only when m = 2 . In this case, Proposi-
tion 1 additionally gives as n → ∞

Secondly, let gn(x) = −x − nx2 and I = [0,∞) . Now Proposition 1 is not applica-
ble since no function g(x) exists for which gn(x) = ng(x) holds. Note that Proposi-
tion 2 is also not applicable with k0 = 1 , since x∗

n
 has to be equal to 0 and for x ≠ 0

contradicting one of the assumptions. Proposition 2 is applicable with k0 = 2 , yield-
ing a constant C2 > 0 such that for sufficiently large n,

Similar to our first example, this lower bound is tight since we can also directly 
calculate as n → ∞

Finally, let 𝛼n > 0 , 𝛽n > 0 for n ∈ ℕ and assume lim inf 𝛼n > 0 . Define 
gn(x) = �n log x − �nx . Using an argument similar to that in the second example, we 

n
1

m �
∞

0

e−nx
m

dx ≥ C1.

n
1

m ∫
∞

0

e−nx
m

dx =
1

m ∫
∞

0

y
1

m
−1
e−y dy = Γ

(
1

m
+ 1

)
.

∫
∞

0

e−nx
2

dx =
1

2 ∫
∞

−∞

e−nx
2

dx ∼

√
�

2
√
n
.

lim
n→∞

g�
n
(0 + x ⋅ n)

g�
n
(0)

= lim
n→∞

1 + 2n2x = ∞,

√
n�

∞

−∞

e−x−nx
2

dx ≥ C2.

√
n∫

∞

−∞

e−x−nx
2

dx =
√
n∫

∞

−∞

e
−n

�
x+

1

2n

�2

+
1

4n dx ∼
√
�.
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see that Proposition 1 is not applicable. However Proposition 2 is applicable with 
k0 = 2 , yielding a constant C3 > 0 such that for sufficiently large n,

This bound is also tight, which can be seen from recognizing the density of a 
gamma distribution in the expression above, and applying limit results for the 
gamma function.

3  Haver‑Winterstein model

Haver and Winterstein (2009) introduce the Haver-Winterstein (HW) distribution 
for significant wave height HS and wave period Tp in the North Sea. Their model 
is set up in the conditional framework: they specify a class of distributions for HS 
and a class of distributions for Tp ∣ HS . Variations of this approach have been widely 
applied in ocean engineering with over 150 citations, 25 of which correspond to 
2021, see for example Drago et al. (2013). However we are not aware of any litera-
ture quantifying � and � in closed form for the HW distribution; we now show how 
to calculate these.

The marginal distribution of the HW is formulated as

where u, 𝛼, k, 𝜆 > 0 and � ∈ ℝ . In particular, the parameters are constrained such 
that fX is continuous at u and integrates to 1. Secondly, they take Y ∣ X to be condi-
tionally log-normal

where �(x) ∶= �0 + �1x
�2 and �(x) ∶=

[
�0 + �1 exp(−�2x)

]1∕2 with �
0
∈ ℝ, �

1
,�

2
,

𝜎
0
, 𝜎

1
, 𝜎

2
> 0.

Model parameter estimates (Haver and Winterstein 2009) from data observed in the 
northern North Sea are given in the Supplementary Material. For ease of presentation, 
we make two assumptions about the parameter space of the HW distribution that are 
consistent with parameter estimates (�̂�2, k̂) = (0.225, 1.55) from Haver and Winterstein 
(2009). Specifically, we make the following restrictions: 0 < 𝜇2 < 0.5 and 2𝜇2 < k . 
These assumptions reduce the number of cases to be considered significantly whilst 
including realistic domains for the parameters as considered by practioners.

We now show how to use Proposition  2 to calculate the extremal depend-
ence measures � and � for the bivariate random vector (X, Y) distributed accord-
ing to the HW distribution in the restricted parameter space. Calculation of 

�
−�n−

1

2

n �
�n+1
n

e�n �
∞

0

x�ne−�nx dx ≥ C3.

(4)fX(x) =

⎧⎪⎨⎪⎩

1√
2𝜋𝛼x

exp
�
−

(log x−𝜃)2

2𝛼2

�
, for 0 < x ≤ u,

k

𝜆k
xk−1 exp

�
−
�

x

𝜆

�k
�
, for x > u.

