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Abstract
Persistent homology captures the appearances and disappearances of topological 
features such as loops and cavities when growing disks centered at a Poisson point 
process. We study extreme values for the lifetimes of features dying in bounded 
components and with birth resp. death time bounded away from the threshold for 
continuum percolation and the coexistence region. First, we describe the scaling of 
the minimal lifetimes for general feature dimensions, and of the maximal lifetimes 
for cavities in the Čech filtration. Then, we proceed to a more refined analysis and 
establish Poisson approximation for large lifetimes of cavities and for small lifetimes 
of loops. Finally, we also study the scaling of minimal lifetimes in the Vietoris-Rips 
setting and point to a surprising difference to the Čech filtration.

Keywords Topological data analysis · Persistent Betti numbers · Poisson 
approximation

AMS 2000 Subject Classifications 60K35 · 82C22

1 Introduction

One of the key challenges in statistics is to provide scientifically rigorous meth-
ods to detect structure among noise. While for low-dimensional datasets, we do 
indeed have a versatile toolkit at our disposal, the situation is radically different 
in high dimensions. In this context, topological data analysis (TDA) is emerging 
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as an exciting novel approach. The simple and effective idea is to leverage invari-
ants from algebraic topology to extract insights from data. While initially TDA 
started off as an eccentric mathematical idea, it is now applied in a wide variety 
of disciplines, ranging from astronomy and biology to finance and materials sci-
ence Gidea and Katz (2018); Pranav et al. (2016); Rocks et al. (2020); Saadatfar 
et al. (2017).

A core component of TDA is persistent homology. Here, we start growing 
balls centered at the points of a dataset. At the beginning, all points are in iso-
lated components, but as the balls grow, new topological features such as loops 
or cavities may appear. As the radii increase, these features disappear again, until 
finally everything is contained in a single connected component without loops or 
cavities. Through this mechanism, we can associate a birth time and a death time 
with each such feature. The representation of such features through their birth and 
death time can be visualized succinctly through barcodes such as the one shown 
in Fig. 1 (right).

Despite the spectacular successes of TDA in the application domains, major 
parts of it are still lacking a rigorous statistical foundation. For instance, when 
analyzing persistent homology, practitioners often look for features living for 
exceptionally long periods of time, and then draw conclusions if they do occur. 
However, how can we decide whether the observed long life times come from 
genuinely interesting phenomena and are not a mere incarnation of chance?

To answer this question, we need to understand how long life times behave 
under the null model of complete spatial randomness, i.e., a Poisson point pro-
cess. Figure  1 illustrates cycles of a maximal, typical and minimal life times 
in a bounded sampling window. In this regard, a breakthrough was achieved in 
Bobrowski et al. (2017), where the order of the longest life time occurring in a 
large window was determined on a multiplicative scale. Despite the significance 
of this discovery, it is still difficult to build a rigorous statistical test, knowing 

Fig. 1  Left panel: Čech-features of a maximal (left), typical (right top) and minimal (right bottom) life 
times. Right panel: associated barcode
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only the order of the life time. A further interesting cross-connection is that for 
0-dimensional features, the longest life time corresponds to the longest edge in 
the minimum spanning tree whose asymptotic was established in Penrose (1997).

In the present paper, we move one step closer to statistical applications and estab-
lish Poisson approximation results for extremal life times of loops and cavities in 
large sampling windows. More precisely, in Theorem 1 we determine the scaling of 
the maximal life time of (d − 1)-dimensional features, i.e., cavities, in the Čech fil-
tration. Moreover, we show through the Chen-Stein method that after normalization, 
the locations of exceedances over suitable thresholds converge to a homogeneous 
Poisson process. Thus, the investigation is in a similar spirit as the extreme value 
analysis of geometric characteristics of inradii in tessellations Calka and Chenavier 
(2014); Chenavier (2014). However, after proceeding from the general set-up of the 
Chen-Stein method to more concrete tasks, the geometric analyses of the two prob-
lems are entirely different. Furthermore, the Chen–Stein argument is also used in 
Owada and Adler (2017) to analyze the spatial distribution of topological cavities in 
the extremes.

Another vigorous research stream in spatial extremes concerns limit results for 
exceptionally small structures Schulte and Thäle (2012). Our second and third main 
results, concern this setting. More precisely, we determine the minimal life time of 
features in any dimension both in the Vietoris-Rips (VR) and in the Čech (Č) fil-
tration. Our analysis reveals a striking difference in the scaling of minimal features 
between the VR- and the Č-filtration. Often the VR-filtration is chosen as an approxi-
mation to the Č-filtration, when the latter becomes prohibitively time-consuming to 
compute. Hence, our result provides an example for the limitations of this approxima-
tion. However, since the minimal lifetimes of features tend to 0 in increasing sam-
pling windows, there is no contradiction with classical approximation results such as 
(Ghrist 2008, Lemma 2.1.)

The rest of the manuscript is organized as follows. First, in Sect. 2, we fix the 
notation and state the main results. Section  3 illustrates in broad strokes how the 
Chen-Stein method can be used to tackle the assertion. This involves two critical 
steps, namely identifying the correct scaling and excluding multiple exceedances, 
which will be established in Sects. 4 and 5, respectively. To ease the flow of reading, 
we have postponed overly technical volume computations into an appendix.

2  Model and main results

Let P ∶= {Xi}i⩾1 be a Poisson point process in ℝd with intensity 1. We let

denote the Boolean model at a radius r, and write

Or(P) ∶=
⋃

i⩾1

Br(Xi)

Vr(P) ∶= ℝd ⧵ Or(P)
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for the corresponding vacant set. Our first main result concerns the lifetimes of cavi-
ties, i.e., of bounded connected components of Vr(P) . When the growing radii create 
a new cavity at a radius r, we say that r is the birth time of the new cavity. Moreover, 
the death time of a cavity is the smallest radius r > 0 when it is covered completely 
by the Boolean model Or(P) . So far, this definition is still ambiguous: when a new 
cavity is born by splitting an existing one into two, it is not clear which of the newly 
created vacant components should determine its death time. Therefore, it is a com-
mon convention to impose that cavities born first die last.

Now, we enumerate the cavities as {J∗
i
}i⩾1 and associate with each such cavity its 

lifetime L∗
i
> 0 and the point Z∗

i
∈ ℝd as the last point that is covered at the death 

time. In this way, {(Z∗
i
, L∗

i
)}i⩾1 defines a stationary marked point process of cavities 

together with their lifetimes.
Long-range interactions coming from percolation effects make it difficult to study 

this marked point process in full generality. For cavities born in large vacant compo-
nents, the seemingly innocent convention that features born first die last may induce 
long-range interactions in order to decide which birth times correspond to which 
death times. This makes analyzing extremes prohibitively challenging: we are not 
aware of any form of Poisson approximation result reflecting critical phenomena in 
percolation contexts.

Since concepts from continuum percolation are used throughout the paper, we 
now discuss the most important ideas. Loosely speaking, continuum percolation 
concerns the analysis of unbounded connected components in the occupied set 
Or(P) . One of the central findings of percolation theory is the occurrence of a phase 
transition. More precisely, we say that Or(P) percolates if it contains an unbounded 
connected component, and then introduce

as the critical radius for occupied percolation. The phase transition is non-trivial in 
the sense that 0 < r�

c
< ∞ , see Meester and Roy (1996). Above r�

c
 , the occupied set 

intersects a large bounded sampling window Wn ∶= [−n1∕d∕2, n1∕d∕2]d in a unique  
giant connected component with diameter of order  n1∕d; whereas the other components  
are of logarithmic order, see (Penrose 2003, Chapter 10.6). Moreover, also the per-
colation theory for the vacant set Vr(P) has been developed, and we write

for the critical radius for vacant percolation. Most of percolation theory has been 
developed in parallel for the occupied, and the vacant set. However, the logarithmic 
order of the non-giant vacant connected components in Wn is not yet available from 
literature in the regime [r�

c
, r�

c
] of coexistence of unbounded occupied and vacant 

components.
To state a clean Poisson-approximation theorem that applies to the bulk of the 

considered cavities, we restrict {J∗
i
}i⩾1 to the family of cavities {Ji}i⩾1 with birth 

time outside [r�
c
− �c, r

�
c
+ �c] for some arbitrarily small but positive 𝜀c > 0 . As 

made precise in Lemma 1 below, the striking advantage of this restriction is that the 
bounded connected components are of logarithmic size. However, as a consequence, 

r�
c
∶= inf{r⩾0 ∶ ℙ(Or(P) percolates) > 0}

r�
c
∶= sup{r⩾0 ∶ ℙ(Vr(P) percolates) > 0}
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our analysis does not cover the giant cycles considered in Bobrowski and Skraba 
(2020), and it would be interesting to extend the Poisson approximation results in 
that direction. To state our main results, we first give some notation. For each n ≥ 1 , 
we write

where �d is the volume of the unit ball in ℝd . Moreover, for fixed 𝜏 > 0 , we denote 
by Φ���

n,�
 the rescaled point process of exceedances above a threshold u���

n,�
 ,  i.e.

where the threshold u���
n,�

 is determined by

In Lemma 2 in Appendix 1, we check that u���
n,�

 is well-defined in the sense that 
for every 𝜏 > 0 there exists n0(�) such that for all n⩾n0(�) there is a unique u���

n,�
 

satisfying Eq. (1). Considering this point process is classical in extreme value the-
ory since it captures the location of the cavities with large lifetimes. Our first result 
claims that u���

n,�
 is asymptotically equivalent to �n (in the sense that the ratio of these 

quantities converges to 1) and that Φ���
n,�

 is approximately a homogeneous Poisson 
point process Φ� with intensity � in W1.

We write ⇒ and p→ for convergence in distribution and in probability, respectively.

Theorem 1 (Poisson approximation for maximal lifetimes of cavities) For every 
𝜏 > 0,

As a corollary, we obtain the scaling of the maximal lifetime.

Corollary 1 (Scaling of maximal lifetimes of cavities) It holds that

The proofs of Theorem 1 and Corollary 1 are given in Sect. 3.

Remark 1 Theorem 1 can be slightly improved by varying the threshold � so that 
Φ���

n,�
 will be enhanced to a marked point process describing both the location of the 

exceedance as well as the associated lifetime. After an appropriate rescaling, this 
enhanced point process converges to a homogeneous Poisson point process with 
intensity 1 in W1 × (0,∞) . This type of result gives more information than Theo-
rem 1 since it describes the joint distribution of lifetimes exceeding different thresh-
olds. For readability of the manuscript, we refrain from discussing here the more 
technical statement and proof.

