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Abstract
It is well known that the distribution of extreme values of strictly stationary
sequences differ from those of independent and identically distributed sequences in
that extremal clustering may occur. Here we consider non-stationary but identically
distributed sequences of random variables subject to suitable long range dependence
restrictions. We find that the limiting distribution of appropriately normalized sample
maxima depends on a parameter that measures the average extremal clustering of the
sequence. Based on this new representation we derive the asymptotic distribution for
the time between consecutive extreme observations and construct moment and likeli-
hood based estimators for measures of extremal clustering. We specialize our results
to random sequences with periodic dependence structure.

Keywords Clustering of extremes · Extremal index · Interexceedance times ·
Intervals estimator · Non-stationary sequences · Periodic processes

AMS 2000 Subject Classifications 60G70

1 Introduction

Extreme value theory for strictly stationary sequences has been extensively stud-
ied, initiated in the works of Watson (1954), Berman (1964), and Loynes (1965),
and continued by Leadbetter (1974, 1983) and O’Brien (1987) amongst others.
One of the key findings in this line of research is that unlike in independent and
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identically distributed sequences where extreme values tend to occur in isolation,
stationary sequences possess an intrinsic potential for clustering of extremes, i.e.,
several successive or close extreme values may be observed. Understanding the
extremal clustering characteristics of a stochastic process is critical in many applica-
tions where a cluster of extreme values may have serious consequences. For example,
if a sequence consists of daily temperatures at some fixed location then a cluster of
extremes may correspond to a heatwave.

The extent to which extremal clustering may occur is naturally measured, for
strictly stationary sequences, by a parameter known as the extremal index. Let
{Xn}∞n=1 be a sequence of random variables with common marginal distribution func-
tion F , and let F̄ = 1 − F and Mn = max{X1, . . . , Xn}. Also, let {xn}∞n=1 be a
sequence of real numbers that we may informally think of as thresholds or levels.
In the special case that Xi and Xj are independent, i �= j , then a necessary and
sufficient condition for P(Mn ≤ xn) to converge to a limit in (0, 1) as n → ∞
is that nF̄ (xn) → τ > 0, in which case P(Mn ≤ xn) → e−τ (Leadbetter et al.
1983, Theorem 1.5.1). More generally, if {Xn}∞n=1 is a strictly stationary sequence,
then nF̄ (xn) → τ is not sufficient to ensure the convergence of P(Mn ≤ xn).
However, in most cases of practical interest, provided that a suitable long range
dependence restriction is satisfied, such as condition D of Leadbetter (1974), one
has P(Mn ≤ xn) → e−θτ where θ ∈ [0, 1] is the extremal index. Leadbetter (1983)
showed that exceedances of the level xn occur in clusters with the limiting mean clus-
ter size being equal to θ−1, and Hsing (1987) showed that distinct clusters may be
considered independent in the limit.

Another characterization of θ that links it to the extremal clustering properties
of a strictly stationary sequence can be found in O’Brien (1987). Defining Mj,k =
max{Xi : j + 1 ≤ i ≤ k}, it was shown that the distribution function of Mn satisfies

P(Mn ≤ xn) − F(xn)
nθn → 0, as n → ∞, (1)

where

θn = P(M1,pn ≤ xn | X1 > xn), (2)

for some pn = o(n), and provided the limit exists, θn → θ as n → ∞. This result
illustrates that smaller values of θ are indicative of a larger degree of extremal clus-
tering, since the conditional probability in Eq. 2 is small when an exceedance of a
large threshold is likely to soon be followed by another exceedance.

Early attempts at estimating θ were based on associating θ−1 with the limiting
mean cluster size. Different methods for identifying clusters gave rise to different
estimators, well known examples being the runs and blocks estimators (Smith and
Weissman 1994). For the runs estimator, a cluster is identified as being initialized
when a large threshold is exceeded and ends when a fixed number, known as the run
length, of non-exceedances occur. The extremal index is then estimated by the ratio of
the number of identified clusters to the total number of exceedances. A difficulty that
arises when using this estimator is its sensitivity to the choice of run length (Hsing
1991).

The problem of cluster identification was studied by Ferro and Segers (2003) who
considered the distribution of the time between two exceedances of a large threshold.
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They found that the limiting distribution of appropriately normalized interexceedance
times converges to a distribution that is indexed by θ . In particular, for a given thresh-
old u ∈ R, they define the random variable T (u) = min{n ≥ 1 : Xn+1 > u | X1 >

u}, and found that as n → ∞, F̄ (xn)T (xn) converges in distribution to a mixture of a
point mass at zero and an exponential distribution with mean θ−1. Thus, by comput-
ing theoretical moments of this limiting distribution and comparing them with their
empirical counterparts, they construct their so-called intervals estimator.

Motivated by the fact that many real world processes are non-stationary, in this
paper we investigate the effect of non-stationarity on extremal clustering. Previ-
ous statistical works that consider extremal clustering in non-stationary sequences
include (Süveges 2007), who used the likelihood function introduced by Ferro and
Segers (2003) for the extremal index together with smoothing methods to capture
non-stationarity in a time series of temperature measurements. In a similar applica-
tion, Coles et al. (1994) used a Markov model together with simulation techniques to
estimate the extremal index within different months.

An early work that developed extreme value theory for non-stationary sequences
with a common marginal distribution is Hüsler (1983), which focused on the asymp-
totic distribution of the sample maxima but did not consider extremal clustering.
Hüsler (1986) considered the more general case where the margins may differ and
also discussed the difficulty of defining the extremal index for general non-stationary
sequences.

Here, we consider a sequence of random variables {Xn}∞n=1 with common
marginal distribution function F , but do not assume stationarity in either the weak
or strict sense. As we assume common margins, non-stationarity may arise through
changes in the dependence structure. We show, under assumptions similar to O’Brien
(1987), that

P(Mn ≤ xn) − F(xn)
nγn → 0, as n → ∞, (3)

where

γn = 1

n

n∑

j=1

P(Mj,j+pn ≤ xn | Xj > xn). (4)

Thus, we find that the limiting distribution of the sample maximum at large thresh-
olds is characterized by a parameter γ = limn→∞ γn, provided the limit exists, which
by analogy with Eq. 2, may be regarded as the average of local extremal indices. In
this paper we develop methods for estimating these local extremal indices by adapting
the methods of Ferro and Segers (2003) for the extremal index to our non-stationary
setting. In the special case that the sequence is stationary, so that all terms in the
summation (4) are equal, the formula for γn reduces to θn in Eq. 2.

The structure of the paper is as follows. Section 2 defines the notation and assumed
mixing condition used throughout the paper and states the main theoretical results
regarding the asymptotic distribution of the sample maxima and normalized interex-
ceedance times. Section 3 discusses approaches to parameter estimation using the
result from Section 2 on the distribution of the interexceedance times. Section 4 con-
siders the estimation problem for two simple non-stationary Markov sequences with
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periodic dependence structures and Section 5 gives the proofs of the main theoretical
results.

2 Theoretical results

2.1 Notation, definitions and preliminary results

Throughout the paper, when not explicitly stated otherwise, all limits should be inter-
preted as “as n → ∞”. We assume that all random variables in the sequence {Xn}∞n=1
have common marginal distribution F with upper endpoint xF = sup{x ∈ R :
F(x) < 1}, though we do not assume stationarity. In addition to the definitions for
Mn and Mj,k given in the Section 1, we define M(A) = max{Xi : i ∈ A} where A is
an arbitrary set of positive integers, and write |A | for the number of elements in A.
We also refer to a set of consecutive integers as an interval. If I1 and I2 are two inter-
vals, we say that I1 and I2 are separated by q if min(I2) - max(I1) = q + 1 or min(I1)
- max(I2) = q + 1, i.e., there are q intermediate values between I1 and I2. The set
{1, 2, 3, . . .} is denoted by N. Equality in distribution of two random variables X and

Y is denoted by X
D= Y .

We assume that the sequence {Xn}∞n=1 satisfies the asymptotic independence
of maxima (AIM) mixing condition of O’Brien (1987) which restricts long range
dependence.

Definition 1 The sequence {Xn}∞n=1 is said to satisfy the asymptotic independence
of maxima condition relative to the sequence xn of real numbers, abbreviated to
“{Xn}∞n=1 satisfies AIM(xn)”, if there exists a sequence qn of positive integers with
qn = o(n) such that for any two intervals I1 = {i1, . . . , ij } and I2 = {ij + qn +
1, . . . , ij + qn + k} separated by qn, we have

αn = max | P(
M(I1 ∪ I2) ≤ xn

) − P
(
M(I1) ≤ xn

)
P
(
M(I2) ≤ xn

) |→ 0, (5)

where the maximum is taken over all positive integers i1, ij and k such that |I1 | ≥ qn,
|I2 | ≥ qn and ij + qn + k ≤ n.