(5)fY∣X(y ∣ x) =
1√

2𝜋𝜎(x)y
exp

�
−
(log y − 𝜇(x))2

2𝜎(x)2

�
, for x, y > 0,
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� is split into two steps. In the first step, we calculate the distribution function 
FY of Y and in the second we evaluate the rate of decay of joint probabilities 
ℙ{X > F−1

X
[FE(u)], Y > F−1

Y
[FE(u)]} as u tends to infinity.

We have

where Φ is the survival function of a standard Gaussian. This integral is analytically 
intractable but we can calculate its limiting leading order behaviour in closed form. 
Proposition  2 gives a lower bound and an upper bound of the same order as the 
lower bound is then found directly. For ease of notation, we denote the integrand by

for x > 0 . In Fig. 1, we plot gy for various values of y. From the figure, we note that 
gy has two local maxima for suffiiciently large y. These are x∗

y
 , which converges to 

zero, and x∗∗
y

 , which diverges to infinity. This observation implies that we cannot 
apply Proposition 2 directly in this case. We therefore proceed as follows: (i) calcu-
late x∗

y
 and x∗∗

y
 ; (ii) partition the interval of integration into intervals I1 and I2 , where 

x∗
y
∈ I1 and x∗∗

y
∈ I2 , such that the conditions of Proposition 2 hold for both intervals, 

and then apply the proposition on each interval; (iii) combine the two lower bounds 
found to get a lower bound for integral  (6); (iv) derive a limiting upper bound for 
integral (6) of the same order as the lower bound.

(6)ℙ(Y > y) = ∫
∞

0

ℙ(Y > y ∣ X = x)fX(x) dx = ∫
∞

0

Φ

(
log y − 𝜇(x)

𝜎(x)

)
fX(x) dx,

(7)gy(x) ∶= Φ

(
log y − �(x)

�(x)

)
fX(x)

0 10 20 30 40 50 60 70 80 90
-103

-102

-101

-100
y=10
y=20
y=30
y=50
y=100
y=200

Fig. 1  The function log gy from Eq.  (7) for y = 10, 20, 30, 40, 50, 100 with parameters as reported 
in Haver and Winterstein (2009), see Supplementary Material
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In the Supplementary Material, we derive that as y → ∞

where in the calculation of x∗
y
 we use 0 < 𝜇2 < 0.5 . From Fig. 1, we recognize that 

gy(x
∗
y
) > gy(x

∗∗
y
) as y → ∞ . We show that this holds analytically in the Supplementary 

Material when 2𝜇2 < k . We now apply Proposition 2 and find that k0 = 2 is appropri-
ate. The proposition then gives a lower bound for integral (6) around x∗

y
 as y → ∞ of

Finally, since gy(x∗y ) > gy(x
∗∗
y
) , it is straightforward to show as y → ∞ that

using the inequality

We now can calculate � and show that � = 0 . To that end, we first need to calculate 
the inverse probability integral transform, transforming Y to standard exponential mar-
gins; i.e., we need F−1

Y
[FE(u)] . Next, we need to evaluate the asymptotic behaviour of 

ℙ{Y > F−1
Y
[FE(u)],X > F−1

X
[FE(u)]} as u → ∞ . To evaluate F−1

Y
◦FE , we first calcu-

late for y → ∞

We invert this expression by solving F−1
E
(FY (y)) = u for log y . This yields 

log y =
√
2(�0 + �1)u + O(1) as u → ∞ . We can now write down an asymptotic 

expression for �(u) as u → ∞

In the Supplementary Material, we show that Proposition  2 is applicable for this 
integral with k0 = 1 and x∗

u
= �u1∕k . Moreover, we derive directly an upper bound of 

the same order, obtaining

x∗
y
∼

(
�1�2 ⋅ log y

2�1�2(�0 + �1)

)−
1

1−�2

and x∗∗
y

∼

(
�k�1�2 ⋅ log y

k�0

) 1

k−�2

,

ℙ(Y > y) ≥ exp

{
−

log2 y

2(𝜎0 + 𝜎1)
+ O(log y)

}
.

