
Vol.:(0123456789)

https://doi.org/10.1007/s10687-022-00436-8

1 3

Heavy‑tailed phase‑type distributions: a unified approach

Martin Bladt1 · Jorge Yslas2

Received: 20 July 2021 / Revised: 6 December 2021 / Accepted: 12 January 2022 

© The Author(s) 2022

Abstract
A phase-type distribution is the distribution of the time until absorption in a finite 
state-space time-homogeneous Markov jump process, with one absorbing state and 
the rest being transient. These distributions are mathematically tractable and con-
ceptually attractive to model physical phenomena due to their interpretation in terms 
of a hidden Markov structure. Three recent extensions of regular phase-type dis-
tributions give rise to models which allow for heavy tails: discrete- or continuous-
scaling; fractional-time semi-Markov extensions; and inhomogeneous time-change 
of the underlying Markov process. In this paper, we present a unifying theory for 
heavy-tailed phase-type distributions for which all three approaches are particular 
cases. Our main objective is to provide useful models for heavy-tailed phase-type 
distributions, but any other tail behavior is also captured by our specification. We 
provide relevant new examples and also show how existing approaches are naturally 
embedded. Subsequently, two multivariate extensions are presented, inspired by 
the univariate construction which can be considered as a matrix version of a frailty 
model. We provide fully explicit EM-algorithms for all models and illustrate them 
using synthetic and real-life data.
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1  Introduction

Phase-type (PH) distributions have been employed extensively in applied probability 
since they often provide exact and explicit solutions to complex stochastic problems. 
Another attractive property of PH distributions is that they form a dense class in the 
set of distributions in the positive half-line in the sense of weak convergence (see 
[Section 3.2.1] Bladt and Nielsen (2017)). However, and despite their denseness, PH 
distributions are always light-tailed, which may be a problem when heavy tails are 
present.

At least three approaches to remedy this problem have been introduced in the lit-
erature. The first one, originally introduced in Bladt et al. (2015) and called the NPH 
class of distributions, consists of considering PH distributions scaled by nonnegative 
discrete random variables, N. This construction principle has the advantage that the 
resulting distribution maintains the interpretation as being the absorption time of a 
homogeneous Markov jump process but in an infinite-dimensional state-space. This, 
indeed, allows for genuinely heavy tails for the resulting distribution. For instance, 
in Rojas-Nandayapa and Xie (2018), the authors showed that if the scaling compo-
nent is unbounded (but otherwise arbitrary), then the resulting distribution is always 
heavy-tailed in terms of non-existent moment generating functions (see also Su and 
Chen (2006) for more general results). However, their different functionals are in 
terms of infinite-dimensional matrices, which in practice, can only be computed up 
to a finite number of terms. More recently, in Albrecher et al. (2021a), the authors 
considered continuous scaling and showed that closed-form expressions for different 
functionals of the resulting distributions can be obtained. They denoted this class 
by CPH. Another advantage of continuous scaling is that it maintains the (finite) 
dimension of the underlying PH.

A second approach was introduced in Albrecher et al. (2020a) by considering a 
time-fractional version of the underlying stochastic process dynamics, effectively 
moving into the semi-Markov domain. Together with subsequent multivariate exten-
sions based on rewards (cf. Albrecher et  al. (2021,  2020b)), these models were 
shown to be feasible models for applications such as non-life insurance modeling. 
More recently, Bladt (2021) showed that these models are relevant in describing life-
times and performing the corresponding life-insurance calculations.

The third approach, introduced in Albrecher and Bladt (2019), consists of allow-
ing the Markov jump process to be time-inhomogeneous in the construction prin-
ciple of PH distributions leading to the class of inhomogeneous phase-type (IPH) 
distributions. An advantage of this approach is that one gains substantial flexibility 
on the tails: not only are heavy tails possible but also, e.g., lighter tails than expo-
nential-decay can be obtained. Further extensions to covariate-dependent distribu-
tions can be found in Albrecher et al. (2021b), which is particularly well-suited for 
survival analysis applications.

Estimation of PH distributions was initially developed to calibrate such sto-
chastic models to real-life data, and it is a well-developed topic in the literature. 
It is typically done via an expectation-maximization (EM) algorithm (Asmussen 
et  al. (1996)), although other methods such as an MCMC approach have been 
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introduced (Bladt et al. (2003)). More recent trends have moved towards consid-
ering PH-based models purely as flexible models for statistical fitting, irrespec-
tively of their explicit and closed-form formulas. This data-driven approach is 
particularly attractive compared to other classical alternatives (for instance, ker-
nel smoothing) since there is the implicit interpretation of an underlying process 
traversing through different states before it terminates, which is easy to justify in 
many application areas. Algorithms for discretely-scaled PH distributions, IPH 
models, and continuously-scaled PH distributions can be found, respectively, in 
Bladt and Rojas-Nandayapa (2018), Albrecher et al. (2020), and Albrecher et al. 
(2021a). To the best of the authors’ knowledge, an EM-based estimation proce-
dure for fractional phase-type distributions (also called matrix Mittag-Leffler dis-
tributions) has not been considered before the present work, with Albrecher et al. 
(2020a) performing a purely numerical multi-dimensional maximum-likelihood 
estimation.

The primary purpose of this paper is to present a unified theory that englobes the 
above approaches to produce heavy-tailed phase-type distributions. The construction 
principle of the proposed models is simple to conceptualize and can be seen as a 
matrix extension of the frailty model in survival analysis. However, the flexibility of 
the underlying Markov structure allows for very different objects to be constructed 
as special cases. More precisely, we study IPH distributions with intensity matri-
ces scaled by any nonnegative random variable. In other words, we impose both a 
random and a deterministic component which modify the speed at which the finite 
state-space is traversed by the Markov process, such that absorption times can pos-
sess any desired tail and body behavior, in particular obtaining heavy-tailed distribu-
tions. Inhomogeneous generalizations of Albrecher et al. (2021a); Rojas-Nandayapa 
and Xie (2018), the matrix Mittag-Leffler models of Albrecher et al. (2020a), and 
randomly scaled generalizations of Albrecher and Bladt (2019); Albrecher et  al. 
(2021b) (with the possibility of missing covariates) are all comprised in this rich 
class.

In terms of physical interpretation, the latent variables play different roles. The 
underlying Markov dynamics aim to model heterogeneity by assuming that unob-
served traversing of states has occurred. In contrast, the interpretation of the scaling 
component is closely related to the statistical concept of frailty. Recall that frailty 
models (see, e.g., Wienke (2010) for a comprehensive account of such models) 
specify a multiplicative random effect on the hazard rate of a distribution, effectively 
accounting for unobserved covariates in a Cox proportional hazards model. In con-
trast, we specify a multiplicative random effect on the intensity function of a Markov 
jump process. Nonetheless, since for IPH distributions, the hazard rate and intensity 
function are asymptotically equivalent (cf. Albrecher et al. (2021b)), the scaling var-
iable can also be interpreted as accounting for heterogeneity or missing covariates in 
an asymptotically proportional hazards model.

The secondary aim of the paper is to present multivariate models based on this 
construction, which can be interpreted as generalizations of the shared and corre-
lated frailty models (cf. Wienke (2010)). We derive EM algorithms for maximum-
likelihood estimation of all the proposed models, which can be implemented either 
in full generality or by simplifying some assumptions and tailoring the methods for 
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the specific application. For pedagogical reasons, we build up the multivariate case 
from the univariate one, although a top-bottom approach is also possible.

The rest of the paper is organized as follows. In Section 2, we present an over-
view of the class of IPH distributions and some important properties for our pre-
sent purposes. In Section 3, we introduce our main univariate model, which we call 
scaled inhomogeneous phase-type, derive its main properties, give several paramet-
ric examples relevant for real-life applications, and propose a generalized EM algo-
rithm for its maximum-likelihood estimation. In Section 4, we present a multivariate 
extension inspired by the shared frailty model and show how estimation of the pro-
posed models can be performed via EM algorithms. In Section 5, we present a dif-
ferent multivariate extension, now based on the construction principle of correlated 
frailty models, and derive an EM algorithm for maximum-likelihood estimation. In 
Section 6, we present several numerical illustrations. Finally, Section 7 concludes.