Definition 1 states a slightly weaker condition than the widely used D(xn) condi-
tion (Leadbetter 1983) in that only certain intervals I1 and I2 need to be considered
in Eq. 5 rather than arbitrary sets of integers, so that all examples in the litera-
ture of sequences satisfying D(xn) also satisfy AIM(xn). For example, stationary
Gaussian sequences with autocorrelation function ρn satisfying Berman’s condition,
ρn log n → 0 (Berman 1964), satisfy AIM(xn) for any sequence xn such that nF̄ (xn)

is bounded and any qn = o(n) (Leadbetter et al. 1983, Lemma 4.4.1). The analo-
gous result for non-stationary Gaussian sequences is given in Hüsler (1983), where
Berman’s condition is replaced by rn log n → 0 with rn = sup{|ρ(i, j)| : |i−j | ≥ n}
and ρ(i, j) the correlation between Xi and Xj .
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O’Brien (1987) showed that if {Xn}∞n=1 is a stationary positive Harris Markov
sequence with separable state space S and f : S → R is a measurable function then
the sequence Yn = f (Xn) satisfies AIM(xn) for any xn and qn = o(n)with qn → ∞.

We note that Definition 1 states a property of the dependence structure of the
sequence {Xn}∞n=1, with the specific marginal distributions playing essentially no
role. In particular, if {Xn}∞n=1 satisfies AIM(xn) and g : R → R is a monotone
increasing function then Yn = g(Xn) satisfies AIM(g(xn)) with the same qn.

The assumption that {Xn}∞n=1 satisfies AIM(xn) ensures the approximate indepen-
dence of the block maxima of two sufficiently separated blocks. Lemma 1 below
provides an upper bound for the degree of dependence of k block maxima for suit-
ably separated blocks and will be useful in Section 2.2 when the limiting behaviour
of P(Mn ≤ xn) is considered.

Lemma 1 Let {Xn}∞n=1 satisfy AIM(xn) and let I1, I2, . . . , Ik be distinct subintervals
of {1, 2, . . . , n} where k ≥ 2 and |Ii | ≥ qn, 1 ≤ i ≤ k. Suppose that Ii and Ii+1 are
separated by qn for 1 ≤ i ≤ k − 1. Then

∣∣P(M(∪k
i=1Ii) ≤ xn) −

k∏

i=1

P(M(Ii) ≤ xn)
∣∣ ≤ (k − 1)αn + 2(k − 2)qnF̄ (xn). (6)

2.2 Asymptotic distribution of Mn

In this section we investigate the limiting behaviour of P(Mn ≤ xn), with the main
result being Theorem 1. In addition to assuming that {Xn}∞n=1 satisfies AIM(xn), we
will assume that the rate of growth of the sequence xn is controlled via

nF̄ (xn) → τ > 0. (7)

In the case of continuous marginal distributions, Eq. 7 is immediately satisfied by
xn = F−1(1 − τ/n). More generally, Theorem 1.7.13 of Leadbetter et al. (1983)
guarantees the existence of a sequence xn satisfying (7) when F is in the domain of
attraction of any of the three classical extreme value distributions (Haan and Ferreira
2006, Section 1.2).

We use the standard technique of block-clipping, see for example Section 10.2.1
in Beirlant et al. (2004), to split the interval {1, 2, . . . , n} into subintervals, or blocks,
of alternating large and small lengths. Specifically, for sequences pn and qn such that
qn = o(pn) and pn = o(n) we define

Ai = {
(i − 1)(pn + qn) + 1, . . . , ipn + (i − 1)qn

}
(8)

A∗
i = {

ipn + (i − 1)qn + 1, . . . , i(pn + qn)
}
,

for i = 1, 2, . . . rn, where rn = 
n/(pn + qn)�.
If we take the sequence qn appearing in the construction of the blocks Ai and A∗

i

to be the same as that in Definition 1, then Lemma 1 bounds the degree of depen-
dence of the collection of random variables {M(Ai)}rni=1, and this allows us to prove
Lemma 2 below which modifies Lemma 3.1 from O’Brien (1987) to allow for non-
stationarity.
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Lemma 2 Let {Xn}∞n=1 satisfy AIM(xn) and let the sequence pn be such that

pn = o(n), nαn = o(pn) and qn = o(pn). (9)

Then if Eq. 7 holds, we have

P(Mn ≤ xn) −
rn∏

i=1

P(M(Ai) ≤ xn) → 0, (10)

where the intervals {Ai}rni=1 are as in Eq. 8.

Remarks Equation 10 follows easily from Eq. 6 by making the identification k = rn
and using Eqs. 7 and 9. Additionally, if {Xn}∞n=1 satisfies AIM(xn) then we can
always find a sequence pn such that Eq. 9 holds, for example, by taking pn =

{n max(qn, nαn)}1/2�. Thus the only assumption in Lemma 2 beyond common
margins is that {Xn}∞n=1 satisfies AIM(xn) for a sequence xn satisfying (7).

We can now state our main theorem.

Theorem 1 Under the same assumptions as in Lemma 2, we have

P(Mn ≤ xn) − exp

{
−

n∑

j=1

P(Xj > xn, Mj,j+pn ≤ xn)

}
→ 0, (11)

and consequently
P(Mn ≤ xn) − F(xn)

nγn → 0, (12)

where

γn = 1

n

n∑

j=1

P(Mj,j+pn ≤ xn | Xj > xn). (13)

As it was noted in Section 1, for independent sequences (7) implies that P(Mn ≤
xn) → e−τ . For a random sequence satisfying the conditions of Lemma 2, the
following result gives a necessary and sufficient condition for the convergence of
P(Mn ≤ xn).

Corollary 1 Under the same assumptions as in Lemma 2, P(Mn ≤ xn) converges if
and only if limn→∞ γn exists, where γn is as in Eq. 13, in which case P(Mn ≤ xn) →
e−τγ with γ = limn→∞ γn ∈ [0, 1].

Corollary 1 follows from Eq. 12 since nF̄ (xn) → τ if and only Fn(xn) → e−τ

which is easily seen by taking logs in the latter expression and using log(1 − t) =
−t + o(t) as t → 0.

A basic question regarding the constant γ appearing in Corollary 1 is whether it is
independent of the particular value of τ in Eq. 7, i.e., do we obtain the same limiting
value of γn regardless of the specific sequence xn and τ used in Eq. 7? We will see in
Section 2.3 that for sequences with periodic dependence this is indeed the case, and
Theorem 2 gives sufficient conditions for this to hold more generally.
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We now turn our attention to the conditional probabilities appearing in the sum-
mation (13), which contain local information regarding the strength of extremal
clustering in the sequence {Xn}∞n=1.

Definition 2 Under the same assumptions as in Lemma 2, let {fn}∞n=1 be the
sequence of functions defined on N by

fn(i) = θi,n = P(Mi,i+pn ≤ xn | Xi > xn), i ∈ N. (14)

We define the extremal clustering function of {Xn}∞n=1 to be the function θ : N →
[0, 1] given by

θi = lim
n→∞ fn(i) (15)

provided the limit exists.

In the special case that the sequence {Xn}∞n=1 is stationary, the extremal clustering
function is simply a constant function equal to the extremal index of the sequence. In
the general case, if we think of the index i inXi as denoting time, then we may regard
θi as the extremal index at time i. The definition of θi entails pointwise convergence
of the sequence of approximations {fn}∞n=1 in Eq. 14. When there is a uniformity in
this convergence and the extremal clustering function is Cesàro summable we obtain
the following result.

Theorem 2 Suppose {Xn}∞n=1 satisfies AIM(xn) with nF̄ (xn) → τ > 0. Assume that
{θi}∞i=1 is Cesàro summable and

max
1≤i≤n

|θi − θi,n| → 0 as n → ∞, (16)

where θi,n = fn(i) is as in Eq. 14. Then P(Mn ≤ xn) → e−τγ where

γ = lim
n→∞

1

n

n∑

i=1

θi . (17)

Moreover, if {yn}∞n=1 is a sequence of real numbers such that nF̄ (yn) → τ ′ with
τ ′ ≤ τ then P(Mn ≤ yn) → e−τ ′γ with γ as in Eq. 17.

As with the constant γ in Corollary 1, we may inquire as to whether the extremal
clustering function is independent of the value of τ and sequence xn used in Eq. 7.
Although we do not attempt to answer this in full generality, we note that, as with the
conditional probability formulation of the extremal index, for most sequences that
are of practical interest, the formula defining θi may be reduced to a form that makes
no explicit reference to the sequences xn and pn. For example, under the additional
assumption due to Smith (1992) which requires that for any xn in Theorem 1 we have

lim
p→∞ lim

n→∞

pn∑

k=p

P(Xi+k > xn | Xi > xn) = 0, (18)
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for each i, then Eq. 15 reduces to

θi = lim
p→∞ lim

x→xF

P(Mi,i+p ≤ x | Xi > x). (19)

Another common assumption for statistical applications is the D(k)(xn) condition of
Chernick et al. (1991) which we define below in a slightly modified form for our
non-stationary setting.

Definition 3 A sequence {Xn}∞n=1 as in Theorem 1 is said to satisfy the D(k)(xn)

condition, where k ∈ N, if

nP(Xi > xn, Mi,i+k−1 ≤ xn, Mi+k−1,i+pn > xn) → 0 as n → ∞ (20)

for each i ∈ N. For the case k = 1, we define Mi,i = −∞.