ℙ(Y > y) ≤ exp

{
−

log2 y

2(𝜎0 + 𝜎1)
+ O(log y)

}

(8)ℙ(Y > y ∣ X = x)fX(x) ≤ gy(x
∗
y
)1{x ∈ [0, x∗∗

y
]} + fX(x)1{x > x∗∗

y
}.

F−1
E
(FY (y)) = − log(1 − FY (y)) =

log2 y

2(�0 + �1)
+ O(log y).

𝜒(u) ∶= ℙ
�
F−1
E

�
FY (Y)

�
> u, F−1

E

�
FX(X)

�
> u

�

= ℙ

�
log Y >

√
2(𝜎0 + 𝜎1)u + O(1), (X∕𝜆)k > u

�

= ∫
∞

𝜆u1∕k
Φ

�√
2(𝜎0 + 𝜎1)u + O(1) − 𝜇(x)

𝜎(x)
∣ X = x

�
⋅

kxk−1

𝜆k
exp

�
−
�
x

𝜆

�k
�

dx.

�(u) = exp

{
−

(
2 +

�1

�0

)
u + O

(
u1∕2+�2∕k

)}
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as u → ∞ . Hence, � = 0 and

In particular, for the parameter estimates from Haver and Winterstein (2009), the 
value of � ∈ (0, 1∕2) implies that the distribution exhibits negative asymptotic inde-
pendence (Ledford and Tawn 1996). This contrasts with the positive correlation of 
the Haver-Winterstein distribution, which might lead practitioners to assume falsely 
that the positive correlation also exists in the extremes of the Haver-Winterstein 
model; this is far from the truth.

What we learn from our work is not necessarily that the Haver-Winterstein model 
should not be used - we can derive this conclusion in many simpler ways than with 
this paper. Instead, we can use this example to understand how a conditional model 
makes complex assumptions on the dependence structure: imposing a positive cor-
relation overall but a highly negative correlation in the extremes.

4  Heffernan‑Tawn model

In multivariate extreme value theory, the conditional extreme value model of 
Heffernan and Tawn (2004), henceforth denoted the HT model, is widely studied 
and applied to extrapolate multivariate data. The HT model has been cited over 
600 times, and is applied e.g. in oceanography (Ross et al. 2020), finance (Hilal 
et al. 2011), and spatio-temporal extremes (Simpson and Wadsworth 2021). The 
HT model is a limit model and its form is motivated by derived limiting forms 
from numerous theoretical examples.

Let (X, Y) be a bivariate random variable with standard Laplace margins (Keef 
et al. 2013) and assume that its joint density exists. Next, assume there exist param-
eters � ∈ [−1, 1] , 𝛽 < 1 and a non-degenerate distribution function H such that for 
x > 0 , and for all z ∈ ℝ the following limit

exists. This implies, according to l’Hopital’s rule, that

The latter in turn has the interpretation that as u tends to infinity, (Y − �X)X−� 
and (X − u) are independent conditional on X > u , and are distributed as H and a 
standard exponential, respectively. As is common practice in extreme value theory, 
the limit results are assumed to hold above some high threshold. So here, the HT 
model assumes that the corresponding limiting family in (9) holds exactly at a finite 
level u and beyond.

Now, if we additionally assume that a u > 0 exists such that for all x > u

� =

(
2 +

�1

�0

)−1

.

(9)H(z) = lim
x→∞

ℙ

(
Y − �x

x�
≤ z ∣ X = x

)

(10)lim
u→∞

ℙ

(
Y − 𝛼X

X𝛽
≤ z, X − u > x ∣ X > u

)
= H(z) exp(−x).
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holds for all y ∈ ℝ where H = 1 − H is some non-degenerate survival function. 
Then, we say that (X, Y) is modelled with the exact version of the HT model.