�n ∶= (�−1
d

log n)1∕d,

Φ���
n,𝜏

∶=
{
n−1∕dZi∶Li > u���

n,𝜏

}
Zi∈Wn

⊆ W1,

(1)𝜏 = �
[
#
{
Zi ∈ Wn ∶ Li > u���

n,𝜏

}]
.

lim
n→∞

u𝗆𝖺𝗑
n,�

�n
= 1 and Φ𝗆𝖺𝗑

n,�
⇒ Φ� .

�−1
n

max
Zi∈Wn

Li
p
→ 1.
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Remark 2 Theorem 1 reveals a striking difference to the multiplicative persistence 
approach of measuring lifetimes in Bobrowski et  al. (2017), where the scaling is 
(log n∕ log log n)1∕(d−1)⩾�n . That article considers the ratio between the death time 
and the birth time, whereas we work with the difference. We stress that the two 
quantities are related to a similar phenomenon, but they measure it in a different 
way: �n is measured in distance units, while the left-hand-side is a ratio, which has 
no units. The two scalings are different as the multiplicative approach is sensitive 
with respect to cycles with a very small birth time. In certain application contexts 
this may not be desirable. For instance, technical limitations of measuring instru-
ments may prevent the precise determination of very small birth times with a suffi-
ciently high accuracy. Hence, it is also valuable to know the scaling of the difference 
between the death time and the birth time.

Next, we proceed to minimal lifetimes, where we also derive Poisson approxi-
mation results. However, here we do not restrict to the cavities, but consider more 
general topological features. To make this precise, we now discuss briefly the most 
fundamental concepts behind persistent homology, referring the reader to Boissonnat 
et al. (2018) for an excellent textbook treatment on this topic.

We first give the precise definition of Čech (Č-) and Vietoris-Rips (VR-) com-
plexes, which will be of central importance throughout the paper. Both the VR- and 
the Č-complex describe collections of simplices in ℝd . A k-simplex {x0,… , xk} ⊆ ℝd 
is contained in the VR-complex at a level r > 0 if the distance between any pair of 
points is smaller than 2r, i.e., if maxi,j⩽k|xi − xj|⩽2r. The simplex is included in the 
Č-complex if 

⋂
i⩽k Br(xi) ≠ ∅, where Br(xi) denotes the Euclidean ball with radius r 

centered at xi.
Based on these complexes one can compute homology groups whose ranks reveal 

subtle topological properties of the underlying set. For instance, the rank of the 
homology group in dimension d − 1 of the Č-complex at level r on a finite dataset 
𝜑 ⊆ ℝd counts the number of cavities, i.e., the number of bounded connected com-
ponents in the vacant space Vr(�) . Similarly, the ranks of the homology groups in 
dimensions 0 and 1 correspond to the numbers of connected components and loops 
in the occupied set Or(�) . In a general dimension k⩽d , we also speak of k-dimen-
sional features. It is a consequence of the nerve lemma that the homology groups of 
the Č-complex at level r agree with the homology groups of the occupied set Or(�) 
(Björner 1995, Theorem 10.7). Although the homology groups of the VR-complex 
are not as nicely related to the topology of Or(�) or Vr(�) , they are still often pre-
ferred on computational grounds.

A drawback of the methodology described in the preceding paragraph is that it is 
tied to a single value of r. Persistent homology removes this shortcoming by track-
ing at which level of the parameter r the topological features appear (the birth time), 
and when they disappear again (the death time). More precisely, when thinking of 
the Č- and VR-complexes as families indexed by the parameter r, we also speak of 
the Č- and VR-filtrations. Conveniently, there is a precise algorithmic description 
of when a birth occurs and when a death occurs. Each time we add a simplex to the 
filtration that actually changes the homology, it either increases the homology in 
the dimension of the simplex or it decreases the homology in one dimension lower 
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(Boissonnat et al. 2018, Algorithm 9). In the first case, we add a positive simplex, 
which corresponds to the birth of a persistent k-cycle. In the second case, we add a 
negative simplex corresponding to the death of the persistent k-cycle. Defining the 
lifetime Li,k of the ith persistent k-cycle as the difference between the death and the 
birth time, this algorithm gives rise to a family of birth-and-death times {Li,k}i⩾1 . 
This collection is frequently visualized through barcodes, where the birth and death 
times mark the starting points and the end points of the bars, see Fig. 1.

Similar to the setting of cavities, also for general feature dimensions, the long-
range correlations close to the critical radius r�

c
 would pose a formidable obstacle 

for proving Poisson approximation. Therefore, we henceforth fix again a time win-
dow [r�

c
− �c, r

�
c
+ �c] and consider only persistent k-cycles with death time outside 

[r�
c
− �c, r

�
c
+ �c] and that die in a bounded connected component. By restricting to such 

persistent k-cycles, we avoid the need of having to define persistent homology for the 
entire Euclidean space ℝd , which would require a form of infinite-dimensional persistent 
homology. Furthermore, for instance by taking the center point of the (k + 1)-simplex 
whose insertion kills the persistent k-cycle, we attach a center point Zi,k ∈ ℝd to any 
such persistent k-cycle with lifetime Li,k . Hence, we again obtain a stationary marked 
point process {(Zi,k, Li,k)}i⩾1 . In cases where the underlying filtration is not clear from 
the context, we also write {(Zi,k,�̌, Li,k,�̌)}i⩾1 or {(Zi,k,��, Li,k,��)}i⩾1.

Now, similar to the setting of the cavities, fixing a feature dimension 1⩽k⩽d − 1 , 
and given 𝜏 > 0 , we consider the rescaled point process of undershoots

where the threshold u���

n,k,𝜏,�̌
 is determined by

Next, we show that the minimal lifetime of persistent k-cycles is of order n−2 , 
independent of k. Moreover, the rescaled point process of undershoots is approxi-
mately a homogeneous Poisson point process Φ� with intensity � in W1 . However, 
due to involved geometrical configurations occurring in the Č-filtration, we prove 
the point-process convergence only for a specific feature dimension, namely k = 1 
(loops).

Theorem 2 (Minimal lifetimes, Č-filtration) Let 1⩽k⩽d − 1 . Then, for every 𝜏 > 0 , 

 (i) See below

 (ii) Moreover, Φ𝗆𝗂𝗇

n,k,𝜏,�̌�
⇒ Φ𝜏 for k = 1.

Φ���

n,k,𝜏,�̌
∶=

{
n−1∕dZi,k,�̌ ∶ Li,k,�̌ < u���

n,k,𝜏,�̌

}
Zi,k,�̌∈Wn

⊆ W1,

(2)𝜏 = �
[
#
{
Zi,k,�̌ ∈ Wn ∶ Li,k,�̌ < u���

n,k,𝜏,�̌

}]
.

lim
n→∞

log u𝗆𝗂𝗇

n,k,𝜏,�̌�

log n
= −2 and (log n)−1 min

Zi,k∈Wn

logLi,k
p
→ − 2.
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Remark 3 On a technical level, the reason for the restriction to k = 1 in case (ii) is 
due to the need to bound the probability of multiple undershoots. For k = 1 , two per-
sistent k-cycles with short lifetimes are characterized by two 1-simplices causing the 
births of the cycles, and two 2-simplices causing the deaths of the cycles. Already 
among these 10 points several could coincide and conspire to create potentially 
intricate geometric configuration favoring the occurrence of multiple undershoots. 
For k = 1 , it is still possible to go through the different cases by hand, but for larger k 
a different approach would be needed.

The construction of Φ���

n,k,𝜏,�̌
 outlined above does not only work for the Č- but 

also for the VR-filtration Φ���
n,k,�,��

 . The difference in filtration manifests itself 
prominently in a different scaling for the threshold. Again, we consider a thresh-
old u���

n,k,�,��
 such that

Theorem  3 (Minimal lifetimes – VR-filtration) Let 1⩽k⩽d − 1 . Then, for every 
𝜏 > 0,

The orders of the minimal lifetimes in the Č- and VR-filtrations are different 
because cycles with 0 lifetime in the VR-filtration can have a very small posi-
tive lifetime in the Č-filtration. More specifically, for instance in dimension 2, 
the proof of Theorem 2 reveals that cycles with minimal lifetimes can be taken 
to be acute triangles that almost have a right angle. Since triangles never have a 
positive lifetime in the VR-filtration, the persistent cycles with minimal lifetime 
live substantially longer. As a consequence, we obtain again the scaling of the 
minimal lifetime.

Corollary 2 (Scaling of minimal lifetimes – VR-filtration) It holds that

Remark 4 The proof of Theorem 1 relies on the topological property that the life-
times of the persistent (d − 1)-cycles in the Č-filtration coincide with the lifetimes of 
the connected components in the vacant set of a union of balls. In particular, dealing 
with maximal lifetimes in different dimensions or in the VR-filtration would require 
a different approach. Moreover, a priori, it is not clear whether typical lifetimes in 
the VR-filtration should be shorter or longer than those in the Č-filtration. How-
ever, the specific construction in the proof of Theorem 1 suggests it seems plausible 
that asymptotically the analog of the Č-filtration threshold u���

n,�
 in the VR-filtration 

should be smaller than by a constant factor. Loosely speaking, the characteristic of 

(3)𝜏 = �
[
#
{
Zi,k,�� ∈ Wn ∶ Li,k,�� < u���

n,k,𝜏,��

}]
.

lim
n→∞

log u𝗆𝗂𝗇
n,k,�,𝖵𝖱

log n
= −1 and Φ𝗆𝗂𝗇

n,k,�,𝖵𝖱
⇒ Φ� .

(log n)−1 min
Zi,k,𝖵𝖱∈Wn

log Li,k,𝖵𝖱
p
→ −1.
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persistent (d − 1)-cycles is a very late death time rather than a very early birth time, 
and persistent (d − 1)-cycles are dying later in the Č- than in the VR-filtration.

3  Poisson approximation

The proofs of the Poisson approximation in Theorems 1–3 rely fundamentally on 
the Chen-Stein method in the form of (Arratia et al. 1990, Theorem 1). To make 
the presentation self-contained, we sketch now how to tune the general machinery 
to the setting of extremal life times. The delicate problem-specific conditions are 
then verified in Sects. 4 and 5.

More precisely, proceeding as in Chenavier (2014), we discretize the space 
into blocks in order to make the problem amenable to the Chen-Stein framework 
in the form of (Arratia et al. 1990, Theorem 1). For the convenience of the reader, 
we outline the most important steps for the maximal life times, noting that the 
arguments carry over seamlessly to the setting of minimal life times.

