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Abstract
Classification tasks usually assume that all possible classes are present during the
training phase. This is restrictive if the algorithm is used over a long time and pos-
sibly encounters samples from unknown new classes. It is therefore fundamental to
develop algorithms able to distinguish between normal and abnormal test data. In
the last few years, extreme value theory has become an important tool in multivari-
ate statistics and machine learning. The recently introduced extreme value machine,
a classifier motivated by extreme value theory, addresses this problem and achieves
competitive performance in specific cases. We show that this algorithm has some
theoretical and practical drawbacks and can fail even if the recognition task is fairly
simple. To overcome these limitations, we propose two new algorithms for anomaly
detection relying on approximations from extreme value theory that are more robust
in such cases. We exploit the intuition that test points that are extremely far from the
training classes are more likely to be abnormal objects. We derive asymptotic results
motivated by univariate extreme value theory that make this intuition precise. We
show the effectiveness of our classifiers in simulations and on real data sets.

Keywords Clustering · Novelty detection · Machine learning ·
Open set classification · Statistical methods

1 Introduction

Modern classifiers achieve human or super-human performance in a variety of tasks
(Christopher 2016), including speech (Graves et al. 2013) and image recognition (He
et al. 2016), but they are typically not able to discriminate between normal and abnor-
mal classes and may give high confidence predictions for unrecognizable objects
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(Nguyen et al. 2015). Here and throughout, we call a class normal if we have exam-
ples of it during the training phase, whereas we call a class abnormal if we have no
examples of it during the training phase. The ability to distinguish between these two
cases is important if there is the possibility that new classes arise in the future or
if there have not been any examples of some classes in the training set due to their
rarity.

The task of distinguishing between normal and abnormal test data points is called
anomaly detection (Chandola et al. 2009). We underline that in this context standard
hyper parameter optimization procedures such as cross-validation are usually not
available, since in the training set there are only normal objects. For this reason, an
algorithm designed for anomaly detection should involve as few hyper parameters as
possible.

The extreme value machine (EVM) introduced in Rudd et al. (2018) is an algo-
rithm that uses extreme value theory to attack these problems. In the last few years,
extreme value theory has become an important tool in multivariate statistics and
machine learning. This is due to the fact that the extreme features, rather than the
average ones, are the most important for discriminating between different objects
(Scheirer 2017). The EVM strongly relies on the distances between the different
classes in the training set. In particular, as we show in Section 8 using a simulated
data set, this is the reason why the EVM fails to recognize abnormal points that arise
relatively close to one class in the training set, even if the recognition task is fairly
simple. For this reason, we propose an alternative approach that uses extreme value
theory overcomes this problem. We call our method the GPD classifier (GPDC),
according to the generalized Pareto distribution approximation from extreme value
theory that it relies on. Moreover, we present also a second more heuristic algorithm,
namely the GEV classifier (GEVC), based on the generalized extreme value distri-
bution. We underline that, in the following, we consider only the Euclidean distance
for simplicity, but the obtained results are more general and can be applied to any
distance.

This paper is organized as follows. In Section 2 we summarize the previous work
in this context. Section 3 states some fundamental results from extreme value theory
that will be useful in the definition of the GEVC and GPDC. In Section 4 we describe
the general framework of anomaly detection. In Section 5 we describe the EVM
and explain the main limitations of this approach. In Sections 6 and 7 we describe
the GPDC and GEVC and we theoretically justify their main properties. Finally, in
Section 8, we evaluate and compare the performance of these anomaly detection
algorithms on both simulated and real data.

2 Related work

Anomaly detection (Pimentel et al. 2014) is a well established field that shares simi-
lar though not identical goals with outlier detection (Walfish 2006). While the latter
is focused on discovering which examples of the training data are not in agreement
with the process that has generated the bulk of them, in anomaly detection we sup-
pose to have observations from a number of normal classes and for a new sample
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we would like to determine whether it belongs to one of those existing classes or a
new one. In this sense, anomaly detection is more naturally related to classification.
Machine learning techniques have been applied successfully to both tasks, improving
considerably their performance (Abe et al. 2006; Shon and Moon 2007; Désir et al.
2013). Many anomaly detection methods first estimate the distribution of the normal
data and then mark as abnormal the new points associated with low density regions
(Bishop 1994). We follow a similar approach for the two techniques that we propose.
A relevant work in this direction is Roberts (1999) who fit a Gaussian mixture model
to the training data and use extreme value theory to decide if a new point is normal or
abnormal. Our methods will not rely on parametric assumptions for the multivariate
density, which makes them more widely applicable.

Extreme value theory has been recognized in the last years as a powerful tool to
increase the performance of anomaly detection (Geng et al. 2018) and, more gen-
erally, machine learning techniques (Jalalzai et al. 2018) with particular interest to
computer vision (Scheirer 2017). The main reason for this success is the fact that the
tails of the distribution of distances between training observations can be modeled
effectively using the asymptotic theory provided by extreme value theory (Scheirer
et al. 2011). One example of this can be found in Fragoso et al. (2013) where the
well-known RANSAC algorithm is improved using extreme value theory. Moreover,
extreme value theory has been applied to extend the use of classical anomaly detec-
tion algorithms to extreme regions (Goix et al. 2016; Thomas et al. 2017) and to
detect anomalies in time series (Siffer et al. 2017).

