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Abstract
Threshold selection plays a key role in various aspects of statistical inference of rare
events. In this work, two new threshold selection methods are introduced. The first
approach measures the fit of the exponential approximation above a threshold and
achieves good performance in small samples. The second method smoothly estimates
the asymptotic mean squared error of the Hill estimator and performs consistently well
over a wide range of processes. Both methods are analyzed theoretically, compared to
existing procedures in an extensive simulation study and applied to a dataset of finan-
cial losses, where the underlying extreme value index is assumed to vary over time.

Keywords Peaks-over-threshold approach · Power laws · Hill estimator ·
Tuning parameter selection · Bias estimation

AMS 2000 Subject Classifications 62G32 · 62G05 · 62F12 · 97M30

1 Introduction

Extreme value analysis of heavy-tailed distributions is important for various applica-
tions. In seismology and climatology, for example, statistics of extremes are used to
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study earthquakes (Beirlant et al. 2018) or heavy precipitation (Carreau et al. 2017).
Another important field of research is analysing high financial losses, which becomes
particularly interesting if the losses depend on covariates (Chavez-Demoulin et al.
2016; Hambuckers et al. 2018).

To investigate the behaviour of heavy tails, we consider random variables from
the max-domain of attraction (DoA) of a Fréchet distribution. Let X1, . . . , Xn be
independent and identically distributed (i.i.d.) random variables with a distribution
function F , where F is in the DoA of an extreme value distribution (evd) Gγ with
extreme value index γ > 0. This means there exist sequences an > 0 and bn real, s.t.

lim
n→∞ Fn(anx + bn) = Gγ (x) := exp

(
−x−1/γ

)
.

In this situation the following first order condition holds,

lim
t→∞

1 − F(tx)

1 − F(t)
= x−1/γ , x > 0, (1)

i.e. the survival function 1 − F is regularly varying with index −1/γ . Distributions
fulfilling this condition are called Pareto-type distributions, because they only differ
from the Pareto distribution by a slowly varying function �F (x), i.e. 1 − F(x) =
x−1/γ �F (x).

We can interpret the quotient in Eq. 1 as a conditional probability, from which it
follows directly that

X1

t

∣∣∣X1 > t
D−→ P, as t → ∞ and P ∼ Pareto

(
1, 1

γ

)
,

log

(
X1

t

) ∣∣∣X1 > t
D−→ E, as t → ∞ and E ∼ Exp

(
1
γ

)
, (2)

where Pareto (1, 1/γ ) denotes the Pareto distribution with the scale parameter 1 and
the shape parameter 1/γ . Thus, for a sufficiently large threshold t the data above this
threshold can be modelled by a Pareto or an exponential distribution. In this article
we concentrate on the exponential approximation and utilize it for inference on the
extreme value index. It is common to consider the threshold t = X(n−k,n) and choose
the sample fraction k instead of t , where X(1,n) ≤ · · · ≤ X(n,n) denote the order
statistics of a sample of size n. In this case, a natural estimator for γ under the expo-
nential approximation of the log-spacings Y(i,k) := log(X(n−i+1,n)) − log(X(n−k,n))

is their mean, the Hill estimator (Hill 1975),

γ̂k := 1

k

k∑
i=1

log

(
X(n−i+1,n)

X(n−k,n)

)
= 1

k

k∑
i=1

Y(i,k). (3)

The Hill estimator is still among the most popular and well-known estimators for
the extreme value index, although its sample path as a function in k can be highly
unstable and estimation, therefore, crucially depends on the choice of the sample
fraction k. This dependence highlights the difficulties in estimating γ in the peaks-
over-threshold approach. To select a threshold above which the data can be used for
statistical inference in the tail is one of the most fundamental problems in the field of
extreme value analysis.
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Due to the importance of this task, an appropriate choice of the threshold has
been discussed extensively in extreme value research over the last decades and
suggested solutions cover a variety of methodologies. We give a short summary
of different types of approaches and stress the specific difficulties that arise. We
mainly concentrate on the methods considered in the simulation study in Section 4.
More comprehensive reviews about threshold selection can be found in Scarrott and
MacDonald (2012) and Dey and Yan (2016).

One basic concept in threshold selection is data visualisation, which is also dis-
cussed more deeply in Kratz and Resnick (1996) and Drees et al. (2000). Popular
graphical diagnostics used in this context are the Zipf plot, Hill plot, QQ-plot or
the mean-excess plot, to name a few. A major drawback of these methods is their
subjectivity due to the necessarily personal interpretation of the plot. Further, it is a
burden to choose each threshold manually, especially in high dimensional settings
or when analysing many samples. Easier ways to select the sample fraction are rule-
of-thumb approaches such as using the upper 10% of the data (DuMouchel 1983) or
k = √

n (Ferreira et al. 2003). Reiss and Thomas (2007) present a procedure that
tries to find a region of stability among the estimates of the extreme value index.
Their method depends on a tuning parameter, whose choice is further analysed in
Neves and FragaAlves (2004). To our knowledge, no theoretical analysis exists for
this approach.

Besides these, and similar, heuristic approaches, there is a class of theoretically
motivated procedures that target the optimal sample fraction for specific estimation
tasks, such as quantile estimates (Ferreira et al. 2003), estimation of high probabilities
(Hall and Weissman 1997) or the Hill estimator, see below. Further, some suggestions
compare the empirical distribution to the fitted generalized Pareto distribution (GPD)
via goodness-of-fit tests (Northrop and Coleman 2014; Wadsworth 2016; Bader et al.
2018) or by minimizing the distance between them (Pickands 1975; Gonzalo and
Olmo 2004; Clauset et al. 2009), where the latter approach is theoretically analysed in
(Drees et al. 2018). Alternatively, Bayesian procedures can be considered for thresh-
old selection, e.g., the cross-validation approach suggested in Northrop et al. (2017)
in the context of ocean storm severity.

Of particular interest to us are methods that aim to estimate the sample fraction
kopt = arg mink>0 E(γ̂k − γ )2 which minimizes the asymptotic mean squared error
(AMSE) of the Hill estimator. To construct an estimator for kopt, Drees and Kauf-
mann (1998) utilize the Lepskii method and an upper bound on the maximum random
fluctuation of γ̂k around γ . To apply their approach it is necessary to choose several
tuning parameters and to obtain consistent initial estimates for γ and a second-order
parameter ρ. In Guillou and Hall (2001), a test statistic is constructed based on an
accumulation of log-spacings, which is tested against a critical value that has to be
chosen. Danielsson et al. (2001) introduce a double bootstrap approach to estimate
the optimal sample fraction. They need to choose the number of bootstrap samples
and a parameter n1. For n1, a data-driven, but computationally expensive selection
method is provided, where the whole bootstrap procedure is repeated for various
possible values of n1. Another estimator for kopt is given in Beirlant et al. (2002),
which employs least squares estimates from an exponential regression approach. The
method depends on an estimate for ρ and a sample fraction k0. A different approach is
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taken in Goegebeur et al. (2008), where the properties of kernel test statistics regard-
ing the estimation of bias are used in order to construct an estimator for the AMSE/γ

and minimize it with respect to k. Here the choice or estimation of the second-order
parameter ρ is needed.