Note that it is assumed in Definition 3 that {Xn}∞n=1 satisfies AIM(xn) in conjunc-
tion with Eq. 20. Whereas Eq. 5 limits the degree of long range dependence in the
sequence, Eq. 20 is a local mixing condition that ensures that the probability of again
exceeding the threshold xn in a block of pn observations, after dropping below it for
k − 1 consecutive observations falls to zero sufficiently rapidly as n → ∞. The case
where k = 1 implies that in the limit, any exceedances of a high threshold occur in
isolation and is implied in the stationary case by the D′(xn) condition of Leadbet-
ter et al. (1983), Chapter 3. One might expect that a more natural condition in our
non-stationary setting would be to replace the constant k in Eq. 20 by ki to reflect
possible variations in the strength of local dependence. However, when Eq. 20 holds
for some particular k, then it also holds for any other k′ with k′ > k, and so provided
that the sequence {ki}∞i=1 is bounded we may set k = max{ki : i ∈ N} and obtain
(20) for each i. Thus the assumption of a single value of k in Definition 3 allows for
variations in the strength of local dependence while at the same time restricting it to
not persist too strongly to an arbitrary number of lags. If whenever xn is a sequence
as in Theorem 1 and the D(k)(xn) condition holds then Eq. 15 reduces to

θi = lim
x→xF

P(Mi,i+k−1 ≤ x | Xi > x). (21)

We will assume without further comment for the rest of the paper that the
sequence {Xn}∞n=1 has a well-defined extremal clustering function as may arise from
assumptions (18) or (20).

2.3 Periodic dependence

In this section we assume that the sequence {Xn}∞n=1 has a more refined structure
than in the previous sections, namely that of periodic dependence, under which the
results of Section 2.2 may be simplified considerably.

Definition 4 A sequence {Xn}∞n=1 with common marginal distributions is said

to have periodic dependence if there exists d ∈ N such that (Xt1 , . . . , Xtk )
D=

(Xt1+d, . . . , Xtk+d) for all t1, . . . , tk ∈ N. The smallest d with this property is called
the fundamental period.
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Whereas for a strictly stationary sequence an arbitrary shift in time leaves the
finite-dimensional distributions unchanged, for a sequence with periodic dependence
only time shifts that are a multiple of the fundamental period leave finite-dimensional

distributions unchanged. In particular, Ma,a+b
D= Mc,c+b when a ≡ c (mod d). Such

sequences often mimic the dependence structure of certain environmental time series
where we might expect a fundamental period of one year.

The following result concerning the convergence of P(Mn ≤ xn) shows that
Theorem 3.7.1 of Leadbetter et al. (1983) for stationary sequences also holds for
non-stationary sequences with periodic dependence.

Theorem 3 Let {Xn}∞n=1 have periodic dependence and satisfy the conditions of
Lemma 2, with xn satisying (7) for some τ > 0. Suppose that yn = yn(τ

′) is a
sequence of real numbers defined for each τ ′ with 0 < τ ′ ≤ τ so that nF̄ (yn) → τ ′.
Then there exist constants γ and γ ′ with 0 ≤ γ ≤ γ ′ ≤ 1 such that

lim sup P{Mn ≤ yn(τ
′)} = e−τ ′γ

lim inf P{Mn ≤ yn(τ
′)} = e−τ ′γ ′

for all 0 < τ ′ ≤ τ . Hence if P{Mn ≤ yn(τ
′)} converges for some τ ′ with 0 < τ ′ ≤ τ ,

then γ = γ ′ and P{Mn ≤ yn(τ
′)} → e−τ ′γ for all such τ ′.

Although Theorem 3 makes no reference to the extremal clustering function, when
P(Mn ≤ xn) converges, the constant γ in Theorem 3 is identified by Corollary 1 as
γ = limn→∞ γn with γn as in Eq. 13. Due to periodicity we obtain the simplified for-
mula γ = d−1 ∑d

i=1 θi, and the extremal clustering function is determined by the d

values {θi}di=1 which repeat cyclically. Moreover, for sequences with periodic depen-
dence, the convergence statement (16) can be strengthened to uniform convergence
since supi∈N |θi − θi,n| = max1≤i≤d |θi − θi,n|.

The following result is an immediate consequence of Theorem 3.

Corollary 2 Let {Xn}∞n=1 have periodic dependence with common marginal distri-
bution function F . For each τ > 0, let xn(τ ) be a sequence such that nF̄ (xn(τ )) → τ

and suppose that {Xn}∞n=1 satisfies AIM(xn(τ )) for each such τ . If P{Mn ≤ xn(τ )}
converges for a single τ > 0 then it converges for all τ > 0, and in particular
P{Mn ≤ xn(τ )} → e−τγ for some γ ∈ [0, 1].

2.4 Interexceedance times

Ferro and Segers (2003) provided a method for estimating the extremal index
of a stationary sequence without the need for identifying independent clusters of
extremes. This was achieved by considering the distribution of the time between two
exceedances of a threshold u, i.e.,

T (u) = min{n ≥ 1 : Xn+1 > u | X1 > u}, (22)

as u approaches xF . In particular, it was shown that the normalized interexceedance
time F̄ (xn)T (xn) converges in distribution as n → ∞ to a mixture of a point mass
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at zero, with probability 1 − θ , and an exponential random variable with mean θ−1,
with probability θ . The mixture arises from the fact that the interexceedance times
can be classified in to two categories: within cluster and between cluster times. The
mass at zero stems from the fact that the within cluster times, which tend to be small
relative to the between cluster times, are dominated by the factor F̄ (xn).

In the stationary case, conditioning on the event X1 > u in Eq. 22 may be replaced
with Xi > u, and Xn+1 replaced by Xn+i , for any i ∈ N, without affecting the
distribution of T (u). In the non-stationary case we consider for each i ∈ N and
threshold u, the random variable Ti(u) defined by

Ti(u) = min{n ≥ 1 : Xn+i > u | Xi > u}, (23)

whose distribution in general depends on i. We find that the distribution of
F̄ (xn)Ti(xn) converges as n → ∞ to a mixture of a mass at zero, with probability
1 − θi , and an exponential random variable with mean γ −1, with probability θi . As
in Ferro and Segers (2003), a slightly stronger mixing condition is required to derive
this result than was needed for Theorem 1. We denote by Fj1,j2(u), the σ -algebra
generated by the events {Xi > u : j1 ≤ i ≤ j2}, j1, j2 ∈ N, and we define the
mixing coefficients

α∗
n,q(u) = max

1≤l≤n−q
sup | P(E2 | E1) − P(E2) |, (24)

where the supremum is over all E1 ∈ F1,l(u) with P(E1) > 0 and E2 ∈ Fl+q,n(u).
We will assume the existence of a sequence qn = o(n) such that α∗

cn,qn
(xn) → 0 for

all c > 0. This implies that {Xn}∞n=1 satisfies AIM(xn) with the same choice of qn

and so we may find a sequence pn so that (9) is satisfied. We define θi,n to be as in
Eq. 14 and assume a slightly stronger form of convergence than in Eq. 16 but weaker
than uniform convergence supi∈N |θi − θi,n| → 0.

The limiting distribution of the normalized interexceedance times is given in
Theorem 4.

Theorem 4 Let {Xn}∞n=1 be a sequence of random variables with common marginal
distribution F and {xn}∞n=1 a sequence of real numbers such that nF̄ (xn) → τ >

0. Suppose that there is a sequence of positive integers qn = o(n) such that
α∗

cn,qn
(xn) → 0 and max1≤i≤cn |θi − θi,n| → 0 for all c > 0. Then, if {θi}∞i=1 is

Cesàro summable we have, for each fixed i ∈ N and t > 0

P(F̄ (xn)Ti(xn) > t) → θi exp(−γ t). (25)

3 Estimation with a focus on periodic sequences

In this section we consider moment and maximum likelihood estimators for θi and
γ based on the limiting distribution of normalized interexceedance times given in
Theorem 4. We first show that the intervals estimator of Ferro and Segers (2003)
may be used to estimate θi and then consider likelihood based estimation along
the lines of Süveges (2007). For simplicity, we focus our discussion on the case
of periodic dependence as in Definition 4. Such an assumption reduces estimation
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of the extremal clustering function to estimating the vector θ = (θ1, . . . , θd) with
γ = d−1 ∑d

i=1 θi where d is the fundamental period which, for simplicity, we
assume to be known a-priori. Such an assumption is important for the moment based
estimators of Section 3.1 where one needs replications of interexceedance times in
order to use the estimators, but can easily be relaxed for likelihood based inference.

3.1 Moment based estimators

Theorem 4 implies that the first two moments of F̄ (u)Ti(u) satisfy E{F̄ (u)Ti(u)} =
θi/γ + o(1) and E[{F̄ (u)Ti(u)}2] = 2θi/γ

2 + o(1) as u → xF . Assuming the
threshold is chosen to be suitably large so that the o(1) terms can be neglected, these
two equations can be solved with respect to the unknown parameters to give

γ = 2E(F̄ (u)Ti(u))

E({F̄ (u)Ti(u)}2) and θi = 2{E(F̄ (u)Ti(u))}2
E({F̄ (u)Ti(u)}2) = 2{E(Ti(u))}2

E({Ti(u)}2)
, 1 ≤ i ≤ d. (26)

A complication that arises in the non-stationary setting is that, since θi is defined via
a conditional probability given the event Xi > u, if Xi does not exceed the threshold
u then there are no interexceedance times to estimate θi . This problem doesn’t arise
in the stationary case where every interexceedance time may be used to estimate the
extremal index θ .

