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Abstract
Max-stable processes are a natural extension of multivariate extreme value theory
important for modeling the spatial dependence of environmental extremes. Infer-
ence for max-stable processes observed at several spatial locations is challenging
due to the intractability of the full likelihood function. Composite likelihood meth-
ods avoid these difficulties by combining a number of low-dimensional likelihood
objects, typically defined on pairs or triplets of spatial locations. This work develops
a new truncation procedure based on �1-penalty to reduce the complexity and com-
putational cost associated with the composite likelihood function. The new method
is shown to achieve a favorable trade-off between computational burden and statisti-
cal efficiency by dropping a number of noisy sub-likelihoods. The properties of the
new method are illustrated through numerical simulations and an application to real
extreme temperature data.

Keywords Max-stable processes · Extreme temperature · Composite likelihood
inference · Likelihood truncation

AMS 2000 Subject Classifications 62P12 · 62M30 · 62F10

1 Introduction

Weather and climate extremes are well-known for their environmental, social and
economic impact, with heat waves, droughts, floods, and hurricanes being com-
mon examples. The widespread use of geo-referenced data together with the need to
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monitor extreme events have motivated a growing interest in statistical methods for
spatial extremes. On the other hand, the availability of accurate inference methods
able to estimate accurately the severity of heat extremes is important to understand,
prepare for and adapt to future environment changes. This work is motivated by the
analysis of extreme temperature data recorded in the state of Victoria, Australia, by
Bureau of Meteorology (BoM) (http://www.bom.gov.au/climate/data), the national
meteorological service of Australia monitoring local climate, including extreme
weather events.

An important class of statistical models for spatial extremes are the so-called
max-stable processes, which provide a theoretically-justified description of extreme
events measured at several spatial locations. Smith (1990) proposed an easy-to-
interpret max-stable model based on storm profiles. Despite its widespread use, the
Smith model is often criticized for its lack of realism due to excessive smoothness.
A more useful max-stable process is the Brown-Resnick process, a generalization
of the Smith model able to describe a wider range of extreme dependence regimes
(Brown and Resnick 1977; Kabluchko et al. 2009). Reviews of max-stable models
and inference are given by Davison et al. (2012) and Davison and Huser (2015).

Inference for max-stable models is generally difficult due to the computational
intractability of the full likelihood function. These challenges have motivated the use
of composite likelihood (CL) methods, which avoid dealing with intractable full like-
lihoods by taking a linear combination of low-dimensional likelihood score functions
(Lindsay 1988; Varin et al. 2011). Various composite likelihood designs have been
studied for max-stable models. Davison et al. (2012) and Huser and Davison (2013)
consider pair-wise likelihood estimation based on marginal likelihoods defined on
pairs of sites. In the context of the Smith model, Genton et al. (2011) show that esti-
mation based on triple-wise likelihoods (i.e. combining sublikelihoods defined on
three sites) is more efficient compared to pair-wise likelihood. For the more realistic
Brown-Resnick model, however, Huser and Davison (2013) show that the efficiency
gains from using triple-wise likelihood are modest.

The choice of the linear coefficients combining the partial log-likelihood score
objects has important repercussions on both efficiency and computation for the final
estimator. Cox and Reid (2004) discuss the substantial loss of efficiency for pair-wise
likelihood estimators when a large number of correlated scores is included. In the
context of max-stable processes, various works aimed at improving efficiency and
computing based on the idea that sub-likelihoods defined on nearby locations are gen-
erally more informative about dependence parameters than those for distant locations.
Sang and Genton (2014) consider a weighting strategy for sub-likelihoods based on
tapering to exclude distant pairs or triples and improve statistical efficiency. Their
method improves efficiency compared to uniform weights, but tuning of the tapering
function is computationally intensive. Castruccio et al. (2016) consider combining a
number of sub-likelihoods by taking more than three locations at the time, and show
the benefits from likelihood truncation obtained by retaining partial likelihood pairs
for nearby locations. In a different direction, other studies have focused on direct
approximation of the full likelihood. Huser et al. (2019) consider full-likelihood
based inference through a stochastic Expectation-Maximisation algorithm. Thibaud
et al. (2016) considers Bayesian approach where the full-likelihood is constructed
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by considering a partition of the data based on occurrence times of maxima within
blocks. Although the current full likelihood approaches do not directly require the
computation of the full likelhood as a sum over all partitions, their application is still
hindered by issues related to computational efficiency when the number of measur-
ing sites is large. On the other hand, composite likelihood methods offer considerable
computational advantages compared to full likelihood approaches although they may
lack of statistical efficiency when too many correlated sub-likelihood objects are
considered.

The main contribution of this work is the application of the general compos-
ite likelihood truncation methodology of Huang and Ferrari (2017) in the context
of max-stable models and pair-wise likelihood for the analysis of extreme temper-
ature data. The new method, referred to as truncated pair-wise likelihood (TPL)
hereafter. In the proposed TPL estimation, a data-driven combination of pair-wise
log-likelihood objects is obtained by optimizing statistical efficiency, subject to a
�1-penalty discouraging the inclusion of too many terms in the final estimating equa-
tions. Whilst the basic method of Huang and Ferrari (2017) had a single linear
coefficient for each sub-likelihood object, here we extend that approach by allowing
parameter-specific coefficients within each pair-wise likelihood score. This general-
ization is shown to improve stability of the truncated estimating equations and the
statistical accuracy of the final estimator. The proposed �1-penalty enables us to
retain only informative sub-likelihood objects corresponding to nearby pairs. This
reduces the final computational cost and yields estimators with considerable effi-
ciency compared to pair-wise likelihood estimator with equal coefficients commonly
adopted in the spatial extremes literature.

The rest of the paper is organized as follows. In Section 2, we review max-
stable processes and the Brown-Resnick model. In Section 3, we describe the main
methodology for likelihood truncation and parameter estimation within the pair-wise
likelihood estimation framework. In Section 4, we carry out Monte Carlo simula-
tions to illustrate the properties of the method and compare it with other pair-wise
likelihood strategies in terms of computational burden and statistical efficiency. In
Section 5, we apply the method to analyze extreme temperature data recorded in the
state of Victoria, Australia. In Section 6, we conclude and give final remarks.

2 Brown-Resnick process for spatial extremes

2.1 The Brown-Resnick process

Following Huser and Davison (2013), the Brown-Resnick process (Brown and
Resnick 1977; Kabluchko et al. 2009) can be defined as the stationary max-
stable process with spectral representation given by Z(x) = supi∈N Wi(x)/Ti ,
x ∈ X ⊆ R

2, where 0 < T1 < T2 < . . . are points of a Poisson pro-
cess on R

+, W1(x), W2(x), . . . are independent replicates of the random process
W(x) = exp{ε(x) − γ (x)}, x ∈ X , ε(x) represents a Gaussian process with station-
ary increments such that ε(0) = 0 almost surely and γ (h) is the semi-variogram of
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ε(x) defined by γ (h) = var{Z(x) − Z(x + h)}/2, x, x + h ∈ X . The process Z(x)

may be interpreted as the maximum of random storms Wi(x) of size 1/Ti .
Let s be the total number of locations being considered. The s-dimensional distri-

bution function for the process {Z(x), x ∈ X } measured at the set of locations S ∈ X
can be written as

P (Z(x) ≤ z(x), x ∈ S) = exp (−V {z(x)}) , (1)

where V {z(x)} = E[supx∈S W(x)/z(x)] is the so-called exponent measure func-
tion. Different max-stable models are obtained by specifying the exponent measure
V (·) through the choice of semi-variogram γ (·). For example, the Brown-Resnick
model can be specified by the parametric variogram model with γ (h; θ) = (‖h‖/ρ)α

and θ = (α, ρ)′, where ρ > 0 and 0 < α ≤ 2 are the range and the smoothness
parameters, respectively. When α = 2 the Brown-Resnick process has maximum
smoothness with semi-variogram γ (h) = h′�h for some covariance matrix �. In
this case, the Brown-Resnick process is equal to the Smith process (Kabluchko et al.
2009; Padoan et al. 2010). Figure 1 shows semi-variograms for different parameter
values (top row) with realizations of the corresponding Brown-Resnick process at
single site (bottom row). The variogram increases as ρ decreases, whilst its shape can
be convex (α > 1), linear (α = 1), or concave (α < 1).
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Fig. 1 Top row: Variogram γ (h) for the Brown-Resnick process Z(x) for different specifications of
smoothness (α) and range (ρ) parameters. Solid, dashed and dotted curves in each plot correspond to range
parameter ρ = 0.5, 1.0 and 1.5, respectively. Bottom row: each plot shows individual realizations of the
Brown-Resnick processes at a single site with parameters corresponding to the variograms in the top row
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2.2 Marginal pair-wise density functions