In this paper, we contribute to the problem of threshold selection by introducing
two new and easily applicable methods, which do not require the user to manually
choose any tuning parameters. The first method presented in Section 2 is inspired by
the idea of testing the exponential approximation. We estimate the integrated square
error (ISE) of the exponential density under the assumption that the log-spacings are
indeed exponentially distributed. The error functional we obtain, called the inverse
Hill statistic (IHS), is very easy to compute and does not depend on any tuning param-
eters. Since this criterion is variable for small k, it can be additionally smoothed to
improve the performance. The minimizing oracle sample fraction of IHS is asymp-
totically smaller than kopt, as it is stricter against deviation from an exponential
approximation. However, this estimator performs remarkably well in small samples,
as illustrated in our simulation study.

In the second approach, we suggest a smooth estimator for the AMSE of the Hill
estimator, called SAMSEE (smooth AMSE estimator). This estimator is based on
a preliminary estimate of γ and an estimate of the bias of the Hill estimator. For
the preliminary gamma estimate we use a generalized Jackknife approach in Gomes
et al. (2000). By minimizing SAMSEE we estimate the optimal sample fraction kopt.
For estimation, the choice of a large sample fraction K is necessary, for which we
present a data-driven selection procedure in Section 3. SAMSEE utilizes the idea of
fixing ρ = −1, which is justified by good performance in simulations and leads to a
simpler and more robust estimator than employing an estimate ρ̂.

After introducing the two novel threshold selection methods in Sections 2 and 3
we compare these methods to various other approaches in a numerical analysis in
Section 4. In Section 5 the importance of automated threshold selection procedures is
illustrated in an application, where we non-parametrically estimate an extreme value
index that varies over time. This example illustrates how the new methods enable the
selection of a threshold that depends on covariates.

The proof of Theorem 3, which describes the asymptotic behaviour of the bias
estimator, as well as the auxiliary results, can be found in Appendix A. Appendix B
provides additional results from our simulation study.

2 Inverse Hill statistic

In this section, we introduce the first threshold selection procedure by analysing the
integrated square error (ISE) between the exponential density hγ and its parametric
estimator hγ̂k

employing the Hill estimator,

ISE(k) :=
∫ {

hγ (x) − hγ̂k
(x)
}2 dx = 1

2γ
− 2

γ + γ̂k

+ 1

2γ̂k

,

where hγ (x) := 1
γ
e−x/γ and γ̂k is the Hill estimator. The first term of ISE is con-

stant and thus plays no role for selecting k. The last term of ISE is known, but the
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second term is not. Therefore, we cannot minimize ISE directly. Instead, we want to
estimate and minimize its expectation under the exponential approximation. This is
based on the idea of considering the hypothesis H0 that the log-spacings Y(i,k) are
indeed exponentially distributed. Under H0 the Hill estimator is gamma distributed
as the sum of independent exponential random variables and the mean of ISE (MISE)
can be calculated explicitly. We observe that MISE is a decreasing function in k under
the exponential approximation,

MISE(k) − 1

2γ
:= EH0[ISE(k)] − 1

2γ
= − 1

γ
C(k) + k

2(k − 1)γ
, (4)

where C(k) := 2 exp(k)kk�(1 − k, k) and �(a, b) := ∫∞
b

ta−1e−tdt denotes the
upper incomplete gamma function. One can show that C(k) ≈ 1 + 1/(4k), i.e. it
converges to 1 very fast, s.t. we obtain

lim
k→∞EH0

[
2

γ + γ̂k

]
= 1

γ
= EH0

[
k − 1

kγ̂k

]
.

This provides an estimator for the first term in Eq. 4 under H0. However, owing
to its high variability for small k, we instead want to find an estimator of the form
w/γ̂k for some w depending on k that minimizes the MSE of that estimator under the
exponential approximation. To do so, we approximate its MSE in the following way,

EH0

[(
w

γ̂k

− 2

γ̂k + γ

)2
]

≈ w2k2

γ 2(k − 1)(k − 2)
− 2wk

γ 2(k − 1)
+ 1

γ 2
. (5)

The approximation depends on similar functions as C(k), which quickly become
constant. The MSE in Eq. 5 is minimized for w = (k − 2)/k. Thus, we suggest the
inverse Hill statistic

IHS(k) := 1

2γ̂k

− k − 2

γ̂kk
= 4 − k

2γ̂kk

to estimate MISE(k) − (2γ )−1 and the sample fraction selected via minimizing IHS,
k̂IHS := arg min1<k<n{IHS(k)}.
By minimizing IHS we select a sample fraction where IHS starts increasing and
thereby contradicts the behaviour of MISE under H0. This criterion can be compared
to hypothesis testing with a high significance level α, which implies seeking high
confidence when deciding to not reject H0. Further properties of k̂IHS are analysed
theoretically in Section 2.1 and for finite samples in a numerical study in Section 4.

Figure 1 illustrates that IHS exhibits high fluctuations for small k, which might
make the automated selection of the minimum highly variable. To control this prob-
lematic behaviour we smooth IHS. More specifically, we want to estimate E[IHS] by
considering the regression problem

IHS(k) = E[IHS(k)] + σεk, k = 1, . . . , n,

where σ > 0 and E[εk] = 0. Due to the structure of the Hill estimator, the random
variables εk are highly dependent, which needs to be taken into account in estimation.
In our simulations, we apply a Bayesian non-parametric procedure introduced by
Serra et al. (2018) to obtain a smooth estimator for the expectation of IHS – denoted
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Fig. 1 On the left, the IHS (dashed) and sIHS (red) are plotted for a Fréchet(2) sample of size n = 500.
On the right the Hill plot for the same sample with the minimizing k of IHS (black) and sIHS (red) is
shown, where the dotted line marks the true value of γ = 0.5

as sIHS – comprising less variation for small k, as illustrated in Fig. 1, and thereby
improving automatic threshold selection. The approach implemented in the eBsc
R-package is completely data-driven and non-parametric: both mean and covariance
structure of the data are estimated non-parametrically with the smoothing parameters
chosen from the data. Alternatively, one can employ any other smoothing technique,
which accounts for dependence in the error (Opsomer et al. 2001; Krivobokova and
Kauermann 2007; Lee et al. 2010). A very good choice is the well-established func-
tion gamm from the mgcv package. However, for this procedure some parameters
need to be fixed in advance. We experimented with several settings and found that
choosing the number of knots to be at least 40 (or more) and specifying the corre-
lation structure to corAR1() delivers results very much comparable with the eBsc
function.

We finally want to remark on the relation between IHS and ISE, which is given by

IHS + 1

2γ
= ISE + 2

kγ̂k

+ γ̂k − γ

γ̂k(γ̂k + γ )
. (6)

This equation points out that minimizing IHS does not minimize ISE, as IHS takes
an additional bias term into account, and that the sign of the bias of γ̂k plays a role.
If the bias is negative, we suggest using

IHS−(k) := 4 + k

2γ̂kk
and k̂IHS− := arg min

1<k<n
IHS−(k)

instead of IHS, where the two cases can easily be distinguished by analysis of the Hill
estimator for large k. If the bias of the Hill estimator is positive, which is the stan-
dard case, we can see from Eq. 6 that IHS selects smaller k (larger thresholds) than
ISE. This is not surprising, because we estimate the expectation of the ISE under the
hypothesis that the exponential approximation holds. This is a much more conserva-
tive error functional, meaning it is more strict against deviation from the exponential
distribution.