2 � Preliminaries

This section presents the relevant preliminaries on time-inhomogeneous Markov 
jump-processes and their absorption times. The distributions of the latter times are 
the building blocks for the scaled models introduced in Section 3. For distributional 
equality between two random variables X, Y, we use the notation X

d
=Y  , while the 

notation X ∼ F for F a distribution function, density, or acronym is understood as 
X following the distribution uniquely associated with F. Unless stated otherwise, 
equalities between random objects hold almost surely. For two real-valued func-
tions, g,  h the terminology g(t) ∼ h(t) , as t → a ∈ ℝ ∪ {−∞,+∞} is defined as 
limt→a g(t)∕h(t) = 1 . If a is not explicitly mentioned, it is assumed to be +∞.

Let (Xt)t≥0 denote a time-inhomogeneous Markov jump process on the state-space 
E = {1,… , p, p + 1} , where states 1,… , p are transient and state p + 1 is absorbing. 
In this way, (Xt)t≥0 has an intensity matrix of the form

Since �(t) is an intensity matrix, the sum of its rows is zero for any time t ≥ 0 , 
and so the identity �(t) = −T(t) �, holds, where � is the p–dimensional column vec-
tor of ones. Moreover, the probability transition matrix P(s, t) = {pk,l(s, t)}k,l∈E of 
(Xt)t≥0 , where

is given in terms of the product integral (see Albrecher and Bladt (2019))

To avoid degeneracies, we assume that the process starts almost surely in a non-
absorbing state k ≤ p with probabilities given by �k = ℙ(X0 = k) , k = 1,… , p . In 

�(t) =

(
T(t) �(t)

� 0

)
, t ≥ 0 .

pk,l(s, t) = ℙ(Xt = l ∣ Xs = k) , k, l ∈ E ,

P(s, t) =

t�
s

(� + �(u)du) =

�∏t

s
(� + T(u)du) � −

∏t

s
(� + T(u)du)�

� 1

�
.
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vector notation, we write � = (�1,… ,�p) . In the sequel, we follow the convention 
that greek boldface lowercase letters are row-vectors, while roman boldface lower-
case letters are column-vectors. Thus 

∑p

k=1
�k = �� = 1.

The main quantity of interest of such a process for our present purposes is the 
time taken to reach the absorbing state, denoted by

which has an inhomogeneous phase-type distribution (cf. Albrecher and Bladt 
(2019)) with representation (�,T(t)) , and we write � ∼ IPH (�,T(t)) . Applica-
tion of such random variables to statistical modeling is often treated for the special 
case T(t) = �(t)T , with �(t) some known nonnegative real function, known as the 
intensity function, and T a fixed sub-intensity matrix. We adopt this approach in the 
present text. Thus we may simply write � ∼ IPH (�,T, �) . The interested reader is 
referred to Bladt and Nielsen (2017) for a comprehensive account of the � ≡ 1 case 
and Albrecher and Bladt (2019) for further reading on general IPH distributions.

The restricted class of IPH distributions is nonetheless quite versatile. Whenever 
Y ∼ IPH (�,T, �) , then there exists a function h such that

where Z ∼ PH (�,T) . More specifically, the relationship between h and � is given 
by

or in terms of derivatives

To make sure that Y is positive, unbounded, and almost surely finite, we require 
that

The density fY and survival function SY of Y ∼ IPH (�,T, �) are explicit in terms 
of matrix exponential formulas, and given by

The tail behavior of IPH distributions is driven by the asymptotic behavior of 
the � function. Table  1 presents an overview of some commonly used intensities 
and transforms for generating parametric IPH distributions (see Bladt and Yslas 

� = inf{t ≥ 0 ∣ Xt = p + 1} ,

(1)Y
d

= h(Z) ,

h−1(t) = �
t

0

�(t)dt, t ≥ 0,

�(t) =
d

dt
h−1(t) .

h−1(t) < ∞ , ∀t > 0 , lim
t↑∞

h−1(t) = ∞ .

fY (y) =�(y)� exp

(
�

y

0

�(t)dt T

)
�, y ≥ 0,

SY (y) =� exp

(
�

y

0

�(t)dt T

)
�, y ≥ 0.
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(2021)). Applications and estimation can be found, for instance, in Albrecher and 
Bladt (2019); Albrecher et al. (2020, 2021b). Their names are inspired by the p = 1 
case, e.g., a matrix-Weibull distribution reduces to the regular Weibull distribution 
when T is a 1 × 1 matrix. In general, the additional parameters allow for more flex-
ible modeling in the body of the distribution while preserving the same tail behavior 
as the scalar case.

3 � Scaled inhomogeneous phase‑type distributions

In this section, we introduce the main general specification of the paper and then 
derive some special cases together with a detailed analysis of their specific tail 
asymptotics. The central assumption underpinning our model is that an individu-
al’s intensity function depends on an unobservable nonnegative random variable Θ . 
More specifically, we focus on the case where Θ acts multiplicatively on the inten-
sity function, that is

where � is the baseline intensity function. If we denote by Y a random variable with 
intensity (2), then we have that

For the representation of these distributions, we make use of functional calculus. 
More specifically, if g is an analytic function and A is a matrix, we can express g(A) 
by Cauchy’s formula

where Γ is the simple closed path in ℂ which encloses the eigenvalues of A (cf. [Sec-
tion 3.4.] Bladt and Nielsen (2017) for details).

The following result characterizes the density and survival functions of Y. In par-
ticular, observe that the asymptotic behavior of the tail of Y depends on both the 
shape of LΘ , the Laplace transform of Θ , and on � . In subsection 3.1, we give an 
in-depth asymptotic analysis of the new parametric models presented in this paper.

(2)�(t;Θ) = Θ�(t), t ≥ 0,

(3)Y ∣ Θ = � ∼ IPH (�,T, ��) .

g(A) =
1

2�i ∮Γ

g(z)(z� − A)dz ,

Table 1   Some IPH distributions with their respective intensities and transforms

Distribution �(t) h(z) Parameters Domain

Matrix-Pareto (t + �)−1 �(exp(z) − 1) 𝜂 > 0

Matrix-Weibull �t�−1 z1∕� 𝜂 > 0

Matrix-Lognormal �(log(t + 1))�−1∕(t + 1) exp(z1∕� ) − 1 𝛾 > 1

Matrix-Loglogistic �t�−1∕(t� + ��) �(exp(z) − 1)1∕� 𝛾 , 𝜂 > 0

Matrix-Gompertz exp(�t) log(�z + 1)∕� 𝜂 > 0
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Proposition 3.1  Let Y be given by (3). Then we have that, for y ≥ 0 , 

	 I.	SY (y) = �LΘ(−h
−1(y)T)�,

	 II. fY (y) = −�(y)�L�
Θ
(−h−1(y)T)�,

where h−1(y) = ∫ y

0
�(t)dt.

Proof  Property (1) follows from

where we have used functional calculus to define the Laplace transform evaluated at 
a matrix. Taking derivatives in the expression above yields

from which (2) follows.

The following lemma shows that Y has the same distribution as the transforma-
tion of a scaled PH distribution. Such a representation is useful for simulation 
and for estimation, as is apparent in later sections.

Lemma 3.1  Let Y be given in terms of (3). Then, Y
d
=h(Z∕Θ) , where Z ∼ PH (�,T) , 

independent of Θ , and h−1(y) = ∫ y

0
�(t) dt.

Proof  We now make the following formal definition of a random variable Y satisfy-
ing (3).

SY (y) = ∫ � exp(�h−1(y)T)� dFΘ(�)

= � ∫ exp(�h−1(y)T) dFΘ(�)�

= � ∫
1

2�i ∮Γ

exp(z)(z� − �h−1(y)T)dz dFΘ(�)�

= �
1

2�i ∮Γ ∫ exp(z)(z� − �h−1(y)T)dFΘ(�) dz �

= �LΘ(−h
−1(y)T)� ,

fY (y) = −� ∫ ��(y)T exp(�h−1(y)T) dFΘ(�)�

ℙ(h(Z∕Θ) > y) = ∫ ℙ(h(Z∕𝜃) > y ∣ Θ = 𝜃)dFΘ(𝜃)

= ∫ ℙ(Z > 𝜃h−1(y) ∣ Θ = 𝜃)dFΘ(𝜃)

= ∫ � exp(𝜃h−1(y)T)� dFΘ(𝜃)

= SY (y) .
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Definition 3.1  A random variable Y is said to have scaled inhomogeneous phase-
type distribution (SIPH) with representation (�,T, �) and scaling distribution FΘ if 
its survival function is given by

We write SIPH (�,T, �,Θ).