In this case study, we assume that (X, Y) is modelled with the exact version of the 
HT model with the additional assumption that �, � ∈ [0, 1) . We consider two cases 
for H, corresponding to finite and infinite upper end points. If H has a finite upper 
end point zH , calculations for � are trivial. Indeed, when X = x , Y cannot be larger 
than �x + x�zH . Thus, as u → ∞ , Y > u implies X > u∕𝛼 + o(u) . So, as u → ∞

Therefore, � = � when 𝛼 > 0 and otherwise does not exist.
Now assume that H has an infinite upper end point. To make calculations tracta-

ble, we parameterise H as

for 𝛾 > 0 , � ≥ 1 . For simplicity, we do not consider potential negative arguments for 
H since the precise form of its lower tail is not relevant to the current work. Param-
eterisation (12) covers most non-trivial light-tailed cases for the upper tail includ-
ing Gaussian, Weibull and exponential tails; see examples in Heffernan and Tawn  
(2004). It is also the tail model of the delta-Laplace (generalised Gaussian) distribu-
tion used in spatial conditional extremes model, e.g., Shooter et al. (2021). Moreover  
if the tail of H is heavier than that of the exponential, Y cannot possibly follow a  
standard Laplace distribution. This links to the restricton � ≥ 1 . For illustration, we 
set o(z�) = 0 in Eq. (12). The resulting Weibull survival function is a suitable choice 
for H , since it has an extreme value tail index of 0, but a varying tail thickness con-
trolled by �.

Proposition 3 If (X,  Y) follows distribution  (11) with H as in  (12) with o(z�) = 0 , 
then � ≥ (1 − �)−1.

The proof of Proposition 3 is found in Appendix 1. Following similar arguments 
to those used in the proof of Proposition 3, we calculate � and � for any combination 
of the parameters (�, �, �, �) in their specified parameter space. We collect results in 
Table 1. In the Supplementary Material, we only give details of the � calculations 
when �, � ∈ (0, 1) , 𝛾 > 0 and � = (1 − �)−1 . For the other five cases in Table 1, we 
state results without proof. In particular, the argument underpinning the � calcula-
tion when 𝛿 > (1 − 𝛽)−1 is similar to the argument used when H has a finite upper 
end point. In this case, � = � when 𝛼 > 0 and when � = 0 , � is not defined.

(11)ℙ(Y > y ∣ X = x) = H
(y − 𝛼x

x𝛽

)

ℙ(X > u, Y > u) ∼ ℙ
{
X > u,X > u∕𝛼 + O(u𝛽)

}

∼ ℙ
{
X > u∕𝛼 + O(u𝛽)

}

= exp
{
−u∕𝛼 + O(u𝛽)

}
.

(12)H(z) = exp
{
−𝛾z𝛿 + o

(
z𝛿
)}

1{z > 0} + 1{z ≤ 0}



150 S. Tendijck et al.

1 3

In Table  1, it is convenient to refer to c = max{1, c0} ∈ [1, 1∕�) where 
c0 ∈ (0, 1∕�) satisfies

To give some intuition on the value of c, in Fig. 2 we sketch the region of the 
parameter space corresponding to c = 1 (in red) for different values of � . Finally in 
Fig. 3 we visualise � for a set of different parameter combinations with � = (1 − �)−1.

We note the following interesting findings. The parameter � is non-decreasing 
with increasing � and with increasing � . Parameter combinations (�, �, � , �) exist 
for which 𝛼, 𝛽 > 0 but 𝜂 < 0.5 . Hence, there are cases for which Y increases with X 
but the extremes of (X, Y) are negatively associated as measured by � (Ledford and 
Tawn 1996).

Finally we note that the Heffernan-Tawn model is not � invariant, i.e., there exist models 
that asymptotically follow the same conditional Heffernan-Tawn representation but have 
different � . We illustrate this result below with an example, but first we comment on its 
implications. Our finding implies that if X and Y are asymptotically independent, then there 
do not exist asymptotically consistent Heffernan-Tawn model-based estimators for prob-
abilities ℙ(Y > X > v) and ℙ(X > v, Y > v) where v is large. This in turn provides an 
interesting insight in the lack of self-consistency of the Heffernan-Tawn model with regard 
to the choice of conditioning variable, see Liu and Tawn (2014).