The first step is to leverage the percolation conditions described in Sect. 2 in 
order to introduce a discretization that is coarse enough so that the life times of 
cavities in non-adjacent blocks are independent. Hence, the size of the discre-
tization is essentially determined by the diameter of the largest cavity that we 
expect to see in the window Wn . However, due to the convention that features 
born first should die last, the actual block size that needs to be considered is a bit 
larger. Now, we show that vacant or occupied components in continuum percola-
tion whose birth time is bounded away from the coexistence region are at most of 
poly-logaritOn a technical level, the reason for the restriction tohmic size with a 
probability tending to 1. More precisely, recalling that we center cavities at the 
point which is covered last, we let R�

n
(r) be the maximal diameter of all bounded 

connected components of Vr(P) centered in Wn . Similarly, we let R�
n
(r) be the 

maximal diameter of all bounded connected components of Or(P) centered in Wn . 
Then, we fix 𝜀c > 0 and put

recalling that r�
c
, r�

c
 are the critical radii for vacant and occupied continuum percolation.

We show that the events E�
n
 and E�

n
 occur with a probability tending to 1. As 

we will explain in the proof of Lemma 1 below, for a fixed sub- or supercriti-
cal radius r, this follows from classical continuum percolation theory. However, 
since in the definitions of E�

n
 and E�

n
 the radius may vary, we need a small discre-

tization argument. As mentioned in Sect. 2, whereas strong quantitative unique-
ness results for occupied phase transition have been established in (Penrose 
2003, Sect.  10.6), the analogs in vacant percolation are not readily available in 
the literature. Hence, for vacant percolation, we do not make any claims in the 
radius range [r�

c
− �c, r

�
c
+ �c] . Note that this issue is only relevant in dimension 

d > 2.

E�
n
∶=

{
sup

r∉[r�
c
−�c,r

�
c
+�c]

R�
n
(r)⩽(log n)2

}
, and E�

n
∶=

{
sup

r∉[r�
c
−�c,r

�
c
+�c]

R�
n
(r)⩽(log n)2

}
.
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Lemma 1 It holds that ℙ(E�
n
) ∧ ℙ(E�

n
)⩾1 − n−4d for all sufficiently large n⩾1.

Proof We first explain how to proceed in the vacant setting. We say that an event 
occurs whp if there exists c0 > 0 such that its complement occurs with probability at 
most c0n−5d for large n. To bound R�

n
(r) , we distinguish two different regimes for the 

radii: (1) r⩾r�
c
+ �c , and (2) r⩽r�

c
− �c.

r⩾r
�

c
+ �

c
. All vacant connected components are almost surely bounded, and the 

size of these components decreases with the radius. Hence, it suffices to show that 
R�
n
(r�

c
+ �c)⩽(log n)

2 with high probability. We partition Wn into an ∶= ⌈4dn1∕d∕�c⌉d 
sub-boxes �1,… ,�an

 with centers x1,… , xan and of side length at most �c∕(4d) . If 
the vacant set Vr�

c
+�c

(P) contains some point of a box �i , then �i ⊆ Vr−
(P) , where 

r− ∶= r�
c
+ �c∕2 . In particular, since P is stationary,

where R�(r−, xi) denotes the diameter of the connected component of Vr−
(P) at 

xi . By (Duminil-Copin et  al. 2020,  Theorem  1.6), there exists c > 0 such that 
ℙ(R�(r−, o)⩾(log n)

2)⩽ exp(−c(log n)2) = n−c log n for all sufficiently large n. In par-
ticular, the event 

{
R�
n
(r�

c
+ �c)⩽(log n)

2
}
 occurs whp.

r⩽r
�

c
− �

c
. All occupied components are bounded and their size decreases 

with decreasing radius. Now, every bounded vacant component is enclosed by an 
occupied component. Although this occupied component need not intersect Wn , 
its diameter is at least as large as the enclosed vacant component. In particular, if 
the occupied component contains a point x ∈ ℝd and does not intersect W3n , then 
it encompasses Wn so that its diameter is at least |x|/4. We extend the partition of 
W3n from the previous paragraph into a partition ∪i⩾1�i = ℝd of the entire space. 
Hence, if R�

n
(r)⩾(log n)2 for some r⩽r�

c
− �c , then there exists a cube �i such that 

�i ⊆ Or+
(P) , where r+ ∶= r�

c
− �c∕2 . In particular, again by stationarity, for suffi-

ciently large n,

where R�(r+, xi) denotes the diameter of the connected component of Or+
(P) at xi . 

We now conclude as in the previous case, by applying (Duminil-Copin et  al. 
2020,  Theorem  1.4) instead of (Duminil-Copin et  al. 2020,  Theorem  1.6). This 
proves that the event 

{
supr⩽r�

c
−�c

R�
n
(r)⩽(log n)2

}
 occurs whp.

Next, we deal with the occupied setting. Again, we distinguish different radii 
regimes, namely: (1) r⩽r�

c
− �c , (2) r⩾r�

c
+ �c , and (3) r�

c
+ �c⩽r⩽r

�
c
+ �c . Since the 

arguments in the first two cases are almost identical to the vacant setting, we only 
give details on case (3).

r
�

c
+ �

c
⩽r⩽r

�

c
− �

c
. Here, we discretize the possible radii that can occur. More 

precisely, we subdivide the interval [r�
c
+ �c, r

�
c
− �c] into Kn = O(n8d) parts {ri}i⩽Kn

 
such that ri+1 − ri⩽n

−8d . By applying (Penrose 2003, Theorem 10.20), we obtain that 

ℙ(R�
n
(r�

c
+ �c)⩾(log n)

2)⩽
∑

i⩽an

ℙ
(
R�(r−, xi)⩾(log n)

2
)
= anℙ

(
R�(r−, o)⩾(log n)

2
)
,

ℙ

�
sup

r⩽r�
c
−𝜀

R
�
n
(r)⩾(log n)2

�
⩽

�

i∶�i⊆W3n

ℙ(R�(r+, xi)⩾(log n)
2) +

�

i∶�i⊈W3n

ℙ(R�(r+, xi)⩾�xi�∕4)

⩽a
n
ℙ
�
R
�(r+, o)⩾(log n)

2
�
+

�

k⩾n1∕(2d)

#{�
i
∶ ⌊�x

i
�∕4⌋ = k}ℙ

�
R
�(r+, o)⩾k

�
,
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for each fixed ri , with probability at least 1 − exp(−c(log n)2) , all bounded connected 
components at level ri centered in Wn , are of diameter at most (log n)2 . The fact that 
we may choose c independently of the ri ’s relies on the assumption that the ri ’s are 
bounded away from the critical value r�

c
 . Since we discretize into Kn = O(n8d) dif-

ferent radii, we conclude that whp all bounded connected components at the lev-
els ri , i⩽Kn are of diameter at most (log n)2 . Hence, it suffices to show that whp for 
any r ∈ [r�

c
+ �c, r

�
c
− �c] the components at level r correspond to the components at 

level ri for some i⩽Kn . In other words, we claim that whp, for each i⩽Kn there exists 
at most one pair {Xj,Xk} ⊆ Wn with |Xj − Xk|∕2 ∈ (ri, ri+1).

To that end, we fix i⩽Kn , and set

Then, by the Slivnyak-Mecke formula (Last and Penrose 2016, Theorem 4.4),

where the final expression is in O(n2−16d) . A similar calculation bounds the prob-
ability of the event

Hence, by the union bound, only with probability at most O(n2−8d) , there exists some 
i⩽Kn for which there is more than one pair {Xj,Xk} ⊆ Wn with |Xj − Xk|∕2 ∈ (ri, ri+1).

Notice that on the event E�
n
 , for each cavity with Zi ∈ Wn , we have Li < (log n)2 . 

Now, we partition the sampling window Wn into Nn ∈ O(n∕(log n)2d) blocks {�j}j⩽Nn
 

of side length

To prove that the point process of exceedances converges to a Poisson point pro-
cess, we have to estimate the number of exceedances. To do it, we first give some 
notation. More precisely, writing S(x, r) for the diameter of the connected compo-
nent of the vacant set Vr(P) containing x ∈ ℝd , we set

as the diameter of the largest bounded cavity containing Zi.

F ∶=
{
{|Xj − Xk|, |Xj� − Xk� |} ⊆ (2ri, 2ri+1) ∶ for some pw. distinct Xj,Xk,Xj� ,Xk� ∈ Wn

}
.

ℙ(F)⩽𝔼
[ ∑

Xj,XkXj� ,Xk� ∈Wn

pw. distinct

1
{
{|Xj − Xk|, |Xj� − Xk� |} ⊆ (2ri, 2ri+1)

}]

= ∫W4
n

1
{
{|x1 − x3|, |x2 − x4|} ⊆ (2ri, 2ri+1)

}
dx1dx2dx3dx4

⩽∫W2
n

||B2ri+1
(x1) ⧵ B2ri

(x1)
||||B2ri+1

(x2) ⧵ B2ri
(x2)

||dx1dx2

⩽22dn2𝜅2
d
(rd

i+1
− rd

i
)2,

F� ∶=
{
{|Xj − Xk|, |Xj − Xk� |} ⊆ (2ri, 2ri+1) ∶ for some pw. distinct Xj,Xk,Xk� ∈ Wn

}
.

sn ∶= 2(log n)2.

Si ∶= supr∉[r�
c
−𝜀c,r

�
c
+𝜀c]∶S(Zi,r)<∞

S(Zi, r)
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For each j⩽Nn and B ⊆ W1 , we write

for the number of cavities in �j ∩ (n1∕dB) with diameter-bound at most (log n)2 . We 
denote by

the number of blocks intersected by n1∕dB for which there exists at least one exceed-
ance with diameter-bound lower than (log n)2 . Setting s+

n
∶= (3sn)

d , the main diffi-
culty is to exclude multiple exceedances in small boxes of size s+

n
 . In what follows, 

we denote by Ws+
n
 a cube with volume s+

n
 and by Nmax

s+
n
,Č
(u���

n,𝜏
) the number of exceed-

ances in Ws+
n
 , i.e.

Proposition 1 (No multiple exceedances) Let 𝜏 > 0 . 

 (i) There exists 𝛼 > 0 such that ℙ(N���

s+
n
,Č
(u���

n,𝜏
)⩾2) ∈ O(n−1−𝛼).

 (ii) The same type of property holds for the minimal life time in the VR-filtration 
with 1⩽k⩽d − 1 , and for the minimal lifetime in the Č-filtration with k = 1.

Proposition 1 is shown in Sect. 5. We now prove the Poisson approximation in 
Theorem 1.

Proof (Theorem 1, Poisson approximation) Let 𝜏 > 0 and B ⊆ W1 Borel. First, note 
that

Hence, by Kallenberg’s theorem (see e.g. Theorem A.1, p.309 in Leadbetter et al. 
(1983)), it suffices to prove that

To achieve this goal, we first note that

where the last step uses that P is stationary. Therefore, thanks to Lemma 1 and 
Proposition 1, we have ℙ

(
Φ𝗆𝖺𝗑

n,�
(B) ≠ N�

n
(B)

)
⟶
n→∞

0 Thus, we have to prove that 

Nj,n(B) ∶= #
{
Zi ∈ �j ∩ (n1∕dB) ∶ Li > u���

n,𝜏
, Si⩽(log n)

2
}

N�
n
(B) ∶= #{j⩽Nn ∶ Nj,n(B)⩾1}

(4)N���

s+
n
,Č
(u���

n,𝜏
) ∶= #

{
Zi ∈ Ws+

n
∶ Li > u���

n,𝜏

}
.