In conclusion, with IHS we do not aim to estimate kopt but to find a sample fraction
where we can be very certain that the exponential approximation still holds. The
performance of sIHS in small samples is illustrated in simulations and an application
in Sections 4 and 5.
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2.1 Theoretical analysis of IHS

In order to understand the IHS asymptotically, we consider the second-order condi-
tion,

lim
t→∞

U(tx)
U(t)

− xγ

A(t)
= xγ xρ − 1

ρ
, (7)

for x > 0 and with second-order parameter ρ < 0. Here, A(t) denotes a function
converging to zero as t goes to infinity and |A| is regularly varying with index ρ. Fur-

ther, U is defined by U(x) := F↼
(

1 − 1
x

)
, where F↼ denotes the left inverse of the

distribution function F . In this setting the following asymptotic normality statements
for the Hill estimator γ̂k hold.

Theorem 1 (Theorem 3.2.5 in de Haan and Ferreira, 2006) Let X1, . . . , Xn be i.i.d.
random variables with distribution function F ∈ DoA(Gγ ) for γ > 0. If Eq. 7 holds
and k is an intermediate sequence, i.e. k → ∞ and k/n → 0 as n → ∞, then

√
k(γ̂k − γ )

D−→ N
(

λ

(1 − ρ)
, γ 2
)

,

as n → ∞ and with λ := lim
k→∞

√
kA(n/k).

Theorem 2 Under the conditions of Theorem 1, it holds as n → ∞ that

√
k

(
1

γ̂k

− 1

γ

)
D−→ N

( −λ

(1 − ρ)γ 2
,

1

γ 2

)
.

Proof Apply the delta method to Theorem 1.

Following the reasoning in de Haan and Ferreira (2006), page 78, the minimizing
point of the AMSE of the Hill estimator can be found explicitly if considering A(t) =
ctρ with c 	= 0. In this special case, the minimizing sample fraction can be expressed
as

kopt =
(

γ 2(1 − ρ)2

−2ρc2

)1/(1−2ρ)

n−2ρ/(1−2ρ). (8)

Under the same assumption, we can calculate the minimizing point kIHS of the
asymptotic expectations of IHS and IHS−. Let AE denote the asymptotic expectation
referring to the expectation of the limiting distribution in Theorem 2. Then

kIHS := arg mink AE[IHS] = arg mink

{
2
γ k

+ A(n/k)

2γ 2(1−ρ)
· k−4

k

}

≈ arg mink

{
2
γ k

+ A(n/k)

2γ 2(1−ρ)

}
=
(

4γ (1−ρ)
−ρc

)1/(1−ρ)

n−ρ/(1−ρ).

It is easy to check that the same formula holds for IHS− if c is replaced by its absolute
value. Comparing kopt and kIHS for a fixed ρ > −∞ we obtain that

kIHS

kopt
≈
(−ρ

32
· kIHS

)−1/(1−2ρ)

≈ d · n
ρ

(1−2ρ)(1−ρ) −→ 0, (9)

887Threshold selection in univariate extreme value analysis



as n → ∞ and for a constant d depending on ρ, γ and c. This supports what Eq. 6
already suggested: minimizing IHS gives asymptotically a smaller k than kopt. Thus,
kIHS asymptotically performs suboptimally for the Hill estimator but still is an inter-
mediate sequence leading to consistent estimates asymptotically. For finite samples
the ratio crucially depends on ρ, and kIHS can also be larger than kopt, as illustrated
in Fig. 2. It also holds that kIHS/kopt → 1, as ρ → −∞, since both sample fractions
converge to n in this case.

Although kIHS is of smaller order than kopt asymptotically, the simulation study in
Section 4 shows that k̂IHS works quite well in small samples and in particular when
used for quantile estimation of certain processes. We consider the following quantile
estimator for the (1 − p)-quantile,

q̂k(p) = X(n−k,n)

(
k

np

)γ̂k

, (10)

as defined in Theorem 4.3.8 in de Haan and Ferreira (2006). This theorem shows that
the sample fraction kopt also minimizes the asymptotic relative MSE of q̂k(p). For
finite samples, however, the quantile estimator seems to benefit from kIHS, since in
this case IHS often works better than procedures estimating kopt, see Section 4. This
can have different reasons, two of which are illustrated by Fig. 3. Figure 3 displays
the empirical expectation of IHS and of SAMSEE defined in Section 3, the empirical
versions of the MSE of γ̂k and the relative MSE of the quantile estimator,

MSEQ := E

[(
q̂k(p)

q(p)
− 1

)2
]

/ log

(
k

np

)
, (11)

as used in Theorem 4.3.8 in de Haan and Ferreira (2006). The estimator q̂k(p) is
more sensitive to changes in k than γ̂k and thus the empirical version of MSEQ seems
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Fig. 2 The approximation of the quotient kIHS/kopt in Eq. 9 is plotted as a function in the second-order
parameter ρ with γ = c = 1 for n = 500 (solid), n = 5000 (dashed) and n = 50000 (dotted)
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Fig. 3 Empirical expectations of IHS plus a constant (red), MSE (black), MSEQ (pink) and SAMSEE
(blue, see Section 3) are presented. The left plot is based on 10,000 samples from a Fréchet(2) distribution
of size 500. The graphic on the right is based on 500 samples of size 5000 from a Loggamma distribution

to need much more samples than the MSE of the Hill estimator to reach a stable
estimate.

On the left of Fig. 3, we observe that kIHS is indeed smaller than kopt for a Fréchet
distribution, where ρ = −1, but so is the minimizer of MSEQ. The graphic on the
right highlights the similarities between MSE, MSEQ and IHS for the boundary case
ρ = 0 of the Loggamma distribution. The method SAMSEE, which is defined in the
next section, overestimates kopt on average in the Loggamma case and its mean lies
between kIHS and kopt for the Fréchet distribution.

3 Smooth AMSE estimator

In this section, we illustrate a way to estimate kopt via minimizing a smooth estimator
for the AMSE of the Hill estimator, called SAMSEE. From Theorem 1 it is easy to
see that the AMSE of the Hill estimator is

AE[(γ̂k − γ )2] = γ 2

k
+ A(n/k)2

(1 − ρ)2
. (12)

To estimate the AMSE as a function of k, we employ two estimators, one for γ and
one for the bias term as a combination of ρ and A. First we explain how we estimate
γ and then we define the bias estimator.
For γ we consider the generalized Jackknife estimator γ̂ GJ

k introduced by Gomes

et al. (2000) as γ
G1
n . This estimator is defined by

Mn,k := 1

k

k∑
i=1

Y 2
(i,k), γ̂ V

k := Mn,k

2γ̂k

, and γ̂ GJ
k := 2γ̂ V

k − γ̂k, (13)

where Y(i,k) denotes the log-spacings as in Eq. 3. Note, that γ̂ V
k is the de Vries esti-

mator introduced under this name in de Haan and Peng (1998) and γ̂k is the Hill
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estimator as above. The generalized Jackknife estimator has a reduced bias compared
to the Hill estimator and is even asymptotically unbiased if ρ = −1, see (2.11) in
Gomes et al. (2000).