In order to estimate θi then, it is natural to assume that the extremal clustering
function is structured in some way, e.g., periodic or piecewise constant. Making such
an assumption allows us to use multiple interexceedance times to estimate θi . Focus-
ing on the case where {Xn}∞n=1 has periodic dependence with fundamental period d,
all exceedances of the threshold u occuring at points that are separated by a multiple
of d give rise to interexceedance times that may be used to estimate the same value of
the extremal clustering function. More precisely, suppose that X1, . . . , Xn is a sam-
ple of size n of the process with exceedance times E = {1 ≤ i ≤ n : Xi > u},
and corresponding interexceedance times I = {Ti(u) : i ∈ E \{max(E)}}, with
Ti(u) as in Eq. 23. The set of interexceedance times that may be used for estimat-
ing θi is the subset Ii ⊆ I defined by Ii = {Tj (u) ∈ I : j ≡ i (mod d)}. If
|Ii | = Ni , then we may relabel the elements of Ii as Ii = {T (j)

i }Ni

j=1 where now
the subscript remains fixed. Making further, more refined assumptions regarding the
nature of the periodicity of the process under consideration may give rise to different
sets Ii . For example, in an environmental time series setting it may be reasonable to
assume that the extremal clustering function is piecewise constant within months or
seasons, so that all interexceedance times that correspond to exceedances within the
same calendar month or season belong to the same Ii .

Equation 26 suggests the estimator

θ̂i = 2
(∑Ni

j=1 T
(j)
i

)2

Ni

∑Ni

j=1(T
(j)
i )2

, (27)

whose bias we now investigate. From Eq. 25 we have that for n ∈ N

P(Ti(xn) > n) = θi F (xn)
nγ + o(1),
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which motivates consideration of the positive integer valued random variable T

defined by
P(T > n) = θi pnγ , for n ≥ 1,

where p ∈ (0, 1) and θi, γ ∈ (0, 1] and we may identify p with F(xn). In a similar
manner to Ferro and Segers (2003), we find that E(T ) = 1 + θip

γ (1 − pγ )−1 and
E(T 2) = 1 + θip

γ (1 − pγ )−1 + 2 θi pγ (1 − pγ )−2, so that upon simplification we
find that

2
{
E(T )

}2

E(T 2)
= 2(1 − pγ + θip

γ )2

(1 − pγ )2 + θipγ (1 − pγ ) + 2 θipγ
· (28)

A Taylor expansion of the right hand side of Eq. 28 around p = 1 gives

2
{
E(T )

}2

E(T 2)
= θi + γ (2 − 3θi/2)(1 − p) + O

{
(1 − p)2

}
, as p → 1,

so that the first order bias of θ̂i is γ (2 − 3θi/2)F̄ (xn). On the other hand, since

θi = 2
{
E(T − 1)

}2

E{(T − 1)(T − 2)}
,

this motivates the estimator

θ̃i = 2
∑Ni

j=1(T
(j)
i − 1)2

Ni

∑Ni

j=1(T
(j)
i − 1)(T (j)

i − 2)
, (29)

whose first order bias is zero. This estimator forms the key component of the intervals
estimator of Ferro and Segers (2003), which we can use to estimate θi . We note that
θ̃i may take values greater than 1 and is not defined if max(Ii) ≤ 2 as then the
denominator in Eq. 29 is zero. In order to deal with these cases, the intervals estimator
θ∗
i of θi is defined as

θ∗
i =

{
min{1, θ̂i} if max(Ii) ≤ 2,

min{1, θ̃i} if max(Ii) > 2.

While Eq. 26 also suggests an estimator for γ , this is based only on the interex-
ceedances relevant to estimating θi and also requires an estimate of F̄ (u). One
possibility is to obtain d such estimates and take the mean of these as the estimate of
γ . However, this estimator need not respect the relation γ = d−1 ∑d

i=1 θi , a conse-
quence of the fact that we dropped the o(1) terms when solving the first two moment
equations. In the examples that we consider in Section 4, we estimate γ using the
mean of the estimates for the θi values.

3.2 Maximum likelihood estimation

Theorem 4 also allows for the construction of the likelihood function for the vector of
unknown parameters. This is an attractive approach due to the modelling possibilities
that become available, however, as discussed in Ferro and Segers (2003) in the sta-
tionary case, problems arise with maximum likelihood estimation due to uncertainty
in how to assign interexceedance times to the components of the limiting mixture
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distribution. Since the asymptotically valid likelihood is used as an approximation at
some subasymptotic threshold u, all observed normalized interexceedance times are
strictly positive. Assigning all interexceedance times to the exponential part of the
limiting mixture means that they are all being classified as between cluster times.
This is tantamount to exceedances of a large threshold occuring in isolation, and so
the maximum likelihood estimator based on this, typically misspecified, likelihood
converges in probability to 1 regardless of the true underlying value of θ .

This problem was addressed in Süveges (2007) for sequences satisfying the
D(2)(xn) condition, i.e., the case k = 2 in Eq. 20. For such sequences, in the limit
as n → ∞, exceedances above xn cluster into independent groups of consecutive
exceedances, so that all observed interexceedance times equal to one are assigned to
the zero component of the mixture likelihood. On the other hand, all interexceedance
times greater than one are assigned to the exponential component of the likelihood.
It was found that, when the D(2)(xn) condition is satisfied, maximum likelihood
estimation outperforms the intervals estimator in terms of lower root mean squared
error. The consecutive exceedances model of clusters implied by D(2)(xn) is in con-
trast to the general situation where within clusters, exceedances may be separated by
observations that fall below the threshold.

If we were to make the D(2)(xn) assumption in our non-stationary setting, so that
the consecutive exceedances model for clusters is accurate, then with Ii = {T (j)

i }Ni

j=1
the interexceedance times relevant for estimating θi as in Section 3.1, we obtain the
likelihood function as

L(θ; I ) =
d∏

i=1

Li(θ; Ii)

where I = ∪d
i=1Ii is the set of all interexceedance times and

Li(θ; Ii) =
Ni∏

j=1

(1 − θi)
1[T (j)

i =1]{θiγ exp(−γ F̄ (xn)T
(j)
i )

}1[T (j)
i >1].

The full log-likelihood is then

l(θ; I ) =
d∑

i=1

(Ni − ni) log(1 − θi) +
d∑

i=1

ni log(θi) + ( d∑

i=1

ni

)
log(γ )

−γ F̄ (xn)

d∑

i=1

Ni∑

j=1

(T
(j)
i − 1) − γ F̄ (xn)

d∑

i=1

ni, (30)

where γ = d−1 ∑d
i=1 θi, ni = ∑Ni

j=1 1[T (j)
i > 1], and in practice F̄ (xn) must

be replaced with an estimate. Unlike in the stationary case, the likelihood equations
don’t have a closed form solution, essentially due to the dependence of γ on all the θi .
Equation 30, however, is easily optimized numerically provided d is not too large. If
d is large, it is more natural to parameterize θi in terms of a small number of param-
eters which we may estimate by maximum likelihood or consider non-parametric
estimation along the lines of Einmahl et al. (2016).
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Wemay generalise this idea and assign all interexceedance times less than or equal
to some value k to the zero component of the likelihood, so that the corresponding
expression for Li becomes

Li(θ; Ii) =
Ni∏

j=1

(1 − θi)
1[T (j)

i ≤k]{θiγ exp(−γ F̄ (xn)T
(j)
i )

}1[T (j)
i >k]. (31)

This may be justified by the assumption that the sequence satisfies the D(k+1)(xn)

condition. Selection of an appropriate value of k is equivalent to the selection of the
run length for the runs estimator, and this problem is considered in the stationary case
in Süveges and Davison (2010) and Juan Cai (2019). However, in a non-stationary
setting, where the clustering characteristics of the sequence may change in time, the
appropriate value of k may also be time varying, so that k may be replaced with ki in
Eq. 31. Although, as was discussed in Section 3.1, we may take a constant value of
k in the definition of D(k)(xn), for the purposes of estimating θi , one wants to select
for each i, the smallest k = ki such that Eq. 20 is satisfied (Hsing 1993). If too small
a value is selected for ki then some of the interexceedance times may be wrongly
assigned to the exponential component of the likelihood leading to an overestimate
of θi whereas if ki is selected to be too large then we tend to underestimate θi .

4 Examples

In this section we consider two simple examples of non-stationary Markov sequences
with a periodic dependence structure and common marginal distributions. The first
example we consider is the Gaussian autoregressive model

Xn+1 = ρnXn + εn, n ≥ 1, (32)

where εn ∼ N(0, 1 − ρ2
n), |ρn| < 1 and X1 ∼ N(0, 1). In our second example, we

consider a model where (Xn, Xn+1) follow a bivariate logistic distribution with joint
distribution function

F(xn, xn+1) = exp
{ − (x

−1/αn
n + x

−1/αn

n+1 )αn
}
, n ≥ 1, (33)

αn ∈ (0, 1] and X1 ∼ Fréchet(1) so that P(X1 ≤ x) = e−1/x, x ≥ 0. For the
Gaussian model, no limiting extremal clustering occurs at any point in the sequence,
so that θi = 1 for each i, in contrast to the logistic model where θi < 1 for each i.