�[Φ���
n,𝜏

(B)] = |B|�
[
#{Zi ∈ Wn ∶ Li > u���

n,𝜏
}
]
= 𝜏|B|.

ℙ(Φ𝗆𝖺𝗑
n,�

(B) = 0)⟶
n→∞

e−�|B|.

ℙ
(
Φ���

n,𝜏
(B) ≠ N�

n
(B)

)
⩽ℙ((E�

n
)c) +

∑

j⩽Nn

ℙ
(
#{Zi ∈ �j ∶ Li > u���

n,𝜏
}⩾2

)

⩽ℙ((E�
n
)c) +Nnℙ

(
Nmax

s+
n
,Č
(u���

n,𝜏
)⩾2

)
,
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ℙ(N�
n
(B) = 0) converges to e−�|B| . To do it, it suffices show that �[N�

n
(B)]⟶

n→∞
�|B| 

and that d𝖳𝖵(N�
n
(B),Fn)⟶

n→∞
0 , where Fn is a Poisson random variable with parame-

ter �[N�
n
(B)] and where d��(Y , Z) denotes the total variation between two random 

variables Y, Z with integer values, i.e.,

First, we deal with �[N�
n
(B)] and note that �|B| − �[N�

n
(B)] = �[Φ���

n,�
(B) − N�

n
(B)] . 

Now, we use the decomposition

Discretizing over all blocks �j , the first quantity on the right-hand side is

because the term inside the sum vanishes for Nj,n(B) = 1 . Moreover, it follows from 
the Hölder’s inequality, that for each p, q such that 1

p
+

1

q
= 1,

Now, covering the cube �j by blocks Q1,… ,Qkn
 of side length 1, with kn ∈ O(sd

n
) , 

we have

In Sect. 4 below we show that u���
n,�

⩾2d for n sufficiently large so that there is at 
most one hole with lifetime exceeding u���

n,�
 in a box of side length 1. Thus, 

N���

1,�̌
(u���

n,𝜏
) ∈ {0, 1} and according to (1), we have �

[
N

���

1,�̌
(u���

n,𝜏
)p
]
= �

[
N

���

1,�̌
(u���

n,𝜏
)
]

=
�

n
 . Therefore, for some constant c,

where the last line comes from Proposition 1. This shows that the first expectation in 
the right-hand side of Eq. (5) converges to 0 as n goes to infinity. Applying again the 
Hölder’s inequality, it follows from Lemma 1 that the second expectation of the 
right-hand side of Eq. (5) also converges to 0. This proves that �[N�

n
(B)]⟶

n→∞
�|B|.

It remains to prove that d��(N�
n
(B),Fn) converges to 0. The main idea to do 

it is to apply the Poisson approximation result (Arratia et  al. 1990,  Theorem  1), 

d��(Y , Z) = 2 sup
A⊆ℕ

|ℙ(Y ∈ A) − ℙ(Z ∈ A)|.

(5)

Φ���
n,𝜏

(B) − N�
n
(B) = #{i ∶ Zi ∈ n1∕dB, Li > u���

n,𝜏
, Si⩽(log n)

2} − #{j⩽Nn ∶ Nj,n(B)⩾1}

+ #{i ∶ Zi ∈ n1∕dB, Li > u���
n,𝜏

, Si > (log n)2}.

∑

j∶Nj,n(B)⩾1

(
#{i ∶ Zi ∈ �j ∩ n1∕dB, Li > u���

n,𝜏
, Si⩽(log n)

2} − 1
)
=

∑

j∶Nj,n(B)⩾2

(Nj,n(B) − 1),

𝔼

[ ∑

j∶Nj,n(B)⩾2

(Nj,n(B) − 1)
]
⩽Nn sup

j⩾1

𝔼[Nj,n(B)
p]1∕pℙ

(
Nj,n(B) ≥ 2

)1∕q

⩽Nn sup
j⩾1

𝔼[Nj,n(B)
p]1∕pℙ

(
N���

s+
n
,Č
(u���

n,𝜏
)⩾2

)1∕q
.

�[Nj,n(B)
p] ≤ kp

n

∑

l≤kn
�

[
#{i ∶ Zi ∈ Ql, Li > u���

n,𝜏
}p
]
= kp+1

n
�
[
N���

1,�̌
(u���

n,𝜏
)p
]
.

𝔼

[ ∑

j∶Nj,n(B)⩾2

(Nj,n(B) − 1)
] ≤ c Nnk

1+1∕p
n

n−1∕pℙ
(
Nmax

s+
n
,Č
(u���

n,𝜏
) ≥ 2

)1∕q
∈ O

(
sd∕p
n

n−𝛼∕q
)
,
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which is based on the Chen-Stein method. To this end, consider a finite or count-
able collection (Y�)�∈I of {0, 1} -valued random variables. Let p𝛼 = ℙ(Y𝛼 = 1) > 0 , 
p�� = ℙ(Y� = 1, Y� = 1) . Moreover, suppose that for each � ∈ I , there is a set V𝛼 ⊆ I 
that contains � . Finally, put

Theorem 4 (Arratia, Goldstein, Gordon) Let W =
∑

�∈I Y� , and assume � ∶= �(W)

∈ (0,∞) . Then

We apply below Theorem 4 to the collection of random variables (𝟙{Nj,n(B)⩾1})j⩽Nn
 . 

To do it, for each j⩽Nn , we let

Since Nj,n(B) is equal to the number of cavities in �j ∩ (n1∕dB) with lifetime 
larger than u���

n,�
 and with diameter lower than (log n)2 and since the side length 

of each block is (log n)2 , the random variables Nj,n(B) and Nj�,n(B) are independ-
ent provided that j� ∉ Vj . In particular, the term b3 appearing in Eq. (6) vanishes. 
Now, to bound b1 , we note that

for each j⩽Nn . Thus, since #Vj = 3d and Nns
d
n
= n,

Finally, to bound b2 , we note that, for each j ∈ Nn and j� ∈ Vj ⧵ {j},

since the side length of Ws+
n
 equals 3sn . Hence, by Proposition 1,

Thus, Theorem  4 gives that d��(N�
n
(B),Fn) ∈ O(s−d

n
n−�) . This concludes the 

proof of Theorem 1.
In a similar way, we obtain the Poisson approximation asserted in Theorems 2 

and 3, relying on a correspondingly defined E�
n

 instead of E�
n
.

(6)

b1 =
∑

�∈I

∑

�∈V�

p�p� , b2 =
∑

�∈I

∑

�≠�∈V�

p�� , b3 =
∑

�∈I

�
[|||�[Y� − p�|�(Y� ∶ � ∉ V�)]

|||
]
.

d��(W, Po(�))⩽2(b1 + b2 + b3).

Vj ∶= {j} ∪ {j�⩽ Nn ∶ �j� is adjacent to ��}.

ℙ(Nj,n(B)⩾1)⩽𝔼
[
#{Zi ∈ �j ∶ Li > u���

n,𝜏
}
]
=

sd
n
𝜏

n
,

b1 =
∑

j⩽Nn

∑

j�∈Vj

ℙ(Nj,n(B)⩾1)ℙ(Nj�,n(B)⩾1)⩽Nn3
d
( sd

n
�

n

)2

∈ O(sd
n
n−1).

ℙ(Nj,n(B)⩾1,Nj�,n(B)⩾1)⩽ℙ(N
���

s+
n
,Č
(u���

n,𝜏
)⩾2)

b2 =
∑

j⩽Nn

j� ∈ Vj ⧵ {j}

ℙ(Nj,n(B)⩾1,Nj�,n(B)⩾1)⩽Nn(3
d − 1)ℙ(N���

s+
n
,Č
(u���

n,𝜏
)⩾2) ∈ O(s−d

n
n−𝛼).
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Proof (Corollary 1) Let 𝜀 > 0 . Then, maxZi∈Wn
Li⩾(1 + �)�n implies that Φ���

n,�
≠ ∅ 

a.s. provided that n is sufficiently large so that u���
n,�

⩽(1 + �)�n . In particular, for any 
𝜏 > 0,

and the right-hand side tends to 0 as � → 0 . Similarly, maxZi∈Wn
Li⩽(1 − �)�n implies 

that Φ���
n,�

= ∅ a. s. provided that n is sufficiently large so that u���
n,�

⩾(1 − �)�n . In 
particular, for any 𝜏 > 0,

and the right-hand side tends to 0 as � → ∞.

4  Scalings of u���
n,�

 , u���

n,k,�,�̌
 and u���

n,k,�,��

In the present section, we derive the scalings of u���
n,�

 , u���
n,k,�,��

 and u���

n,k,𝜏,�̌
 asserted in 

Theorems 1–3.
To begin with, we deal with u���

n,�
 . As observed in (Bobrowski et al. 2017, Remark 

3.2), the upper bound follows from the results in Kahle (2011): according to the 
scaling of the coverage radius in Hall (1985), above �n the union of balls covers 
Wn . Hence, there cannot be a cavity centered at Wn and with lifetime exceeding the 
coverage radius. The lower bound resorts to a construction inspired by [Lemma 5.1] 
Bobrowski et al. (2017). 

Scaling of u���
n,�

 (proof of Theorem 1, scaling).
We recall from Eq. (4) that for each � > 0 , we write N���

n,�̌
(�) ∶= #

{
Zi ∈ Wn ∶ Li > �

}
 

for the number of cavities in Wn with lifetime at least �.
u���
n,�

∕�n⩽1 + �. Let 𝜀 > 0 . Writing ����,+
n

∶= (1 + �)�n , we have to prove that

By stationarity, it is sufficient to show that �
[
N���

1,�̌
(����,+

n
)
]
∈ o(n−1). In order to 

bound the expected number of cavities with lifetime at least ����,+
n

 that are centered 
in W1 , let R ∶= min{|x| ∶ x ∈ P} be the distance of the closest point of P to the ori-
gin. We claim that the death time of any cavity centered in W1 is at most R +

√
d . 