Remark 3.1  (Existing special cases of heavy-tailed PH models).

i)	 For � ≡ 1 and Θ ∈ ℕ , almost surely, we obtain the class of NPH distributions 
introduced in Bladt et al. (2015), while for � ≡ 1 and Θ ∈ ℝ+ , almost surely, we 
recover the CPH class in Albrecher et al. (2021a); Rojas-Nandayapa and Xie 
(2018).

ii)	 Consider a Matrix Mittag Leffler (fractional phase-type) random variable 
Y ∼ MML (�,�,T) as introduced in Albrecher et al. (2020a). Then, it can be 
shown that

where Z ∼ PH (�,T) and S� is an independent (positive stable) random vari-
able with Laplace transform given by exp(−u�) , � ∈ (0, 1] . Hence, we have that 
Y is SIPH distributed with h(x) = x1∕� and Θ = 1∕S�

�
 . This class of distributions 

is the time-fractional counterpart of PH distributions and can be interpreted as 
absorption times of a stochastic process that traverses through a finite number of 
states. The holding times of the latter are Mittag-Leffler distributed, which are 
regularly varying, and thus can possess abnormally large holding times com-
pared to a Markov framework. However, the boundary case � = 1 corresponds to 
the usual exponential holding times, and thus there is a regime-shift with respect 
to tail behavior.

iii)	 When the scaling component Θ degenerates to a point Θ ≡ k ∈ ℝ+ , we recover 
the class of IPH distributions. This also implies that the class of SIPH distribu-
tions, with a given and fixed intensity, is dense in the class of distributions on the 
positive real line. The argument is omitted, but it is a simple application of con-
vergence through the diagonal of an array, for instance, by choosing a sequence 
of scalings Θn with constant mean k and variances shrinking to zero.

Remark 3.2  Recall that for a continuous and positive random variable Y, the hazard 
function �Y is given by

Sometimes, it is convenient to deal with the cumulative or integrated hazard func-
tion MY , which is given by

SY (y) = �LΘ

(
−�

y

0

�(t)dt T

)
�, y ≥ 0.

Y
d
= Z1∕�S� = (ZS�

�
)1∕� ,

�Y (t) =
fY (t)

SY (t)
, t ≥ 0.
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The classical frailty model in survival analysis assumes that the hazard function 
of an individual depends on an unobservable random variable Θ . More specifically, 
it assumes that Θ acts multiplicatively on a baseline hazard function � , that is

Here, the random variable Θ is known as the frailty. If we denote by Y the random 
variable with the above hazard, then the survival function of Y ∣ Θ = � is given by

Thus, the unconditional survival function of Y is given by

Furthermore, model (4) can incorporate covariates � = (X1,… ,Xq)
⊤ ∈ ℝ

q in a 
similar way to the Cox’s proportional hazards model via

where � ∈ ℝ
q is a q-dimensional parameter row vector. Note that when the frailty 

degenerates to Θ ≡ 1 , one recovers the proportional hazards model, meaning that the 
frailty model generalizes the proportional hazards model. Commonly employed distribu-
tions as frailties include the Gamma and the positive stable distributions, among others.

In Albrecher et  al. (2021b), it was shown that the intensity function of an IPH 
distribution is asymptotically equivalent to its hazard function. More specifically, we 
have that �(t) ∼ C�(t) as t → ∞ with C > 0, a positive constant. In particular, when 
p = 1 , the previous asymptotic result becomes equality. It follows that the frailty 
model is a special case of our more general matrix specification of SIPH distribu-
tions, when p = 1.

Remark 3.3  (Incorporating regressors). As in the frailty model, we can introduce 
covariates into (2) via

In this case, we write Y ∼ SIPH (�,T, �,Θ,�) to denote a random variable 
with above intensity. Note that the proportional intensities model introduced in 
Albrecher et  al. (2021b) is retrieved if the scaling distribution degenerates to 
Θ ≡ 1 for all individuals. Consequently, the SIPH model is a generalization of the 
proportional intensities model.

In what follows, we mostly restrict ourselves to the model (2) without covari-
ates, the extension being straightforward but somewhat distracting to the current 

MY (t) = �
t

0

�Y (s)ds = − log(SY (t)), t ≥ 0.

(4)�(t;Θ) = Θ�(t), t ≥ 0.

SY|Θ(y|�) = exp

(
−� ∫

y

0

�(t)dt

)
= exp (−�M(y)) .

SY (y) = ∫
∞

0

SY|Θ(y|�)dFΘ(�) = ∫
∞

0

exp (−�M(y))dFΘ(�) = LΘ(M(y)) .

�(t;Θ,�) = Θ�(t) exp(��), t ≥ 0,

�(t;Θ, �) = Θ�(t) exp(��), t ≥ 0.
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train of thought. Moreover, we assume that Θ is a continuous random variable 
unless stated otherwise.

3.1 � Novel examples

Next, we present a suite of new examples that arise naturally as matrix extensions 
of some well-known frailty models, providing along the way some insight into 
the precise asymptotic behavior of the proposed models. In Appendix 1, the defi-
nitions of the different classes of heavy-tailed distributions are provided.

Example 3.4  (Gamma Scaling). Consider Θ ∼ Gamma (�, 1) , 𝛼 > 0 , with Laplace 
transform

Then, the survival function SY of Y is given by

As for the matrix-Pareto type II laws introduced in Albrecher et al. (2021a), tak-
ing more general Θ ∼ Gamma (�, �) , 𝛾 > 0 , results in the same class of distribu-
tions. For this reason, we work only with Gamma (�, 1) . Consider now the particular 
case �(y) = �y�−1 , 𝜂 > 0 , then

We call this the Matrix-Burr distribution.
Regarding the asymptotic behavior, we have that

where C is a positive constant, which follows from an eigenvalue decomposition of 
T . The first-order precise asymptotics for the different intensities from Table 1 are 
provided in Table 2, where D, b, and c denote positive real-valued constants, which 
may change between intensities, but we write the same symbol for display purposes. 
Throughout the rest of this section, we use the same notational convention.

LΘ(u) = (1 + u)−� , u ≥ −1.

SY (y) = �(I − h−1(y)T)−��, y ≥ 0.

SY (y) = �(I − y�T)−�� .

SY (y) ∼ C(h−1(y))−� ,

Table 2   Asymptotics for 
Gamma scaling

Intensity Precise asymptotics Class

Pareto D(log(by))−� Slowly varying
Weibull Dy−�� Regularly varying
Lognormal D(log(y))−�� Slowly varying
Loglogistic D(log(by))−� Slowly varying
Gompertz D exp(−by) Exponential
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Example 3.4  (Positive stable scaling). Consider Θ positive stable with stability 
parameter � ∈ (0, 1] . Then

As a particular case, take �(y) = �y�−1 , 𝜂 > 0 . Then

It was noted in Albrecher et al. (2021a) that (�,−(−T)�) is a PH representation. 
Thus, some simple calculations show that these distributions span the same class as 
the matrix-Weibull laws introduced in Albrecher and Bladt (2019). This is in con-
trast to the class of CPH distributions with stable mixing in Albrecher et al. (2021a), 
which only span the matrix-Weibull laws with � ∈ (0, 1).

Regarding their asymptotic behavior, we have

Table 3 gives the precise asymptotics for the different intensities of Table 1.

Example 3.6  (Inverse Gaussian scaling). Consider inverse Gaussian scaling with 
parameters 𝜈 > 0 and 𝜂 > 0 and density

Then, the corresponding Laplace transform of Θ is given by

We take the particular case � = 1 and �2 = 1∕� . In this way

Thus,

SY (y) = � exp(−(−T)�(h−1(y))�)�, y ≥ 0.

SY (y) = � exp(−(−T)�y��)� .

SY (y) ∼ C exp(−b(h−1(y))�) .

fΘ(𝜃) =

√
𝜂

√
2𝜋𝜃3

exp
�
−

𝜂

2𝜈2𝜃
(𝜃 − 𝜈)2

�
, 𝜃 > 0.

LΘ(u) = exp

�
−
�
√
1 + 2�2u∕�

�
+

�

�

�
, u ≥ 0.

LΘ(u) = exp
�
1

�2

�
1 −

√
1 + 2�2u

��
.

Table 3   Asymptotics for positive stable scaling

Intensity Precise asymptotics Class

Pareto D exp(−b(log(cy))�) Slowly varying
Weibull D exp(−by−��) Weibull-type
Lognormal D exp(−b(log(y))��)  Slowly varying for 𝛼𝜂 < 1 Regularly 

varying for �� = 1 Lognormal-type for 
𝛼𝜂 > 1

Loglogistic D exp(−b(log(cy))�) Slowly varying
Gompertz D exp(−b exp(cy)) Gumbel
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Regarding the asymptotic behavior, we have that

Table 4 gives the precise asymptotics for the different intensities of Table 1.