Let z = (z1, . . . , zs) be a sample with zj = Z(xj ) denoting the realization at site j

and S = {x1, . . . , xs} ∈ X . The density of {Z(x1), . . . , Z(xs)} can be written as

f (z1, . . . , zs) = exp
{− V (z1, . . . , zs)

} ∑

ξ∈Ps

v(ξ), (2)

where Ps denotes the set of all possible partitions of the set {x1, . . . , xs}, ξ =
(ξ1, . . . , ξl), |ξ | = l is the size of the partition ξ , and

v(ξ) = (−1)|ξ |
|ξ |∏

j=1

d |ξj |

dzξj

V (z1, . . . , zs), (3)

where d |ξj |/dzξj
denotes the mixed partial derivatives with respect to the ξj element

of z (Padoan et al. 2010). Since the the cardinality of Ps increases quickly with the
number of sites s, the density and the full likelihood functions are unavailable for
arbitrary number of sites s due to the storage and computation of an exponentially
increasing number of derivatives.

Although the full density cannot be computed unless s is trivially small, low-
dimensional densities are readily available. The bivariate exponent measure for the
Brown-Resnick process for S = {xj , xk} is

V (zj , zk; θ) = 1

zj

Φ

{
a(θ)

2
− 1

a(θ)
log

(
zj

zk

)}
+ 1

zk

Φ

{
a(θ)

2
− 1

a(θ)
log

(
zk

zj

)}
,

(4)
where a(θ) = √

2γ (xj − xk; θ) and Φ(·) is the standard normal distribution func-
tion. Let m = s(s − 1)/2 be the total number of pairs (zj , zk), 1 ≤ j < k ≤ s,
obtained from elements of z. Let r = 1, . . . , m be the subscript corresponding to a
site pair {(j, k) : 1 ≤ j < k ≤ s}. The bivariate density function fr(zj , zk; θ) is
obtained by direct differentiation as

fr(zj , zk; θ) = d2

dzjdzk

exp{−Vr} = (V̇j V̇k − V̈jk) exp{−Vr}, (5)

where Vr = V (zj , zk; θ) and V̇j , V̇k , V̈jk are the corresponding partial derivatives
dVr/dzj , dVr/dzk , d2Vr/(dzj dzk) given in the Appendix.

2.3 Extremal coefficient

The dependence structure for the elements in the random vector {Z(x1), . . . , Z(xs)}
is completely determined by the exponent function V defined in (1). Particu-
larly, the exponent measure V (·) is a positive homogeneous function of order −1,
i.e. V (cz1, . . . , czs) = c−1V (z1, . . . , zs). Moreover, for all c > 0, we have
V (∞, . . . , zj , . . . , ∞) = zj

−1, j = 1, . . . , s, meaning that the marginal distribu-
tions at each site are unit Fréchet (Davison et al. 2012). The dependence regime falls
between two limit cases: V (z1, . . . , zs) = 1/z1 + · · · + 1/zs (perfect independence)
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and V (z1, . . . , zs) = 1/min(z1, . . . , zs) (complete dependence). Note that for z > 0,
we have

P
(
Z(x1) ≤ z, . . . , Z(xs) ≤ z

) = exp{−V (z, . . . , z)} = exp{−z−1V (1, . . . , 1)},
and the quantity ηs = V (1, . . . , 1) is the so-called s-variate extremal coefficient
(Smith 1990; Schlather and Tawn 2003). Although ηs does not completely define
the dependence structure of {Z(x1), . . . , Z(xs)}, it provides a useful summary for
extreme dependence. Specifically, the s-variate extremal coefficient satisfies 1 ≤
ηs ≤ s, with the two extreme cases ηs = 1 and ηs = s representing perfect
dependence and independence, respectively.

For the case of two sites (s = 2), the bivariate extremal coefficient is
η2(h) = V (1, 1), with value depending on the Euclidean distance ‖h‖ between
two locations. For the Brown-Resnick model, we have η2(h; θ) = V (1, 1; θ) =
2Φ
{√

2γ (h; θ)/2
}
where γ (h; θ) is the Brown-Resnick semi-variogram and Φ

is the standard normal distribution function. With this variogram specification,
η2(0; θ) = 1 if ‖h‖ = 0, while η2(h; θ) → 2 as ‖h‖ → ∞. Figure 2 (top row)
shows estimated pairwise extremal coefficients based on 40 samples generated from
a Brown-Resnick process observed at 30 locations on [0, 1]2. The pairwise extremal
coefficients is estimated by η̂2(h) = (1+2ν̂(h))/(1−2ν̂(h)), where ν̂(h) is the empir-
ical F-madogram proposed by Cooley et al. (2006). Figure 2 (bottom row) shows
corresponding realizations of the Brown-Resnick process on [0, 1]2.

3 Truncated pair-wise likelihood by �1-penalization

In this section we describe our likelihood truncation approach and related pair-wise
inference. For concreteness, we focus on pair-wise inference and the Brown-Resnick
model with variogram γ (h) = (‖h‖/ρ)α . In principle, the proposed apprach may
be applied also in the context of composite likelihood designs besides pair-wise
likelihood (e.g. triple-wise likelihood) and other max-stable models.

3.1 Pair-wise likelihood estimation

Let {z(i), 1 ≤ i ≤ n} be independent observations of a Brown-Resnick process
at s sites with z(i) = (z

(i)
1 , . . . , z

(i)
s )′ and let m = s(s − 1)/2 be the number of

pairs (z
(i)
j , z

(i)
k ), 1 ≤ j < k ≤ s, obtained from the elements of z(i). Let u

(i)
α (θ)

and u
(i)
ρ (θ) be the ith realization of m × 1 pair-wise scores defined by uα(θ) =

(uα,1(θ), . . . , uα,m(θ))′ and uρ(θ) = (uρ,1(θ), . . . , uρ,m(θ))′, with elements

uα,r (θ) = ∂

∂α
log fr(zj , zk; θ), uρ,r (θ) = ∂

∂ρ
log fr(zj , zk; θ), (6)

r = 1, . . . , m, where r is the subscript corresponding to a site pair {(j, k) : 1 ≤
j < k ≤ s}. Write ũ(θ) = (uα(θ)′, uρ(θ)′)′ for the 2m × 1 vector collecting all
partial scores elements and let ũ(i)(θ) be the corresponding ith realization of ũ(θ). A
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Fig. 2 Top Row: The lighter points are pair-wise extremal coefficient estimates η̂2(h; θ) for the Brown-
Resnick process as a function of the distance ‖h‖ for smoothness α = 0.5, 1.0, 1.5 and range ρ = 1.0.
Estimates are based on 40 realizations of the Brown-Resnick process at 30 randomly selected spatial
locations on [0, 1]2. The darker points are binned averages. Bottom Row: Individual realizations for the
Brown-Resnick process on [0, 1]2 with smoothness α = 0.5, 1 and 1.5

closed-form expression for the elements of the pair-wise scores ũ(θ) for the Brown-
Resnick process is reported in the Appendix.

For inference, we consider weighted pair-wise likelihood estimators (PLEs), θ̂w,
found by solving the estimating equations

0 =
n∑

i=1

u(i)(θ, w) :=
n∑

i=1

W ′ũ(i)(θ), (7)

where W is the 2m × 2 matrix

W =
(

wα 0
0 wρ

)
, (8)

with wα = (wα,1, . . . , wα,m)′ and wρ = (wρ,1, . . . , wρ,m)′ being the vectors con-
taining specific coefficients for the score components, 0 is a m × 1 vector of zeros,
and u(i)(θ, w) is the ith realization of u(θ, w) defined as u(θ, w) = W ′ũ(θ). Here
w = (w′

α, w′
ρ)′ is the 2m × 1 vector containing all the coefficients, which we refer

to as composition rule in the rest of the paper. A popular choice for w in applications
is the vector with uniform elements wα = wρ = (1, . . . , 1)′, corresponding to the
uniform pair-wise likelihood estimator (UPLE).
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The PLE is a popular estimator for max-stable models due to its flexibility and
well-known asymptotic properties. Particularly,

√
n(θ̂w − θ) converges to a bivari-

ate normal distribution with zero mean vector and asymptotic covariance matrix
Gw(θ)−1 as n increases, where

Gw(θ) = Hw(θ)Jw(θ)−1Hw(θ) (9)

is the so-called Godambe information matrix, and Hw(θ) = E[∂u(θ, w)/∂θ ] and
Jw(θ) = Var[u(θ, w)] are the 2 × 2 sensitivity and variability matrices.