A feature that could be important for anomaly detection algorithms is the ability
to be easily updated with the arrival of new training data, namely incremental learn-
ing. A simple approach in this direction is to use the k-nearest neighbor classifier
(James et al. 2013), a route that is to some extent also followed by the GPDC and
the GEVC. Another method that has the desired requirement to be naturally adapted
to new data is the nearest class mean classifier (Mensink et al. 2012), which repre-
sents each class as a prototype vector that is the mean of all the examples for that
class seen so far. More complex methods are based on machine learning approaches
such as support vector machines (Ruping 2001), neural networks (Rebuffi et al.
2017) or random forests (Saffari et al. 2009) and are in general computationally more
demanding.

Finally, we note that the formulation of GPDC is partially related to the estimation
of the right end point of a univariate distribution. As we will argue in the following,
in the GPDC this problem takes a simpler form than in the general problem of upper
end point estimation in extreme value statistics (Hall 1982).

3 Extreme value theory

In this section we briefly recall the main results from univariate extreme value theory
and introduce the notation that will be used throughout the paper.

LetX1, X2, . . . be a sequence of i.i.d. random variables from the distribution func-
tion F , and denote by Mn = max(X1, . . . , Xn) the maximum of the first n samples.
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The Fisher–Tippett–Gnedenko theorem (cf., Coles et al. 2001) states that if there
exist sequences an ∈ R, bn > 0 such that

P

(
Mn − an

bn

≤ z

)
→ G(z), n → ∞, (1)

then if G is a non-degenerate distribution function it belongs to the class of
generalized extreme value (GEV) distributions with

G(z) = exp

[
−

{
1 + ξ

(
z − μ

σ

)}−1/ξ
]

, z ∈ R : 1 + ξ

(
z − μ

σ

)
> 0,

where ξ ∈ R, μ ∈ R and σ > 0 are the shape, location and scale parameters,
respectively. If the convergence in Eq. 1 holds, we say that X is in the max-domain
of attraction of a GEV distribution with shape parameter ξ . A similar result can be
formulated for threshold exceedances. In fact, if the convergence in Eq. 1 holds, then,
for a threshold u ∈ R that tends to the upper endpoint of the distribution F of X, the
distribution function of X − u, conditional on X > u, is approximately

H(y) = 1 −
(
1 + ξy

σ̄

)−1/ξ

, y > 0 : 1 + ξy

σ̄
> 0, (2)

and the distribution H is called the generalized Pareto distribution (GPD). The
parameters of the two extreme value distributions are closely related: if Mn follows
approximately a GEV distribution G with parameters ξ , μn and σn, then the GPD H

has the same shape ξ and σ̄ = σn + ξ(u − μn).
If we are interested in computing the distribution of the maximum of a large num-

ber of independent copies of a given random variable, the first result suggests to fit
a GEV distribution to various such maxima taken over blocks of the same lengths.
On the other hand, if we are interested to model the right tail of a distribution, then
the second result suggests to fit a GPD to all values above a high threshold of a
sequence of independent replications of a random variable with this distribution. The
two approaches are asymptotically equivalent and the parameters in the two distri-
butions are deterministically linked. The following lemma will be useful to describe
our algorithms.

Lemma 1 (Embrechts et al. 2013) Suppose that the distribution function F of X has
an upper endpoint denoted by b∗. Then it is in the max-domain of attraction of a GEV
with ξ < 0 if and only if

1 − F(b∗ − 1/x) = �(x)x−1/ξ ,

where � is a slowly varying function at infinity. This is also equivalent to (b∗ − X)−1

having a regularly varying tail with index−ξ . In this case, we have the representation
b∗ = u − σ̄ /ξ in terms of the parameters of the generalized Pareto distribution.
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4 General setting

In this section we formalize the task of anomaly detection in a way suitable for all
the algorithms that we describe in the following.

Denote the training data by xi ∈ R
p, each of them labeled as a class yi ∈

{C1, . . . , CJ }, i = 1, . . . , n. Here and throughout, p ∈ N is the dimension of the
predictor space and J ∈ N the number of different classes in the training set. In total,
then, we have J normal classes and we assume that each class is described by a con-
tinuous density function fCj

defined on Rp, j = 1, . . . , J , where the probability that
a point in class Cj falls in the set A ⊂ R

p is

∫
x∈A

fCj
(x) dx.

The process that has generated the training data set can be described as a mixture of
these density functions, with unconditional density

f (x) =
J∑

j=1

wjfCj
(x), x ∈ R

p,

for weights wj ∈ [0, 1] with ∑J
j=1 wj = 1. The value of the function f evaluated

at some point is thus large if that point has high chance to be normal. Note that, in
the following, we approximate directly f and then we do not have to estimate the
weights wj .