Danielsson et al. (2001) use (γ̂ V
k − γ̂k) to access the bias of γ̂k and apply a dou-

ble bootstrap procedure to stabilize this highly varying estimate. We also use the
difference of two estimators for γ , but now consider the following averages of Hill
estimators,

γ̄k,K := 1

K − k + 1

K∑
i=k

γ̂i and γ̄k := γ̄1,k = 1

k

k∑
i=1

γ̂i ,

where k < K is chosen to obtain a stable bias estimate. The idea to average the Hill
estimator in order to reduce variation in the sample path is also studied in Resnick
and Stǎricǎ (1997). These averages naturally contain a lot of structural information
about the underlying asymptotic bias and inspire the definition

b̂k,K := γ̄k,K − γ̄K . (14)

Theorem 3 Under the conditions of Theorem 1 and for k/K → c with 0 < c < 1
as n → ∞, it holds for b̂k,K defined in Eq. 14 that

√
k · b̂k,K

D−→ N
( −ρλ

(1 − ρ)2
δρ(c), γ 2ν(c)

)
,

where δρ(c) = (cρ − 1)/(−ρ(c−1 − 1)) and ν(c) = 2c2/(1 − c)2 · (1 − c + c log(c))

with 0 ≤ ν(c) ≤ 1.

Proof The proof is given in Appendix A.

By Theorem 3 the estimator b̂k,K has the following property if ρ = −1, because
in this case the function δ−1(c) is equal to 1,

AE

[
b̂k,K

]
= −ρA(n/k)

(1 − ρ)2
= 1

2

A(n/k)

(1 − ρ)
= 1

2
AE
[
γ̂k − γ

]
. (15)

It remains to choose an appropriate K that is large enough to allow for minimiza-
tion over all relevant k and small enough to be an intermediate sequence itself, see
Theorem 3. To find such a K we use the following relation between the estimators
that holds if ρ = −1,

AE[γ̂k] = AE[γ̂ V
k + b̂k,K ]. (16)

This provides us with a relatively stable function in k that has the same asymptotic
expectation as the highly non-smooth Hill estimator. We want to find an intermediate
sequence K for which Eq. 16 holds and thus define

AD(K) := 1

K

K∑
k=1

(
γ̂ V
k + b̂k,K − γ̂k

)2
(17)

to measure the deviation from approximation (16) uniformly over all k ≤ K . We
want to find the minimum of AD(K), but not the one that occurs due to high variation
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for small k. We look for a K such that the stabilized numerical approximation of the
derivative of AD is closest to zero,

K∗ := arg min
K

{ 2∑
i=−2, i 	=0

∣∣∣∣
AD(K) − AD(K + i)

i

∣∣∣∣
}

. (18)

Now we combine the previously described estimators to approach the AMSE in
Eq. 12 under the assumption that ρ = −1. The idea of misspecifying ρ to simplify
estimation – via avoiding the additional uncertainty through estimating ρ or selecting
an influential tuning parameter – was already used, for example, by Gomes et al.
(2000), Drees and Kaufmann (1998) and Goegebeur et al. (2008). It is also motivated
by the simulations in Section 3.1.

Considering K∗ in Eq. 18 and the property of b̂k,K in Eq. 15, we define estimators
for the AMSE of the Hill estimator and for kopt by

SAMSEE(k) := (γ̂ GJ
K∗)2

k
+ 4b̂2

k,K∗, (19)

k̂SAMSEE := argmin
1<k<K∗

SAMSEE(k).

The left panel of Fig. 4 displays SAMSEE for a Fréchet sample with parameters
γ = 1/2 and ρ = −1. The Hill plot of the same sample and all k ≤ K∗ = 388 is
shown in the right panel of Fig. 4.

This smooth estimate of the AMSE can be useful beyond the context of threshold
selection. SAMSEE evaluates how well each k performs as a threshold in the peaks-
over-threshold model, where the lowest values indicate a good fit. Thus, SAMSEE
could be used to construct a transition function between bulk and tail distribution
in extreme value mixture models or an empirical prior for the threshold in Bayesian
threshold selection approaches, see Scarrott and MacDonald (2012) for a review on
mixture models.
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Fig. 4 SAMSEE with K∗ = 388 on the left next to the Hill plot for the same Fréchet(2) random sample
of size n = 500 for k ≤ K∗. The red dot indicates the selected sample fraction k̂SAMSEE in the left plot
and the adaptive Hill estimate γ̂

k̂SAMSEE
in the right plot
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3.1 SAMSEE if ρ �= −1

In the broader context of an unknown second order parameter ρ, we note that the
generalized Jackknife estimator is no longer unbiased and the behaviour of our bias
estimator changes. From Theorem 3 follows that

AE[b̂k,K ] = −ρA(n/k)

(1 − ρ)2
· δρ(k/K).

If ρ 	= −1, we can observe that the function δρ(k/K) influences the rate at which
the bias estimator increases with k. We can still apply SAMSEE in this situation and
select K∗ from Eq. 18. However, approximation (16) does not hold anymore and
instead it holds that

AE[γ̂k − γ̂ V
k ] − AE[b̂k,K ] = −ρA(n/k)

(1 − ρ)2

(
1 − δρ(k/K)

)
. (20)

The absolute value of the error described by Eq. 20 is high if δρ strongly differs from
1 and the bias term A is large. If ρ 	= −1, δρ indeed deviates from 1 and we minimize
the difference in Eq. 20 by minimizing A. This is why applying (18) in this case leads
to a small K∗. On the other hand, if δρ = 1, the approximation stays valid for an
increasing bias and K∗ will typically be larger.

An alternative to fixing ρ = −1 is to incorporate a consistent estimator ρ̂ of the
second order parameter. Estimators for ρ can be found in Caeiro and Gomes (2014),
Gomes et al. (2002), and Fraga Alves et al. (2003) or Drees and Kaufmann (1998).
Such an estimator can be included into the SAMSEE procedure via

K∗
ρ̂

:= arg min
K

{ 2∑
i=−2, i 	=0

∣∣∣∣
ADρ̂ (K) − ADρ̂ (K + i)

i

∣∣∣∣
}
,

where ADρ̂ (K) := 1

K

K∑
k=1

(
γ̂ V
k + b̂k,K/δρ̂(k/K) − γ̂k

)2
.

and

SAMSEEρ̂ (k) :=
(γ̂ GJ

K∗
ρ̂

)2

k
+
(

(1 − ρ̂)
K∗

ρ̂
/k − 1

(k/K∗
ρ̂
)ρ̂ − 1

· b̂k,K∗
ρ̂

)2

, (21)

k̂ρ̂,SAMSEE := argmin
1<k<K∗

SAMSEEρ̂ (k).

In Table 1, we present the results of a simulation study indicating for which distri-
butions it is beneficial to use ρ̂ instead of ρ = −1. We estimate ρ using the estimator
ρ̂(1) suggested in Theorem 1 in Drees and Kaufmann (1998). The results indicate
that for these processes it is sensible to fix ρ = −1 in SAMSEE, since only for
the Cauchy distribution using ρ̂ performs slightly better regarding both bias and root
mean squared error (RMSE). This confirms the observations already made by oth-
ers (Gomes et al. 2000; Drees and Kaufmann 1998; Goegebeur et al. 2008), that it is
often recommendable to select ρ = −1 instead of allowing for further variability by
including an additional estimator.
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Table 1 The averages of adaptive γ estimates and their root mean squared error (in brackets) are presented
for thresholds k̂ selected using SAMSEE or SAMSEEρ̂ with the true ρ, ρ = −1 or ρ̂ = ρ̂(1)

E[γ̂
k̂
] (RMSE)

γ ρ true ρ ρ = −1 ρ̂

Student-t(6) 0.17 -1/3 0.21 (0.09) 0.26 (0.12) 0.28 (0.14)

Fréchet(2) 0.50 -1 0.51 (0.07) 0.51 (0.07) 0.51 (0.08)

Cauchy 1.00 -2 1.01 (0.13) 0.97 (0.17) 0.99 (0.16)