Although the PLE is consistent, its variance can be much larger than that of the
maximum likelihood estimator depending on the choice of the composition rule w.
If the composition rule w has all nonzero elements, the matrices Hw and Jw involve
O(s2) andO(s4) terms, respectively. Thus, when the number of sites s is moderate or
large, the presence of many correlated pair-wise scores can inflate Jw and the implied
asymptotic variance Gw(θ)−1. From a computational viewpoint, another drawback
is that finding the standard errors of the PLE is computationally expensive for large
s due to the presence of many terms in Jw. In the following section, we describe
a likelihood truncation methodology able to reduce the computational burden while
avoiding issues related to variance inflation.

3.2 Truncation by �1-norm penalization

To increase statistical performance of pair-wise likelihood estimation for max-stable
models while reducing the computing costs, we adopt a new truncation strategy of
the estimating equations. The resulting composition rule contains a number of zero
elements, which implies simplified pair-wise likelihood equations with less terms.
We propose find such a composition rule by minimizing the distance between the
unknown full likelihood score, subject to an �1-norm penalty representing the like-
lihood complexity. The procedure may be regarded as to maximize the statistical
accuracy for a certain level of afforded computing. Specifically, we aim to solve the
PL estimating equations 0 =∑n

i=1 u(i)(θ, w) in (7) with respect to θ with w = w(θ)

found by minimizing with respect to w the ideal criterion

Qλ(θ, w) =
∑

l∈{α,ρ}

{

E
[
uML

l (θ) − w′
lul(θ)

]2 +
m∑

r=1

λl |wl,r |
}

, (10)

where λ = (λα, λρ)′ is a 2×1 vector of tuning parameters with non-negative elements
and uML

l (θ) = ∂ log f (z1, . . . , zs; θ)/∂l, l ∈ {α, ρ} denotes the elements of the
unknown maximum likelihood score function. It is worth to keep in mind that the
minimizer w(θ) also depends on the tuning value λ.

The term E
[
uML

l (θ) − w′
lul(θ)

]2
in (10) represents the distance between the pair-

wise score and the maximum likelihood score. Thus, the particular case when λl = 0
gives fixed-sample optimality (OF -optimality) defined as the projection of the the
ML score onto the linear space spanned by the partial scores (Heyde 2008). Without
additional constraints, however, we have no way to reduce the likelihood complexity
since all the pair-wise score terms are in principle included in the final estimating
equation. On the other hand, for sufficiently large λl > 0, the penalty

∑m
r=1 λl |wl,r |,
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l ∈ {α, ρ} implies truncated estimating equations by avoiding the inclusion of noisy
terms in the pairwise likelihood score u(θ, w). This is analogous to �1-penalized
least-squares approaches for regression (e.g. see Efron et al. (2004)). However, while
in regression the penalty involves directly regression coefficients, our penalty does
not involve the statistical parameter θ but only the composition rule w.

Due to the geometry of the �1-norm penalty, the composition rule w(θ) minimiz-
ing (10) contains an increasing number of zero elements as λl grows. Therefore, such
a penalty is effectively a constraint on the computing cost (or, equivalently, on the
likelihood complexity). This means that the truncated solution w(θ) can be inter-
preted as one that maximizes statistical efficiency for a given level of computing.
Alternatively, it may be interpreted as one maximizing computational efficiency for
a given level of efficiency.

Direct minimization ofQλ(θ, w) is not useful in practice due to the presence of the
intractable likelihood score uML

l and expectations in (10). To eliminate the explicit
dependence on the ML score, note that the expectation in (10) can be written as

E
[
uML

l (θ) − w′
lul(θ)

]2=w′
lE
[
ul(θ)ul(θ)′

]
wl−2w′

lE
[
uML

l (θ)ul(θ)
]

+ c, (11)

where c is a term not depending on wl . Dependence on the ML score is avoided
by replacing the term E

[
uML

l (θ)ul(θ)
]
in (11) by diag{E[ul(θ)ul(θ)′]}, i.e. by the

diagonal vector of the score covariance matrix. To see this, note that each partial
score ul,r (θ) defines an unbiased estimating equation, i.e. satisfying Eul,r (θ) = 0.
This implies the important relationship

E[uML
l (θ)ul,r (θ)] = E

[
− ∂

∂l
ul,r (θ)

]
= E

[
ul,r (θ)2

]
, (12)

where the first equality in (12) is obtained by differentiating Eul,r (θ) = 0 under the
integral, whilst the second equality is the Bartlett’s identity. Unbiasedness implies the
important relationship

E[uML
l (θ)ul,r (θ)] = E

[
uML

l (θ)(ul,1(θ), . . . , ul,m(θ))′
]

= E
[
(ul,1(θ)2, . . . , ul,m(θ)2)′

]
. (13)

The last expression in (13) can be written diag{E[ul(θ)ul(θ)′]}with diag(A) denoting
the vector collecting the diagonal elements of the square matrix A.

Finally, replacing the expression of the covariance matrix E
[
ul(θ)ul(θ)′

]
by its

empirical counterpart Ŝl(θ) = n−1∑n
i=1 u

(i)
l (θ)u

(i)
l (θ)′ leads to the formulation of

the empirical criterion

Q̂λ(θ, w) =
∑

l∈{α,ρ}

{

w′
l Ŝl(θ)wl − 2w′

ldiag{Ŝl(θ)} +
m∑

r=1

λl |wl,r |
}

, (14)

For a given θ , we minimize Q̂λ(θ, w) to obtain the empirical composition rule ŵ(θ).
Further insight on the solution from the above minimization program may

be helpful. The truncated composition rule solving the empirical objective (14)
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contains elements that are exactly zero when the corresponding sub-likelihood scores
are weakly correlated to the maximum likelihood score. To see this, let ŵ = ŵ(θ) be
the minimizer of (14) with θ fixed and equal to the the true parameter value for sim-
plicity. Then the truncated composition rule ŵ = (ŵ′

α, ŵ′
ρ)′ minimizing the empirical

objective (14) has the form

ŵl,A = Ŝ−1
l,A

{
diag(Ŝl,A) − λl sign(ŵl,A)

}
and ŵl,/A = 0, l ∈ {α, ρ}, (15)

where A ⊆ {1, . . . , m} is the index set of selected scores such that

min
r∈A

∣∣∣∣∣∣

1

n

n∑

i=1

u
(i)T
l,r (u

(i)
l,r −

∑

j

ŵl,j u
(i)
l,j )

∣∣∣∣∣∣
≥ λl, (16)

/A = {1, . . . , m}/A, and function sign(w) denotes the vector sign function with rth
element taking values −1, 0 and 1 if wr < 0, wr = 0 and wr > 0, respectively. The
details of the derivation of the solution (3.10) to the optimization problem (3.9) are
found in Theorem 3.2 of Huang and Ferrari (2017).

Here u
(i)
l,r −

∑
j ŵl,j u

(i)
l,j is the residual difference between the rth score component

and the composite likelihood score, and Ŝl,A is the the covariance sub-matrix for
the selected scores. One can show that the empirical average in the left hand side
of (16) approximates Cov(ul,r , u

ML
l −∑j ŵl,j ul,j ), i.e. the covariance between the

score for the rth pair and the residual difference between maximum likelihood and
pairwise likelihood scores. This means that our truncation approach retains only pair-
wise score terms ul,r , able to explain the gap between the full likelihood score and
the pair-wise score, while dropping the remaining scores.