Example 3.7  (PVF scaling). Consider the family of power variance function (PVF) 
distributions with Laplace transform

where 𝜈 > 0 , 𝜂 > 0 and 0 < 𝛾 ≤ 1. This family includes the Gamma, inverse Gauss-
ian and the positive stable distributions as particular cases. Here we assume that 
� = 1 , which results in

Regarding the asymptotic behavior, we have that

which results in the same asymptotics of Table 3 for the positive stable case, but 
with � replaced by �.

Example 3.8  (Compound Poisson scaling). Consider a compound model Θ =
∑N

i=1
Vi 

with V1,V2,… i.i.d. random variables independent of N. In general, the Laplace 
transform of Θ is given by

In particular, for V ∼ Gamma (�, 1) and N ∼ Poisson (�) , we obtain

SY (y) = � exp
�
1

�2

�
I −

√
I − 2�2h−1(y)T

��
�, y ≥ 0.

SY (y) ∼ C exp(−b(h−1(y))1∕2) .

LΘ(u) = exp

(
�(1 − �)

�

(
1 −

(
1 +

�u

�(1 − �)

)�))
, u ≥ 0,

SY (y) = � exp

(
�(1 − �)

�

(
I −

(
I −

h−1(y)

�(1 − �)
T

)�))
�, y ≥ 0.

SY (y) ∼ C exp(−b(h−1(y))� ) ,

LΘ(u) = LN(− logLV (u)), u ≥ 0.

Table 4   Asymptotics for inverse Gaussian scaling

Intensity Precise asymptotics Class

Pareto D exp(−b(log(cy))1∕2) Slowly varying
Weibull D exp(−by�∕2) Weibull-type
Lognormal D exp(−b(log(y))�∕2)  Slowly varying for 𝜂 < 2 Regularly 

varying for � = 2 Lognormal-type 
for 𝜂 > 2

Loglogistic D exp(−b(log(cy))1∕2) Slowly varying
Gompertz D exp(−b exp(cy)) Gumbel
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Thus,

Note that this distribution has an atom at infinity with probability exp(−�) , cor-
responding to the probability of ℙ(N = 0) . In survival analysis terms, this means 
that an individual may never experience the event of interest with such probability. 
Considering N + 1 instead of N removes such an atom.

Example 3.9  (Discrete scaling). Assume that Θ is a discrete random variable taking 
values in {𝜂1, 𝜂2,…} ⊂ ℝ+ with corresponding probabilities � = (�1, �2,…) , that 
is, ℙ(Θ = �i) = �i , i = 1, 2,… . Then,

Define the linear transformation T̃ on ℝℕ given by

Then, we can rewrite the survival function of Y as

where ⊗ denotes the Kronecker product, and �̃ is a column vector of ones of appro-
priate dimension. This can be thought of as an infinite-dimensional IPH distribution. 
The case � ≡ 1 recovers the class of NPH distributions introduced in Bladt et  al. 
(2015).

Note that another approach to study the asymptotic behavior, and that is particu-
larly convenient in the discrete scaling case, is to use the representation Y = h(Z∕Θ) , 
so that

and employ the asymptotics of Z∕Θ . For instance, taking Θ ∼ Gamma (�, 1) , we 
have that Z∕Θ is regularly varying with index � (see Albrecher et  al. (2021a) for 
details). This leads to the same asymptotic results in Table 2 for the different choices 
of intensities � . For the discrete scaling, we could take, for instance, Θ with Zeta dis-
tribution leading to the same asymptotic results.

LΘ(u) = exp (−�(1 − (1 + u)−�)) .

SY (y) = � exp
(
−�

(
I −

(
I − h−1(y)T

)−�))
�, y ≥ 0.

SY (y) =
∑
i

�i� exp
(
�iTh

−1(y)
)
�, y ≥ 0.

T̃ =

⎛⎜⎜⎝

T𝜂1 � ⋯

� T𝜂2 ⋯

⋮ ⋮ ⋱

⎞⎟⎟⎠
.

SY (y) = (� ⊗ �) exp
(
T̃h−1(y)

)
�̃, y ≥ 0,

ℙ(Y > y) = ℙ(Z∕Θ > h−1(y)) = SZ∕Θ(h
−1(y)) ,
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As a second case, take V ∶= 1∕Θ with Weibull-type tail so that VZ has Weibull-
type tail with shape parameter in (0,  1) (see Rojas-Nandayapa and Xie (2018)). 
Thus, the asymptotic behavior for the different intensities resemble those in Table 3.

Example 3.10  (Missing covariates in the proportional intensities model). Consider 
the proportional intensities model (also known as PH regression) introduced in 
Albrecher et al. (2021b) with vectors of observed and unobserved covariates �1 and 
�2 , respectively. Namely, the intensity is of the form

Given that the vector �2 is unknown, the model cannot be employed in practice. 
However, we can assume that

is an unobserved random variable independent of �1 . In this way, the scaled inten-
sity model can be employed to account for the effect of omitted covariates by con-
sidering a parametric model for Θ . Such additional random component can thus help 
account for additional variability observed in data that cannot be explained by a sim-
pler model.

3.2 � Parameter estimation

In order to derive an EM algorithm for SIPH distribution, we first recall the cor-
responding algorithm for CPH distributions in Albrecher et al. (2021a) (see Bladt 
and Rojas-Nandayapa (2018) for the discrete scaling case). Consider y1,… , yK an 
i.i.d. sample from a CPH distributed random variable Y, which we will also denote 
by � . Here, we assume that the scaling component Θ belongs to a parametric family 
depending on the parameter vector � and denote by fΘ its corresponding density. We 
now make the following definitions. Let Bk be the number of times the underlying 
Markov jump process of Y starts in state k, Nkl the total number of transitions from 
state k to l until absorption, Nk the number of times that k was the last state to be 
visited before absorption, and finally, let Zk be the cumulated time that the Markov 
jump process spent in state k. The detailed routine for estimation of CPH distribu-
tions is given in Algorithm 1.

�(t;�1,�2) = �(t) exp(�1�1 + �2�2), t ≥ 0.

Θ ∶= exp(�2�2)
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We now derive a generalized EM algorithm for maximum-likelihood estima-
tion of SIPH distributions. Assume that �( ⋅ ;�) ≥ 0 is a nonnegative parametric 
function depending on the vector � . Let Y ∼ SIPH (�,T, �( ⋅ ;�),Θ,�) , then

where Z ∼ PH (�,T) . In particular, this implies that h−1(Y;�) exp(��)
d
=Z∕Θ , 

meaning that h−1(Y;�) exp(��) is scaled PH distributed. Consider now y1,… , yK 
an i.i.d. sample from this Y, then the EM algorithm for parameter estimation is the 
following.

Y
d
=h(exp(−��)Z∕Θ;�),
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Proposition 3.2  Algorithm  2 increases the likelihood function at each iteration. 
Since for fixed p, the likelihood of SIPH distributions is bounded, convergence 
towards a (possibly local) maximum is guaranteed.

Proof  By the change of variable theorem, we have that

Consider parameter values (�i,Ti,�i,�i, � i) after the i-th iteration. Then the data 
log-likelihood after the i-th iteration is given by

In the (i + 1)-th iteration, we first obtain (�i+1,Ti+1,�i+1) in 1. so that

Finally, by 2.

Remark 3.4  The optimization problem

fY (y) = fZ∕Θ(h
−1(y;�) exp(��);�,T,�)�(y;�) exp(��), y ≥ 0.

l(�i,Ti,�i,�i, � i;�,�) =

K∑
n=1

log(fZ∕Θ(h
−1(yn;�i) exp(� i�n);�i,Ti,�i))

+ log(�(yn;�i)) + � i�n .

l(�i,Ti,�i,�i, � i;�,�) ≤
K∑
n=1

log(fZ∕Θ(h
−1(yn;�i) exp(� i�n); �i+1,Ti+1,�i+1))

+ log(�(yn;�i)) + � i�n

= l(�i+1,Ti+1,�i+1,�i, � i;�,�) .

l(�i,Ti,�i,�i, � i;�,�) ≤ argmax(�,�)l(�i+1,Ti+1,�i+1,�, �;�,�)

= l(�i+1,Ti+1,�i+1,�i+1, � i+1;�,�) .

(5)argmax(�,�)

K∑
n=1

log(fY (yn;�̂, T̂, �̂,�, �))
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of Algorithm 2 is computationally heavy. However, observe that fewer iterations of 
any optimization routine are sufficient for the proof and conclusion of Proposition 
3.2 to hold, and full convergence of (5) is not necessary. For instance, one step of the 
argmax routine can already provide good results.