For sufficiently well behaved stationary Markov sequences, mixing conditions
much stronger than those considered in Section 2 hold. For example, for the station-
ary Gaussian autoregressive sequence, with ρn = ρ in Eq. 32 for all n ≥ 1, Theorems
1 and 2 from Athreya and Pantula (1986) give that the mixing conditions of Theorem
1 and Theorem 4 hold for any sequence qn such that qn → ∞, qn = o(n), for any
xn. Analogous results also hold for the non-stationary models that we consider in this
section, see for example Bradley (2005) Theorem 3.3 and Davydov (1973) Theorem
4.
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4.1 Gaussian autoregressive model

Stationary sequences {Xn}∞n=1 where eachXi is a standard Gaussian random variable,
are extensively studied in Chapter 4 of Leadbetter et al. (1983). It is shown there that
if the lag n autocorrelation ρ(n) satisfies ρ(n) log n → 0, then the extremal index θ

of the sequence equals one and so no limiting extremal clustering occurs. Thus, the
stationary autoregressive sequence with ρn = ρ in Eq. 32 for all n ≥ 1 has extremal
index one, provided ρ < 1. This is a special case of the more general result that
a stationary asymptotically independent Markov sequence has an extremal index of
one (Smith 1992). We say that the stationary sequence {Xn}∞n=1 is asymptotically
independent at lag k if χ(k) = 0 where

χ(k) = lim
u→xF

P(Xn+k > u | Xn > u), k ≥ 1,

and asymptotically independent if χ(k) = 0 for all k (Ledford and Tawn 2003).
Here, we consider the non-stationary autoregressive model (32) and specify a

periodic lag one correlation function ρn+1 = 0.5 + 0.25 sin(2πn/7) for n ≥
0. Applying Theorem 6.3.4 of Leadbetter et al. (1983), and comparing the non-
stationary sequence to an independent standard Gaussian sequence, we deduce that
P(Mn ≤ xn)−�(xn)

n → 0 as n → ∞where� is the standard Gaussian distribution
function, and thus conclude that γ = 1 and θi = 1 for i = 1, . . . , 7. The same con-
clusion may also be drawn by applying Theorem 4.1 of Hüsler (1983), which shows
that if xn satisfies (7) then P(Mn ≤ xn) → e−τ .

We simulated 1000 realizations of this sequence of length 104 and, for each real-
ization, estimated θ1, . . . , θ7 and γ for a range of high thresholds, using both the
intervals estimator and maximum likelihood with k in Eq. 31 equal to zero and one.
We then repeated this procedure for sequences of length 105 and 106. We found that
the maximum likelihood estimator with k = 0 gave by far the best performance as
measured by root mean squared error in γ . In fact, in this case the 0.025 and 0.975
empirical quantiles of the estimated values of γ were both 1 to two decimal places in
all simulations. This is not surprising since selecting k = 0 ensures that all interex-
ceedance times have the correct asymptotic classification as between cluster times.
However, in a real data example such a level of prior knowledge regarding asymptotic
independence is not realistic and would render estimation redundant. Although max-
imum likelihood estimation with k = 1 performed slightly poorer than the intervals
estimator, both methods produced broadly similar results.

Table 1 shows the 0.025 and 0.975 empirical quantiles of the parameter estimates
obtained using the intervals estimator. In the table, u = qp corresponds to the thresh-
old that there is probability p of exceeding at each time point i.e., P(Xi > qp) = p.
Although the true value of each θi is 1, so that no extremal clustering occurs in the
limit as u → ∞, clustering may occur at subasymptotic levels. Moreover, there
will tend to be more subasymptotic clustering in the sequence at points with a larger
lag one autocorrelation, i.e., larger ρi . This point has been thoroughly discussed in
the context of stationary sequences and estimation of the extremal index (Ancona-
Navarrete and Tawn 2000; Eastoe and Tawn 2012) and leads to the notion of a
subasymptotic or threshold based extremal index.
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Table 1 0.025 and 0.975 empirical quantiles of the estimates of θ1, . . . , θ7, γ , in the Gaussian autoregres-
sive model using the intervals estimator

n u θ1 θ2 θ3 θ4 θ5 θ6 θ7 γ

104 q0.10 .53, .84 .39, .66 .34, .62 .46, .77 .62, .93 .69, 1.0 .66, 1.0 .62, .74

104 q0.05 .53, .96 .39, .78 .35, .74 .48, .91 .61, 1.0 .70, 1.0 .64, 1.0 .66, .82

104 q0.01 .54, 1.0 .41, 1.0 .39, 1.0 .51, 1.0 .61, 1.0 .62, 1.0 .60, 1.0 .75, .97

105 q0.10 .62, .73 .46, .56 .42, .51 .55, .65 .71, .81 .78, .90 .77, .87 .65, .69

105 q0.05 .66, .80 .50, .63 .46, .59 .60, .73 .75, .90 .81, .97 .79, .94 .70, .75

105 q0.01 .69, 1.0 .55, .84 .52, .81 .65, .96 .76, 1.0 .80, 1.0 .78, 1.0 .78, .88

106 q0.05 .71, .75 .54, .58 .51, .55 .64, .69 .80, .85 .87, .91 .84, .89 .71, .73

106 q0.01 .78, .89 .63, .73 .60, .70 .74, .84 .87, .97 .90, 1.0 .88, .99 .81, .84

106 q0.001 .77, 1.0 .65, .98 .65, .94 .75, 1.0 .82, 1.0 .83, 1.0 .83, 1.0 .86, .95

These are based on 1000 realizations of the process for different sample sizes n and thresholds u

4.2 Bivariate logistic dependence

The stationary logistic model, that is, Eq. 33 with αn = α for all n ≥ 1, has
been thoroughly studied (Smith et al. 1997; Ledford and Tawn 2003; Süveges 2007).
The parameter α controls the strength of dependence between adjacent terms in the
sequence, with α = 1 corresponding to independence and α → 0 giving complete
dependence. Such a sequence exhibits asymptotic dependence provided α < 1, in
particular, limu→∞ P(Xn+1 > u | Xn > u) = 2 − 2α . By exploiting the Markov
structure of the sequence, precise calculation of θ can be achieved using the numer-
ical methods described in Smith (1992), where it is found for example that the
sequence with α = 1/2 has θ = 0.328, and moreover, Eq. 18 is shown to hold for
all α ∈ (0, 1]. The case of α = 1/2 is also considered in Süveges (2007) where,
based on diagnostic plots, it is concluded that the D(2)(xn) condition is not satisfied
for this sequence, and moreover, the maximum likelihood estimator for θ based on a
run length of k = 1 has bias of around 20%. Süveges and Davison (2010) find that
a more suitable run length is k = 5, and in this case the maximum likelihood esti-
mator for θ has lower root mean squared error than the intervals estimator. Smaller
values of α will tend to be associated with larger values of the run length k, though
the precise nature of this relation is unclear.

We consider the non-stationary logistic model (33) with αn+1 = 0.5 +
0.25 sin(2πn/7) for n ≥ 0. Note that although we have specified the same para-
metric form for the dependence parameters α as in the previous example for ρ,
the two parameters are not directly comparable. We simulated 1000 realizations
of this process, of lengths 104 and 105, and estimated θ1, . . . , θ7 using maximum
likelihood with k = 5, at a range of different thresholds. Table 2 shows, for the
different sample sizes and thresholds considered, the 0.025 and 0.975 empirical quan-
tiles of the parameter estimates obtained from this simulation. Although the exact
values of the parameters are unknown, making evaluation of any estimators perfor-
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Table 2 0.025 and 0.975 empirical quantiles of the estimates of θ1, . . . , θ7, γ , in the logistic time series
model using maximum likelihood with k = 5

n u θ1 θ2 θ3 θ4 θ5 θ6 θ7 γ

104 q0.10 .19, .39 .38, .58 .44, .65 .30, .52 .12, .29 .05, .19 .08, .23 .28, .35

104 q0.05 .21, 46 .41, .67 .46, .72 .30, .55 .11, .34 .05, .22 .08, .27 .29, .39

104 q0.01 .11, .65 .30, .85 .37, .92 .19, .74 .03, .50 .00, .34 .00, .41 .27, .48

105 q0.10 .22, .35 .42, 54 .48, .62 .32, .49 .16, .24 .08, .17 .11, .20 .29, .33

105 q0.05 .27, .42 .46, .61 .53, .66 .36, .51 .17, .29 .08, .19 .10, .21 .32, .37

105 q0.01 .27, .46 .48, .67 .53, .73 .35, .55 .15, .32 .07, .20 .11, .26 .33, .40

These are based on 1000 realizations of the process for different sample sizes n and thresholds u

mance impossible, an upper bound for θi is easily obtained as limu→∞ P(Xi+1 ≤
u | Xi > u) = 2αi − 1. In our case this gives the bounds (θ1, . . . , θ7) ≤
(0.41, 0.62, 0.67, 0.52, 0.31, 0.19, 0.24) and γ ≤ 0.42 where the relation ≤ is inter-
preted componentwise. It is conceivable that the methods in Smith (1992) could be
adapted to the non-stationary case to allow exact computation of θi though we do not
pursue this direction here.