One should note that our methodology relies on certain desirable asymptotic
properties including unbiasedness of the truncated composite likelihood estimat-
ing equations. These are guaranteed only under certain regularity conditions and,
unfortunately, are not straightforward to verify for the Brown-Resick model. For
unbiasedness of the selected equations with fixed weights, one important condition is
differentiability in quadratic mean of each pairwise log-likelihood function. Follow-
ing Corollary 4.6 in Dombry et al. (2016), the Brown-Resnick model on a pair of sites
automatically satisfies their conditions A1-A3. This also implies that the overall pair-
wise log-likelihood with fixed coefficients is differentiable in quadratic mean. One
complication is that, differently from the usual composite likelihood setting (e.g. see
Padoan et al. (2010)), in our method the weights for pairwise likelihoods depend on
the parameter θ , but in practice such weights are estimated from the data by plugging-
in a root-n consistent estimator. As a consequence, additional regularity conditions
concerning convergence of such weights in probability are needed. Using arguments
analogous to Huang and Ferrari (2017), one main condition is that the matrix of pair-
wise scores is dominated by an integrable function not depending on the parameters.
Finally, following Dombry et al. (2016), identifiability for pair-wise estimation holds
if euclidean distances for any three sites are not equal.
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3.3 Implementation and computational aspects

The analysis in Huang and Ferrari (2017) show that Q̂λ(θ, w) is a consistent esti-
mate of the population criterion Qλ(θ, w) (up to some irrelevant additive term not
depending on w) as long as θ is in a root-n neighborhood of the true parameter value.
Thus, we start by taking a computationally cheap and consistent preliminary esti-
mate and then use the truncation method described in Section 3.2 to improve upon
such initial estimate. In practice, our truncation procedure is applied through the
following steps:

Step 0) Initialization: Find a root-n consistent estimate θ̂ . This can be achieved
by solving the estimating equation (7) with wk ∼ Bernoulli(π), 1 ≤ k ≤ 2m,
where π is a desired fraction of initial nonzero coefficients.
Step 1) Truncation: Compute the truncated composition rule ŵ given in (15), by
minimizing the empirical criterion Q̂λ(θ̂ , w). For sufficiently large λl , this step
will result in a likelihood function with a number of terms set exactly equal to
zero.
Step 2) Estimation: Obtain the updated estimate θ̂λ by solving the estimating
equations (7) with w = ŵ.

The criterion Q̂λ(θ̂ , w) in Step 1 is a quadratic function of w, with a �1 con-
straint term. To solve the minimization problem in Step 1, we implement a step-up
algorithm which essentially coincides with the least angle regression (LARS) algo-
rithm of Efron et al. (2004). LARS starts with a large initial value of λl (l ∈
{α, ρ}) which yields an initial solution of ŵl with all elements equal to zero. Then
in each subsequent step, the algorithm includes exactly one score component at
the time, say ul,r (θ), in the current composite score u(θ, w), by decreasing λl

in such a way that the correspondent coefficient in ŵl becomes different from
zero. The included score components ul,r have their covariance with residuals
1/n

∑n
i=1 u

(i)
l,r (θ̂ )[u(i)

l,r (θ̂ ) − ŵ′
lu

(i)
l (θ)] higher than those not included as discussed in

(16). In the last step, the algorithm yields m coefficients ŵ
(1)
l , . . . , ŵ

(m)
l correspond-

ing to the nodes λ
(1)
l , . . . , λ

(m)
l , where ŵ

(t)
l contains exactly t non-zero elements and

λ
(t)
l represents the node at which the value of λl is just small enough to allow for the

inclusion of exactly t non-zero terms. Thus, the values λ
(1)
l , . . . , λ

(m)
l represent dif-

ferent level of sparsity in ŵl and the selection of λ through such values is discussed
in Section 3.5.

3.4 Standard errors

For a given composition rulew, the matrices Hw(θ) and Jw(θ) forming the Godambe
inforamtion matrix given in (9) are estimated by their empirical counterparts

Ĥw(θ) = W ′D̂(θ), Ĵw(θ) = W ′Ŝ(θ)W, (17)

where Ŝ(θ) = n−1∑n
i=1 ũ(i)(θ )̃u(i)(θ)′ is the empirical score covariance matrix, and

D̂(θ) is a 2m × 2 matrix with the first m rows and last m rows stacks of elements
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(Ŝ(θ)j,j , Ŝ(θ)j,j+m) and (Ŝ(θ)j+m,j , Ŝ(θ)j+m,j+m), j = 1, . . . , m, respectively. A
plug-in estimate v̂ar(θ̂λ) of the variance of the final estimator θ̂λ is found by replacing
θ̂λ and its composition rule ŵ in (17) to obtain:

v̂ar(θ̂λ) = 1

n
Ĥŵ(θ̂λ)

−1Ĵŵ(θ̂λ)Ĥŵ(θ̂λ)
−1. (18)

Estimating the asymptotic variance of composite likelihood estimators is noto-
riously difficult. When the composition rules w contains all non-zero coefficients,
Ĵw(θ) may involve a very large number of noisy score covariance terms. When the
number of sites s (and the corresponding number of sublikelihoods 2m) is moder-
ate or large, this increases the computational cost and implies inaccurate estimates
of PLE’s variance. The proposed plug-in estimate (18), on the other hand, repre-
sents a computationally efficient and stable alternative. For an appropriate choice of
λ = (λα, λρ)′, the truncated composition rule ŵ does not include elements corre-
sponding to the noisiest pairwise scores. As a results, the plug-in variance estimator
v̂ar(θ̂λ) is expected to be more accurate and compationally stable compared to the
variance estimator that uses all nonzero elements in w.

3.5 Selection of λ

Let k̂l , l ∈ {α, ρ}, be the number of non-zero elements in the selected composition
rule ŵl found by minimizing the empirical objective (14). Recall that for the LARS-
type algorithm described in Section 3.3 selecting the number of non-zero components
in k̂l is equivalent to setting corresponding tuning constant λl . We choose k̂l such that
at least a fraction of the total information available on parameter l is reached.

Let Ŝ(t)
l be the t × t empirical covariance between sub-scores for parameter l after

t steps of the LARS algorithm (i.e. after including t terms in the pair-wise likelihood
equation), and ε

(t)
l be the smallest eigenvalue of Ŝ

(t)
l . If we regard ε

(t)
l /tr(Ŝ(t)

l ) as
the reduction on variability (information gain) on l in step t . The Min-Max Theorem
of linear algebra implies that including the remaining non-selected sub-likelihood
components will increase the information on l by at most 1 + (m − t)ε

(t)
l /tr(Ŝ(t)

l ).
We propose to find k̂l using the empirical rule

k̂l = min{t ∈ {1, . . . , m} : φl(t) > τ },
for some user-specified constant τ ∈ (0, 1), where φl(t) is the criterion

φl(t) =
⎧
⎨

⎩
1 + (m − t)ε

(t)
l

tr
(
Ŝ

(t)
l

)

⎫
⎬

⎭

−1

. (19)

The proportion of information obtained up to step t has to be greater than φl(t). In
practice, we choose values τ close to 1. Particularly, the value τ = 0.9 is found to
select a number of pair-wise likelihood components that balance well computing and
statistical efficiency in most of our numerical examples.
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The advantage of our application of the LARS algorithm is that it does not require
re-estimation of θ and of the Godambe information for each value of λ. As a conse-
quence estimates of the asymptotic variance are not necessarily computed for each
λ. On the other hand, the pair-wise scores are only estimated once at the beginning
of the algorithm and can be used to guide selection of λ as described in the above
criterion.

While in principle one may select λ by optimizing a criterion based on the esti-
mated Godambe information, this would require additional computations. Namely, at
each step of the algorithm w is updated entirely, meaning that re-estimation of θ and
re-computation of the matrices in the Godambe information would be also necessary
for each value of λ. While this is feasible in small problems, it might be challenging
for certain data sets containing a large number of observations.