Remark 3.5  (Incorporating right-censoring). Algorithm 2 can be modified to work with 
censored data. We illustrate the changes by considering only the case of right-censoring 
since it is the most common scenario in survival analysis applications. However, left-
censoring and interval-censoring can be treated by similar means. In such a case, we no 
longer observe Y = y but instead only that Y ∈ [v,∞) . By monotonicity of h, we have that 
h−1(Y;�) exp(��) ∈ [h−1(v;�) exp(��),∞) , which can be interpreted as a censored 
observation of a scaled PH distributed random variable. Moreover, in Albrecher et  al. 
(2021a) (and Bladt and Rojas-Nandayapa (2018)), a modified EM algorithm for the esti-
mation of scaled PH distributions is presented for the case of censored observations. This 
means that the main change in Algorithm 2 is in step 2, where we must now compute

3.3 � Estimation for fractional PH distributions

A key distinction of the matrix Mittag-Leffler distribution (or fractional PH), with 
respect to the other models introduced in Section  3.1, is that the transformation 
h(x) = x1∕� and the mixing distribution Θ = 1∕S�

�
 depend on the same parameter 

� . This makes statistical estimation very challenging by ad-hoc methods, and thus 
embedding into the SIPH class is useful for this purpose. Note that the transfor-
mation parameters are different from the scaling component’s parameters for the 
previously presented models, and this last scenario is the central assumption in the 
derivation of Algorithm 2. Thus, special treatment must be taken for the estimation 
of matrix Mittag-Leffler distributions when seen as SIPH distributions. This is now 
solved by employing a modified EM algorithm, the details given in Algorithm 3. 

(�̂, �̂) = argmax(�,�)

K∑
n ∶ yn observed

log(fY (yn;�̂, T̂, �̂,�, �))

+

K∑
n ∶ yn censored

log(SY (yn;�̂, T̂, �̂,�, �)) .
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By the same method of proof of Algorithm  2, one can show that Algorithm  3 
increases the likelihood in each iteration, and hence we omit the details for brevity.

4 � Shared scaling

This section presents a multivariate extension of SIPH distributions, inspired by the 
construction principle of the shared frailty model. The key idea is to think of an 
underlying random variable which is a common scaling factor to all the coordinates 
of an independent random vector, creating dependency and heavy-tailedness all at 
once through the same mechanism.

4.1 � A class of multivariate CPH distributions

Before going into full generality, we consider the case where there is no determin-
istic time-transform component. This allows for a more transparent treatment with 
explicit formulas. Thus, consider the conditionally independent random variables 
� = (Y1,… , Yd)

⊤ given Θ = � such that

Then, the joint survival function of � is given by

where ⊕,⊗ denote the Kronecker sum and product, respectively. In particular, this 
yields the joint density

where �̃ = �1 ⊗⋯⊗ �d and L(d)

Θ
(u) is the derivative of order d of LΘ(u) , which can 

again be shown by the use of functional calculus through Cauchy’s formula. Moreo-
ver, marginally we get continuously scaled PH behavior:

Alternatively, it is easy to see that � has representation (Y
1

,… , Y
d
)⊤ = (Z

1

,… ,

Z
d
)⊤∕Θ , where Zi are independent PH (�i,Ti) distributed random variables inde-

pendent of Θ , i = 1,… , d . Indeed,

Yi ∣ Θ = � ∼ PH (�i, �Ti) , i = 1,… , d .

S�(�) = � ℙ(Y1 > y1,… , Yd > yd ∣ Θ = 𝜃)dFΘ(𝜃)

= �
d∏
i=1

�i exp
(
𝜃Tiyi

)
���Θ(𝜃)

= � (�1 ⊗⋯⊗ �d) exp
(
𝜃(T1y1 ⊕⋯⊕ Tdyd)

)
� dFΘ(𝜃)

= (�1 ⊗⋯⊗ �d)LΘ(−(T1y1 ⊕⋯⊕ Tdyd))�, yi ≥ 0 i = 1,… , d,

f�(�) = (−1)d(�1 ⊗⋯⊗ �d)L
(d)

Θ
(−(T1y1 ⊕⋯⊕ Tdyd))�̃, yi ≥ 0 i = 1,… , d,

Yi ∼ CPH (�i,Ti,Θ) , i = 1,… , d .
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These multivariate distributions were studied from another perspective in Furman  
et  al. (2021), where the authors derived some properties in the context of risk  
management. We presently derive some probabilistic properties, provide an estima-
tion method, and extend the class to allow for deterministic time transforms. In the 
next section we also allow for scaling of different components of the random vector 
by different (but correlated) scaling random variables. Since these distributions will 
be the building blocks of the more general time-inhomogeneous multivariate models 
presented in Section 4.3, a good understanding of the former facilitates the treatment 
of the latter.

Example 4.1  (Gamma scaling). Consider Θ ∼ Gamma (�, 1) , 𝛼 > 0 , then the joint 
survival function of � is given by

This distribution can be seen to be a matrix version of Mardia’s multivariate 
Pareto distribution (see Mardia et al. (1962)).

4.2 � Parameter estimation: multivariate CPH distributions

We now present a generalized EM algorithm for maximum-likelihood estimation 
of the class of multivariate CPH distributions introduced previously. The complete 
data is the scaling component Θ together with the conditionally independent Markov 
jump processes paths. We further assume that Θ belongs to a parametric family 
depending on the vector � and denote by fΘ its corresponding density.

Consider observations �n = (y(1)
n
,… , y(d)

n
)⊤ , n = 1,… ,K , from a multivariate 

CPH distributed random vector, and let �̃ denote the whole data set. We also denote 
by �̃ and T̃ the sets of parameters {�1,… ,�d} and {T1,… ,Td} , respectively, and 
�
(i)

k
 and t(i)

kl
 to refer to the entries of �i and Ti , i = 1,… , d . In order to write down 

the complete likelihood Lc(�̃, T̃,�;�̃) , we need the following definitions. For each 
i = 1,… , d , let Bi

k
 be the number of times the underlying Markov jump process of Yi 

starts in state k, Ni
kl

 the total number of transitions from state k to l until absorption, 
Ni
k
 the number of times that k was the last state to be visited before absorption, and 

finally, let Zi
k
 be the cumulated time that the Markov jump process spent in state k.

Then, the complete likelihood is given by

ℙ(Y1 > y1,… , Yd > yd) = ∫ ℙ(Y1 > y1,… , Yd > yd ∣ Θ = 𝜃)dFΘ(𝜃)

= ∫ ℙ(Z1 > 𝜃y1,… , Zd > 𝜃yd ∣ Θ = 𝜃)dFΘ(𝜃)

= ∫
d∏
i=1

�i exp
(
𝜃Tiyi

)
�dFΘ(𝜃)

= S�(�) .

S�(�) = (�1 ⊗⋯⊗ �d)
(
I − (T1y1 ⊕⋯⊕ Tdyd)

)−𝛼
�, yi ≥ 0 i = 1,… , d.
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with corresponding log-likelihood (discarding the terms which do not depend on 
any parameters)

Regarding the E-step, which consists of computing the conditional expectation 
of the log-likelihood given the observed data, the calculations are somewhat similar 
to those of Albrecher et al. (2021a). We illustrate the procedure by computing the 
conditional expectation of the logarithmic term. Consider one (generic) data point 
( K = 1 ) and let � = �1 . Then

The formulas for all the other statistics are derived by similar calculations.
Concerning the M-step, consisting of maximizing the conditional expected log-

likelihood in terms of the parameters, for the parameter � of the scaling component 
we have in full generality

Regarding the PH component’s parameters, the entries of the sub-intensity matrix 
can be found by direct differentiation of the log-likelihood, while for the vector of 
initial probabilities, we can employ a Lagrange multiplier argument. We omit fur-
ther details for brevity. We summarize the complete procedure in Algorithm 4.