Burr(2,1) 2.00 -1 2.05 (0.34) 2.05 (0.34) 2.03 (0.40)

4 Simulation study

In the following, we numerically analyse the performance of ten threshold selec-
tion methods on heavy-tailed distributions with very different tail behaviours. The
simulation study is based on the following distributions:

– the Student-t distribution with 6 degrees of freedom, which corresponds to γ =
1/6 and ρ = −1/3,

– the Fréchet distribution with parameter α = 2 and distribution function F(x) =
exp(−x−α) for x > 0, which implies γ = 1/2 and ρ = −1,

– the standard Cauchy distribution leading to a tail behaviour with γ = 1 and
ρ = −2,

– the Loggamma distribution with γ = 1 and ρ = 0 and density function

– the Burr distribution with a parametrisation such that γ = 2, ρ = −1 and
distribution function

F(x) = 1 − (1 + √
x)−1, for x > 0,

– a logarithmically perturbed Pareto distribution of the random variable g(U) with
γ = 1 and ρ = −1, where U ∼ Unif(0, 1) and g(x) = x−1/ log(x−1). This
distribution is denoted as negative Bias owing to the negative bias of the Hill
estimator when applied to random samples from this distribution (Drees et al.
2000).

On these distributions, we evaluate the methods by their root median square
error (RMedSE) when adaptively estimating γ with the Hill estimator relative to the
RMedSE obtained using kopt,

EFFγ (k̂) :=
√

M[(γ̂
k̂
− γ )2]

M[(γ̂kopt − γ )2] ,

where M denotes the median. These efficiency quotients are also used with the mean
instead of the median by, e.g., Guillou and Hall (2001) and Gomes et al. (2000) and
Drees and Kaufmann (1998). We opted in favor of the median to reduce the influence
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of few extreme outliers. The efficiency values based on the mean are additionally
provided in Appendix B.

The smaller the quotient the better the threshold selection procedure performs
compared to the optimal sample fraction kopt. Values below 1 indicate that the selec-
tion method, that chooses a specific k for each sample, performs better than kopt,
which is fixed for all samples of a distribution. Furthermore, we study the efficiency
in quantile estimation with the estimator defined in Eq. 10 for p = 0.001,

EFFq(k̂) :=
√

M[(q̂
k̂
− q)2]

M[(q̂kopt − q)2] .

Since the true minimizer kopt of the AMSE is not known, we utilize an empirical
version suggested by Gomes et al. (2000). Following their approach we approximate
kopt by the mean of 20 independent replicates of k̄opt, which is the minimizer of the
empirical MSE based on 1000 samples, i.e. k̄opt = argmink En=1000[(γ̂k − γ )2].

We compare these efficiency values for ten different threshold selection methods.
If the choice of tuning parameters is required, we follow the recommendations given
by the corresponding authors based on their numerical studies. Note that the choice
of these parameters is not data-driven and may not be optimal.
Most of the considered approaches are constructed for adaptive estimation of γ

applying the Hill estimator. This includes one procedure that looks for a stable region
among the Hill estimates, while the others aim to estimate kopt. We also evaluate
the performance of the IHS approach discussed in Section 2, which aims to mini-
mize the deviation from the exponential approximation and two methods relying on
goodness-of-fit statistics. In total, the following methods are considered:

SAM: SAMSEE procedure with ρ = −1 as defined in Eq. 19 in Section 3,

GH: Method by Guillou and Hall (2001) utilizing ccrit = 1.25 and p = 1,

DK: Procedure by Drees and Kaufmann (1998) with fixed ρ = −1,

GO: Approach by Goegebeur et al. (2008) defined in their equation (3.3) with
fixed ρ = −1,

DB: Double bootstrap approach by Danielsson et al. (2001) with n1 minimizing a
criterion suggested in their article, where n1 = n1−1/b with b ∈ {4, 7, 12, 24, 38},

B: Method by Beirlant et al. (2002) with ρ = −1 and taking the median of the
estimates for k0 ∈ {3, . . . , n/2},

RT: Method by Reiss and Thomas (2007) with β = 0 as suggested by Neves and
FragaAlves (2004),

C: Method defined in equation (3.9) of Clauset et al. (2009),

NC: Testing approach by Northrop and Coleman (2014) described in Section 4.2
using α = 0.2 and 15 threshold suggestions from the 0.5 to the 0.95 empirical
quantile,

sIHS: IHS smoothed by using the eBsc package, see Section 2.
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Figures 5 and 6 illustrate the efficiency values obtained in our simulation study
from random samples of size n = 150, 500 and 5000 drawn from the distributions
above. The figures provide a convenient overview on the spread of the efficiency val-
ues for each method over the range of considered distributions. All values, including

Fig. 5 Efficiency values EFFγ based on 2000 samples if n = 150 and n = 500 and on 500 samples if
n = 5000
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Fig. 6 Efficiency values EFFq for p = 0.001 based on 2000 samples if n = 150 and n = 500 and on 500
samples if n = 5000

those that are too large for the detailed graphics, can be found in Tables 2 and 3 in
Appendix B.

Overall, we see a very diverse picture of methods performing best depending on
the distribution and the sample size. The graphs also show that SAMSEE is nicely
concentrated close to one for all considered scenarios and especially for quantile
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estimation. The good performance of SAMSEE stays valid for even more extreme
quantiles like p = 0.0001, see Table 4.
When looking at adaptively estimating γ in Fig. 5, DK performs comparable well to
SAMSEE on small samples, and for larger samples DB and B show efficiency values
similarly concentrated as SAMSEE. Considering quantile estimation in Fig. 6 sIHS
is an alternative to SAMSEE on small samples with even lower efficiency values for
four of the six distributions. The approach B is almost as closely concentrated around
1 as SAMSEE when estimating quantiles from larger samples.
The performance of sIHS depends on the underlying distribution and deteriorates
with growing sample size. The estimation of γ using sIHS still improves for larger
samples but it performs weaker compared to kopt, which confirms the theoretical find-
ings in Section 2.1. However, sIHS performs impressively well, for example, for the
loggamma distribution with efficiency values even below 1 in every scenario. In our
study, sIHS performs well for smaller samples and for quantile estimation.
SAMSEE on the other hand shows impressively stable performance over the whole
range of distributions, sample sizes and tasks. This makes SAMSEE a very good
choice for threshold selection if no expert knowledge about the underlying distribu-
tion or about parameter tuning is available.

5 Application to varying extreme value index

In this section, we use the two introduced estimators for the sample fraction in a
financial application on operational losses, where we are particularly interested in the
distributional properties of very high losses. The observations of interest are oper-
ational losses from the Italian bank UniCredit collected from January 2005 to June
2014. The dataset provides scaled losses above 2000 Euro recorded with the corre-
sponding date. The operational losses are grouped by the type of event that caused
the specific loss. We consider the event type CPBP. The CPBP losses are caused by
clients, products and business practices related to derivatives or other financial instru-
ments. This group provides 16138 observations over the period from 2005 to 2014,
which seems sufficient for our local estimation approach. The number of collected
losses per quarter is presented on the left of Fig. 7 next to the logarithm of the raw
data over time.