3.6 Missing data

In our numerical applications there are no missing data. In practice, however, often
not all sites have data for all years. Some insight on how to proceed in such a set-
ting may be helpful. Suppose that at time i, we have only k sites. Without loss of
generality, let Z

(i)
obs = (Z

(i)
1 , . . . , Z

(i)
k ), k < s, be the vector observed data at time

i, where s is the total number of available sites. The missing data are denoted by
Z

(i)
mis = (Z

(i)
k+1, . . . , Z

(i)
s ). Let T (i) = (T

(i)
1 , . . . , T

(i)
s ) be a random vector with

binary entries indicating the missing data ( T
(i)
j = 0 if the observation at time i and

location j is missing and T
(i)
j = 1 otherwise). Assume that T (i) is an independent

draw from the distribution depending on an unknown parameter ζ . Here θ denotes
the max-stable parameter of interest ( θ = (α, ρ)′ for the Brown-Resnik model).

The type of treatment for missing data depends on the specific model for the miss-
ing data mechanism. For simplicity, here we limit our discussion to the the case of
missing completely at random (MCAR) data. The observed data-likelihood function
for rth pair {(j, k), 1 ≤ j < k ≤ s} evaluated at the ith observation can be written as

L(i)
r (z

(i)
j , z

(i)
k , t

(i)
j , t

(i)
k ; θ, ζ ) = gr(t

(i)
j , t

(i)
k ; ζ ) × fobs(z

(i)
j , z

(i)
k ; t

(i)
j , t

(i)
k , θ),

where g(·; ζ ) is the bivariate pmf of (Tj , Tk), and

fr(z
(i)
j , z

(i)
k ; t

(i)
j , t

(i)
k , θ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fr(zj , z
(i)
k ; θ) if t

(i)
j = 1, t (i)k = 1,

∫
fr(z

(i)
j , zk; θ)dzk if t

(i)
j = 1, t (i)k = 0,

∫
fr(zj , z

(i)
k ; θ)dzj if t

(i)
j = 0, t (i)k = 1,

1 if t
(i)
j = 0, t (i)k = 0,

where fr(·; θ) is the bivariate max-stable model defined in (5). Note that when obser-
vation is missing in either site j or k (i.e., t

(i)
j = 0 or t

(i)
k ), fobs(·; θ) = 0 is

actually independent of the parameter θ . This is because marginalization of bivari-
ate max-stable model leads to unit Frechèt univariate distributions. This means that
the truncated pair-wise likelihood estimator (TPLE) in Section 3.1 can be computed
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as usual, but the pair-wise likelihood scores terms in the estimatin equation will be
u

(i)
r = ∂ log fr(z

(i)
j , z

(i)
k ; θ)/∂θ if t

(i)
j = t

(i)
k = 1, and u

(i)
r = 0 otherwise.

4 Monte Carlo simulations

We simulate from the Brown-Resnick model described in Section 2 for various set-
tings of the parameter θ = (ρ, α)′ using the R package SpatialExtremes
(Ribatet 2015). We implement the two-step approach described in Section 3.3 to
find the truncated PLE (TPLE) θ̂λ. The preliminary estimate θ̂ is found by setting
π = 0.3. We investigate the statistical efficiency and computational cost of TPLE.
For comparison, we consider the PLE with uniform coefficients wunif1 = (1, . . . , 1)
(UPLE) due to its widespread use, and the PLE with coefficients wunif2 set to 1 if
the corresponding pairs of locations have distance less than one third of the radius
of study region, or 0 otherwise (UPLE2). We also consider the random PLE (RPLE)
with coefficients wrand containing 0.3 × 2m elements equal 1 at random positions,
where m is the total number of pair-wise likelihoods.

The performance of our method is measured by Monte Carlo estimates of the rela-
tive mean squared error of θ̂λ = (ρ̂λ, α̂λ)

′ and required CPU time compared the other
composition rules. Particularly, we estimate the relative mean squared errors RE(1) =
RE(wunif1), RE(2) = RE(wrand) RE(3) = RE(wunif2), and the relative computing
times RC(1) = RC(wunif1), RC(2) = RC(wrand), RC(3) = RC(wunif2), where

RE(w) = MSE{θ̂λ}
MSE{θ̂ (w)} , RC(w) = CPU time for θ̂λ

CPU time for θ̂ (w)
,

where θ̂ (w) is the pairwise likelihood estimator obtained using the composition
rule w.

Simulation 1 In our first simulation, we illustrate the impact of the tuning constants
(λα, λρ) – or, equivalently, the number of selected pair-wise likelihood terms – on
statistical accuracy and computational efficiency. Figure 3 (top row) shows the num-
ber of pairs of sites selected, i.e. the numbers of nonzero elements in the estimated
coefficients ŵα = (ŵα,1, . . . , ŵα,m)′ and ŵρ = (ŵρ,1, . . . , ŵρ,m)′ against the crite-
rion φl(t), l ∈ {α, ρ} defined in (3.5). Recall that φl(t) represents a lower bound on
the explained variability in the selected pair-wise scores after t terms are included in
the pairwise likelihood equations. The curves are obtained from a single simulation
at 30 randomly selected locations on [0, 100]2. Figure 3 (bottom rows) shows Monte
Carlo estimates of the relative efficiency of the TPLE compared to the UPLE, sepa-
rately for parameters α and ρ against φα(t) and φρ(t) (RE(1)

α and RE(1)
ρ , respectively).

Estimates are based on 1000 Monte Carlo samples of size 50 from a Brown-Resnick
process at 30 randomly selected locations on [0, 100]2, which are not varied through-
out simulations. Remarkably, selecting just 20 to 30 pair-wise score terms (i.e. 5 to
7% of the entire set of feasible terms), already gives dramatic improvements in terms
of relative efficiency compared to UPLE.
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Fig. 3 Top row: Numbers of nonzero elements in composition rule ŵρ and ŵα obtained by minimizing the
empirical objective Q̂λ(θ̂ , w) in (14), against the lower bounds on scores variability, φρ(t) and φα(t), after
including t terms as defined (19). The top part of each plot shows the number of pair-wise terms included.
Plots are obtained from a single realization of the Brownick-Resnick process with (ρ, α) = (2.8, 1.5) at
30 random sites on [0, 100]2. Bottom rows: Monte Carlo estimates of relative efficiencies RE(1)

ρ and RE(1)
α

given by the mean squared error for the TPLEs ρ̂λ and α̂λ divided by the mean squared error of the PLE
with uniform composition rule w = (1, . . . , 1)′. Estimates are based on 1000 samples of size 50 from a
Brown-Resnick process with (ρ, α) = (28, 1.5) at 30 random sites on [0, 100]2

The computational complexity (Fig. 3, top rows) increases when the number of
pair-wise scores with coefficients different from zero increases (equivalently, when
λl decreases). Thus, the computing cost is maximum when λα = λρ = 0, since all
the pair-wise scores are included. The relative error (Fig. 3, bottom rows) follows a
U-shape behavior which is explained as follows. The optimal theoretical weights are
given by λα = λρ = 0, corresponding to the optimal estimating equations described
in Heyde (2008). However, such optimal weights are not achievable in practice due
to the substantial correlation between pair-wise scores and the presence of estimation
error. This means that for λl close to zero the estimated composite likelihood coeffi-
cients ŵ becomes increasingly unstable yielding parameter estimates θ̂ (ŵ) with large
variance. Specifically, the optimal weights depend on the inverse of the estimated
pair-wise score covariance matrix, which is nearly singular in presence of pronounced
spatial correlation. This behavior is exacerbated when the number of sites increases.
On the other hand, by including too few pair-wise scores in the likelihood equation
(i.e. setting too large λα , λρ), some important information on the parameter may be
missed thus resulting in poor accuracy of the parameter estimator.
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Simulation 2 In our second Monte Carlo experiment, we carry out a systematic
assessment of the performance of the TPLE compared to UPLE and RPLE. For
the TPLE, we consider various choices for the minimum proportion of explained
score variability (τ = 0.9, 0.95 and 0.99). Tables 1 and 2 show results based on
1000 Monte Carlo samples of size 50 from a Brown-Resnick process with different
smoothness and range parameters observed, respectively, at 20 and 30 random loca-
tions on [0, 100]2, which are not varied throughout simulations. We report Monte
Carlo estimates for the following quantities: mean number of pair-wise score terms
included (#Terms), E(α̂λ) and E(ρ̂λ), sd(α̂λ) and sd(ρ̂λ), relative mean squared error
and relative computing cost of the TPLE compared to UPLE and RPLE. Whilst the
TPLE generally outperforms the UPLE in terms relative efficiency, it also performs
comparably to the random PLE in terms of computational cost. Both the accuracy
and computing efficiency of TPLE become more pronounced as the number of sites
increases. Finally, note that when α and ρ decrease, the TPLE tends to perform sim-
ilarly to the UPLE in terms of efficiency. This is not surprising since in this situation
observations between sites become increasingly independent and all sub-likelihoods
contain roughly the same information on the parameters.