Lc(�̃, T̃,�;�̃)

= fΘ(𝜃;�)

d∏
i=1

pi∏
k=1

(𝜋
(i)

k
)B

i
k

pi∏
k=1

pi∏
l=1,l≠k

(
𝜃t

(i)

kl

)Ni
kl

exp
(
− 𝜃t

(i)

kl
Zi
k

)

×

pi∏
k=1

(
𝜃t

(i)

k

)Ni
k

exp
(
− 𝜃t

(i)

k
Zi
k

)
,

lc(�̃, T̃,�;�̃)

=

d∑
i=1

pi∑
k=1

Bi
k
log

(
𝜋
(i)

k

)
+

d∑
i=1

pi∑
k=1

pi∑
l=1,l≠k

Ni
kl
log

(
t
(i)

kl

)
−

d∑
i=1

pi∑
k=1

pi∑
l=1,l≠k

t
(i)

kl
𝜃Zi

k

+

d∑
i=1

pi∑
k=1

Ni
k
log

(
t
(i)

k

)
−

d∑
i=1

pi∑
k=1

t
(i)

k
𝜃Zi

k
+ log(fΘ(𝜃;�)) .

�
�
log(fΘ(Θ;�)) ∣ � = �

�
= ∫

∞

0

log(fΘ(�;�))fΘ��(���)d�

= ∫
∞

0

log(fΘ(�;�))
fΘ,�(�, �)

f�(�)
d�

= ∫
∞

0

log(fΘ(�;�))
f��Θ(���)fΘ(�)

f�(�)
d�

= ∫
∞

0

log(fΘ(�;�))

∏d

i=1
�i exp(�Tiy

(i))��i

f�(�)
fΘ(�)d� .

�̂ = argmax��
(
log(fΘ(Θ;�)) ∣ �̃ = �̃

)
.
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4.3 � A class of multivariate SIPH distributions

We now proceed to incorporate deterministic time-inhomogeneity into the shared 
scaling construction. Consider conditionally independent random variables 
(Y1,… , Yd)

⊤ given Θ = � by

Then

Yi ∣ Θ = � ∼ IPH (�i,Ti, ��i) , i = 1,… , d .
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and

where h−1
i
(y) = ∫ y

0
�i(t)dt , i = 1,… , d . Note that � has representation 

(Y1,… , Yd)
⊤ = (h1(Z1∕Θ),… , hd(Zd∕Θ))

⊤ , which can be seen as follows

Example 4.2  (Positive stable scaling). Take Θ positive stable with stability parameter 
� ∈ (0, 1] , then

For the particular case �i(y) ≡ �iy
�i−1 , 𝜂i > 0 , i = 1,… , d , we have

This joint distribution can be seen to be a matrix-parameter version of the multi-
variate Weibull distribution introduced in Manatunga and Oakes (1999).

Remark 4.1  Covariates can be incorporated into the model by assuming that the 
intensities are of the form

Remark 4.2  (Shared frailty model). In the shared frailty model, it is assumed that a 
group of individuals is conditionally independent given the frailty. In this way, the 
conditional joint survival function of � ∣ Θ = � , � = (Y1,… , Yd)

⊤ , is given by

S�(�) = � ℙ(Y1 > y1,… , Yd > yd ∣ Θ = 𝜃)dFΘ(𝜃)

= �
d∏
i=1

�i exp
(
𝜃Tih

−1
i
(yi)

)
���Θ(𝜃)

= � (�1 ⊗⋯⊗ �d) exp
(
𝜃(T1h

−1
1
(y1)⊕⋯⊕ Tdh

−1
d
(yd))

)
�dFΘ(𝜃)

= (�1 ⊗⋯⊗ �d)LΘ(−(T1h
−1
1
(y1)⊕⋯⊕ Tdh

−1
d
(yd)))�, yi ≥ 0, i = 1,… , d,

f�(�) =

(
d∏
i=1

−𝜆i(yi)

)
(�1 ⊗⋯⊗ �d)L

(d)

Θ
(−(T1h

−1
1
(y1)⊕⋯⊕ Tdh

−1
d
(yd)))�̃ ,

ℙ(Y1 > y1,… , Yd > yd) = ∫ ℙ(Y1 > y1,… , Yd > yd ∣ Θ = 𝜃)dFΘ(𝜃)

= ∫ ℙ(Z1 > 𝜃h−1
1
(yd),… , Zd > 𝜃h−1

d
(yd) ∣ Θ = 𝜃)dFΘ(𝜃)

= ∫
d∏
i=1

�i exp
(
𝜃Tih

−1
i
(yi)

)
�dFΘ(𝜃)

= S�(�) .

S�(�) = (�1 ⊗⋯⊗ �d) exp
(
−(−T1h

−1
1
(y1)⊕⋯⊕ Tdh

−1
d
(yd))

𝛼
)
� .

S�(�) = (�1 ⊗⋯⊗ �d) exp
(
−(−T1y

𝜂1
1
⊕⋯⊕ Tdy

𝜂d
d
)𝛼
)
� .

�i(t;Θ,�) = Θ�i(t) exp(��), t ≥ 0, i = 1,… , d.
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where Mi are baseline cumulative hazards, i = 1,… , d . Thus, the joint survival func-
tion of � is given by

Using that

the above joint survival function can be rewritten as

In particular, this means that the survival copula of � is an Archimedean copula. 
Note that the shared frailty model is a particular case of the class of multivariate 
SIPH distributions introduced here when p = 1.

We now study the dependence structure of multivariate SIPH distributions. 
When p = 1 , the survival copula of � is an Archimedean copula. To study the 
more general case, note that all the transformations presented in Table  1 are 
strictly increasing. This means that the copulas for models based on these intensi-
ties are the same as the ones of the models presented in Section 4.1, and thus it is 
enough to study the later case. Define the coefficient of upper tail dependence as

Proposition 4.1  Let V ∶= 1∕Θ be regularly varying with index 𝛼 > 0 . Then

where T̃i ∶= Ti�(Z
𝛼
i
)1∕𝛼 , i = 1, 2.

Proof  Given the definition of our model, Proposition 1 of Section 2 in Engelke et al. 
(2019) yields

S�|�(�|𝜃) = ℙ(Y1 > y1,… , Yd > yd ∣ Θ = 𝜃)

=

d∏
i=1

exp(−𝜃Mi(yi))

= exp

(
−𝜃

d∑
i=1

Mi(yi)

)
,

S�(�) = LΘ

(
d∑
i=1

Mi(yi)

)
.

Mi(y) = L
−1
Θ
(SYi(y)) , i = 1,… , d,

S�(�) = LΘ

(
d∑
i=1

L
−1
Θ
(SYi(yi))

)
.

𝜆U(�) = lim
q→1−

ℙ(Y1 > F←

Y1
(q) ∣ Y2 > F←

Y2
(q)) .

𝜆U(�) = Γ(𝛼 + 1)(�1 ⊗ �2)(−T̃1 ⊕ T̃2)
−𝛼� ,
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where Zi are PH(�i,Ti ), and

Moreover, Zi∕�(Z�
i
)1∕� is PH distributed with the same vector of initial probabili-

ties �i and sub-intensity matrix T̃i = Ti�(Z
𝛼
i
)1∕𝛼 , i = 1, 2 . This implies that

which now yields

Note that the resulting explicit expression for �U is in terms of the parameters 
of the PH components. For instance, when considering Θ ∼ Gamma (�, 1) , the 
survival copula of the model can be different from the Clayton copula, for which 
�U = 2−� . In Figure 1, we take the same value � = 1 and plot the implicit copula 
of two multivariate CPH distributions, one with upper tail dependence coefficient 
smaller than 2−1 and the other larger than 2−1 , achieved solely by changing the 
parameters of the PH components.

�U(�) = �

(
min

(
Z�
1

�(Z�
1
)
,

Z�
2

�(Z�
2
)

))
,

�(Z�
i
) = Γ(� + 1)�i(−Ti)

−�� , i = 1, 2 .

min

(
Z1

�(Z𝛼
1
)1∕𝛼

,
Z2

�(Z𝛼
2
)1∕𝛼

)
∼ PH (�1 ⊗ �2, T̃1 ⊕ T̃2) ,

𝜆U(�) = Γ(𝛼 + 1)(�1 ⊗ �2)(−T̃1 ⊕ T̃2)
−𝛼� .

Fig. 1   Simulation of implicit copulas of multivariate SIPH with �
U
= 0.4128 (left), and multivariate 

SIPH with �
U
= 0.5659 (right)
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4.4 � Parameter estimation: multivariate SIPH distributions

If we assume that �i( ⋅ ;�i) is a parametric function depending on the vector �i , 
i = 1,… , d , and let � = (�1,… ,�d) . Then we can use that (h−1

1

(Y
1

;�
1

),… , h
−1
d

(Y
d
;�

d
))⊤

d

=(Z
1

∕Θ,… , Z
d
∕Θ)⊤ to formulate a generalized EM algorithm for maxi-

mum-likelihood estimation, which generalizes Algorithm 2 to the multivariate case.