Further, suppose that we have a new unlabeled test point x0 ∈ R
p that we would

like to mark as normal or abnormal. More precisely, we define the point x0 as normal
if it was sampled from the training distribution with density f , and as abnormal
if it was sampled from another distribution with unknown density f0. The goal in
anomaly detection is to decide if x0 comes from the distribution with density f of
the training data or not. Thus, we need to perform the hypothesis test

H0: x0 is normal,

H1: x0 is abnormal.

Note that most of the algorithms for anomaly detection avoid formal assumptions on
the distribution with density f0 and mark a test point x0 as abnormal if the training
density f (x0) is low. All the methods that we describe in the following are of this
type.

5 The extreme valuemachine

In this section first briefly describe the extreme value machine introduced in Rudd
et al. (2018) and then underline its limitations and incorrect assumptions.
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5.1 Algorithm description

The idea of the EVM is to approximate the distribution of the margin distance of
each point in each class using extreme value theory. A new point is then classified as
normal if it is inside the margin of some point in the training set with high probability.

Rudd et al. (2018) introduce this concept of margin distance of a training point xi

as half of the minimum distance between xi and all the points belonging to a different
class in the training data set. More formally, the margin distance of xi is

M(i) = min
j :yj �=yi

D
(i)
j = min

j :yj �=yi

||xi − xj ||
2

.

The idea is to model the lower tail of the distribution of M(i) by using the D
(i)
j as the

input data. An equivalent problem, to which we can apply extreme value theory, is
to retrieve the upper tail of the distribution of M̄(i) = maxj :yj �=yi

−D
(i)
j . To this end,

the authors propose to use the Fisher–Tippett–Gnedenko theorem (cf., Coles et al.
2001) to fit to the k largest observed −D

(i)
j for each point xi a GEV distribution

W(i)(z) =
{
exp

{
−

(
− z

σi

)αi
}

, if z < 0,

1, if z ≥ 0,
(3)

assuming b∗ = 0 since M̄(i) is bounded above by zero as a negated distance. We
discuss issues with the use of this approximation in the next section.

Estimating the parameters αi and σi for each training observation xi separately
yields estimates Ŵ (i) of the distribution functions W(i). Those estimates are used
to label a new point x0 as normal if it is likely enough to fall in at least one of the
margins of the n training data, that is, if

max
i=1,...,n

Ŵ (i) (−||x0 − xi ||) ≥ δ, (4)

and it is labeled as abnormal otherwise. Here, δ is a probability threshold that is
chosen by a heuristic formula in Rudd et al. (2018).

5.2 Limitations of the EVM

The EVM redefines the anomaly detection problem as a probabilistic framework
within extreme value theory, but it has some drawbacks that we describe here and
that will be the starting point to construct new methods that improve upon it.

First, assuming in Eq. 3 that the upper endpoint is b∗ = 0 implies that all classes
in the training set share the same support and that it is impossible that two classes are
perfectly separated. Indeed, if two classes are perfectly separated, then the distance
between two points sampled from them is bounded from above by a strictly positive
constant and therefore b∗ < 0. This assumption is rather restrictive and it is hardly
verifiable on observed data. Second, estimating the upper tail of M̄(i) based on the
k largest observed −D

(i)
j for each xi should rely on the GPD instead of the GEV

approximation since this amounts to a threshold exceedance approach with a GPD as
limiting distribution.
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A further limitation of the EVM is related to the choice of the threshold δ in Eq. 4.
This threshold controls the anomaly detection error and a bigger δ implies a higher
probability to label a new object as abnormal. In a statistical setting this type of
thresholds are chosen by fixing the type I error, in this case, the probability to classify
a normal object as abnormal. Unfortunately, for the EVM algorithm the authors do
not propose any procedure to choose δ controlling the type I error and thus it is not
clear how to properly tune it.

The most important drawback of the EVM is that it gives a non-justified premium
to normal classes far from the others. In fact, if there are classes relatively close to
each other and one class far from the others, then all the points of the latter class
will have a large margin distance. For this reason, if we observe a new point from
an abnormal class located closer to this far class than the other normal classes, we
always classify the new point as belonging to the far away class. The main issue
here is that we cannot use the distances between the normal classes to do anomaly
detection because it does not convey any information regarding the abnormal ones.
Knowing that class A is very far from class B, does not necessarily imply that a
new object x0 is normal only because the distance between it and the closest point in
class A is much smaller than the distances between classes A and B. It might simply
be that the new class is closer to class A than is class B. The EVM is implicitly
assuming that the distances between the normal classes reflect also the behavior of
the abnormal ones, a strong assumption that is again hard to verify. We will illustrate
this problem in a simulation study in Section 8.

6 The GPD classifier

In this section we propose an algorithm for anomaly detection that uses the principles
of extreme value theory and that does not rely on the distances between the different
classes in the training set. This algorithm, which we call the GPDC, considers the
distances between the new point that we want to mark as normal or abnormal, and
the points composing the training data set. For simplicity, and since we are primarily
interested in anomaly detection, all the normal classes are seen as one big class. If
there is high confidence that the lower endpoint of the distribution of these distances
is zero, then the process that has generated the training data can also have generated
the new point, and we thus mark the new point as normal; otherwise we mark it as
abnormal.