Simulation 3 In our third Monte Carlo experiment, we examine the estimator of the
extremal coefficient, a useful quantity in spatial analysis of extremes. The accuracy
of our method is compared with UPLE and RPLE. We also assess the accuracy of the
estimated extremal coefficients η̂2(h), obtained by plugging-in parameter estimates
θ̂ in the formula η2(h; θ) given in Section 2.3. Figure 4 (top row) shows the fitted
extremal coefficients curves η̂2(h) based on the estimated and the true parameters.
Figure 4 (bottom row) shows the corresponding mean square errors of the estimates
obtained by plugging-in TPL, UPL and RPL estimates. The lighter circles in the plots
correspond to empirical estimates of the pairwise coefficients. Results are based on
1000 Monte Carlo samples of size 50, generated from 20 and 30 randomly selected
sites on [0, 100]2 with true parameters (α, ρ) = (1.5, 28). Whilst all the estimators
tend to underestimate the extremal coefficient for relatively large ‖h‖, our truncation
approach clearly outperforms the other two methods.

5 Analysis of Victoria extreme temperature data

In this section, we apply the new estimation method to maximum temperature data
recorded in the state of Victoria, Australia. Daily temperature maxima from 1971 to
2017 are provided by the national Australian meteorological service, the Bureau of
Meteorology (data are available at http://www.bom.gov.au/climate/data). The final
dataset contains the highest annual temperature recordings measured at 26 stations
over 47 years from 1971 to 2017. The distances between these stations range between
13 and 1100 kilometers. The locations for the measuring stations are shown in Figure
6 (left). Sites colored in blue (red) correspond to average maximum temperatures
below (above) the average maximum temperature across all sites.

The main objective of our analysis is to estimate the correlation structure pertain-
ing extreme temperatures. As a pre-processing step, we transform the data at each

394 Z. Huang et al.

http://www.bom.gov.au/climate/data


Ta
bl
e
1

M
on
te
C
ar
lo

re
su
lts

fo
r
T
PL

es
tim

at
io
n
fo
r
th
e
B
ro
w
ni
ck
-R
es
ni
ck

pr
oc
es
s
m
ea
su
re
d
at
20

lo
ca
tio

ns

(ρ
,
α
)

(2
8,
0.
5)

(4
2,
0.
5)

(2
8,

1.
5)

(4
2,

1.
5)

(2
8,
1.
9)

(4
2,
1.
9)

τ
0.
90
/0
.9
5/
0.
99

0.
90
/0
.9
5/
0.
99

0.
90
/0
.9
5/
0.
99

0.
90
/0
.9
5/
0.
99

0.
90
/0
.9
5/
0.
99

0.
90
/0
.9
5/
0.
99

#T
er
m
s

48
.3
/5
5.
9/
68
.3

44
.5
/5
1.
8/
64
.8

36
.6
/4
3.
6/
58
.4

31
.6
/3
7.
0/
50
.5

33
.6
/3
9.
9/
54
.4

27
.2
/3
1.
6/
43
.8

ρ̂
λ

25
.7
/2
6.
3/
26
.7

42
.3
/4
2.
4/
42
.6

28
.4
/2
8.
9/
29
.4

41
.4
/4
1.
9/
42
.5

29
.9
/3
0.
3/
31
.0

41
.7
/4
2.
2/
43
.0

α̂
λ

0.
50
/0
.4
9/
0.
49

0.
47
/0
.4
7/
0.
47

1.
40
/1
.3
8/
1.
36

1.
48
/1
.4
7/
1.
45

1.
64
/1
.6
2/
1.
57

1.
84
/1
.8
3/
1.
80

s
d
(ρ̂

λ
)

7.
63
/7
.5
0/
6.
87

13
.0
9/
12
.4
0/
11
.8
5

2.
44
/2
.3
7/
2.
44

4.
70
/4
.6
8/
4.
46

2.
37
/2
.3
7/
2.
42

3.
80
/3
.5
7/
3.
46

s
d
(α̂

λ
)

0.
09
/0
.0
9/
0.
09

0.
09
/0
.0
9/
0.
09

0.
10
/0
.1
0/
0.
11

0.
10
/0
.0
9/
0.
09

0.
12
/0
.1
3/
0.
13

0.
09
/0
.0
9/
0.
09

R
E

(1
)

ρ
1.
06
/0
.9
9/
0.
81

0.
73
/0
.6
5/
0.
60

0.
52
/0
.5
4/
0.
68

1.
08
/1
.0
5/
0.
97

0.
34
/0
.4
0/
0.
53

0.
64
/0
.5
6/
0.
58

R
E

(1
)

α
0.
96
/0
.9
7/
1.
01

0.
43
/0
.4
5/
0.
50

0.
47
/0
.5
5/
0.
70

0.
60
/0
.5
8/
0.
62

0.
46
/0
.5
5/
0.
70

0.
35
/0
.3
8/
0.
51

R
E

(2
)

ρ
0.
82
/0
.7
6/
0.
63

0.
71
/0
.6
4/
0.
58

0.
41
/0
.4
3/
0.
55

0.
64
/0
.6
2/
0.
57

0.
28
/0
.3
3/
0.
44

0.
50
/0
.4
4/
0.
45

R
E

(2
)

α
0.
67
/0
.6
8/
0.
71

0.
37
/0
.3
8/
0.
42

0.
38
/0
.4
4/
0.
57

0.
28
/0
.2
7/
0.
28

0.
41
/0
.4
9/
0.
64

0.
22
/0
.2
4/
0.
32

R
E

(3
)

ρ
1.
04
/0
.9
3/
0.
79

0.
55
/0
.5
0/
0.
45

0.
63
/0
.6
6/
0.
83

0.
52
/0
.5
1/
0.
47

0.
68
/0
.8
0/
1.
06

0.
54
/0
.4
8/
0.
49

R
E

(3
)

α
0.
43
/0
.4
6/
0.
50

0.
29
/0
.3
0/
0.
34

0.
59
/0
.6
8/
0.
88

0.
55
/0
.5
4/
0.
57

1.
32
/1
.5
8/
1.
03

0.
25
/0
.2
7/
0.
35

R
C

(1
)

0.
16
/0
.1
7/
0.
20

0.
09
/0
.1
0/
0.
13

0.
26
/0
.2
8/
0.
32

0.
26
/0
.2
8/
0.
32

0.
29
/0
.3
1/
0.
36

0.
34
/0
.3
6/
0.
40

R
C

(2
)

0.
55
/0
.6
2/
0.
72

0.
34
/0
.3
8/
0.
48

0.
82
/0
.8
9/
1.
03

0.
84
/0
.9
1/
1.
05

0.
95
/1
.0
0/
1.
15

1.
06
/1
.1
2/
1.
25

R
C

(3
)

0.
17
/0
.1
9/
0.
20

0.
14
/0
.1
5/
0.
16

0.
68
/0
.7
2/
0.
85

0.
63
/0
.6
8/
0.
78

0.
67
/0
.7
2/
0.
83

0.
69
/0
.7
3/
0.
82

R
ow

s
1–
2:

T
ru
e
pa
ra
m
et
er

va
lu
es

(ρ
,
α
)
an
d
m
in
im

um
pr
op
or
tio

n
of

ex
pl
ai
ne
d
sc
or
e
va
ri
ab
ili
ty

(τ
).
R
ow

s
3–
7:

M
on
te

C
ar
lo

es
tim

at
es

fo
r:
m
ea
n
nu
m
be
r
of

se
le
ct
ed

pa
ir
-

w
is
e
sc
or
e
te
rm

s
(#
Te
rm

s)
,
E
(ρ̂

),
E
(α̂

),
sd

(ρ̂
),
an
d
sd

(α̂
).
R
ow

s
8–
16
:
R
el
at
iv
e
ef
fi
ci
en
cy

of
T
PL

E
co
m
pa
re
d
to

U
PL

E
(R
E

(1
)

ρ
,
R
E

(1
)

α
),
R
PL

E
(R
E

(2
)

ρ
,
R
E

(2
)

α
)
an
d
U
PL

E
2

(R
E

(3
)

ρ
,
R
E

(3
)

α
),
re
la
tiv

e
co
m
pu
tin

g
co
st

of
T
PL

E
co
m
pa
re
d
to

U
PL

E
(R
C

(1
)
),
R
PL

E
(R
C

(2
)
)
an
d
U
PL

E
2
(R

C
(3

)
).
R
es
ul
ts

ar
e
ba
se
d
on

10
00

sa
m
pl
es

of
si
ze

50
fr
om

a
B
ro
w
n-
R
es
ni
ck

m
od
el
on

[0,
10
0]2

395Truncated pair-wise likelihood for the Brown-Resnick process with ...