To illustrate our claim, we consider two bivariate random variables (X,  Y) and 
(XHT , YHT ) . Let (X, Y) follow an inverted bivariate extreme value distribution with a 
logistic dependence structure (Ledford and Tawn 1996) on Laplace margins with 
parameter � ∈ (0, 1] , such that

(13)�(1 − �c0)
�−1

(
� − 1 + �c0

)
= c�

0
.

Table 1  Values of � for 
model (11) with H as in (12) 
for different ranges of 
parameter combinations, where 
c = max{1, c0} ∈ [1, 1∕�) for c0 
given in Eq. (13)

� � � � �

(0, 1) [0, 1) (0,∞)
(
(1 − �)−1,∞

)
�

(0, 1) (0, 1) (0,∞) (1 − �)−1
(

�(1−�c)�

c�−1
+ c

)−1

(0, 1) 0 (1∕�,∞) 1 �

(0, 1) 0 (0, 1∕�] 1 1∕(� + 1 − ��)

0 (0, 1) (0,∞)
(
(1 − �)−1,∞

)
Not defined

0 (0, 1) (0, (1 − �)∕�] (1 − �)−1 1∕(� + 1)

0 (0, 1) [(1 − �)∕�,∞) (1 − �)−1 �−1∕�(� − 1)1−1∕�∕�

Fig. 2  Visualisation of c0 from Eq. (13) for � = 1, 1.5, 2, 5 and � = (1 − �)−1 . The region corresponding 
to c0 ∈ (0, 1) is shown in red; the region corresponding to c0 ∈ (1, 1∕�) is shown in green
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where tx ∶= log 2 − log[2 − exp(x)] for x < 0 and tx ∶= log 2 + x for x > 0 , with ty 
similarly defined. It is straightforward to derive that in the limit, the Heffernan-Tawn 
model (11) is applicable to (X, Y) with H as in Eq. (12) and o(z�) = 0 . Specifically,

Now let (XHT , YHT ) be distributed following the exact version of the HT model asso-
ciated with (X, Y). That is, for XHT < u , we have (XHT , YHT ) = (X, Y) , and for XHT ≥ u , 
XHT − u is a standard exponential and YHT ∣ XHT follows model  (11) with H as 
in (12) with parameters (�, �, � , �) = (0, 1 − �, �, 1∕�) and o(z�) = 0 . In this case 
𝛾 < (1 − 𝛽)∕𝛽 , and Table 1 implies that the coefficient of asymptotic independence �HT 
of (XHT , YHT ) is equal to 1∕(� + 1) . In contrast, it is straightforward to derive directly 
from definition (14) that � of (X, Y) is equal to 2−� . Hence �HT ≠ � when � ∈ (0, 1).

Finally we illustrate numerically the differences between � , �HT and their finite level 
counterparts �(p) and �HT (p) for p ∈ (0, 1) . For definiteness, we let (X, Y) follow dis-
tribution  (14) with � = 0.35 . We simulate a sample {(xi, yi) ∶ i = 1,… , n} of size 
n = 10, 000 . First we empirically estimate �(p) from Eq. (3) for p ∈ (0, 1) and calculate 
pointwise 95% confidence intervals using the binomial distribution. Next we note that 
�(p) = � for p ∈ (0.5, 1) . Finally we calculate the corresponding �HT (p) for p near 1 
using numerical integration.

Results are shown in Fig. 4. Left and right hand plots are the same except for the 
scale of the x-axis, illustrating the behaviour of �HT (p) for p near 1. Reassuringly, the 
true � of the underlying model (red dashed) falls within the 95% confidence interval 
for its empirical counterpart �̂�(p) (blue). Further, �HT (p) (black dashed) converges to 
�HT (green dashed). We note that �HT (p) varies as a function of p and only seems to 
asymptote for p > 1 − exp(−50)∕2 ≈ 1 − 9.6 ⋅ 10−23 . Finally, since 𝜂HT < 𝜂 , we 
would expect that �HT (p) would underestimate � , but it turns out this is only the case for 
p > 1 − exp(−7.5)∕2 ≈ 0.9997.

(14)ℙ(X > x, Y > y) = exp

{
−
[
t1∕𝜉
x

+ t1∕𝜉
y

]𝜉}
,

lim
x→∞

ℙ
(
YX𝜉−1

> z ∣ X = x
)
= exp

(
−𝜉z1∕𝜉

)
.