5 � Correlated scaling

We now extend the scaling of the sub-intensity matrix of SIPH distributions to the 
case where we condition on a random vector, the scaling factors being the com-
ponents of such vector. We consider first the conditionally PH case, i.e. when no 
deterministic time-transform is present, and a scaling vector � = (Θ1,… ,Θd)

⊤ and 
� = (Y1, ,… , Yd)

⊤ such that the random variables Yi are conditionally independent 
given � with laws

Then, in full generality, the joint survival function of � is given by

Consider the bivariate case. Then, using functional calculus, we have that that the 
joint survival function takes the explicit form

Yi ∣ � = (𝜃1,… , 𝜃d)
⊤ ∼ PH (�i, 𝜃iTi) , i = 1,… , d .

S�(�) = �
d∏
i=1

�i exp
(
�iTiyi

)
�dF�(�), yi ≥ 0, i = 1,… , d.
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where L� is the joint Laplace transform of � , that is

Note that � = (Z1∕Θ1,… , Zd∕Θd)
⊤ , where Zi are independent PH (�i,Ti) distrib-

uted random variables, i = 1,… , d , independent of � . Indeed,

5.1 � Parameter estimation: correlated CPH distributions

The maximum-likelihood estimation of this class of multivariate distributions can 
be performed via a generalized EM algorithm. The derivation is done similarly 
to Algorithm  4 and thus omitted for brevity. Again, for estimation, we assume 
that � belongs to a parametric family depending on the vector � and denote by 
f� its corresponding joint density. The resulting detailed routine is provided in 
Algorithm 6.

S�(�) = � �1 exp
(
𝜃1T1y1

)
��2 exp

(
𝜃2T2y2

)
�dF�(�)

= � (�1 ⊗ �2) exp
(
𝜃1T1y1 ⊕ 𝜃2T2y2

)
�dF�(�)

= � (�1 ⊗ �2) exp
(
𝜃1T1y1 ⊗ �2 + �1 ⊗ 𝜃2T2y2

)
�dF�(�)

= (�1 ⊗ �2)L�(−T1y1 ⊗ �2,−�1 ⊗ T2y2)�, y1, y2 ≥ 0,

L�(u1, u2) = �
(
exp

(
−u1Θ1 − u2Θ2

))
, u1, u2 ≥ 0.

ℙ
(
Y1 > y1,… , Yd > yd

)
= ∫ ℙ

(
Y1 > y1,… , Yd > yd ∣ �

)
dF�(�)

= ∫ ℙ
(
Z1 > 𝜃1y1,… , Zd > 𝜃dyd ∣ �

)
dF�(�)

= ∫
d∏
i=1

�i exp
(
𝜃iTiyi

)
�dF�(�)

= S�(�) .
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Remark 5.1  This algorithm suffers from the curse of dimensionality. The integrals 
above must typically be computed numerically, given that explicit expressions 
are not available. Thus, the number of summands needed for the approximation 
increases rapidly with the dimension. It is also important to mention that correlated 
frailty models are typically employed only in the bivariate case. In such a case, the 
above algorithm is computationally feasible, thus its relevance.
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5.2 � Correlated SIPH distributions

We now introduce an analogous model to the correlated frailty model based on 
IPH distributions, effectively the most general of our models. Consider a mul-
tivariate random scaling component � = (Θ1,… ,Θd)

⊤ and � = (Y1,… , Yd)
⊤ , 

both in in ℝd
+
 , such that Yi are conditionally independent given � with conditional 

distribution

The joint survival function of � is then given by

In the bivariate case, we have by simple calculations (using functional calcu-
lus) the explicit expression

Note that an alternative representation for � is � = (h1(Z1∕Θ1),… , hd(Zd∕Θd))
⊤ , 

where Zi are independent PH distributed random variables independent of � . The 
proof is akin to those of previous sections.

Now we consider a specific example with explicit joint density, namely the 
correlated Gamma case.

Example 5.1  (Correlated Gamma scaling). Inspired by Yashin et al. (1995), we con-
sider � = (Θ1,Θ2)

⊤ such that

where Wi ∼ Gamma (�i, �i) , 𝜅i, 𝜂i > 0 , i = 0, 1, 2 , are independent. Then we have 
that

This yields

Yi ∣ � = (𝜃1,… , 𝜃d)
⊤ ∼ IPH (�i,Ti, 𝜃i𝜆i) , i = 1,… , d .

S�(�) = �
d∏
i=1

�i exp
(
�iTih

−1
i
(yi)

)
�dF�(�), yi ≥ 0, i = 1,… , d.

S�(�) = (�1 ⊗ �2)L�(−T1h
−1
1
(y1)⊗ �2,−�1 ⊗ T2h

−1
2
(y2))�, y1, y2 ≥ 0.

Θ1 =
�0

�1
W0 +W1

Θ2 =
�0

�2
W0 +W2 ,

�
(
exp(−u1Θ1 − u2Θ2)

)

= �

(
exp

(
−

(
u1

�0

�1
+ u2

�0

�2

)
W0 − u1W1 − u2W2

))

=

(
1 +

(
u1

�1
+

u2

�2

))−�0
(
1 +

u1

�1

)−�1
(
1 +

u2

�2

)−�2

, u1, u2 ≥ 0.
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One typically sets �1 = �0 + �1 and �2 = �0 + �2 . In this way �(Θ1) = �(Θ2) = 1 , 
Var (Θ1) = �−1

1
 , Var (Θ2) = �−1

2
 and Corr (Θ1,Θ2) = �0∕

√
(�0 + �1)(�0 + �2).

Remark 5.2  (Estimation). Maximum-likelihood estimation can be performed via a 
modified EM algorithm, which is in the same form as Algorithm 5 with the only 
change in step 1, where we now employ Algorithm 4. We omit further details.

Remark 5.3  (Correlated frailty). The correlated frailty model assumes that the frail-
ties of individuals are correlated and not necessarily shared. More specifically, in a 
bivariate correlated frailty model, the conditional joint density of � ∣ � = � is

In this way, the joint survival function of � is given by

This is indeed a particular case of the correlated intensities model introduced in 
the present section when p = 1.

6 � Numerical illustrations

In this section, we present some numerical illustrations of practical relevance. In 
the first example, we test the performance of Algorithm 3 for the estimation of 
matrix Mittag-Leffler distributions in a simulation study. In the second example, 
we consider the fitting of a SIPH distribution to a theoretical given distribution. 
In the third example, we fit a SIPH to a real-life insurance data set. As a final 
example, we perform a simulation study for a multivariate CPH distribution. In 
all cases, we ran the generalized EM algorithms until the changes in the succes-
sive log-likelihoods became negligible.

6.1 � Matrix mittag‑leffler distributions

We generated an i.i.d. sample of size 1, 000 from a matrix Mittag-Leffler distribu-
tion of 4 phases with parameters

S�(y1, y2) = (�1 ⊗ �2)

(
� −

(
h−1
1
(y1)

𝜂1
T1

)
⊕

(
h−1
2
(y2)

𝜂2
T2

))−𝜅0

⋅

(
� −

(
h−1
1
(y1)

𝜂1
T1

)
⊗ �2

)−𝜅1
(
� − �1 ⊗

(
h−1
2
(y2)

𝜂2
T2

))−𝜅2

� .

S�|�(�|�) = exp(−�1M1(y1)) exp(−�2M2(y2)) .

S�(�) = L�(M1(y1),M2(y2)) .
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We then fitted a matrix Mittag-Leffler distribution with the same number 
of phases to the resulting sample using Algorithm  3, obtaining the following 
parameters:

Observe that we can somewhat retrieve the parameters by keeping in mind 
possible permutation of states (since their labels are not relevant). Figure  2 
shows that the algorithm recovers the structure of the data. Moreover, note that 
𝛼̂ = 0.7928 , which determines the heaviness of the tail, is close to the original 
value � = 0.8 . As further evidence of the quality of the fit, we have that the log-
likelihood of the fitted model is −1, 769.596 , while using the original distribution 
parameters and structure, we obtain −1, 773.453.

� = (0.2, 0.8, 0, 0) ,

� =

⎛
⎜⎜⎜⎝

−2 0 2 0

5 − 8 0 3

0 0 − 1 0.5

0 0 0 − 4

⎞
⎟⎟⎟⎠
,

� = 0.8 .

�̂ = (0, 0.0381, 0.8481, 0.1139) ,

T̂ =

⎛
⎜⎜⎜⎝

−3.4286 0.1942 0.0495 0.5393

0.6080 − 1.2013 0.0184 0.0084

2.4001 2.1178 − 4.7794 0.2615

0.3800 0.2744 0.3870 − 1.0648

⎞⎟⎟⎟⎠
,

𝛼̂ = 0.7928 .