Ta
bl
e
2

M
on
te
C
ar
lo

re
su
lts

fo
r
T
PL

es
tim

at
io
n
fo
r
th
e
B
ro
w
ni
ck
-R
es
ni
ck

pr
oc
es
s
m
ea
su
re
d
at
30

lo
ca
tio

ns

(ρ
,
α
)

(2
8,
0.
5)

(4
2,
0.
5)

(2
8,

1.
5)

(4
2,

1.
5)

(2
8,
1.
9)

(4
2,
1.
9)

τ
0.
90
/0
.9
5/
0.
99

0.
90
/0
.9
5/
0.
99

0.
90
/0
.9
5/
0.
99

0.
90
/0
.9
5/
0.
99

0.
90
/0
.9
5/
0.
99

0.
90
/0
.9
5/
0.
99

#T
er
m
s

59
.5
/6
6.
5/
77
.2

55
.7
/6
2.
6/
73
.4

46
.1
/5
2.
8/
65
.9

42
.4
/4
8.
2/
60
.6

41
.6
/4
8.
5/
62
.3

35
.8
/4
1.
1/
53
.9

ρ̂
λ

25
.1
/2
5.
5/
26
.2

40
.3
/4
0.
5/
40
.8

28
.1
/2
8.
5/
29
.1

40
.7
/4
1.
2/
42
.2

29
.5
/2
9.
8/
30
.5

41
.0
/4
1.
5/
42
.3

α̂
λ

0.
50
/0
.5
0/
0.
49

0.
48
/0
.4
7/
0.
47

1.
43
/1
.4
1/
1.
39

1.
49
/1
.4
8/
1.
46

1.
72
/1
.6
9/
1.
64

1.
87
/1
.8
5/
1.
83

s
d
(ρ̂

λ
)

5.
63
/5
.4
5/
5.
22

11
.4
6/
10
.9
1/
10
.3
6

2.
42
/2
.2
6/
2.
41

4.
34
/4
.1
3/
4.
09

2.
23
/2
.2
4/
2.
26

3.
24
/3
.2
1/
3.
14

s
d
(α̂

λ
)

0.
06
/0
.0
6/
0.
06

0.
07
/0
.0
7/
0.
08

0.
08
/0
.0
8/
0.
09

0.
08
/0
.0
7/
0.
08

0.
10
/0
.1
0/
0.
11

0.
07
/0
.0
7/
0.
07

R
E

(1
)

ρ
1.
43
/1
.2
7/
1.
08

0.
76
/0
.6
8/
0.
61

0.
44
/0
.4
0/
0.
54

1.
01
/0
.8
6/
0.
83

0.
27
/0
.3
1/
0.
42

0.
54
/0
.5
0/
0.
47

R
E

(1
)

α
0.
90
/0
.9
5/
1.
05

0.
35
/0
.3
7/
0.
41

0.
32
/0
.3
8/
0.
57

0.
53
/0
.5
3/
0.
66

0.
29
/0
.3
8/
0.
54

0.
23
/0
.2
8/
0.
43

R
E

(2
)

ρ
1.
18
/1
.0
5/
0.
89

0.
71
/0
.6
4/
0.
57

0.
42
/0
.3
8/
0.
52

0.
71
/0
.6
1/
0.
59

0.
22
/0
.2
6/
0.
35

0.
52
/0
.4
8/
0.
46

R
E

(2
)

α
0.
64
/0
.6
8/
0.
75

0.
30
/0
.3
2/
0.
35

0.
27
/0
.3
3/
0.
49

0.
26
/0
.2
6/
0.
32

0.
26
/0
.3
3/
0.
48

0.
18
/0
.2
2/
0.
34

R
E

(3
)

ρ
1.
04
/0
.9
3/
0.
79

0.
55
/0
.5
0/
0.
45

0.
81
/0
.7
4/
1.
00

0.
30
/0
.2
6/
0.
25

0.
58
/0
.6
9/
0.
92

0.
08
/0
.0
8/
0.
07

R
E

(3
)

α
0.
43
/0
.4
6/
0.
50

0.
29
/0
.3
0/
0.
34

0.
73
/0
.8
9/
1.
31

0.
06
/0
.0
6/
0.
08

1.
04
/1
.3
4/
1.
91

0.
14
/0
.1
7/
0.
26

R
C

(1
)

0.
09
/0
.1
0/
0.
10

0.
06
/0
.0
6/
0.
07

0.
16
/0
.1
7/
0.
18

0.
16
/0
.1
7/
0.
18

0.
17
/0
.1
8/
0.
20

0.
19
/0
.1
9/
0.
21

R
C

(2
)

0.
30
/0
.3
3/
0.
35

0.
21
/0
.2
3/
0.
25

0.
53
/0
.5
5/
0.
59

0.
54
/0
.5
7/
0.
58

0.
55
/0
.5
9/
0.
65

0.
62
/0
.6
4/
0.
71

R
C

(3
)

0.
17
/0
.1
9/
0.
20

0.
14
/0
.1
5/
0.
16

0.
27
/0
.2
8/
0.
30

0.
29
/0
.3
1/
0.
32

0.
26
/0
.2
8/
0.
31

0.
32
/0
.3
3/
0.
36

R
ow

s
1–
2:

T
ru
e
pa
ra
m
et
er

va
lu
es

(ρ
,
α
)
an
d
m
in
im

um
pr
op
or
tio

n
of

ex
pl
ai
ne
d
sc
or
e
va
ri
ab
ili
ty

(τ
).
R
ow

s
3–
7:

M
on
te

C
ar
lo

es
tim

at
es

fo
r:
m
ea
n
nu
m
be
r
of

se
le
ct
ed

pa
ir
-

w
is
e
sc
or
e
te
rm

s
(#
Te
rm

s)
,
E
(ρ̂

),
E
(α̂

),
sd

(ρ̂
),
an
d
sd

(α̂
).
R
ow

s
8–
16
:
R
el
at
iv
e
ef
fi
ci
en
cy

of
T
PL

E
co
m
pa
re
d
to

U
PL

E
(R
E

(1
)

ρ
,
R
E

(1
)

α
),
R
PL

E
(R
E

(2
)

ρ
,
R
E

(2
)

α
)
an
d
U
PL

E
2

(R
E

(3
)

ρ
,
R
E

(3
)

α
),
re
la
tiv

e
co
m
pu
tin

g
co
st

of
T
PL

E
co
m
pa
re
d
to

U
PL

E
(R
C

(1
)
),
R
PL

E
(R
C

(2
)
)
an
d
U
PL

E
2
(R

C
(3

)
).
R
es
ul
ts

ar
e
ba
se
d
on

10
00

sa
m
pl
es

of
si
ze

50
fr
om

a
B
ro
w
n-
R
es
ni
ck

m
od
el
on

[0,
10
0]2

396 Z. Huang et al.



0 20 40 60 80 100

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

|| h ||

η
(h

)

0 20 40 60 80 100 120 140

0.
00

0
0.

00
2

0.
00

4
0.

00
6

|| h ||

M
SE

 o
f

η̂
(h

)

0 20 40 60 80 100

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

|| h ||

0 20 40 60 80 100 120 140

0.
00

0
0.

00
2

0.
00

4
0.