Indeed, let Zi ∈ W1 be the center of a cavity. Since the diameter of the cube W1 
equals 

√
d , there exists x ∈ P such that �x − Zi�⩽R +

√
d . In other words, the cavity 

dies at the latest at time R +
√
d . Next, there can be at most one cavity with lifetime 

exceeding ����,+
n

 and centered in W1 . Indeed, assume that Zi1 , Zi2 ∈ W1 were the cent-
ers of two such cavities, and assume that Zi2 is born after Zi1 . Then, Zi2 is born after 
time (R −

√
d)+ . Indeed, at time (R −

√
d)+ the entire cube W1 is still uncovered so 

that Zi2 belongs still to the cavity defined by Zi1 . Combining this with the previous 
observation on the death time leads to the contradiction that such a cavity would 

lim sup
n→∞

ℙ(max
Zi∈Wn

Li⩾(1 + �)�n)⩽ lim sup
n→∞

ℙ(Φ𝗆𝖺𝗑
n,�

≠ ∅) = ℙ(Φ� ≠ ∅) = 1 − exp(−�),

lim sup
n→∞

ℙ(max
Zi∈Wn

Li⩽(1 − �)�n)⩽ lim sup
n→∞

ℙ(Φ𝗆𝖺𝗑
n,�

= ∅) = ℙ(Φ� = ∅) = exp(−�)

lim
n→∞

�
[
N𝗆𝖺𝗑

n,�̌�
(�𝗆𝖺𝗑,+

n
)
]
= 0.
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have lifetime at most 2
√
d . Hence, invoking the void probability of the Poisson pro-

cess P,

and the right-hand side is at most exp
�
− (1 + �)d log(n)(1 −

√
d∕����,+

n
)d
�
∈ o(n−1).

u���
n,�

∕�n⩾1 − � . With ����,−
n

∶= (1 − �)�n , we claim that

As indicated at the beginning of this section, we modify a construction of 
[Lemma 5.1] Bobrowski et  al. (2017) by covering a discretized annulus of radius 
�
���,−
n

 by Poisson points, see Fig.  2. To that end, let W(v) ∶= v +W1 be the unit 
block centered at a lattice point v ∈ ℤd . Now, let

denote the event that each unit block in a d∞-annulus of radius 2⌈�n⌉ contains at least 
one Poisson point. We also write mn = mn,� for the number of these blocks and note 
that mn ∈ O((log n)(d−1)∕d) . Moreover, we let

denote the event that there are no Poisson points in the ball with radius ����,−
n

 . Then, 
under the event E� ∩ E� we find a cavity with lifetime at least ����,−

n
.

Setting �� ∶= 1 − (1 − �)d the independence property of the Poisson process gives 
that

𝔼
�
N���

1,�̌
(����,+

n
)
�
⩽ℙ

�
P ∩ B

�
���,+
n

−
√
d(o) = ∅

�
= exp

�
− 𝜅d(�

���,+
n

−
√
d)d

�
,

lim
n→∞

�
[
N𝗆𝖺𝗑

n,�̌�
(�𝗆𝖺𝗑,−

n
)
]
= ∞.

E� ∶=
�
P ∩W(v) ≠ ∅ for all v ∈ ℤd with �v�∞ = 2⌈�n⌉

�

E� ∶=
{
P ∩ B

�
���,−
n

(o) = ∅
}

Fig. 2  Template for cavity with 
maximal lifetime
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for some c > 0 . Finally, we can take the template described by E� ∩ E� and shift it to 
a different location in the window Wn . Since those configurations are of logarithmic 
extent, we can arrange at least an ∶= n1−�

�∕2 of them disjointly in Wn . In particular, 
since mn ∈ O((log n)(d−1)∕d),

Next, we analyze the scaling of u���

n,k,𝜏,�̌
 . Since we now deal with short rather than 

long lifetimes, the proof structure is converse to that for u���
n,�

 . That is, in the lower 
bound we analyze configurations leading to small lifetimes, whereas the upper 
bound relies on a specific construction. We also write

for the number of persistent k-cycles in Wn with lifetime at most � . Henceforth, let

denote the filtration time of the simplex {x0,… , xk} , i.e., the first time it appears in 
the Č-filtration. In particular, dij = |xi − xj|∕2.

Moreover, if x0,… , xk−1 ∈ ℝd are affinely independent and r > d(x0,… , xk−1) , 
then in every k-dimensional hyperplane containing x0,… , xk−1 , there are precisely 
two k-dimensional balls with radius r containing x0,… , xk−1 on their boundary, 
and we let Dr(x0,… , xk−1) denote the union of all such balls. Then, for r,� > 0 , we 
introduce the crescent

illustrated in Fig.  3 for k = 2 . Having a k-simplex x0,… , xk with filtration time s 
means that there exist i0,… , im⩽k and an m-dimensional ball Bs(P) centered at some  
P ∈ ℝd such that x0,… , xk ⊆ Bs(P) and xi0 ,… , xim ∈ �Bs . In particular, s ∈ [r, r + �] 
means that xim ∈ Dr,�(xi0 ,… , xim−1 ).

Scaling of u���

n,k,𝜏,�̌
 (proof of Theorem  2, scaling). u

���

n,k,𝜏,�̌
⩾n−2−𝜀 ��� ℙ(

min
Z
i,k,�̌�∈Wn

L
i,k,�̌�⩽n

−2−𝜀
)
→ 0. It suffices to prove the first assertion. We write 

�
���,−
n

∶= n−2−� and claim that

For the proof, it will be highly convenient to review the notion of critical sim-
plices discussed in Bobrowski (2019). More precisely, when building the Čech 
complex by adding simplices according to their filtration time, only a restricted 
class of simplices can lead to changes the homology. These critical k-simplices � 
are determined by the property that the center of the k-dimensional ball contain-
ing the vertices of � on its boundary is contained in � , and that the interior of this 

ℙ(E� ∩ E�) = ℙ(E�)ℙ(E�)⩾e
−cmnn−1+�

�

lim
n→∞

𝔼
[
N𝗆𝖺𝗑

n,�̌�
(�𝗆𝖺𝗑,−

n
)
]
⩾ lim

n→∞
ane

−cmnn−1+𝜀
�

= ∞.

N���

n,k,�̌
(�) ∶= #

{
Zi,k,�̌ ∈ Wn ∶ Li,k,�̌ < �

}

(7)d0⋯k ∶= d(x0,… , xk) ∶= inf{r > 0 ∶
⋂

x∈{x0,…,xk}
Br(x) ≠ ∅}

Dr,�(x0,… , xk−1) ∶= Dr+�(x0,… , xk−1) ⧵ Dr(x0,… , xk−1),

lim
n→∞

�
[
N𝗆𝗂𝗇

n,k,�̌�
(�𝗆𝗂𝗇,−

n
)
]
= 0.
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ball does not contain any other points from P [Lemma 2.4] Bobrowski (2019). 
When a persistent k-cycle with lifetime � > 0 is born at time r = d0⋯k , then there 
exist Poisson points X0,… ,Xk such that ∪i⩽kBr(Xi) covers the simplex spanned by 
these points. When a persistent k-cycle dies at time t� = d0⋯k + 𝓁 , then there are 
Poisson points X�

0
,… ,X�

k+1
 such that the associated simplex is covered by time 

d0⋯k + 𝓁 . We stress that every persistent k-cycle only dies when a new critical 
(k + 1)-simplex joins the complex. After reordering there exists −1⩽j⩽k such that 
X�
i
= Xi for i⩽j and X′

i
≠ Xi for i⩾j + 1 . Then, the previous observations can be 

succinctly summarized as

Since we work with persistent k-cycles in bounded connected components, 
even in the case j = −1 all of the considered Poisson points are at a distance at 
most sn from X0.

Now, we invoke the Slivnyak-Mecke formula from [Theorem  4.4] Last and 
Penrose (2016). It shows that the expected number of Poisson points X0,… ,

Xk,X
�
j+1

,… ,X�
k+1

 satisfying

is at most

Now, by Lemma 3 in the appendix, the volume of the integrand is bounded 
above by csd

n

√
� so that

X�
k+1

∈ Dd0⋯k ,𝓁
(X0,… ,Xj,X

�
j+1

,… ,X�
k
).

X�
k+1

∈ Dd0⋯k ,𝓁
(X0,… ,Xj,X

�
j+1

,… ,X�
k
)

∫W2n×Bsn
(x0)

k ∫Bsn
(x0)

k−j ∫Dd0⋯k ,𝓁
(x0,…,xj,x

�
j+1

,…,x�
k
)

1dx�
k+1

d(x�
j+1

,… , x�
k
)d(x0,… , xk)

= ∫W2n×Bsn
(x0)

k ∫Bsn
(x0)

k−j

||Dd0⋯k ,𝓁
(x0,… , xj, x

�
j+1

,… , x�
k
)||d(x�j+1,… , x�

k
)d(x0,… , xk).

Fig. 3  The crescent set 
D

r,�(x0, x1)
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Recalling that sn = 2(log n)2 , for �⩽����,−
n

 the latter expression tends to 0 as n → ∞.
u𝗆𝗂𝗇

n,k,𝜏,�̌�
⩽n−2+𝜀 ��� ℙ

(
minZi,k,�̌�∈Wn

Li,k,�̌�⩾n
−2+R

)
→ 0.

The proof idea is to construct persistent k-cycles with a short lifetime by relying on 
perturbations from a deterministic template. More precisely, we take the structure of a 
cycle whose death time equals the birthtime, and then search for slight perturbations 
that will lead to very short lifetime. These cycles are such that the (critical) k-face gen-
erating the cycle is on the boundary of the (k + 1)-face killing it. We first define suit-
able templates of constant size, which in the final argument will then be copy-pasted 
throughout the entire window Wn.

To fix a distinguished template, we consider the unit vectors P
i
∶= e

i+1 ∈ ℝk+1

×{0}d−k−1 , 0⩽i⩽k , forming a regular k-simplex of side length 
√
2 whose circumball 

is centered at M∗ ∶= (k + 1)−1(P0 +⋯ + Pk) and has circumradius �k =
√
k∕(k + 1) . 

Furthermore, fix Q∗ ∶= M∗ + �kM
∗∕|M∗| . Figure  4 illustrates this configuration for 

persistent 1-cycles. We now claim that maxi⩽k �Pi − Q∗�⩽
√
2 , which will imply that 

the faces of the simplex {P0,… ,Pk,Q
∗} are all covered at time �k , since the latter is the 

coverage radius of a regular simplex with side length 
√
2 . Now, recalling that Pi lies on 

the ball of radius �k centered at M∗ and that Pi −M∗ is perpendicular to M∗ − Q∗ yields

as claimed. Moreover, since the distance between Pi and Q∗ is strictly smaller than √
2 , we deduce that even after perturbing the points of the simplex {P0,… ,Pk,Q

∗} 
by a small amount, the k-face formed by P0,… ,Pk is added after any of the k-faces 
involving Q∗.