6.1 Extreme value theory and anomaly detection

In this setting the training data xi ∈ R
p, i = 1, . . . , n, can be thought as being

sampled from only one class, the class of the normal data points, with density f .
Given a new point x0 without label, we are interested in deciding whether it is from
a normal class and has been generated by f , or whether it belongs to an unseen class
and has been generated by an abnormal density f0.

We denote with Di , i = 1, . . . , n, the distances ||xi − x0|| between x0 and the
points in the training set. In the following, we are interested in the lower tail of
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the distribution D of the distance between x0 and a generic point sampled from
f . Intuitively, if the lower tail of D behaves similarly as the corresponding quan-
tity for training samples, then x0 has a high probability to be a normal point. More
mathematically, let Bδ(x0) denote a ball of radius δ centered in x0. Then

P {Bδ(x0)} = P(D < δ) = P(−D > −δ),

where P is the probability measure that has density f . Moreover, the upper end point
of −D is equal to zero if and only if there is no δ > 0 such that P {Bδ(x0)} = 0. Only
in this case there is a positive probability that x0 comes from the process that has
generated the training data, i.e., that it is a normal point. Under weak assumptions,
we can then specify the exact tail behavior of −D at zero.

Proposition 1 Assume that x0 is in the interior of the support supp(f ) of the normal
classes and that f is continuous at x0. Then the distribution of −D is in the max-
domain of attraction of a GEV distribution with shape parameter ξ = −1/p, where
p ∈ N is the dimension of the predictor space.

Proof We first note that the survival function of −D behaves at zero as

P(−D > −δ) = P {Bδ(x0)}
=

∫
Bδ(x0)

f (x) dx

= {f (x0) + o(1)} V {Bδ(x0)}
= f (x0)

πp/2

�(p/2 + 1)
δp + o(δp),

where V {Bδ(x0)} is the volume of the ball Bδ(x0) in R
p, and the approximation

holds as δ → 0. From this representation if follows directly that the distribution of
−D is in the max-domain of attraction of a GEV distribution with shape parameter
ξ = −1/p.

Note that f is, in general, a density on a multivariate space, whereas P(−D > ·)
is a simple univariate survival function and the above result describes its tail behavior.
We can therefore model the right tail of −D using extreme value statistics.

We further observe that the above proposition and Lemma 1 imply that 1/D has a
regularly varying survival function

P(1/D > x) = �(x)x−p,

for some slowly varying function � at infinity. The upper tail of 1/D is thus in the
max-domain of attraction of a GEV distribution with shape parameter ξ̃ = 1/p > 0.
Therefore, a consistent estimator of ξ̃ is given by the Hill estimator (Hill 1975). The
following theorem uses this fact to obtain a consistent estimator for ξ .

Theorem 1 Assume that x0 is in the interior of the support supp(f ) of the normal
classes and that f is continuous at x0. Denote the distances between x0 and the
points in the training set with D1, . . . , Dn. Let further R(n) ≥ R(n−1) · · · ≥ R(1) be
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the order statistics of Ri = −Di . For k = k(n) → ∞ and k(n)/n → 0, as n → ∞,
let

ξ̂n = 1

k

k∑
i=1

log

(
R(n+1−i)

R(n−k)

)
. (5)

This estimator converges in probability

ξ̂n
P→ −1/p,

where p ∈ N is the dimension of the predictor space.

Proof Rewriting the statistic ξ̂n slightly gives

ξ̂n = −1

k

k∑
i=1

log

(−1/R(n+1−i)

−1/R(n−k)

)
,

and we recognize the (negated) classical Hill estimator applied to the sequence of
independent copies −1/R1, . . . , −1/Rn of 1/D. The consistency of the Hill estima-
tor (cf., Theorem 3.2.2 in De Haan and Ferreira (2007)) and the fact that 1/D has
shape parameter 1/p yields the desired result.

The above result motivates to use the statistic ξ̂n in Eq. 5 in an hypothesis test to
decide whether the new point x0 can come from a normal class, and the last part of
the above theorem provides the theoretical background for this test. Indeed under the
hypothesis that x0 is in the interior of the support of f , the density of the normal
classes, the statistic ξ̂n is approximately the negative reciprocal of the predictor space
dimension. Moreover, it is possible to show that the estimator (5) is a special case of
the classical Hill estimator (De Haan and Ferreira 2007) and hence it is asymptoti-
cally normal under a second order condition. Using this fact, we could even derive
asymptotic confidence intervals for ξ based on it. The assumption on k(n) is common
in extreme value statistics to ensure the right trade-off between bias and variance of
a tail estimator.

Under the alternative, namely that the new point x0 is abnormal, we can encounter
two situations. First, if the support of the new class is overlapping with the support of
the normal classes supp(f ), then −D might have upper endpoint zero if x0 falls into
the interior of supp(f ). Second, if the supports are not overlapping or x0 /∈ supp(f ),
then the upper endpoint of −D is strictly smaller than zero. In this second case, the
statistic ξ̂n can be shown to converge to zero.