We also considered estimation of θi using the intervals estimator and obtained
similar results to the maximum likelihood estimates. The median value of the 1000
estimates for each parameter using the different methods of estimation are shown in
Fig. 1 for the sample size of 105 and threshold q0.05. The estimators clearly recover
the periodicity in the dependence structure of the sequence and, on average, respect
the upper bound for θi of 2αi − 1.

5 Proofs

5.1 Auxiliary results

In this section we state and prove some Lemmas that are required in the proof of
Theorem 1.

Lemma 3 Let {tn}∞n=1 be a sequence of positive integers and ai,n, i, n ∈ N, an array
of non-negative real numbers such that tn → ∞ and An = max1≤i≤tn ai,n → 0 as
n → ∞. Then,

tn∑

i=1

ai,n → τ ≥ 0 (34)

if and only if

tn∏

i=1

(1 − ai,n) → e−τ . (35)
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Fig. 1 Illustration of estimators (triangles: intervals estimator, and circles: maximum likelihood with k =
5) obtained from 103 realizations from the non-stationary logistic model of length 105 and threshold q0.05.
The marked points correspond to the median estimate from 103 realizations of the model. The grey region
contains the 0.025 and 0.975 empirical quantiles of the parameter estimates using both the intervals and
maximum likelihood estimators. It is constructed by taking the pointwise maxima of the 0.975 quantiles
(upper boundary) and pointwise minima of the 0.025 quantiles (lower boundary). The solid black curve
shows the upper bound for θi of 2αi − 1

Proof Using the fact that log(1 − x) = −x + R(x) where |R(x)| < Cx2, for suffi-
ciently small x > 0, for some C > 0, we have

∑tn
i=1 log(1 − ai,n) = −∑tn

i=1 ai,n +∑tn
i=1 R(ai,n) and

|
tn∑

i=1

R(ai,n)| ≤ C

tn∑

i=1

a2i,n ≤ CAn

tn∑

i=1

ai,n, (36)

so that
∑tn

i=1 log(1 − ai,n) = −( ∑tn
i=1 ai,n

)(
1 + o(1)

)
or equivalently

log
tn∏

i=1

(1 − ai,n) = −( tn∑

i=1

ai,n

)(
1 + o(1)

)
, (37)

from which the result follows.

Lemma 4 Let {tn}∞n=1 be a sequence of positive integers and ai,n, i, n ∈ N, an array
of non-negative real numbers such that tn → ∞, An = max1≤i≤tn ai,n → 0 and∑tn

i=1 ai,n is bounded above as n → ∞. Then,

tn∏

i=1

(1 − ai,n) − exp

(
−

tn∑

i=1

ai,n

)
→ 0. (38)
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Proof This follows from Lemma 3 by considering subsequences along which∑tn
i=1 ai,n converges.

Lemma 5 Let g : R → R be a bounded function. If f (x) = A(x)g(x) and
limx→∞ A(x) = 1, then f (x) = g(x) + o(1) as x → ∞.

Proof As g is bounded, ∃M > 0 such that |g(x)| < M, ∀x ∈ R. Now let ε > 0. As
limx→∞ A(x) = 1, ∃x0 such that

|A(x) − 1| < ε/M for x > x0.

Then for x > x0

|f (x) − g(x)| = |g(x)||A(x) − 1| < Mε/M = ε.

Lemma 6 Let {Xn}∞n=1, xn, pn and qn be as in Lemma 2 such that Eq. 7 holds and
assume P(Mn ≤ xn) → L ∈ (0, 1). Let sn be such that pn = o(sn), sn = o(n) and
tn = 
n/(sn + qn)�. Then

tn∑

i=1

P(Mi
sn−pn,sn

> xn) = o

( tn∑

i=1

P(Mi
0,sn−pn

> xn, M
i
sn−pn,sn

≤ xn)

)
(39)

where Mi
j,k = max {Xi

j+1, . . . , X
i
k} and Xi

j = X(i−1) (sn+qn)+j .

Proof We first note that Lemma 2 also holds with blocks of length sn, i.e., with sn in
place of pn in the definition of Ai in Eq. 8 and tn in place of rn. Thus from Eq. 10,
with blocks of length sn, we have that P(Mn ≤ xn) − ∏tn

i=1 P(M(Ai) ≤ xn) → 0 so
that

∏tn
i=1 P(M(Ai) ≤ xn) → L ∈ (0, 1), or equivalently

tn∑

i=1

log
(
1 − P(M(Ai) > xn)

) → log(L). (40)

Now we note that max1≤i≤tn P(M(Ai) > xn) → 0 since P(M(Ai) > xn) ≤ snF̄ (xn)

and sn = o(n) and F̄ (xn) = τ n−1 + o(n−1). Thus, using log(1 − t) = −t + o(t) as
t → 0, Eq. 40 may be written

−
tn∑

i=1

P(M(Ai) > xn) +
tn∑

i=1

o(P(M(Ai) > xn)) → log(L). (41)

Now it is easily seen that the second sum in Eq. 41 converges to zero since

tn∑

i=1

o(P(M(Ai) > xn)) =
tn∑

i=1

o
(
snF̄ (xn)

) ≤ tn snF̄ (xn)o(1)

≤ sn

sn + qn

nF̄ (xn)o(1) → 0,
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and so Eq. 41 implies
∑tn

i=1 P(M(Ai) > xn) → − log(L). Now, decomposing the
event {M(Ai) > xn} as a disjoint union we get

tn∑

i=1

P(Mi
0,sn−pn

> xn, M
i
sn−pn,sn

≤ xn) +
tn∑

i=1

P(Mi
sn−pn,sn

> xn) → − log(L).

(42)

Again, the second sum in Eq. 42 goes to zero since it is bounded above by
tnpnF̄ (xn) ≤ {pn/(sn + qn)}nF̄ (xn) → 0, from which Eq. 39 follows.

5.2 Proof of Lemma 1

We use induction on the number of subintervals, k. The case k = 2 is just the fact
that {Xn}∞n=1 satisfies AIM(xn). Assuming that the result is true for k such arbitrary
subintervals, we will verify it also holds for the k + 1 intervals I1, I2, . . . , Ik, Ik+1.
Let I ∗

1 be the interval separating I1 and I2 and let J = I1∪I ∗
1 ∪I2, and we note that J

is an interval with |J | > qn and since {(M(J ∪∪k+1
i=3 Ii) ≤ xn} ⊆ {M(∪k+1

i=1 Ii) ≤ xn)}
we have,

0 ≤ P(M(∪k+1
i=1 Ii) ≤ xn)−P(M

(
J ∪∪k+1

i=3 Ii

) ≤ xn) ≤ P(M(I ∗
1 ) > xn) ≤ qnF̄ (xn),

(43)

so we may write P(M(∪k+1
i=1 Ii) ≤ xn) = P(M

(
J ∪ ∪k+1

i=3 Ii

) ≤ xn) + R1,n where the
remainder R1,n satisfies R1,n ≤ qnF̄ (xn). We then have

∣∣P(M(∪k+1
i=1 Ii) ≤ xn) −

k+1∏

i=1

P(M(Ii) ≤ xn)
∣∣ (44)

= ∣∣P(M
(
J ∪ ∪k+1

i=3 Ii

) ≤ xn) −
k+1∏

i=1

P(M(Ii) ≤ xn) + R1,n
∣∣ (45)

= ∣∣P(M(J )≤xn)

k+1∏

i=3

P(M(Ii)≤xn) −
k+1∏

i=1

P(M(Ii)≤xn) + R1,n + R2,n
∣∣ (46)

≤ ∣∣P(M(J ) ≤ xn) − P(M(I1) ≤ xn)P(M(I2) ≤ xn)
∣∣ + |R1,n| + |R2,n| (47)

where |R2,n| ≤ (k − 1)αn + 2(k − 2)qnF̄ (xn) and we have used our induction
hypothesis to get (46) since J ∪ ∪k+1

i=3 Ii is a union of k intervals with adjacent inter-
vals separated by qn. Now note that since {M(J) ≤ xn} ⊆ {M(I1 ∪ I2) ≤ xn} we
have 0 ≤ P(M(I1 ∪ I2) ≤ xn) − P(M(J ) ≤ xn) ≤ qnF̄ (xn) and we may write
P(M(J ) ≤ xn) = P(M(I1 ∪ I2) ≤ xn) + R3,n where |R3,n| ≤ qnF̄ (xn). Thus from
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Eqs. 44 and 47 we have

∣∣P(M(∪k+1
i=1 Ii) ≤ xn) −

k+1∏

i=1

P(M(Ii) ≤ xn)
∣∣

≤ ∣∣P(M(I1 ∪ I2)≤xn)−P(M(I1) ≤ xn)P(M(I2) ≤ xn) + R3,n
∣∣ + |R1,n| + |R2,n|

≤ ∣∣P(M(I1 ∪ I2)≤xn)−P(M(I1)≤xn)P(M(I2)≤xn)
∣∣ + |R1,n| + |R2,n| + |R3,n|

≤ αn + qnF̄ (xn) + (k − 1)αn + 2(k − 2)qnF̄ (xn) + qnF̄ (xn)

= kαn + 2(k − 1)qnF̄ (xn)

as required.