00
6

|| h ||

TRUE
TPLE
UPLE
RPLE

TRUE
TPLE
UPLE
RPLE

TPLE
UPLE
RPLE

TPLE
UPLE
RPLE

Fig. 4 Plug-in estimates of the pair-wise extremal coefficient based on truncated (TPLE), uniform (UPLE)
and random composition rules (RPLE). Top row: Empirical pair-wise extremal coefficients based on sim-
ulated data (light gray circles) and plug-in estimates of the extremal coefficient curve, η2(h; θ̂w), based on
TPLE, UPLE and RPLE. Bottom row: Monte Carlo estimates of the mean square error for the estimated
extremal coefficient against distance ‖h‖. Plots are based on 1000 Monte Carlo samples of size 50, gener-
ated from 20 (left column) and 30 (right column) random selected locations on [0, 100]2 with parameters
α = 1.5 and ρ = 28

location into a unit Fréchet distribution with marginal parameters obtained by fitting
Generalized Extreme Value models at each location. Extreme dependence parameters
under the Brown-Resnick model are obtained using truncated, random and uniform
PLEs. Standard deviations and covariances of the pairwise likelihood estimators
are calculated by the sandwich approximation of the inverse Godambe information
matrix described in Section 3.4.

Figure 5 (top) depicts the entire trajectory for range and smoothness parameters
fitted using the TPLE for increasing explained score variability φρ(t) and φα(t),
respectively, along with 95% confidence bands. For comparison, the horizontal dot-
dashed line represent the UPLE estimate. Figure 5 (bottom) gives the number of
nonzero elements for the truncated composition rules ŵρ and ŵα with number of
selected pair-wise score terms reported on the top axises. Note that just by including
a small fraction pair-wise likelihoods, the TPLE is very close to the UPLE involving
all 325 pair-wise likelihood terms. However, we find that the TPLE has much smaller
standard errors compared to the UPLE. For example, when τ = 0.95, the 95%
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Fig. 5 Estimation of the Brown-Resnick model for the BoM extreme temperature data. Top: TPL estimates
of range and smoothness parameters (ρ̂λ, and α̂λ) against the lower bound of information explained φρ(t)

and φα(t). The horizontal dash-dot line correspond to the uniform PL estimate. The dashed lines are 95%
confidence bands obtained by the estimated inverse Godambe information in Section 3.4. Bottom: Number
of nonzero elements in the truncated composition rules ŵρ and ŵα with the number of selected pair-wise
likelihoods reported on the top axis

confidence intervals for α and ρ based on TPLE are (25.38, 35.52) and (0.84, 0.91),
respectively. Those based on the UPLE are (18.23, 40.39) and (0.75, 1.02).

In Figure 6 (left), edges joining site locations represent the selected pair-wise
scores by our truncation method when τ = 0.9. Note that the selected scores
represent a small fraction of the available 325 pair-wise terms, and generally corre-
sponding to pairs of sites close to each other. This is not surprising, since pairs of
neighboring sites are expected provide more information on extreme correlation com-
pared to those far apart from each other. Figure 6 (right) shows extremal coefficient
estimates obtained by plugging-in the truncated, uniform and random pair-wise like-
lihood estimators of the smoothness and range parameters. Whilst fo TPL and UPL
estimates are generally very close, the TPL extremal coefficient estimate becomes
smaller than the UPL estimate as the distance ‖h‖ increases. Finally, in Fig. 7 we
show fitted extremal dependence coefficients and realizations of temperature maxima
in degrees Celsius simulated from fitted max-stable models by TPLE (with τ = 0.9)
and UPLE on the map of Victoria (bottom row).
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Fig. 6 Left: Points on the map represents sites of weather stations in the state of Victoria, Australia.
Dashed lines connecting the sites represent pair-wise likelihood scores selected by our truncation method-
ology described in Section 3.2. Right: Light gray points represent empirical extremal coefficient estimates
against distances between corresponding locations. The smooth curves represent fitted extremal coeffi-
cients obtained by plugging-in the truncated (solid), uniform (dashed) and random (dot-dashed) pair-wise
likelihood estimators of the smoothness and range parameters (α and ρ) for the Brown-Resnick model

Fig. 7 Maps of the state of Victoria, Australia, with fitted extremal dependence coefficients (top row) and
temperature maxima in degrees Celsius simulated from fitted max-stable models (bottom row) using the
proposed truncated pair-wise likelihood (TPLE, left column) and the classic uniform pair-wise likelihood
(UPLE, right column) estimators
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6 Conclusion and final remarks

Building on the general methodology introduced in Huang and Ferrari (2017), we
have developed and applied a new truncation strategy for pair-wise likelihood estima-
tion in the Brown-Resnick model, a popular dependence model for spatial extremes.
Our method represents a statistically efficient and computationally parsimonious
approach for estimating parameters of spatial max-stable models for extreme values.
The pair-wise likelihoods constructed by our new method is obtained by minimiz-
ing an estimate of the �2-distance between the composite likelihood score and full
likelihood score subject to a �1-norm penalty representing the computational cost (or
composite likelihood complexity). When the number of pair-wise likelihood terms
considered for estimation is relatively large compared to sample size, traditional CL
estimators with uniform weights may be inaccurate due to potentially many large
correlations between the sub-likelihood scores (Cox and Reid 2004; Lindsay et al.
2011). This issue is crucial for pairwise likelihood estimation in the context of spatial
max-stable models (Sang and Genton 2014).

The proposed �1-penalization strategy carries out principled selection of pair-wise
likelihood terms. Particularly, only the pair-wise scores with the largest correla-
tion with the maximum likelihood score are kept in the estimating equations (see
Section 3.2). This mechanism is shown to improve statistical efficiency whilst reduc-
ing the computational burden associated with extensive combinations of equally
weighted CL objects. These features of our truncation method make it particularly
effective for analyzing large datasets with measurements taken at many sites, where
the number of noisy or redundant likelihood terms often increases very quickly with
the number of sites. Huang and Ferrari (2017) show that �1-truncation yields CL esti-
mators with the asympotic variance approaching that of optimal CL estimators (with
no penalty). The results in this paper supports their theoretical results and suggest
that CL truncation by �1-penalization is a valid option when dealing with complex
likelihood estimation problems.

Various research directions based on modification the current approach may be
pursued in the future. One research direction concerns the choice of the penalty
function. Inspired by the literature in variable selection in regression (see, e.g.,
?Efron04,Fan10 ()), we achieve sparsity of estimating equations via the �1-
penalty described in (10). Note, however, that in our context the penalty involves the
composition rule w but does not the model parameter θ , which is low-dimensional
and is treated as fixed. This means that, differently from penalized regression,
our estimating equations (and resulting parameter estimates) remain approximately
unbiased even when λ is not zero. In the future, exploring other suitable sparsity-
promoting penalties strategies may be valuable to deal with cases where both the
CL complexity and size of the parameter space are large. Another research direction
concerns the choice of the CL design. In this paper we have focused on pair-wise
likelihood inference, but our approach may be used for higher-order CL designs with
sub-likelihood constructed on site pairs, triplets, quadruples, etc, similarly to Cas-
truccio et al. (2016). Finally, since settings beyond the Brown-Resnick model were
not directly pursued in the present paper, numerical studies and applications of the
TCLE in the context of other max-stable processes would be also valuable.
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Appendix

Calculation of pair-wise score functions

Let

V̇j = dVr

dzj

= ϕ(mj )

a(θ)z2j
+ ϕ(mk)

a(θ)zj zk
− Φ(mj )

z2j
,

V̇k = dVr

dzk

= ϕ(mk)

a(θ)z2k
+ ϕ(mj )

a(θ)zj zk
− Φ(mk)

z2k
,

V̈jk = d2Vr

dzjdzk

= mj ϕ(mj )

a(θ)2z2j zk
+ mkϕ(mk)

a(θ)2zj z2k
− ϕ(mj )

a(θ)z2j zk
− ϕ(mk)

a(θ)zj z2k
,

where ϕ and Φ are the standard normal PDF and CDF, a(θ) = √
2γ (x1 − x2; θ),

mj = 2−1a(θ) − a(θ)−1 log(zj /zk) and mk = 2−1a(θ) − a(θ)−1 log(zk/zj ).
Moreover, let V ′

r = ∂Vr/∂θ , V̇ ′
j = ∂V̇j /∂θ and V̇ ′

k = ∂V̇k/∂θ . Then the rth and
(r + m)th element of ũ(θ) is given by the vector

V̇ ′
j V̇k + V̇j V̇

′
k

V̇j V̇k − V̈jk

− V ′
r .
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