It has been discussed before that it is reasonable to assume that the distribution of
such extreme losses is heavy-tailed (Chavez-Demoulin et al. 2016; Moscadelli 2004)
and that it changes with the financial market over time (Hambuckers et al. 2018; Cope
et al. 2012). In Fig. 12 in Appendix C, we provide some graphical justification that
this assumption holds locally for the dataset of CPBP losses. In Hambuckers et al.
(2018) the data is analysed in a regularized generalized Pareto regression approach
including several firm-specific, macroeconomic and financial indicators as covari-
ates. This approach describes the dependence of the GPD parameters on various
covariates via parametric functions.
We consider the same data, but with a different focus. Our aim is to estimate the
time dependent extreme value index γ (t) non-parametrically with a simple ad hoc
estimator that extends the estimator from de Haan and Zhou (2020) by utilizing the
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Fig. 7 The quarterly number of observed CPBP losses is illustrated on the left and on the right the
logarithm of the losses is plotted over time with a red line marking the third quartile

approaches sIHS and SAMSEE presented in Sections 2 and 3 for the local selection
of a threshold. We present the estimator for γ (t) in Section 5.1 and the results we
obtain when applying this estimator to the dataset of operational losses are shown in
Section 5.2.

5.1 Estimating a varying extreme value index

In de Haan and Zhou (2020), the authors discuss testing for a trend in the extreme
value index and estimating it non-parametrically. They consider n independent ran-
dom variables Xi ∼ Fi/n, where Fs ∈ DoA(Gγ (s)) for s ∈ [0, 1], and they introduce
the following estimator for γ (s), which locally applies the Hill estimator and is based
on a global sample fraction k,

γ̂k(s) := 1

2kh

∑
i∈In(s)

(
log Xi − log X(�2nh�−�2kh�,�2nh�)

)+
, (22)

where In(s) is the h-neighbourhood of s, i.e. In(s) := {i : |i/n − s| ≤ h}. This
estimator depends on the choice of the bandwidth h and the global sample fraction k,
which is then rescaled to 2kh for the individual regions In(s). A small bandwidth h

leads to very high variability in γ̂k(s) and a large value of h smooths out all interesting
features. Thus, the choice of h should balance these two effects.
We suggest a modification of their estimator, where we locally estimate a threshold
k̂(s), i.e.

γ̂
k̂(s)

(s) := 1

k̂(s)

∑
i∈In(s)

(
log Xi − log X

(�2nh�−k̂(s),�2nh�)
)+

. (23)

To compare these two approaches, we repeat the simulation presented in de Haan
and Zhou (2020), see their Figure 2(i), on samples of size n = 5000 with Xi ∼
Fréchet(1/γ (i/n)), γ (s) = 1 + c · sin(2πs) and c = 1/4. For both versions of the
estimator the bandwidth is fixed to h = 0.025. Figure 8 illustrates the benefits of
locally optimizing the threshold via SAMSEE from Section 3, as it strongly tightens
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Fig. 8 The true extreme value index γ (s) = 1 + 1/4 · sin(2πs) (red) next to the averaged estimators
over 2000 samples. The estimator from de Haan and Zhou (2020) with fixed k = 200 is in black and its
empirical 95% confidence interval is dashed. The localised estimator employing SAMSEE is blue with
dotted empirical confidence bounds

the empirical confidence interval around the average, which is obtained from the
2.5% and 97.5% empirical quantiles among 2000 estimates.

5.2 Functional extreme value index of operational losses

First, we test if the extreme value index is constant over time. With the test T4 by
Einmahl et al. (2016) we can reject the null hypothesis of constant γ for various k

in the range of thresholds selected by our procedures. One concern in testing is the
possible serial dependence in the financial losses, as discussed in Section 4.2 in de
Haan and Zhou (2020), where it is suggested to repeat the test on subsets of the data
to reduce the serial dependence. The test T4 still shows significant results if only
considering every second or every 5th observation. Thus, we are confident that the
extreme value index of the losses is indeed varying over time.

To estimate the time dependent γ (t) we apply the estimator in Eq. 23. We select k̂

by using sIHS from Section 2 and the SAMSEE method from Section 3. It remains to
choose the bandwidth h that defines the neighborhood In(s). To our knowledge, no
data-driven automated method for choosing an optimal bandwidth in the context of
the peaks-over-threshold approach is available, and its investigation lies outside the
scope of this article. Instead, we use a bandwidth of 170 days and thereby focusing
on the long term trend of γ , since this bandwidth leads to a less varying extreme
value index by smoothing over seasonal variations. Figure 9 shows the estimates of
γ (t) that we obtain for the event type CPBP. It is clearly visible that both procedures
yield similar estimates for most time points and that the simple ad hoc estimators
recover an increase of the severity of high losses during the financial and Euro crisis
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Fig. 9 The non-parametric estimate of the extreme value index of the operational losses of type CPBP is
presented using k̂ from SAMSEE (solid) and sIHS (dashed) and bandwidth h = 170 days. The red area
indicates the time of the financial and Euro crisis

from 2008 to 2011. A similar overall trend in the extreme value index can also be
identified in the estimates of Hambuckers et al. (2018) for CPBP.

For a more extensive discussion of the data and results of the more complex model
including further covariates we refer to Hambuckers et al. (2018).

Appendix A: Theoretical results and proof of Theorem 3

Lemma 1 Let E1, . . . , En be i.i.d. standard exponential random variables and k s.t.
1 ≤ k ≤ n and k → ∞ as n → ∞. We define the following random variables,

Pk,n := √
k

(
1

k

k∑
i=1

Ei − 1

)
, Qk,n := √

k

(
1

k

k∑
i=1

E2
i − 2

)
,

Rk,n := √
k

(
1

k

k∑
i=1

ek
i+1Ei − 1

)
,

where ek
i :=∑k

l=i l−1 = E[E(k−i+1,k)]. Then it holds for n → ∞ that

(Pk,n, Qk,n, Rk,n)
T D−→ N

⎛
⎝(0, 0, 0)T ,

⎛
⎝

1 4 1
4 20 4
1 4 2

⎞
⎠
⎞
⎠ .

Proof We use the Cramér-Wold device that gives us a joint normal limit distri-
bution, if all linear combinations have an univariate normal limit distribution. For
a1, a2, a3 ∈ R we prove asymptotic normality for the sum (a1Pk,n+a2Qk,n+a3Rk,n)

by applying Liapounov’s central limit theorem (CLT), see Theorem 7.1.2. in Chung
(1974).
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We consider a sum Sn := ∑k
i=1 Xi,k of independent random variables fulfilling

the following three conditions,

1) E[Xi,k] = 0, ∀k ∀i,
2)

∑k
i=1 Var(Xi,k) = σ 2,

3) �(k) =∑k
i=1 E[|Xi,k|3] −→ 0, as k → ∞,

Then the CLT proves a standard normal limit for Sn. We define

Xi,k := 1√
k

(
a1Ei − a1 + a2E

2
i − 2a2 + a3e

k
i+1Ei − a3e

k
i+1

)

for i = 1, . . . , k where ek
k+1 := 0, such that the approximation error between∑k

i=1 Xi,k and
(
a1Pk,n + a2Qk,n + a3Rk,n

)
vanishes as k → ∞, since

lim
k→∞

1

k

k−1∑
i=1

ek
i+1 = lim

k→∞
1

k

k−1∑
i=1

1

k

k∑
l=i+1

1

l/k
= lim

k→∞

∫ 1

1
k

∫ 1

v

1

u
dudv

= − lim
k→∞

∫ 1

1
k

log(v)dv = 1.