Fig. 3  The value of � as a function of � , � and � with � = (1 − �)−1 from the HT model (11) and (12)
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Appendix

Proofs

Proof of Proposition 2 We prove that for sufficiently large n, there exists a constant 
C1 > 0 such that

To bound In from below, we first simplify its expression by applying the variable 
transformation y = tn(x) ∶= (x − x∗

n
)
(
−g

(k0)
n (x∗

n
)
)1∕k0

 and defining

Then, the integral In becomes

We note that for all n ∈ ℕ , we have 0 ∈ I�
n
 , hn ∈ Ck0 (I�

n
) , and hn(0) > hn(y) for all 

y ∈ I�
n
⧵ {0} . Moreover, we have for y ∈ I�

n
 , i = 1,… , k0,

In ∶= �I

egn(x)−gn(x
∗
n
) dx ⋅

(
−g

(k0)
n (x∗

n
)
) 1

k0 ≥ C1.

hn(y) ∶= gn

(
x∗
n
+ y

(
−g

(k0)
n (x∗

n
)
)−

1

k0

)
, for y ∈ I�

n
∶=

{
tn(x) ∶ x ∈ I

}
.

In = ∫I�
n

ehn(y)−hn(0) dy.

h(i)
n
(y) = g(i)

n

(
x∗
n
+ y

(
−g

(k0)
n (x∗

n
)
)−1∕k

)
⋅

(
−g

(k0)
n (x∗

n
)
)−i∕k0

.
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Fig. 4  Coefficients of asymptotic independence � (red dashed) for distribution  (14) with � = 0.35 , and 
the corresponding value for the exact limiting HT model �HT (green dashed), and its finite level coun-
terpart �HT (p) (black dashed). Empirical estimates �̂�(p) for a sample of size 10, 000 with pointwise con-
fidence intervals are shown in blue. Left and right hand panels are the same except for the scale of the 
x-axis, set on the right to illustrate the behaviour of �HT (p) for p near 1
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Hence, h(k0)n (0) = −1 and limn→∞ h(i)
n
(0) = 0 for all 1 ≤ i < k0 . Using Taylor’s the-

orem, there exists a function �(y) taking on a value between 0 and y such that

Let �̃� > 0 . Because limn→∞ h(i)
n
(0) = 0 for all i < k0 , we can find an N0 ∈ ℕ such 

that for all n > N0 , we have maxi=1,…,k0−1
|h(i)

n
(0)| < �̃� . Moreover, from the assump-

tions of the proposition, we can find a 𝛿 > 0 and associated 𝜀 > 0 and N1 ∈ ℕ such 
that for all n > N1 , h

(k0)
n (y) > −(1 + 𝜀) for y ∈ (−�, �) ∩ I�

n
 . For n > max{N0,N1},

for y ∈ (−�, �) ∩ I�
n
 . Hence, we derive a lower bound

From the connectedness of I and 0 ∈ I�
n
 , we conclude that I�

n
∩ (−�, �) has positive 

mass under the Lebesgue measure. Hence, C1 ∈ (0,∞) .   ◻

Proof of Proposition 3 Let (X, Y) be a random vector such that X and Y both have 
standard Laplace margins. Moreover, assume that there exist −1 ≤ � ≤ 1 , 0 ≤ 𝛽 < 1 
and u > 0 such that for x > u

holds for all y ∈ ℝ with

where 𝛾 , 𝛿 > 0 . Now, let Z be a random variable that is independent of X and have 
survival function H . We derive that � ≥ (1 − �)−1 must hold. Since Y is distributed 
as a standard Laplace, we have for y > 0

We will show that 2 exp(y)Ĩy > 1 for sufficiently large y, if 𝛿 < (1 − 𝛽)−1 , which 
thus would contradict with the marginal distribution of Y. This result holds trivially 
for � = 0 . So, for now, we let 𝛽 > 0 . We will prove this asymptotic inequality by 
applying Proposition 2, with k0 = 2 , to bound Ĩy from below.