Next, we consider random perturbations of this template of a small magnitude 
𝛿 < 1∕2 . More precisely, we define the event

that P has precisely one point in the �-neighborhood of each of the points in the tem-
plate in dimension k and contains precisely one further point inside the ball B4d(o) , 

∫W2n×Bsn
(x0)

k ∫Bsn
(x0)

k−j

��Dd0⋯k ,𝓁
(x0,… , xj, x

�
j+1

,… , x�
k
)��d(x�j+1,… , x�

k
)d(x0,… , xk)

⩽c�
2k−j

d
s(2k−j+1)d
n ∫W2n

√
𝓁dx0.

(8)
�Pi − Q∗�2 = �Pi −M∗�2 + �Q∗ −M∗�2 + 2⟨Pi −M∗,M∗ − Q∗⟩ = 2𝜌2

k
= 2 − 2∕(k + 1) < 2,

E ∶=
{
P(B�(Pi)) = 1 for all i⩽k, P(B4d(o)) = k + 2

}

Fig. 4  Template for persistent 
1-cycle of minimal lifetime in 
dimension
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where o stands for the origin, which we denote by Q′ . Conditioned on E, we write 
P′
i
 for the Poisson point contained in B�(Pi) , which is then uniformly distributed at 

random in B�(Pi) . We write M(P�
0
,… ,P�

k
) for the center of the k-dimensional cir-

cumball of P�
0
,… ,P�

k
 , and d� ∶= inf{r > 0 ∶ Br(P

�
0
) ∩⋯ ∩ Br(P

�
k
) ≠ ∅} for the cir-

cumradius. Then, proceeding similarly as for the definition of Q∗ , we define the set

As noted in the paragraph following Eq. (8), if Q� ∈ D
d�,�(P

�
0
,… ,P�

k
) ∩ A�(

P
�
0
,… ,P�

k

)
 , then at the time d0′⋯k′ , all the k-faces of the (k + 1)-simplex {P�

0
,… ,P�

k
,Q�} 

are present. Hence, conditioned on E, the probability that the k-cycle formed by the faces 
of {P�

0
,… ,P�

k
,Q�} has lifetime at most � is at least

Then, Lemma 3 in the appendix shows that the volume on the right-hand side is 
at least c

√
� for a suitable c > 0.

Now, for a suitable c′ > 0 , we can fit at least c′n such templates into the window 
Wn . Thus, to prove that ℙ

(
minZi,k,�̌�∈Wn

Li,k,�̌�⩾n
−2+𝜀

)
→ 0 , we take � = �

���,+
n

∶= n−2+� 
and note that by the independence of the Poisson point process, the probability that 
none of the shifted templates yields a k-cycle with lifetime at most ����,+

n
 is at most (

1 − c

√
�
���,+
n

)c�n

 , which tends to 0, since n
√

�
𝗆𝗂𝗇,+
n → ∞.

Finally, we move to the scaling of u���
n,k,�,��

 . Henceforth,

denotes the annulus with center x ∈ ℝd , inner radius r and thickness �.
Scaling of u���

n,k,�,��
 (proof of Theorem 3, scaling).

u���
n,k,�,��

⩾n−1−�. Writing ����,−
n

∶= n−1−� , we assert that

First, we may assume that E�
n

 occurs. Indeed, by Cauchy-Schwarz,

Since P is a Poisson point process, the expectation on the right-hand side belongs to 
O(n2d) so that it remains to invoke Lemma 1.

For the remaining argument, recall that a simplex belongs to the VR-filtration 
at time t if the distance between any pair of its vertices is at most 2t. In particu-
lar, when a k-cycle with lifetime � is born at time t� , there exist X1,X2 ∈ P with 
d12 = t� , and when it dies at time t� = t� + � , there are Poisson points X3,X4 with 
d34 = t� + � . In other words, X4 ∈ B2d12,2�

(X3) . Moreover, since the event E�
n

 occurs 
whp, we may assume that X1 ∈ W2n and that maxi⩽4 d1i⩽sn.

(9)
A�(P

�
0
,… ,P�

k
) ∶=

{
B�

(
M(P�

0
,… ,P�

k
) + d�u

)
∶ |u| = 1 and u ⟂ ����(P�

1
− P�

0
,… ,P�

k
− P�

0
)
}
.

ℙ
(
Q
� ∈ Dd� ,�(P

�
0
,… ,P

�
k
) ∩ A�

(
P
�
0
,… ,P

�
k

))
=

1

�d((4d)
d − d�d)

𝔼

[
||Dd� ,�(P

�
0
,… ,P

�
k
) ∩ A�

(
P
�
0
,… ,P

�
k

)||
]
.

Br,�(x) ∶= Br+�(x) ⧵ Br(x)

lim
n→∞

�
[
N𝗆𝗂𝗇
n,k,𝖵𝖱

(�𝗆𝗂𝗇,−
n

)
]
= 0.

𝔼
[
N���
n,k,��

(����,−
n

)1{(E�
n
)c}

]
⩽ℝ

[
P(W2n)

d
1{(E�

n
)c}

]
⩽
(
𝔼
[
P(W2n)

2d
])1∕2

ℙ((E�
n
)c)1∕2.
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Here, {X1,… ,X4} consists of at least three different points. First, if they are all 
pairwise distinct, then the Slivnyak-Mecke formula bounds the expected number of 
undershoots as

which tends to 0 as n → ∞.
Second, if say X2 = X3 , then we proceed similarly to obtain the bound

which again tends to 0 as n → ∞.
u���
n,k,�,��

⩽n−1+�. First, we construct a k-cycle with a short lifetime for each 
1⩽k⩽d − 1 . The k-cycles depend on a deterministic template illustrated in Fig. 5.

We fix a small value 𝛿 = 𝛿(k, d) > 0 . Then, we set

so that |A− − B| = |A+ − B| = 1 + � . We also fix a point C ∶= (�, 1∕2) , where 𝜂 < 0 
is chosen so that |C − A+| > 1 + 𝛿 > |C − B|.

To convey the idea, we sketch how this template gives rise to the desired 
k-cycle for k = 1 before moving to higher k. If we consider the VR-complex on 
{A−,A+,B,C} at level 1 + � , then A−A+BC is a loop. Moreover, removing the 
edge A−B and the attached higher simplices, the complex does not contain any 
triangles as by construction |C − A+| > 1 + 𝛿 . In particular, the loop has positive 

∫
W2n

∫
Bsn

(x1)
2

||B2d12,2�
���,−
n

(x3)
||d(x2, x3)dx1 = �2

d
s
d

n ∫
W2n

∫
Bsn

(x1)

(
(2d12 + 2����,−

n
)d − (2d12)

d
)
dx2dx1

⩽4dd�3

d
s
3d

n ∫
W2n

�
���,−
n

dx1

= 8dd�3

d
s
3d

n
n
−�,

∫W2n
∫Bsn

(x1)

||B2d12,2�
���,−
n

(x2)
||dx2dx1 = �d ∫W2n

∫Bsn
(x1)

(
(2d12 + 2����,−

n
)d − (2d12)

d
)
dx2dx1

⩽4dd�2
d
s2d
n ∫W2n

�
���,−
n

dx1

= 8dd�2
d
s2d
n
n−�,

A± ∶= ±
√
(1 + �)2 − 1e1, B ∶= e2,

Fig. 5  Template for VR-feature 
of minimal lifetime
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lifetime. However, after adding the edge A−B , the loop becomes the boundary of 
the triangles A−A+B and BCA−.

To generalize the construction to higher k, we introduce additional points 
{P1,±,… ,Pk−1,±} to the complex as follows. First, set

In particular, the Pi,± are at distance at most 1 + � from A−,A+,B and C. Now, 
we generalize the above consideration for the VR-complex at level |A+ − B| but 
with the edge {A−,B} removed. In particular, the complex contains all k-simplices 
of the form

where �i ∈ {−,+} and {P,P�} is one of {A−,A+} , {A+,B} , {B,C} or {C,A−} . Then, 
these simplices form a cycle. Indeed, when removing the vertex Pi,�i

 , then the result-
ing face is also contained in the k-simplex with Pi,�i

 replaced by Pi,−�i
 . On the other 

hand, if for instance {P,P�} = {A−,A+} and if we remove the point A− , then we find 
the corresponding face also in the simplex with {P,P�} = {A+,B} . However, this 
complex does not contain any (k + 1)-simplices. Indeed, |Pi,− − Pi,+| > 1 + 𝛿 are at 
distance larger than 1 + � , and for any triple from {A−,A+,B,C} at least one edge 
is also not in the complex. This situation changes drastically if A−B belongs to the 
complex. Then, the boundaries of the (k + 1)-simplices

yield the cycle constructed before.
It remains to connect this template to random k-cycles induced by P . Similarly 

as in the Č-case, set �1 = �∕8 and consider the event

that P has precisely one point in the �1-neighborhood of each of the template points 
and no other points in the ball B3(o) . Conditioned on E′ , we write A�

−
,A�

+
,B�,C� and 

(Pi,±)
� for the Poisson points lying in the corresponding neighborhoods of the tem-

plate points. In particular, under E′ , the primed points are distributed uniformly at 
random in the corresponding �1-neighborhoods. Moreover, the construction of the 
template is sufficiently robust with respect to �1-perturbations to show that the adja-
cency findings for the VR-complex continue to hold upon replacing the template 
points by the perturbed points.

Conditioned on E′ , the probability that this feature has a short lifetime of at 
most ����,+

n
∶= n−1+� is at least

Now, we set u ∶= A+ − B� and v ∶= A�
−
− B�, and for � ∈ [0, 1] and � ∈ ℝd

Pi,± ∶=
1

2
(e2 − e1) ± (0.5 + 4�)ei+2.

{P1,�1
,P2,�2

,… ,Pk−1,�k−1
,P,P�},

{P1,�1
,P2,�2

,… ,Pk−1,�k−1
,A−,A+,B} and {P1,�1

,P2,�2
,… ,Pk−1,�k−1

,B,C,A−}

E� ∶=
{
P(B�1

(P)) = 1 for all P ∈ {A−,A+,B,C} ∪ {Pi,±}i⩽k−1
}
∩
{
P(B3(o)) = 2k + 2

}

ℙ(0 < |A�
−
− B�| − |A�

+
− B�| < �

���,+
n

|E�)

= (𝜅d𝛿
d
1
)−3

|||
{
(A�

±
,B�) ∶ max

P∈{A±,B}
|P� − P|⩽𝛿1 and 0 < |A�

−
− B�| − |A�

+
− B�| < �

���,+
n

}|||.
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so that |A+,�,� − B�| = |v| − �����,+
n

 . In particular, |A�
−
− B�| − |A+,�,� − B�| = �����,+

n

⩽����,+
n

.