Now we have to check the three conditions. Condition 1) follows immediately from
E[Ei] = 1 and E[E2

i ] = 2. For condition 2) we need to calculate the variance

Var(Xi,k) = Var

(
1√
k

(
a1Ei − a1 + a2E

2
i − 2a2 + a3e

k
i Ei − a3e

k
i

))

= 1

k

(
a2

1Var(Ei) + a2
2Var(E2

i ) + a2
3(ek

i+1)
2Var(Ei)

+2(a1a2 + a2a3e
k
i+1) Cov(Ei, E

2
i ) + 2a1a3Var(Ei)

)

= 1

k

(
a2

1 + 20a2
2 + a2

3(ek
i+1)

2 + 8(a1a2 + a2a3e
k
i+1) + 2a1a3

)
,

since Var(Ei) = 1, Var(E2
i ) = 20 and Cov(Ei, E

2
i ) = E[E3

i ] − E[E2
i ]E[Ei] = 4.

With the approximation

lim
k→∞

1

k

k−1∑
i=1

(ek
i+1)

2 = lim
k→∞

∫ 1

1
k

(∫ 1

v

1

u
du
)2

dv = 2

follows that
∑k

i=1 Var(Xi,k) = a2
1 +20a2

2 +2a2
3 +8a1a2 +8a2a3 +2a1a3. Condition

3) holds with

�(k) = 1

k
√

k

k∑
i=1

E

[∣∣(a1 + a3e
k
i )(Ei − 1) + a2(E

2
i − 2)

∣∣3] = c√
k

→ 0,
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as k → ∞ and for a constant c > 0, since the exponential distribution has finite
moments and

∑k
i=1(e

k
i+1)

3/k ≤ 6. Thus, we obtain that

k∑
i=1

Xi,k
D−→ N (0, a2

1 + 20a2
2 + 2a2

3 + 8a1a2 + 8a2a3 + 2a1a3).

This is the limiting distribution of all the linear combinations (a1Pk,n + a2Qk,n +
a3Rk,n) and gives us the joint normal distribution.

Lemma 2 Let X1, . . . , Xn be i.i.d. random variables with distribution function F ∈
DoA(Gγ ) with γ > 0 and T1, T2, . . . be i.i.d. random variables with distribution
function 1 − 1/y. We define

γ̂k := 1

k

k∑
i=1

log

(
X(n−i+1,n)

X(n−k,n)

)
, Mn := 1

k

k∑
i=1

log

(
X(n−i+1,n)

X(n−k,n)

)2

,

YE := 1

k

k∑
i=1

log

(
X(n−i+1,n)

X(n−k,n)

)
ek
i , and ek

i :=
k∑

l=i

1

l
.

If the second order condition in Eq. 7 holds for ρ < 0 and x > 0 and Pk,n, Qk,n and
Rk,n are as defined in Lemma 1, then

γ̂k
D= γ + γPk,n/

√
k + A(T(n−k,n))

1 − ρ
+ op(A(n/k)), (24)

Mn
D= 2γ 2 + γ 2Qk,n/

√
k + 2γ (2 − ρ)

(1 − ρ)2
A(T(n−k,n)) + op(A(n/k)), (25)

YE
D= 2γ + γ (Pk,n + Rk,n)/

√
k + 2 − ρ

(1 − ρ)2
A(T(n−k,n)) + op(A(n/k)), (26)

holds for n and k s.t. 1 ≤ k ≤ n and k → ∞ as n → ∞.

Proof The results in Eqs. 24 and 25 are already stated in the proof of Theorem 1 in
de Haan and Peng (1998).

To prove (26) we follow the proof of the asymptotic normality of the Hill estimator
in de Haan and Ferreira (2006). Let A0 be such that A(t)/A0(t) → 1, as t → ∞.
Then, for each ε > 0 there exists a t0 such that for t ≥ t0 and x ≥ 1 the inequality
in Theorem B.2.18 in de Haan and Ferreira (2006) holds. For t = Tn−k,n and x =
T(n−i,n)/T(n−k,n) we obtain that

YE
D= γ

k

k∑
i=1

log

(
T(n−i+1,n)

T(n−k,n)

)
ek
i + A0(T(n−k,n))

1

k

k∑
i=1

(
T(n−i+1,n)

T(n−k,n)

)ρ − 1

ρ
ek
i

+op(1)|A0(T(n−k,n))|1

k

k∑
i=1

(
T(n−i+1,n)

T(n−k,n)

)ρ+ε

ek
i .
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The second term can be approximated by

lim
n→∞

1

k

k∑
i=1

(
T(n−i+1,n)

T(n−k,n)

)ρ − 1

ρ
ek
i =

∫ 1

0

v−ρ − 1

ρ

∫ 1

v

1

u
dudv = 2 − ρ

(1 − ρ)2
,

and for the third term holds

lim
n→∞

1

k

k∑
i=1

(
T(n−i+1,n)

T(n−k,n)

)ρ+ε

ek
i =

∫ 1

0
v−ρ−ε

∫ 1

v

1

u
dudv = 1

(1 − ρ − ε)2
.

Note that for E1, . . . , En i.i.d. standard exponential random variables follows by
Rényi’s representation that

k∑
i=1

log

(
T(n−i+1,n)

T(n−k,n)

)
ek
i

D=
k∑

i=1

ek
i

k∑
j=i

Ej

j
=

k∑
i=1

Ei

i

i∑
j=1

ek
j

=
k∑

i=1

Ei

i

(
iek

i+1 +
i∑

j=1

i∑
l=j

1

l

)
=

k∑
i=1

Ei

i

(
i + iek

i+1

)
=

k∑
i=1

Ei +
k∑

i=1

Eie
k
i+1.

Thus,

γ

k

k∑
i=1

log

(
T(n−i+1,n)

T(n−k,n)

)
ek
i

D= 2γ + γ

((1

k

k∑
i=1

Ei − 1
)

+
(1

k

k∑
i=1

Eie
k
i+1 − 1

))

= 2γ + γ
(
Pk,n + Rk,n

)
/
√

k.

Combining the above arguments as in the proof of Theorem 3.2.5 in de Haan and
Ferreira (2006) gives (26).

Lemma 3 If k → ∞, k/n → 0 and k/K → c with 0 < c < 1, as n → ∞, then

lim
n→∞ Cov(RK,n, Rk,n) = 2c − c log(c)√

c
and lim

n→∞ Cov(RK,n, Pk,n) = c − c log(c)√
c

,

where Rk,n and Pk,n are defined in Lemma 1.

Proof Let E1, E2, . . . be i.i.d. standard exponential random variables, where Cov
(Ei, Ej ) is equal to 1 if i = j and 0 otherwise. Then

lim
k→∞ Cov (RK,n, Rk,n) = lim

k→∞ Cov

(
k∑

i=1

Ei

ek
i+1√
k

,

K∑
i=1

Ei

eK
i+1√
K

)
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= lim
k→∞

k∑
i=1

K∑
j=1

ek
i+1√
k

eK
j+1√
K

Cov(Ei, Ej )

= lim
k→∞

√
k√
K

1

k

k∑
i=1

(
1

k

k∑
l=i+1

1

l/k

)(
1

K

K∑
l=i+1

1

l/K

)

= lim
k→∞

√
k√
K

1

k

k∑
i=1

(∫ 1

(i+1)/k

1

u
du

)(∫ 1

(i+1)/K

1

u
du

)

= √
c

∫ 1

0
log(v)2 − log(v) log(c)dv = 2

√
c − √

c log(c).