First define I ∶= [u,∞) as the integration domain, and

hn(y) − hn(0) =

k0−1∑
i=1

yi

i!
h(i)
n
(0) +

yk0

k0!
h
(k0)
n (�(y)).

hn(y) − hn(0) > −|y|�̃ − |y|2
2!

�̃ −⋯ −
|y|k0−1
(k0 − 1)!

�̃ −
(1 + �)|y|k0

k0!
> −�̃e𝛿 −

(1 + �)|y|k0
k0!

In ≥ e−�̃e
𝛿

�I�
n
∩(−𝛿,𝛿)

e
−

(1+�)|y|k0
k0! dy =∶ C1.

ℙ(Y > y ∣ X = x) = H
(y − 𝛼x

x𝛽

)

H(z) = exp(−𝛾z𝛿)1{z > 0} + 1{z ≤ 0},

exp(−y)

2
= ℙ(𝛼X + X𝛽Z ≥ y, X ≥ u) + ℙ(Y ≥ y, X < u)

≥ ℙ(𝛼X + X𝛽Z ≥ y, X ≥ u) ≥ ℙ(X𝛽Z ≥ y, X ≥ u)

= �
∞

u

ℙ

(
Z ≥ y

x𝛽

)
fX(x) dx =

1

2 �
∞

u

exp

(
−
𝛾y𝛿

x𝛽𝛿
− x

)
dx =∶ Ĩy.
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Next we find the mode x∗
y
 of gy(x) . We assume that x∗

y
 lies in the interior of I such 

that h�
y
(x∗

y
) = 0 , which implies that ���y�(x∗

y
)−��−1 = 1 . So, x∗

y
= (���)

1

��+1 y
�

��+1 , which 
lies in the interior of I for sufficiently large y. We now compute

with A ∶= �(���)
−

��

��+1 + (���)
1

��+1 . Secondly,

Using these expressions, we can now check that the assumptions from Proposition 2 
with k0 = 2 are satisfied. First we note that h�

y
(x∗

y
)(−h��

y
(x∗

y
))−1∕2 = 0 . Next let C > 0 

and |x| ≤ C , then

which is sufficient to show that for each x̃ , Proposition 2 is applicable with k0 = 2 on 

interval Ix̃ ∶=

�
x∗
y
−

x̃√
−h��

y
(x∗

y
)
, x∗

y
+

x̃√
−h��

y
(x∗

y
)

�
 . Hence for each x̃ , there exists a con-

stant C1(x̃) > 0 such that for sufficiently large y,

gy(x) ∶= exp

(
−
�y�

x��
− x

)
1{x ∈ I}, and hy(x) ∶=

(
−
�y�

x��
− x

)
1{x ∈ I}.

gy(x
∗
y
) = exp

(
−

�y�

(x∗
y
)��

− x∗
y

)
= exp

(
−Ay

�

��+1

)

h��
y
(x∗

y
) = −��(�� + 1)(x∗

y
)−��−2�y� = −(�� + 1)(���)

−
1

��+1 y
−

�

��+1 .

lim
y→∞

h��
y

�
x∗
y
+

x√
−h��

y
(x∗

y
)

�

h��
y
(x∗

y
)

= lim
y→∞

−��(�� + 1)

�
(���)

1

��+1 y
�

��+1 +
x�

(��+1)(���)
−

1
��+1 y

−
�

��+1

�−��−2

�y�

−(�� + 1)(���)
−

1

��+1 y
−

�

��+1

= lim
y→∞

�
y

�

��+1 +
x�

(��+1)(���)
1

��+1 y
−

�

��+1

�−��−2

y�

y
−

�

��+1

= lim
y→∞

⎛⎜⎜⎜⎝
1 +

x�
(�� + 1)(���)

1

��+1 y
�

��+1

⎞⎟⎟⎟⎠

−��−2

= 1,
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Using the inequality 2 exp(y)Ĩy ≤ 1 , we must have

for sufficiently large y. Since 0 ≤ 𝛽 < 1 , we note that if 𝛿 < (1 − 𝛽)−1 then inequal-
ity (15) does not hold. So, we derive that � ≥ (1 − �)−1 .   ◻
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