5.3 Proof of Lemma 2.

As {Mn ≤ xn} ⊆ ∩rn
i=1{M(Ai) ≤ xn} we have

0 ≤ P(M(∪rn
i=1Ai) ≤ xn) − P(Mn ≤ xn) ≤ P(M(∪rn

i=1A
∗
i ) > xn)

≤ rnqnF̄ (xn)

≤ n(pn + qn)
−1qn{τ n−1 + o(n−1)} → 0. (48)

Also, by Lemma 1 we have

∣∣P(M(∪rn
i=1Ai) ≤ xn)−

rn∏

i=1

P(M(Ai) ≤ xn)
∣∣ ≤ (rn −1)αn +2(rn −2)qnF̄ (xn) → 0

(49)
so that the triangle inequality and Eqs. 48 and 49 give the result.

5.4 Proof of Theorem 1.

In addition to the notation defined in Section 2.1, we also define

Xi
j = X(i−1) (pn+qn)+j , Mi

j,k = max {Xi
j+1, . . . , X

i
k}. (50)

Now, for i = 1, . . . , rn, we have

P(M(Ai) ≤ xn) = 1 − P(M(Ai) > xn)

= 1 −
pn∑

j=1

P(Xi
j > xn, M

i
j,pn

≤ xn)

≤ 1 −
pn∑

j=1

P(Xi
j > xn, M

i
j,j+pn

≤ xn)

≤ exp

{
−

pn∑

j=1

P(Xi
j > xn, M

i
j,j+pn

≤ xn)

}
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and so

P(Mn ≤ xn) =
rn∏

i=1

P(M(Ai) ≤ xn) + o(1)

≤ exp

{
−

rn∑

i=1

pn∑

j=1

P(Xi
j > xn, M

i
j,j+pn

≤ xn)

}
+ o(1). (51)

Now we note that

n∑

j=1

P(Xj > xn, Mj,j+pn ≤ xn) =
rn∑

i=1

pn∑

j=1

P(Xi
j > xn, M

i
j,j+pn

≤ xn)+o(1) (52)

since the difference between the two sums is

n∑

j=1

P(Xj > xn, Mj,j+pn ≤ xn) −
rn∑

i=1

pn∑

j=1

P(Xi
j > xn, M

i
j,j+pn

≤ xn)

=
rn∑

i=1

pn+qn∑

j=pn+1

P(Xi
j > xn, Mj,j+pn ≤ xn) + o(1)

≤ rn qn F̄ (xn) + o(1)

≤ qn

pn + qn

n F̄ (xn) + o(1) → 0

so that Eq. 51 gives

P(Mn ≤ xn) ≤ exp

{
−

n∑

j=1

P(Xj > xn, Mj,j+pn ≤ xn)

}
+ o(1). (53)

Now we prove the reverse inequality of Eq. 53, i.e.,

P(Mn ≤ xn) ≥ exp

{
−

n∑

j=1

P(Xj > xn, Mj,j+pn ≤ xn)

}
+ o(1). (54)

We will show that Eq. 54 holds under the assumption that P(Mn ≤ xn) converges
to some L in [0, 1], with the more general case following by considering subse-
quences along which P(Mn ≤ xn) converges and repeating the following argument.
By Lemma 2, specifically (10), and Lemma 4 with ai,n = P(M(Ai) > xn) we see
that L > 0, and since (54) trivially holds when L = 1 we may assume L ∈ (0, 1).
Following (O’Brien 1987), introduce a new sequence sn = o(n) which plays the role
of pn such that pn = o(sn) and let tn = 
n/(sn + qn)� which now plays the role
of rn and note that tn = o(rn) and the definitions in Eqs. 50 and 8 are modified by
replacing pn with sn. Then for i = 1, . . . tn, we have

P(M(Ai) > xn) = P(Mi
0,sn−pn

> xn, M
i
sn−pn,sn

≤ xn) + P(Mi
sn−pn,sn

> xn)
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and consequently, since Lemma 2 holds with sn in place of pn and tn in place of rn,

P(Mn ≤ xn) =
tn∏

i=1

P(M(Ai) ≤ xn) + o(1) =
tn∏

i=1

{
1 − P(M(Ai) > xn)

}
+ o(1)

=
tn∏

i=1

{
1 − P(Mi

0,sn−pn
> xn,M

i
sn−pn,sn

≤ xn) − P(Mi
sn−pn,sn

> xn)

}
+ o(1). (55)

Now, with ai,n = P(Mi
0,sn−pn

> xn, M
i
sn−pn,sn

≤ xn) + P(Mi
sn−pn,sn

> xn) we

have, for all i, ai,n ≤ snF̄ (xn) and so max1≤i≤tn ai,n ≤ snF̄ (xn) → 0 as sn =
o(n) and F̄ (xn) = τ n−1 + o(n−1). Also,

∑tn
i=1 ai,n ≤ tn max1≤i≤tn ai,n ≤ sn(sn +

qn)
−1nF̄ (xn) which is bounded above as n → ∞. Thus we may apply Lemma 4 to

Eq. 55 to get

P(Mn ≤ xn) = exp

{
−

tn∑

i=1

(
P(Mi

0,sn−pn
> xn,M

i
sn−pn,sn

≤ xn) + P(Mi
sn−pn,sn

> xn)

)}
+ o(1)

= exp

{
−

( tn∑

i=1

P(Mi
0,sn−pn

> xn,M
i
sn−pn,sn

≤ xn)

)(
1 + o(1)

)}
+ o(1) (56)

with Eq. 56 following from Lemma 6. Now Lemma 5 reduces (56) to

P(Mn ≤ xn) = exp

{
−

tn∑

i=1

P(Mi
0,sn−pn

> xn, M
i
sn−pn,sn

≤ xn)

}
+ o(1) (57)

≥ exp

{
−

tn∑

i=1

sn∑

j=1

P(Xi
j > xn, M

i
j,j+pn

≤ xn)

}
+ o(1) (58)

with Eq. 58 following from Eq. 57 by the inclusions {Mi
0,sn−pn

> xn, M
i
sn−pn,sn

≤
xn} ⊆ ⋃sn−pn

j=1 {Xi
j > xn, M

i
j,j+pn

≤ xn} ⊆ ⋃sn
j=1{Xi

j > xn, M
i
j,j+pn

≤ xn} and
the union bound. A similar argument that was used to show (52) gives

n∑

j=1

P(Xj > xn, Mj,j+pn ≤ xn) =
tn∑

i=1

sn∑

j=1

P(Xi
j > xn, M

i
j,j+pn

≤ xn)+o(1) (59)

so that Eq. 58 becomes

P(Mn ≤ xn) ≥ exp

{
−

n∑

j=1

P(Xj > xn, Mj,j+pn ≤ xn)

}
+ o(1) (60)

and so Eqs. 53 and 60 together prove (11). Also, since

exp

{
−

n∑

j=1

P(Xj > xn, Mj,j+pn ≤ xn)

}
=

[
exp

{ − nF̄ (xn)
}]γn

with γn = n−1 ∑n
j=1 P(Mj,j+pn ≤ xn | Xj > xn), this also gives (12).
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5.5 Proof of Theorem 2.

Throughout we let θi,n = P(Mi,i+pn ≤ xn | Xi > xn). From Corollary (1) we know
that P(Mn ≤ xn) → e−τγ ′

with γ ′ = limn→∞ n−1 ∑n
i=1 θi,n which is easily seen to

converge to the same value as limn→∞ n−1 ∑n
i=1 θi since

|n−1
n∑

i=1

θi − n−1
n∑

i=1

θi,n| ≤ n−1
n∑

i=1

|θi,n − θi |

≤ max
1≤i≤n

|θi,n − θi | → 0. (61)

This establishes the first part of the Theorem.
To show that, P(Mn ≤ yn) → e−τ ′γ , define n′ = 
(τ ′/τ)n� so that n′F̄ (xn) → τ ′

or equivalently F(xn)
n′ → e−τ ′

. Then,

|P(Mn′ ≤ xn) − P(Mn′ ≤ yn′)| ≤ n′|F(xn) − F(yn′)|
= n′|F̄ (xn) − F̄ (yn′)| → 0. (62)

Since n′ ≤ n we have by Theorem 1, P(Mn′ ≤ xn) = F(xn)
n′γ ′

n where
γ ′
n = (n′)−1 ∑n′

i=1 θi,n and γ ′
n also has limiting value limn→∞ n−1 ∑n

i=1 θi since

|(n′)−1 ∑n′
i=1 θi,n − (n′)−1 ∑n′

i=1 θi | → 0 as in Eq. 61. Then, since F(xn)
n′ → e−τ ′

,
we have P(Mn′ ≤ xn) → e−τ ′γ and so from Eq. 62, P(Mn ≤ yn) → e−τ ′γ also with
γ as in Eq. 17.