Theorem 2 Let r∗ be the upper endpoint of −D and suppose that r∗ < 0. Assume
that k = k(n) → ∞ and k(n)/n → 0, as n → ∞. Then the statistic in Eq. 5
converges almost surely to zero, that is, ξ̂n

a.s.→ 0.
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Proof We note that

0 ≤ −ξ̂n = 1

k

k∑
i=1

{
log(−R(n−k)) − log(−R(n+1−i))

}

≤ log(−R(n−k)) − log(−r∗).

Since −R(n−k) → −r∗ almost surely as n → ∞, this proves the assertion.

We can use this fact to do a first test and mark a new point x0 for which pξ̂n is
significantly larger than −1 as an abnormal point. Note that we use the quantity pξ̂n

instead of ξ̂n to stabilize the asymptotic variance and to avoid numerical instabilities
as −1/p → 0 as p → ∞. In fact, under a second order condition and by asymptotic
normality of the Hill estimator (cf., Theorem 3.2.5 in De Haan and Ferreira (2007)),
the quantity

√
kpξ̂n is approximately normal with mean −1 and variance 1. With this

step we have excluded all the points that have no possibility to belong to one of the
classes of the training set.

If, on the other hand, pξ̂n is close to −1, we cannot reject the null hypothesis that
x0 is in the interior of supp(f ). In this case, we can use the threshold u = R(n−k) to
model the upper tail of−D, and since the upper endpoint of−D is 0, Lemma 1 yields
that the scale parameter of the approximating GPD satisfies σ̄ = R(n−k)ξ . Using the
estimator ξ̂n from Theorem 1 yields the tail approximation for x > R(n−k)

P (−D > x) ≈ k
n

{
1 − Ĥ (x − R(n−k))

} = k
n

(
x/R(n−k)

)−1/̂ξn , (6)

where Ĥ is the GPD distribution with shape ξ̂n and scale σ̄ = R(n−k)ξ . There is thus
the possibility that x0 was generated from one of the normal classes. Obviously, we
have to exclude points that have positive, but very small probability of being normals.
We therefore approximate the size of the ball around x0 that contains a fixed amount
γ > 0 of mass of f with the approximate distribution of −D as given by Eq. 6. More
precisely, we let qγ < 0 be the (1 − γ )-quantile of −D for some small γ < k/n,
which we can compute from Eq. 6 as

qγ = R(n−k) + Ĥ−1(1 − nγ/k) = R(n−k)(nγ /k)−ξ̂ , (7)

such that P {B−qγ (x0)} is approximately equal to γ . Thus, the smaller −qγ the higher
the training density f (x0) around x0. If −qγ obtained for the new point x0 is signif-
icantly larger than the corresponding quantity for a generic point in the training set,
we mark x0 as abnormal since the density f (x0) around x0 is too small. Otherwise
we mark it as normal. The probability γ should be chosen small enough to have a
good approximation of the magnitude of the density around x0, but at the same time
large enough to obtain a reliable estimate of qγ . We choose γ = 1/n since this is
sufficiently small and R(n−k) + Ĥ−1(1− 1/k) is usually a very good approximation
of the true quantile.

Note that the quantile estimator in Eq. 7 is a special case of the estimator
in Weissman (1978).
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6.2 The GPDC algorithm

Using the results on the asymptotic behavior of the statistic ξ̂n, we propose the
following algorithm to classify a new point x0.

1. Compute the negated distances −D1, . . . , −Dn between x0 and each point in the
training set.

2. Estimate ξ̂n using only the biggest k negated distances R(n), . . . , R(n+1−k).
3. If pξ̂n is smaller than a given threshold s > −1, mark x0 as possibly normal and

go to the next point, otherwise mark it as abnormal and exit the algorithm.
4. Compute the (1− 1/n)-quantile of −D by qγ = R(n−k) + Ĥ−1(1− 1/k) using

the estimated GPD Ĥ and γ = 1/n.
5. A large radius −qγ corresponds to a low density of f at x0. Thus, if −qγ is

bigger than a given threshold t > 0 mark x0 as abnormal, otherwise mark it as
normal.

Some of the steps require further explanation. The number of upper order statistics
k in the second step that is used to obtain ξ̂n corresponds to the classical bias-variance
trade-off of the Hill estimator. There are widely used diagnostics plots that help to
determine the best k (Coles et al. 2001).

Note that step 3. marks x0 as abnormal if it is not in the support of the training den-
sity f . Therefore, it can be seen as a preliminary hypothesis test with null hypothesis
“x0 is in the support of f ” and alternative “x0 is not in the support of f ”. If we do
not reject this first null hypothesis, step 5. is needed to test the stronger null hypoth-
esis “x0 is normal” with alternative “x0 is abnormal”. In particular, we mark x0 as
abnormal if it lies in a region where the density f (x0) is low. Thus, steps 4. and 5. are
especially necessary if the supports of f and f0 are not clearly separated.