In the same way we obtain

lim
k→∞ Cov (RK,n, Pk,n) = lim

k→∞

k∑
i=1

K∑
j=1

1√
k

eK
j+1√
K

Cov(Ei, Ej )

= lim
k→∞

√
k√
K

1

k

k∑
i=1

(∫ 1

(i+1)/K

1

u
du

)

= lim
k→∞

√
k√
K

∫ 1

0

(∫ 1

cv

1

u
du

)
dv = √

c − √
c log(c).

Theorem 4 LetX1, . . . , Xn be i.i.d. random variables with distribution function F ∈
DoA(Gγ ), γ > 0. If the second order condition in Eq. 7 holds and k → ∞, k/n → 0
and

√
kA(n/k) → λ, as n → ∞,

√
k (γ̄k − γ )

D−→ N
(

λ

(1 − ρ)2
, 2γ 2

)
.

Proof First we have to rewrite the average over the Hill estimator,

γ̄k = 1

k

k∑
i=1

γ̂k = 1

k

k∑
i=1

1

i

i∑
j=1

log

(
X(n−j+1,n)

X(n−i,n)

)

= 1

k

k∑
i=1

log X(n−i+1,n)

k∑
j=i

1

j
− 1

k

k∑
i=1

log X(n−i,n)

= 1

k

k∑
i=1

log

(
X(n−i+1,n)

X(n−k,n)

) k∑
j=i

1

j
− 1

k

k∑
i=1

log

(
X(n−i,n)

X(n−k,n)

)

= YE − γ̂k + 1

k
log

(
X(n,n)

X(n−k,n)

)
,
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where YE is defined in Lemma 2. Following the proof of Lemma 2 it holds that the
last term above is in distribution equal to

γ

k
log

(
T(n,n)

T(n−k,n)

)
+ A(T(n−k,n))

k

(
T(n,n)

T(n−k,n)

)ρ − 1

ρ

+ op(1)
|A(T(n−k,n))|

k

(
T(n,n)

T(n−k,n)

)ρ+ε

,

where T(i,n) is the i-th order statistic of T1, . . . , Tn i.i.d. random variables with dis-
tribution function 1 − 1/y. From Corollary 2.2.2 in de Haan and Ferreira (2006) it

follows that, as n → ∞, k
n
T(n−k,n)

P−→ 1 and T(n,n)

kT(n−k,n)

P−→ 1. Thus,
(

log(X(n,n))−
log(X(n−k,n))

)
/k = Op(log(k)/k) + Op(A(n/k)/k), and by Lemma 2 follows

γ̄k
D= γ + γRk,n/

√
k + A(n/k)

(1 − ρ)2
+ op(A(n/k)) + Op(log(k)/k).

Table 2 Efficiency values EFFγ based on 2000 samples if n = 500 and on 500 samples if n = 5000

Lowest (best) efficiency values are highlighted in blue

905Threshold selection in univariate extreme value analysis



Table 3 Efficiency values EFFq for p = 0.001 based on 2000 samples if n = 500 and on 500 samples if
n = 5000

Lowest (best) efficiency values are highlighted in blue

Table 4 Efficiency values EFFq for p = 0.0001 based on 2000 samples and n = 500

Lowest (best) efficiency values are highlighted in blue
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Theorem 5 Under the conditions of Theorem 4 and k/K → c with 0 < c < 1 as
n → ∞, it holds that

√
k(γ̄k,K − γ )

D−→ N
(

λ

(1 − ρ)2

cρ − c

1 − c
,

2γ 2c

1 − c

(
1 + c log(c)

1 − c

))
.

Fig. 10 Efficiency values EFFmeanγ based on 2000 samples if n = 150 and n = 500 and on 500 samples
if n = 5000
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Proof We can rewrite γ̄k,K = K
K−k+1 γ̄K − k

K−k+1 γ̄k and apply Theorem 4,

√
k(γ̄k,K − γ )

D= γ
K

K − k + 1

√
k√
K

RK,n − γ
k

K − k + 1
Rk,n

+ K

K − k + 1

√
kA(n/K)

(1 − ρ)2
− k

K − k + 1

√
kA(n/k)

(1 − ρ)2
+ op(1).

Fig. 11 Efficiency values EFFmeanq for p = 0.001 based on 2000 samples if n = 150 and n = 500 and
on 500 samples if n = 5000
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Now we need k/K → c and the covariance between Rn,k and Rn,K , see Lemma
3, to obtain the limit of the variance,

lim
k→∞ Var

(
γ

K

K − k + 1

√
k√
K

RK,n − γ
k

K − k + 1
Rk,n

)

= lim
k→∞ γ 2

(( √
c

1−c

)2
Var(RK,n)+

( c

1−c

)2
Var(Rk,n)− 2c

√
c

(1−c)2
Cov(Rn,K, Rn,k)

)

= γ 2 2c + 2c2 − 4c2 + 2c2 log(c)

(1 − c)2
= 2γ 2c

1 − c

(
1 + c log(c)

1 − c

)
.

The statement follows by applying this property of regular varying functions,

√
kA(n/K) = √

kA(n/k)
A((k/K)n/k)

A(n/k)
→ λcρ, as n → ∞.

Table 5 Efficiency values EFFmeanγ based on 2000 samples if n = 500 and on 500 samples if n = 5000

Lowest (best) efficiency values are highlighted in blue
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Proof of Theorem 3 To analyse the bias estimator b̂k,K = γ̄k,K − γ̄K , we utilize the
Theorems 4 and 5. Following their proofs it holds that

√
k b̂k,K

D= γ
k − 1

K − k + 1

√
k√
K

RK,n − γ
k

K − k + 1
Rk,n

+ k

K − k + 1

√
k(A(n/K) − A(n/k))

(1 − ρ)2
+ √

k
(
op(A(n/K)) + op(A(n/k))

)
.

Here the random variable Rk,n is defined in Lemma 1 and we know that Rk,n has
a normal limit distribution. Following the proof of Theorem 5 we can calculate the
variance and bias, which is

k

K − k + 1

√
k(A(n/K) − A(n/k))

(1 − ρ)2
→ λ

(1 − ρ)2

c(cρ − 1)

1 − c
,

as n → ∞, which follows from the regular variation of A and due to
√

kA(n/k)

→ λ. Since √
k
(
op(A(n/K)) + op(A(n/k))

)
= op(1),

Table 6 Efficiency values EFFmeanq for p = 0.001 based on 2000 samples if n = 150 and n = 500 and
on 500 samples if n = 5000

Lowest (best) efficiency values are highlighted in blue
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the statement of the theorem follows.

B Additional simulation results

This section provides in Tables 2 and 3 the exact efficiency values, which were pre-
sented graphically in the simulation study in Section 4. Further, the efficiency values
for quantile estimation with p = 0.0001 and = 500 are presented in Table 4.
Additionally, efficiency values employing the mean instead of the median are
presented for comparison. The mean efficiency values are defined as

EFFmeanγ (k̂) :=
√

E[(γ̂
k̂
− γ )2]

E[(γ̂kopt − γ )2] ,

and can be found in Figs. 10 and 11 and Tables 5 and 6.

C Additional illustrations

In this section, we provide additional graphical illustrations for the dataset of finan-
cial losses studied in Section 5. Figure 12 visualizes the Pareto fit of the rescaled
losses locally for three distinct time periods of four month each. These plots support
the assumption that the data follows a heavy-tailed distribution.
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Fig. 12 Pareto QQ-plots with 95%-confidence intervals for the dataset of CPBP losses from Section 5
at three distinct four month time windows centered around 12/2007 (left), 11/2009 (right) and 09/2012
(below)
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