5.6 Proof of theorem 3.

The first step in the proof is to show that we have, for each integer k ≥ 1,

P(Mn ≤ xn) − P
k(Mn′ ≤ xn) → 0 (63)

where n′ = 
n/k�. To do this we define intervals Ii and I ∗
i , 1 ≤ i ≤ k, of alternating

large and small lengths as follows,

Ii = {(i − 1)n′ + 1, . . . , in′ − qn}, I ∗
i = {in′ − qn + 1, . . . , in′}. (64)

We show that
∣∣P(Mn ≤ xn) − P(M(∪k

i=1Ii) ≤ xn)
∣∣ → 0, (65)

∣∣P(M(∪k
i=1Ii) ≤ xn) −

k∏

i=1

P(M(Ii) ≤ xn)
∣∣ → 0, (66)

∣∣
k∏

i=1

P(M(Ii) ≤ xn) −
k∏

i=1

P(M(Ii ∪ I ∗
i ) ≤ xn)

∣∣ → 0, (67)

and

∣∣
k∏

i=1

P(M(Ii ∪ I ∗
i ) ≤ xn) − P

k(Mn′ ≤ xn)
∣∣ → 0, (68)

from which Eq. 63 follows by the triangle inequality.
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Equation 65 follows from {Mn ≤ xn} ⊆ {M(∪k
i=1Ii) ≤ xn} and so

P(M(∪k
i=1Ii) ≤ xn) − P(Mn ≤ xn) ≤ P(∪k

i=1{M(I ∗
i ) > xn}) ≤ kqnF̄ (xn) → 0

since qn = o(n) and F̄ (xn) = τ/n + o(n−1).
Equation 66 follows immediately from Lemma 1 as Ij , 1 ≤ j ≤ k, are distinct

subintervals of {1, . . . , n}, and Ii and Ii+1 are separated by qn.
Equation 67 follows from {M(Ii ∪I ∗

i ) ≤ xn} ⊆ {M(Ii) ≤ xn} and 0 ≤ P(M(Ii) ≤
xn)−P(M(Ii ∪I ∗

i ) ≤ xn) ≤ qnF̄ (xn) → 0 so that P(M(Ii) ≤ xn) = P(M(Ii ∪I ∗
i ) ≤

xn) + o(1) for 1 ≤ i ≤ k.
For Eq. 68, we first note that P(M(I1 ∪ I ∗

1 ) ≤ xn) = P(M ′
n ≤ xn). Since Ii ∪ I ∗

i is

an interval of length n′, 1 ≤ i ≤ k, we have by periodicity that M(Ii ∪ I ∗
i )

D= Mr,r+n′
for some r ∈ {0, 1, . . . , d − 1}. Then for 2 ≤ i ≤ k, we have

|P(M(Ii ∪ I ∗
i )) − P(M(I1 ∪ I ∗

1 ))| = |P(Mr,r+n′ ≤ xn) − P(M ′
n ≤ xn)|

≤ |P(Mr+n′ ≤ xn) − P(M ′
n ≤ xn)| +

|P(Mr,r+n′ ≤ xn) − P(Mr+n′ ≤ xn)|
≤ rF̄ (xn) + rF̄ (xn)

≤ 2dF̄ (xn) → 0.

Hence
∏k

i=1 P(M(Ii ∪ I ∗
i ) ≤ xn) = ∏k

i=1 P(M(I1 ∪ I ∗
1 ) ≤ xn) + o(1) = P

k(Mn′ ≤
xn) + o, which establishes (63).

Now we note that since {Xn}∞n=1 satisfies AIM(xn) with nF̄ (xn) → τ , it also
satisfies AIM(yn) whenever nF̄ (yn) → τ ′ ≤ τ . This follows in the exact same way
as for the D(xn) condition, see, e.g., Lemma 3.6.2. in Leadbetter et al. (1983). This
fact together with Eq. 63 allows the proof to proceed in exactly the same manner as
the proof of Theorem 3.7.1. in Leadbetter et al. (1983).

5.7 Proof of Theorem 4

For n, q ∈ N and u ∈ R, we define the mixing coefficients αn,q(u) by

αn,q(u) = max | P(
M(I1 ∪ I2) ≤ u

) − P
(
M(I1) ≤ u

)
P
(
M(I2) ≤ u

) |
where the maximum is taken over intervals I1 and I2 that are separated by q, with
min{|I1|, |I2|} ≥ q, min{min(I1),min(I2)} ≥ 1 and max{max(I1),max(I2)} ≤ n.

We first note that since both qn = o(n) and 0 ≤ αn = αn,qn(xn) ≤ α∗
n,qn

(xn) → 0,
we can find a sequence of positive integers pn = o(n) such that nαn = o(pn) and
qn = o(pn) so that the conditions of Theorem 1 are satisfied.

Let t > 0 and write kn = 
t/F̄ (xn)� ∼ tn/τ so that for sufficiently large n,

kn > pn + qn. Now, fix i ∈ N. For sufficiently large n we have

P(Mi+pn,i+pn+qn > xn | Xi > xn) ≤ qnF̄ (xn) + α∗
n,qn

(xn) → 0

so that

P(Mi,i+kn ≤ xn | Xi > xn) = P(Mi,i+pn ≤ xn, Mi+pn+qn,i+kn ≤ xn | Xi > xn) + o(1).

In a similar way, since {Mi+kn ≤ xn} ⊆ {Mi+pn+qn,i+kn ≤ xn}, we have
P(Mi+pn+qn,i+kn ≤ xn) − P(Mi+kn ≤ xn) = P(Mi+pn+qn > xn, Mi+pn+qn,i+kn ≤ xn)

≤ (i + pn + qn)F̄ (xn) → 0,
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so that P(Mi+pn+qn,i+kn ≤ xn) = P(Mi+kn ≤ xn) + o(1). Now we can derive the
limiting distribution of F̄ (xn)Ti(xn). We have

P(F̄ (xn)Ti(xn) > t) = P(Ti(xn) > kn) = P(Xi+1 ≤ xn, . . . Xi+kn ≤ xn | Xi > xn)

= P(Mi,i+kn ≤ xn | Xi > xn)

= P(Mi,i+pn ≤ xn, Mi+pn+qn,i+kn ≤ xn | Xi > xn) + o(1)

= P(Mi,i+pn ≤ xn | Xi > xn)P(Mi+pn+qn,i+kn ≤ xn | Xi >

xn, Mi,i+pn ≤ xn) + o(1)

= {
θi + o(1)

}{
P(Mi+kn ≤ xn) + o(1)

} + o(1). (69)

Now we focus on the term P(Mi+kn ≤ xn) appearing in Eq. 69. Since P(Mkn ≤
xn) − P(Mi+kn ≤ xn) ≤ iF̄ (xn) we have P(Mi+kn ≤ xn) = P(Mkn ≤ xn) + o(1).
Since kn = O(n) we have α∗

kn,qn
(xn) → 0 and so αkn,qn(xn) → 0 also. Thus we

may find a sequence p′
n = o(n) such that knαkn,qn = o(p′

n) and qn = o(p′
n), e.g.,

we may take p′
n = 
(kn max{qn, knαkn,qn(xn)})1/2�. Then applying Theorem 1 to

the first kn terms we get P(Mkn ≤ xn) = F(xn)
knγ ′

n where γ ′
n = k−1

n

∑kn

j=1 θ ′
j,n with

θ ′
j,n = P(Mj,j+p′

n
≤ xn | Xj > xn).

We now verify that γ ′
n has limiting value γ = limn→∞ n−1 ∑n

j=1 θj . Define
sequences an, bn and k′

n by an = max{pn, p
′
n}, bn = min{pn, p

′
n} and k′

n = kn + an

and note that k′
n = O(n). Then with the usual notation θj,n = P(Mj,j+pn ≤ xn |

Xj > xn), we have for all 1 ≤ j ≤ kn that, for sufficiently large n, |θ ′
j,n − θj,n| ≤

P(Mj+bn,j+an > xn | Xj > xn) ≤ |pn − p′
n| F̄ (xn) + α∗

k′
n,qn

(xn) where we have
used the fact that bn > qn for sufficiently large n and α∗

n,q(u) is non-decreasing in n

for fixed q and u. Therefore, |k−1
n

∑kn

j=1 θj,n − k−1
n

∑kn

j=1 θ ′
j,n| ≤ |pn −p′

n| F̄ (xn)+
α∗

k′
n,qn

(xn) → 0 and so k−1
n

∑kn

j=1 θj,n and k−1
n

∑kn

j=1 θ ′
j,n have the same limit which

equals γ since |k−1
n

∑kn

j=1 θj,n − k−1
n

∑kn

j=1 θj | ≤ max1≤j≤kn |θj − θj,n| → 0.

Finally, we have P(Mi+kn ≤ xn) = P(Mkn ≤ xn) + o(1) = F(xn)
kn(γ+o(1)) =

[e−t + o(1)]γ+o(1) since nF̄ (xn) → τ implies that knF̄ (xn) → t which in turn
implies that F(xn)

kn → e−t . Substituting P(Mi+kn ≤ xn) = e−γ t + o(1) in Eq. 69
then gives the result.
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