Step 3. and step 5. require the choice of the thresholds s and t to perform the
hypothesis tests. It is common to fix the type I error to some probability α such as
5%, and then to compute the threshold that realizes this error. To this end we require
the distribution of the test statistic under the null hypothesis. Instead of relying on
asymptotic results, we propose to execute the algorithm using all the points in the
training set as unknown one after the other in a jackknife fashion and to obtain in this
way each time ξ̂

(i)
n and −q

(i)
γ , i = 1, . . . , n. We then jointly set the thresholds s and t

to the (1−α/2)% quantiles of ξ̂ (1)
n , . . . , ξ̂

(n)
n and−q

(1)
γ , . . . , −q

(n)
γ , respectively, such

that we mark at most α% of the training data as abnormal following Bonferroni’s
correction for multiple testing (Shaffer 1995). Note that this requires to compute
O(nk log n) distances, roughly the same as in the training phase of the EVM. We can
do this procedure at the beginning of the life of the algorithm and repeat it once in a
while if new training data arise.

We emphasize that, contrary to what is stated in the EVM paper (Rudd et al. 2018),
one should be careful to choose hyper parameters based on cross-validation by ran-
domly splitting the classes in the training set in normal and abnormal data points.
This can be misleading since normal classes convey no information on the abnormal
ones.
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It is important to underline that this algorithm relies on the asymptotic approxima-
tion by a GPD and hence it is asymptotically exact as the number of training samples
tends to infinity. Moreover, it is completely kernel free and its implementation is very
efficient using fast nearest-neighbor searching (Arya et al. 1998). In fact, during the
evaluation of a new point x0 we have to compute only O(k log n) distances, whereas
with the EVM we have to compute O(n) distances. We stress also that the algorithm
supports incremental learning since it does not require any training procedure once
the thresholds for the hypothesis tests are fixed. If the interest is not only in anomaly
detection our algorithm can be completed with an incremental classifier that performs
standard classification only on the points marked as normals.

7 The GEV classifier

The GPDC in the previous section was based on the approximation of threshold
exceedances by the GPD as limiting distribution. In this section we propose another
algorithm based on a more heuristic approach to do anomaly detection. It is based
on the approximation by the GEV distribution given the Fisher–Tippett–Gnedenko
theorem (cf., Coles et al. 2001), and we thus refer to it as the GEVC.

For simplicity, as before, all normal classes are collapsed into one big class and
we denote the training data with xi , i = 1, . . . , n, and with f the probability density
describing the distribution of the training data. For each i = 1, . . . , n, we compute
the distance between the training point xi and the nearest training point to it, i.e.,

Dmin
i = min

j �=i
||xi − xj ||.

This phase, using fast neighbor search, requires to compute only O(n log n) dis-
tances. Note that the quantities

−Dmin
i = max

j �=i
−||xi − xj ||

are bounded above by zero. Even though these random variables are not exactly inde-
pendent, their dependence seems weak enough to still apply methods from extreme
value theory. Using this and Lemma 1 we can fit a GEV with negative shape param-
eter to −Dmin

1 , . . . , −Dmin
n , and thus estimating the distribution of −Dmin, i.e., the

distribution of the maximum of the negated distances between a normal point and
all the remaining points in the training set. Denote this estimated distribution func-
tion by Ŵ . We note again that this approximation is motivated heuristically, since
−||xi − xj ||, conditionally on xi , would be max-domain of attraction of a GEV with
negative shape parameter. Since the data point xi is random, this argument is formally
no longer true, but in practice the GEV approximation with negative shape parameter
seems still suitable.

When a new point x0 arises and we want to mark it as normal or abnormal we
consider the statistic

−dmin
0 = max

i=1,...,n
−||xi − x0||,
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in order to perform the hypothesis test described in Section 4. Note that this
operation requires to compute only O(log n) distances. Under the null hypothesis,
−dmin

0 is approximately a sample of the distribution −Dmin. Thus we expect the
quantity

P(−Dmin < −dmin
0 )

to be not too small, whereas under the alternative hypothesis this is not guaranteed.
We can then fix a level α > 0 for the type I error to determine if the new point x0 is
normal or abnormal. Given the estimated distribution Ŵ that approximates −Dmin,
we reject the null hypothesis if Ŵ (−dmin

0 ) < α. In this case, the smallest distance of
the new point to a training sample is too large, and we therefore mark it as abnormal.
Otherwise it is marked as normal. Note that, also with the GEVC, the threshold α

permits to control directly the type I error. Moreover, the GEVC has no hyper param-
eters and it is fast to update when we add new data to the training set, since revising
−Dmin

i requires only to compute the minimum distance between xi and the added
points.