Hence, writing �2 ∶= �1∕8 , it suffices to show that

for every A�
−
∈ B�2

(A−) , B� ∈ B�2
(o) , � ∈ [0, 1] and � ∈ B�2

(o) , because then every 
such point A+,�,� is an admissible choice for A�

+
 . To that end, we leverage the bound

The first expression is at most 3�2 and the second one at most 4�2 so that taken 
together, the right-hand side is indeed at most �1.

Now, note that

so that the probability is much larger than n−1 , and consequently the expectation 
tends to infinity.

5  Proof of Proposition 1

In this section, we prove that there are no multiple exceedances in Ws+
n
 asymptoti-

cally with probability at least 1 − n−� for some 𝛼 > 0.

Proof (Proof of Proposition 1 (i)) By the scaling derived in Sect.  4, it suffices to 
prove that

By the scaling in Sect. 4, both cavities Ji and Jj die at time at most ����,+
n

whp , so that 
their birth times are at most 2��n . In particular, for the cavities Ji and Jj to be contained 
in different connected components at the birth time of the later cavity, say Ji , we have 
d(Zi, �Ji)⩾(1 − �)�n and d(Zj, �Jj)⩾(1 − 3�)�n . Since d(Zi, Zj)⩾d(Zi, �Ji) + d(Zj, �Jj) 
at the birth time of Ji , this implies that |v − v�|⩾(2 − 5�)�n⩾�n, for � small enough, 
where W(v) ∶= v +W1,W(v�) ∶= v� +W1 are the lattice boxes containing Zi and Zj , 
respectively. Therefore,

A+,�,� ∶= B� + (|v| − �����,+
n

)(u + �)∕|u + �|,

|A+,�,� − A+|⩽�1

|A+,�,� − A+|⩽
||| − u + |v| u

|u| + |v|
( u + �

|u + �| −
u

|u|

)||| + �
���,+
n

⩽|||u| − |v||| + |v||||
u + �

|u + �| −
u

|u|
||| + �

���,+
n

.

||{A+,�,� ∶ � ∈ [0, 1], � ∈ B�2
(o)}||⩾����,+

n
�d−1�

d−1
2

,

ℙ
(
Nmax

s+
n
,Č
(�max,−

n
)⩾2

)
∈ O(n−5∕4).

||B�
���,−
n

(v) ∪ B
�
���,−
n

(v�)||⩾�−1
d

log(n)|B1−�(o) ∪ B1−�(e1)|.
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Then,

The last term is in O(n−5∕4) provided that 𝜀 > 0 is sufficiently small.

For the remainder of this section, we fix � ∶= 1∕64 . Next, we move to the min-
imum in the Č-filtration.

Proof (Proof of Proposition 1 (ii); Č) Again, it suffices to show that

where we now set ����,+
n

∶= n−2+�.
We need to understand the geometric implications of finding 1-cycles Zi, Zj ∈ Ws+

n
 

with life times shorter than ����,+
n

 . We recall from Sect. 4 that one such undershoot 
gives Poisson points {X0,… ,X4} such that the triangle X2X3X4 is covered by the 
union of balls centered at Xi , 2⩽i⩽4 . First, we observe that if at least one of X0,X1 is 
not contained in {X2,X3,X4} , then Eq. (10) holds even without taking the second 
1-cycle Zj into account. Indeed, if for instance X1 = X2 , but X0 ∉ {X2,X3,X4} , then 
the Slivnyak-Mecke formula yields the bound

We may hence assume to have points {X0,X1,X2} with d01 < d012⩽d01 + �
���,+
n

 for 
the first 1-cycle and similarly points {X�

0
,X�

1
,X�

2
} ≠ {X0,X1,X2} with d0′1′ < d0′1′2′

⩽d0�1� + �
���,+
n

 . Again, several configurations are possible, where the most challeng-
ing ones correspond to the cases where {X0,X1,X2} and {X�

0
,X�

1
,X�

2
} differ in one 

variable.
First, assume that X�

0
= X0 , X�

1
= X1 , but X′

2
≠ X2 . Then, invoking Lemma 3 in 

Appendix 2 gives the volume bound

ℙ
(
Nmax
s+
n
,C
(�max,−

n
)⩾2

)
⩽

∑

v,v�∈Wsn,+
∩ℤd

|v−v�|⩾�n

ℙ
(
Li ∧ Lj⩾�

���,−
n

for some Zi ∈ W(v), Zj ∈ W(v�)
)

⩽
∑

v,v�∈Wsn,+
∩ℤd

|v−v�|⩾�n

ℙ

((
B
�
���,−
n

(v) ∪ B
�
���,−
n

(v�)
)
∩ P = ∅

)

⩽|W2
s+
n

| exp
(
− �−1

d
log(n)|B1−�(o) ∪ B1−�(e1)|

)
.

(10)ℙ(N���

s+
n
,1,�̌

(����,+
n

)⩾2) ∈ O(n−9∕8),

∫W3

s+n

|B2d234−2�
���,+
n ,2�

���,+
n

(x2)|d(x2, x3, x4) ∈ O(s4d
n
�
���,+
n

).

|||
{
(x0, x1, x2, x

�
2
) ∈ W4

s+
n

∶ d012, d012� ∈ (d01, d01 + �
���,+
n

)
}|||⩽∫W2

s+n

||Dd01,�
���,+
n

(x0, x1)
||
2
d(x0, x1)

⩽c2
�����

s4
n,+

�
���,+
n

.
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Since � = 1∕64 , the last line belongs to O(n−9∕8) . This concludes the proof of the 
first case. Second, assuming that X�

1
= X1 , X�

2
= X2 , but X′

0
≠ X0 , Lemmas 3 and 5 in 

Appendix 2 give that

which is again in O(n−9∕8).
Finally consider the case where X�

1
= X2 , X�

2
= X1 , but X′

0
≠ X0 . Then, similarly, 

Lemmas 3 and 5 in Appendix 2 give that

so that we now conclude as in the previous case.

Finally, we deal with the minimum in the VR-filtration.

Proof (Proof of Proposition 1 (ii); VR) Again, it suffices to prove that

where we now set ����,+
n

= n−1+� . Now, suppose two k-cycles centered at Zi, Zj ∈ Ws+
n
 

live shorter than ����,+
n

 . By the VR-filtration, this means that for the k-cycle centered 
in Zi , there exist Poisson points X0,… ,X3 ∈ Ws+

n
 such that

Similarly also the k-cycle centered in Zj gives rise to Poisson points X�
0
,… ,X�

3
∈ Ws+

n
 

such that

Again, not all points need to be distinct, but both {X0,… ,X3} and {X�
0
,… ,X�

3
} 

consist of at least 3 elements. Moreover, {X0,X1} ≠ {X�
0
,X�

1
} and {X2,X3} ≠ {X�

2
,X�

3
} 

since the k-cycles are distinct.
We now distinguish two cases. The first one being that {X0,… ,X3} ≠ {X�

0
,… ,X�

3
} . 

Say, for instance X�
3
∉ {X0,… ,X3} . Then, we may apply the Slivnyak-Mecke for-

mula to see that the expected number of configurations is at most

|||
{
(x0, x1, x2, x

�
0
) ∈ W4

s+
n

∶ d01 < d012⩽d01 + �
���,+
n

and d0�1 < d0�12⩽d0�1 + �
���,+
n

}|||

⩽∫ W2

s+n

∫ D
d01,�

���,+
n

(x0,x1)

||{x�0 ∈ Ws+
n
∶ d0�1 < d0�12⩽d0�1 + �

���,+
n

}||dx2d(x0, x1)

⩽cn−1∕4∫ W2

s+n

||Dd01,�
���,+
n

(x0, x1)
||d(x0, x1)

⩽cc�s3
n,+

n−1∕4
√

�
���,+
n ,

|||
{
(x0, x1, x2, x

�
0
) ∈ W4

s+
n

∶ d01 < d012⩽d01 + �
���,+
n

and d0�2 < d0�21⩽d0�2 + �
���,+
n

}|||

⩽∫ W2

s+n

∫ D
d01,�

���,+
n

(x0,x1)

||{x�0 ∈ Ws+
n
∶ d0�2 < d0�21⩽d0�2 + �

���,+
n

}||dx2d(x0, x1),

(11)ℙ(N���
s+
n
,k,��

(����,+
n

)⩾2) ∈ O(n−33∕32),

d01 < d23 < d01 + �
���,−
n

.

d0�1� < d2�3� < d0�1� + �
���,−
n

.
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for a suitable c > 0.
It remains to deal with the case {X�

0
,… ,X�

3
} = {X0,… ,X3} , which necessarily 

means that they consist of 4 elements. For instance, it may occur that X�
0
= X0 , 

X�
1
= X3 , X�

2
= X2 and X�

3
= X1 . Then, d01 < d23 < d01 + �

���,+
n

 and d03 < d12

< d03 + �
���,+
n

. Applying the Slivnyak-Mecke formula, the expected number of such 
configurations in Ws+

n
 is at most

Lemma 4 in Appendix 2 shows that the latter expression is in O(n−33∕32) , as 
asserted.

Well‑definedness of u���
n,�

 , u���

n,k,�,�̌
 and u���

n,k,�,��

In this section, we show that the thresholds defined in Eqs. (1), (2) and (3) are well-
defined for every 𝜏 > 0 provided that n is sufficiently large. To that end, introduce

and similarly Fk,��.

Lemma 2 (Well-definedness of u���
n,�

 , u���

n,k,𝜏,�̌
 and u���

n,k,�,��
 ) Let 1⩽k⩽d − 1 . Then, 

Fk,�̌�,Fk,𝖵𝖱 ∶ (0,∞) → (0,∞) are continuous and strictly increasing with lim
�→0

F
k,�̌�(�) = lim

�→0 Fk,𝖵𝖱(�) = 0.

Proof lim
�→0 Fk,�̌�∕𝖵𝖱(�) = 0 . First, by right-continuity lim

�→0 Fk,�̌�∕𝖵𝖱(�) = Fk,�̌�∕𝖵𝖱(0) , 
where Fk,�̌∕��(0) describes the expected number of persistent k-cycles with lifetime 
0 centered in W1 . However, by definition, the lifetime of a persistent k-cycle is always 
strictly positive, so that Fk,�̌∕��(0) = 0.

Continuity. Let � > 0 be arbitrary. To show continuity, we establish that there 
are no persistent k-cycles with lifetime exactly � . We start by proving the claim 
for VR-filtration. In that case, writing dij = |Xi − Xj|∕2 , there would exist points 
X0,X1,X2,X3 ∈ P such that d23 = d01 + � with X3 ∉ {X0,X1,X2} . Then,

∫
Wsn+

𝔼

[
#
{
X0,… ,X3,X

�
0
,… ,X�

2
∈ P ∩W

s
+
n
∶ d01 < d23 < d01 + �

���,−
n

and x3 ∈ B
2d01,2�

���,−
n

(X2)
}]

dx�
3

⩽2d+1ds4d
n,+

�
���,−
n

𝔼

[
#
{
X0,… ,X3 ∈ P ∩W

s
+
n
∶ d01 < d23 < d01 + �

���,−
n

}]

⩽2c(2dds4d
n,+

)2(����,−
n

)2 ∈ O(n−33∕32),

|||
{
(x0,… , x3) ∈ W4

s+
n

∶ |d23 − d01| ∨ |d03 − d12|⩽����,+
n

}|||.