Fig. 2   Histogram of log-simulated data versus density of the fitted matrix Mittag-Leffler model (left), 
and corresponding QQ-plot (right)
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6.2 � Matrix‑Weibull

Algorithm  2 can be easily modified to approximate given theoretical distribu-
tions. As in the PH case (Asmussen et al. (1996)), the idea consists of considering 
sequences of empirical distributions with increasing sample size. For instance, if 
we denote by g the theoretical given density that we want to approximate, in step 
1, we have that as K → ∞,

The rest of the formulas in step 1 are adapted through the same limit. Regard-
ing step 2, we have

As a concrete example, we consider a Matrix-Weibull distribution (as introduced in 
Albrecher and Bladt (2019), having no random scaling component) with density function

and parameters

Then we fitted a SIPH distribution of 3 phases with baseline intensity 
�(y) = �y�−1 , 𝜂 > 0 , and positive stable scaling. The fitted parameters are the 
following

The quality of the approximation is supported by Figure  3, which shows 
that we recover the shape of the original distribution. Moreover, the product 
𝛼̂𝜂̂ = 1.9867 , which determines the heaviness of the tail, can be compared with 
� = 2 for the given theoretical model.

𝜋̂k =
1

K

K∑
n=1

∫
𝜋k�

⊤
k
exp(𝜃Th−1(yn))𝜃�

� exp(𝜃Th−1(yn))𝜃�
fΘ(𝜃)d𝜃

→ ∫ ∫
𝜋k�

⊤
k
exp(𝜃Th−1(y))𝜃�

� exp(𝜃Th−1(y))𝜃�
fΘ(𝜃)d𝜃g(y)dy .

�̂ → argmax� ∫ log(fY (y;�̂, T̂, �̂,�))g(y)dy .

g(y) = � exp(�y𝛽)�𝛽y𝛽−1 , y > 0 ,

� = (0.5, 0.3, 0.2) ,

� =

⎛⎜⎜⎝

−1 1 0

0 − 2 1

0 0 − 5

⎞⎟⎟⎠
,

� = 2 .

�̂ = (0.1876, 0.3037, 0.5086) ,

T̂ =

⎛⎜⎜⎝

−1.9843 1.2605 0.5706

0.0133 − 1.2985 0.1584

2.3573 0.9338 − 5.2052

⎞⎟⎟⎠
,

𝛼̂ = 0.9146 , 𝜂̂ = 2.1723 .

559



	 M. Bladt, J. Yslas 

1 3

6.3 � Real‑life data

The Gamma-Gompertz frailty model is commonly employed for modeling human 
mortality at old ages (see, e.g., Missov (2013); Vaupel et al. (1979)). In the pre-
sent example, we propose using SIPH distributions with Gamma scaling and 
Gompertz baseline intensity for modeling this type of data.

As a concrete case of study, we consider the lifetimes of the Swedish popula-
tion that die in the year 2011 between ages 50-100. This data was obtained from 
the Human Mortality Database (HMD). We add covariate information by consid-
ering a separation between females ( X = 1 ) and males ( X = 0 ) in the population. 
Then we fitted a SIPH distribution of 4 phases with general Coxian structure in 
the PH component. The estimated parameters are

Figure 4 shows that the fitted distribution provides a reasonable model for both 
groups. If an even closer fit is sought, other parameters of the model need to be 
regressed as well.

6.4 � Multivariate example

We generated an i.i.d. sample of size 2, 500 from a bivariate CPH distribution with 
parameters

�̂ = (0.2097, 0.1572, 0.3135, 0.3196) ,

T̂ =

⎛⎜⎜⎜⎝

−0.0022 0.0004 0 0

0 − 1.1003 1.1003 0

0 0 − 0.6730 0.6730

0 0 0 0.0001

⎞⎟⎟⎟⎠
,

𝛼̂ = 5.803 , 𝜂̂ = 0.1663 , 𝛽 = −0.5389 .

Fig. 3   Density of the original matrix-Weibull versus density of the fitted SIPH (left), and corresponding 
QQ-plot (right)
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and Gamma scaling with � = 1.5 . Note that the upper tail dependence coefficient of 
the theoretical model is �U = 0.2765 , while the empirical estimator of the sample is 
𝜆̂U = 0.28 . Then we fitted a bivariate CPH model of same dimensions using Algo-
rithm 4 obtaining the parameters

Figure  5 shows that we recover the structure of both marginals. Regarding the 
dependence structure, this is supported by Figure 6, where we offer some contour 
plots. Moreover, note that the parameter � that determines the heaviness of the tails 
of the marginals is close to the original model and that the coefficient of upper tail 

�1 = (1, 0, 0) ,

T1 =

⎛⎜⎜⎝

−0.5 0.2 0

0 − 1 0.5

0 0 − 2

⎞⎟⎟⎠
,

�2 = (0.5, 0.5) ,

T2 =

�
−0.1 0

0 − 1

�
,

�̂1 = (0.3268, 0.2124, 0.4608) ,

T̂1 =

⎛⎜⎜⎝

−2.0252 1.0067 0.9015

0.0334 − 1.0061 0.3753

0.9293 0.6818 − 1.7945

⎞⎟⎟⎠
,

�̂2 = (0.884, 0.116) ,

T̂2 =

�
−0.8978 0.3046

0.1501 − 0.1546

�
,

𝛼̂ = 1.5874 .

Fig. 4   Histogram of lifetimes of the Swedish female population that died in 2011 at ages 50 to 100 ver-
sus density of the fitted SIPH (left), and corresponding plot for the male population(right)

561



	 M. Bladt, J. Yslas 

1 3

dependence �U = 0.254 is close to the original (and sample) one. Finally, note that 
the original model’s log-likelihood is −11, 753.27 , compared with −11, 752.45 for 
the fitted model.

7 � Conclusion

We have provided a phase-type-based model which can result in non-exponential 
tail behavior by introducing random and deterministic transformations. The result-
ing model is generally tractable in terms of matrix calculus through the Laplace 
transform of the random component, and thus closed-form formulas allow for sta-
tistical and probabilistic treatments, for instance, for fully explicit generalized EM 
algorithms. In the univariate case, the current three main ways of generating heavy-
tailed phase-type distributions fall into our framework, and several new models 

Fig. 5   Histograms of log-simulated data versus densities of the fitted distribution

Fig. 6   Contour plot of the sample (left), contour plot of original distribution (center), and contour plot of 
fitted distribution (right)
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are introduced to complement the existing suite of hidden Markov models. In the 
multivariate case, we obtain generalizations of well-known frailty models with fully 
explicit densities, contrary to other approaches of multivariate phase-type distribu-
tions in the literature (in terms of rewards or copulas). We finally show the feasibil-
ity of the statistical implementation of our models using four different examples.

Heavy-tailed phase-type distributions are statistically attractive since their inter-
pretation in terms of an underlying evolving process is natural in many domains of 
application which involve processes that traverse numerous states through time, for 
instance, human lifetimes or legal cases. With the models and algorithms provided 
in this paper, we aim to provide a clearer picture of the possibilities and limitations 
of Markov models for practitioners that require non-standard but interpretable mod-
els. A promising further direction of research for generating uni- and multivariate 
scaled phase-type distributions is to consider a general stochastic process as time-
change, which for certain choices may provide fully explicit functionals and estima-
tion procedures while remaining conceptually simple.

Heavy‑tailed definitions

Definition 8.1  A distribution function F on ℝ+ = [0,∞) , with corresponding sur-
vival function S = 1 − F , is called: 

1.	 Regular varying with index � ≥ 0 if 

 for all 𝜆 > 0 . If � = 0 , then F is called slowly varying.
2.	 Weibull-type if 

 for some constants � ∈ ℝ and 𝜏, 𝜆, c > 0 . A Weibull-type distribution has 
heavier than exponential tail behavior if � ∈ (0, 1) , exponential-type behavior if 
� = 1 , and lighter than exponential otherwise.

3.	 Lognormal-type if 

 for some constants �, � ∈ ℝ , 𝛾 > 1 and 𝜆, c > 0 . Note that in particular, the log-
normal distribution is lognomal-type with � = 2.
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lim
x→∞

S(�x)

S(x)
= �−�

S(x) ∼ cx� exp(−�x� ) , x → ∞ ,

S(x) ∼ cx�(log x)� exp(−�(log x)� ) , x → ∞ ,
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