8 Application

In this section we compare the EVM introduced in Rudd et al. (2018) with our GPDC
and the GEVC on simulated and real data. For completeness, when using real data,
we compare the methods also with Isolation Forest (Liu et al. 2012) and One-Class
SVM (Schölkopf et al. 2000), two state of the art methods for novelty detection. For
this latter technique, we use a radial kernel and we select its hyper parameters using
part of the test data as validation set, including both normal and abnormal objects,
following what is proposed in the original paper, while for the former we follow the
original implementation. Note that using part of the test set is an approach possible
only in an experimental setting, since in real anomaly detection we do not have any
access to the abnormal objects during the training phase.

8.1 Simulated data

We begin our experimental evaluation with a toy example that shows that the EVM
may perform poorly when the distances between the different classes in the training
set convey misleading information about the abnormal ones. The training set has n =
600 observations and it is composed of three classes, each one of them is sampled
from a different bivariate normal distribution, i.e., the dimension of the predictor
space is p = 2. The test data set has 800 observations and it is composed of examples
from these three classes plus another abnormal class, sampled from another bivariate
normal distribution. Both the train and the test data are shown in the left panel of
Fig. 1. The abnormal objects are well separated from the normal ones.

We apply the EVM, the GPDC and the GEVC to this data set and, to solve the
problem given by the fact that the probability threshold of the EVM is not inter-
pretable as those of the GPDC and the GEVC, we choose to evaluate the performance
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Fig. 1 Left panel: the simulated dataset for the toy example: training data (in black), the normal (bright
yellow) and abnormal examples (dark yellow) from the test set. Right panel: the ξ̂n estimates for normal
(bright yellow) and abnormal test data (dark yellow) for the simulated dataset

of the different algorithms using the obtained area under the ROC Curve (AUC)
(Bradley 1997) that does not require to fix a threshold. For both the EVM and the
GPDC we use k = 20, but the results are stable for different values of k. The
EVM performs poorly in this rather simple scenario and has an AUC of 0.853. This
is due to the fact that the abnormal class is relatively close to the normal class at
the bottom compared to the other normal classes, even if it is perfectly separated
from it. Conversely, the GPDC and the GEVC do not suffer of this type of issues
since they do not rely on the distances between the normal classes to infer about
the abnormal ones, and their results in this toy example are close to perfect for both
algorithms, with AUC of 0.997 and 0.999, respectively. To show the effectiveness
of the GPDC to determine whether new examples are in the support of the train-
ing distribution, we report the estimated ξ̂n of the test in point 3. of the algorithm in
Section 6.2 for both normal and abnormal new data. The right panel of Fig. 1 shows
for this dataset that the ξ̂n estimates for normal data are, as expected by Proposition
1, close to −1/2. On the other hand, the estimates corresponding to abnormal data
are much closer to 0, as it is suggested by Theorem 2. Step 3 of the GPDC algo-
rithm thus already has a good power to filter out the abnormal classes for this data
set. We note that, strictly speaking, the supports of all classes are overlapping, but
for this finite number of data they are effectively separated so that the test works
well.

Figure 2 shows the decision boundaries of the GEVC and the GPDC for α = 0.01
and α = 0.1. It can be seen that both algorithms produce highly flexible decision
boundaries that are capable to follow the shape of the training data. In some sense,
one can see these boundaries as level sets of the training density, and a new point is
considered as abnormal if it lies outside of these level sets. He and Einmahl (2017)
also considered extrapolation of level sets into low density regions but using the more
restrictive assumption of multivariate regular variation.
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Fig. 2 Left panel: decision boundaries for the GPDC (in red) and the GEVC (in magenta) with α = 0.01.
Right panel: decision boundaries for the GPDC (in red) and the GEVC (in magenta) with α = 0.1

8.2 OLETTER protocol

In order to evaluate the anomaly detection performance of the GPDC and the GEVC
for real data we compare the two techniques with the EVM, One-Class SVM and Iso-
lation Forest using the OLETTER protocol proposed in Bendale and Boult (2015).
This protocol is based on the LETTER data set (Frey and Slate 1991) that contains a
total of 20000 observations of 26 different classes corresponding to handwritten let-
ters. The predictor space is composed of p = 16 features that have been extracted
from the handwritten letters. The training set has 15000 observations. The protocol
consists in randomly selecting 15 classes that are considered as normal during train-
ing and adding abnormal classes by incrementally including subsets of the remaining
11 classes during testing, varying in this way the amount of openness, i.e., the pro-
portion of abnormal objects, during the test phase. This process is then repeated 20
times, in a cross-validation fashion. We evaluate the performance of the different
algorithms using the obtained F -measure (Huang and Ling 2005) as done in the orig-
inal paper (Bendale and Boult 2015). The F -measure is an evaluation metric that
combines recall and precision according to the following formula

F -measure = 2 · precision · recall
precision + recall

,

where

precision = number of correctly identified abnormal data points

number of data points identified as abnormal

and

recall = number of correctly identified abnormal data points

number of abnormal data points
.

For all the four algorithms we set dynamically the probability threshold using the
heuristic rule proposed in Rudd et al. (2018) that accounts for the amount of openness
at each step of the protocol. We set the hyper parameter k = 75 for the EVM as in
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original paper, and k = 22 for the GPDC, roughly corresponding to use the 0.25% of
the biggest negated distances.