(12)Fk,�̌(�) ∶= 𝔼
[
#{Zi,k,�̌ ∈ W1 ∶ Li,k,�̌⩽�}

]
,
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For the Č-filtration, the argumentation is similar. Indeed, we recall from Sect. 4 
that a persistent k-cycle gives Poisson points X0,… ,Xk ∈ P and X�

0
,… ,X�

k+1
∈ P 

with X�
k+1

∉ {X�
0
,… ,X�

k
} such that relying on the filtration times from Eq. (7), we 

have d0�⋯(k+1)� = d0⋯k + 𝓁 . Hence, similarly as in the VR-filtration,

Strict monotonicity. Strict monotonicity means that for � < �
′ there is a positive 

probability to observe a persistent k-cycle with lifetime in (�,��) . Note that scaling 
all points by a factor also scales the lifetime by that factor. Hence, it suffices to show 
that for some fixed b and every 𝜀 > 0 , there is a positive probability to have a persis-
tent k-cycle with lifetime in (b − �, b + �).

We start with the VR-filtration. Consider a persistent k-cycle described by a 
cross-polytope {±ei}1⩽i⩽k+1 . Then, this persistent k-cycle has birth time 1∕

√
2 and 

death time 1. Therefore its lifetime is b ∶= 1 − 1∕
√
2 . If we allow the vertices of 

the persistent k-cycle to be perturbed by at most �∕2 , the lifetime is in the interval 
(b − �, b + �).

Finally, we deal with the Č-filtration. Consider a persistent k-cycle described 
by a regular simplex {ei}1⩽i⩽k+1 . Then, this persistent k-cycle has birth time 
� ∶=

√
(k − 1)∕k and death time �� ∶=

√
k∕(k + 1) . Therefore, its lifetime is 

b ∶= �� − � , and we conclude as in the VR-filtration.

Volume computations

In this section, we compute volume bounds for the specific configurations occurring 
in the proofs in Sects. 4 and 5. All computations rely only on findings from elemen-
tary geometry, but are still bit tedious when written out in detail.

First, we bound the volumes of crescents. For any affinely independent points 
x0,… , xk ∈ ℝd , recall the definition of the set A�(x0,… , xk) introduced in Eq. 

𝔼

[
#{X3 ∶ X3 ∈ �B2d01+2�

(X2) for some X0,X1,X2 ∈ P}
]

= ∫
ℝd

ℙ

(
x ∈ �B2d01+2�

(X2) for some X0,X1,X2 ∈ P

)
dx

= 𝔼

[|||
⋃

X0,X1,X2∈P

�B2d01+2�
(X2)

|||
]

= 0.

�

[
#{X�

k+1
∶ d0�⋯(k+1)� = d0⋯k + 𝓁 for some X0,… ,Xk,X

�
0
,… ,X�

k
∈ P}

]

= �

[|||
⋃

X0,… ,Xk ∈ P

X�
0
,… ,X�

k
∈ P

�Dd0⋯k
(X�

0
,… ,X�

k
)
|||
]

= 0.

325Extremal lifetimes of persistent cycles



1 3

(9). As in Sects.  4 and 5, we write di0⋯i
𝓁
 for the filtration time when the simplex 

{xi0 ,… xi
�
} appears in the Č-filtration.

Lemma 3 (Volume of crescents) There exists c����� = c�����(d) > 0 with the follow-
ing properties. Let r > 0 , k⩽d − 1 , � < 1 , x0,… , xk ∈ ℝd be affinely independent. 
Then,

Moreover, if d0⋯k⩾1∕2 and � ∈ (�, 1) , then

Proof To ease notation, set a ∶= d0⋯k . Since both Dd0⋯k ,𝓁
(x0,… , xk) and A�(x0,… , xk) 

are defined through their sections with (k + 1)-dimensional planes containing 
x0,… , xk , we may assume that k = d − 1 . Furthermore, by rotating and shifting we 
may assume that x0,… , xd−1 are contained in {0} ×ℝd−1 and that their circumcenter is 
the origin. Finally, the set Dr,�(x0,… , xd−1) is rotationally symmetric around the axis 
ℝe1.

Upper bound. Defining r+(b), r−(b) > 0 for any b ∈ ℝ through

we obtain by Fubini that

Now, r+(b)d−1 − r−(b)
d−1 is at most d(r + �)d−2(r+(b) − r−(b)) , so that

Hence, we have now reduced the upper bound to the special setting where d = 2 . 
Here, an elementary geometric argument that is elucidated in (Biscio et  al. 2020, 
[Lemma 9.8]) concludes the proof.

Lower bound. For a point x ∈ ℝd−1 with |x|⩽� , we let

denote the interval consisting of all points inside Da,� projecting onto x. Then, it 
suffices to show that there exists a constant c > 0 such that for each such x we have 
�I(x)�⩾c

√
� . Again, after rotation, we may reduce to the two-dimensional setting, 

i.e., assume that x = (0, x, 0,… , 0) for some x⩽�.
To derive the lower bound on |I(x)|, note that the first coordinate of one of the 

midpoint of the circle through ±ae2 with radius a + � equals

��Dr,�(x0,… , xk)
��⩽c�����(r + �)k

√
�.

��Dd0⋯k ,𝓁
(x0,… , xk) ∩ A�(x0,… , xk)

��⩾c−1������
k
√
𝓁.

Dr,�(−ae2, ae2) ∩ ({b} ×ℝ) = {b} ×
(
[r−(b), r+(b)] ∪ [−r+(b),−r−(b)]

)
,

||Dr,�(x0,… , xd−1)
|| = ∫

2r+2�

0

||Br+(b)
(o) ⧵ Br−(b)

(o)||db = �d−1 ∫
2r+2�

0

(r+(b)
d−1 − r−(b)

d−1)db.

||Dr,�(x0,… , xd−1)
||⩽d�d−1(r + �)d−2 ∫

2r+2�

0

(r+(b) − r−(b))db

=
d

2
�d−1(r + �)d−2|Dr,�(−ae2, ae2)|.

I(x) ∶= {b⩾0 ∶ (b, x) ∈ Da,�(x0,… , xd−1)}
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Thus, as illustrated in Fig. 6,

which is bounded below by a scalar multiple of 
√
� since b0⩾

√
2a�⩾

√
� .   ◻

Next, we bound the volume of almost parallelograms, recalling that s+
n
= 3dsd

n
.

Lemma 4 (Almost parallelogram) It holds that

Proof First, by rotating x3 into the plane spanned by x0 , x1 and x2 , we may reduce to 
the two-dimensional setting. Second, we may assume that mini≠j dij⩾n−1∕16 . Indeed, 
for instance if i = 0 and j = 1 , then

where we set �n ∶= n−63∕64 . Similarly, we may also assume that the angles ∠xixjxk 
are at least n−1∕16 for all pairwise distinct i, j, k. Note that we did not attempt to opti-
mize the exponent −1∕16.

After these simplifications, it remains to bound the annuli-intersection area 
|Bd12,�n

(x0) ∩ Bd01,�n
(x2)|, as illustrated in Fig. 7. To bound this quantity, we rely on 

the co-area formula from (Morgan 2016, Chapter 3). More precisely, we have

b0 ∶=
√
(a + �)2 − a2 =

√
�

√
2a + �.

�I(x)� =
√
(a + �)2 − x2 + b0 −

√
a2 − x2 = b0 + �

2a + �
√
(a + �)2 − x2 +

√
a2 − x2

,

|||
{
(x0,… , x3) ∈ W4

s+
n

∶ |d23 − d01| ∨ |d03 − d12|⩽n−63∕64
}||| ∈ O(n−33∕32).

|||
{
(x0,… , x3) ∈ W4

s+
n

∶ d01⩽n
−1∕16 and |d23 − d01|⩽�n

}||| ∈ O(n−33∕32),

|Bd12,�n
(x0) ∩ Bd01,�n

(x2)| = ∫
d01+�n

d01

|�Br(x0) ∩ Bd01,�n
(x2)|dr.

Fig. 6  Lower bound on crescent 
volume
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Hence, if we write P, Q for the endpoints of one of the two arcs �Br(x0) ∩ Bd01,�n
(x2) 

and � for the enclosed angle, it suffices to show that � is of order O(n−1∕2).
To that end, note that

Since � = ∠x2x0Q − ∠x2x0P , the mean-value theorem yields some �� ∈

[∠x2x0P,∠x2x0Q] with

To finish the proof, note that the denominator is of order at least n−1∕4 by the 
assumptions at the beginning of proof.   ◻

We conclude the appendix with a final elementary geometric volume bound.

Lemma 5 It holds that

Proof To ease notation, we put �n ∶= n−127∕64 . Arguing similarly as in the proof of 
Lemma 4, we may leverage rotational symmetry around the axis formed by x1x2 to 
reduce the proof to the setting d = 2 . Similarly, we may assume that d12⩾2�n.

Then, for fixed a > d12 , as observed in the proof of Lemma 3, the location of all 
x0 with d012 = a is the union of the two circles with radius a passing through x1 , x2 . 
In particular, the location of x0 with d01⩾a − �n is given by an arc in each of these 
circles, see Fig. 7 (right). Hence, applying the co-area formula (Morgan 2016, Chap-
ter 3) to the level sets of the function u(x0) ∶= d012 , we obtain that

cos(∠x2x0P) =
d2
02
+ r2 − d2

01

2d02r
and cos(∠x2x0Q) =

d2
02
+ r2 − (d01 + �n)

2

2d02r
.

� =
cos(∠x2x0Q) − cos(∠x2x0P)

sin(��)
= �n

2d01 + �n

2d02r sin(�
�)
.

||{(x0, x1, x2) ∈ W3
s+
n

∶ d01 < d012⩽d01 + n−127∕64}|| ∈ O(n−1∕4).

Fig. 7  Intersection area of annuli (left); Arc describing those x0 with d01⩾d012 − �
n
 (right)

328 N. Chenavier, C. Hirsch



1 3

Since the gradient of u is bounded away from 0, it suffices to show that the length 
of these arcs is of order O(

√
a�n) . By construction, the angle � associated with one 

of these arcs satisfies cos(�∕2) = (2a − 2�n)∕2a, so that

Since �n∕a⩽1∕2 , we deduce the asserted a�⩽a
�

8�n

a
=
√
8a�n.   ◻
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