The results for all the methods are reported in Fig. 3. It can be seen that all the three
methods based on EVT perform better than Isolation Forest and One-Class SVM,
even if they have fewer hyper parameters than the latter methods. Moreover, the hyper
parameters of One-Class SVM were tuned using also abnormal examples and that is
not realistic during a real use of an anomaly detection classifier. The GPDC is the
best method in this case, while the GEVC is competitive with the other methods even
if it has no hyper parameters.

8.3 Diagnostics of thyroid disease

We consider an application of our algorithms for anomaly detection to diagnostics of
hypothyroidism, a type of thyroid disease. We analyse the thyroid dataset (Quinlan
et al. 1986; Schiffmann et al. 1992), available at the UCI machine learning repository
(Dua and Graff 2017). The original dataset contains raw clinical measurements from
sick patients affected by hypothyroidism and healthy ones. These raw measurements
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Fig. 3 Results for the OLETTER protocol for the EVM (green line), the GPDC (red line), the GEVC
(magenta line), One-Class SVM (blue line) and Isolation Forest (golden line) with one standard deviation
confidence intervals (dotted lines)
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were pre-processed in order to easily apply directly neural networks and other com-
mon machine learning techniques, resulting in 21 features for each patient. In the
final dataset there are 250 sick subjects and 6666 healthy subjects. We consider sick
subjects as abnormal objects and healthy subjects as normal objects. We use all the
250 sick patients together with 250 randomly selected healthy patients to compose
the test set. All the remaining healthy patients compose the training set.

Since in this case the normal objects belong to only one class, the EVM cannot be
used with this dataset. For this reason, we compare the GEVC and the GPDC only
with One-Class SVM and Isolation Forest. Also here, we use the AUC as evaluation
measure. For the GPDC we train it with five different values of k, corresponding
to using the most extreme 0.25%, 1%, 2.5%, 5% and 10% distances, respectively.
These are common choices in extreme value applications and finally we consider the
value of k that gives the best ROC curve. For One-Class SVM with radial kernel we
consider different combinations of its hyper parameters and we retain the ones that
gives the best results.

The ROC curves obtained for all the methods are shown in the left panel of Fig. 4.
The performance of the GPDC, GEVC and One-Class SVM are comparable, with an
AUC of 0.931, 0.897, 0.912 respectively, while Isolation Forest performs consider-
ably worst with an AUC of 0.760.We underline again this result since it is particularly
favorable to both the GPDC and the GEVC that are reaching the same performance
as a state of the art kernel based method like One-Class SVM and better performance
than Isolation Forest. These new methods are kernel free and the GPDC has only one
hyper parameter that can be chosen based on EVT, whereas the GEVC has no hyper
parameters at all.

The right panel of Fig. 4 shows the performance of the GPDC as a function of
the number k of most extreme distances used. It can be seen that the GPDC shows a
good performance for a wide range of thresholds and the best results are achieved for
fairly small k as suggested by EVT.
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(magenta line), One-Class SVM (blue line) and Isolation Forest (golden line). Right panel: AUC as a
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9 Conclusion

We present two new kernel free algorithms that perform anomaly detection using
extreme value theory. These algorithms, called the GPDC and the GEVC, are fast
to update with the arrival of new data and they are easy to adapt to an incremental
framework. Moreover, they do not use the distances between the classes in the train-
ing set to infer about the abnormals and are thus able to overcome certain restrictions
of previously proposed methods. Their performances are therefore good even when
the abnormal test data are close to a normal class relatively to the other normals. To
show this fact and the effectiveness of the new GPDC and the GEVC, we compare
them to the EVM (Rudd et al. 2018), another kernel free technique that uses EVT for
anomaly detection, and the more classical kernel based One-Class SVM (Schölkopf
et al. 2000) and tree based Isolation Forest (Liu et al. 2012), two state of the art tech-
niques for novelty detection. The results of our methods on a simulated toy example
and on real data sets are competitive. A major strength is that they perform well in
very different situations. This good performance in general tasks is probably due to
the fact that our methods rely on well-established statistical methods and asymp-
totically motivated approximations from univariate extreme value theory that apply
under very mild conditions. We also underline that both the GPDC and the GEVC
are computationally faster than the EVM during the evaluation phase.

The GPDC and the GEVC might be further improved by suitable representations
of the data, for example using convolutional neural networks to extract features when
working with images and we plan to perform more detailed evaluation of their per-
formance in this direction on standard datasets such as ImageNet (Deng et al. 2009)
or CIFAR-100 (Krizhevsky and Hinton 2009). Furthermore, to be fully incremen-
tal, they need to be capable to store only a subset of the training data. This may be
achieved developing a suitable sampling technique that reduces the dimensionality of
the training dataset without affecting the asymptotic correctness of the algorithms.

The result in Theorem 1 on the shape parameter of sample distances can be of
independent interest. In particular, it will be studied how this can be used for a general
method for extrapolation of level sets into low density regions, similarly as in Cai
et al. (2011) and Einmahl et al. (2015) and He and Einmahl (2017).
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