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Abstract
A common statistical problem in hydrology is the estimation of annual maximal river
flow distributions and their quantiles, with the objective of evaluating flood protec-
tion systems. Typically, record lengths are short and estimators imprecise, so that
it is advisable to exploit additional sources of information. However, there is often
uncertainty about the adequacy of such information, and a strict decision on whether
to use it is difficult. We propose penalized quasi-maximum likelihood estimators to
overcome this dilemma, allowing one to push the model towards a reasonable direc-
tion defined a priori. We are particularly interested in regional settings, with river
flow observations collected at multiple stations. To account for regional information,
we introduce a penalization term inspired by the popular Index Flood assumption.
Unlike in standard approaches, the degree of regionalization can be controlled grad-
ually instead of deciding between a local or a regional estimator. Theoretical results
on the consistency of the estimator are provided and extensive simulations are per-
formed for the reason of comparison with other local and regional estimators. The
proposed procedure yields very good results, both for homogeneous as well as for
heterogeneous groups of sites. A case study consisting of sites in Saxony, Germany,
illustrates the applicability to real data.
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Düsseldorf, Germany

2 Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227
Dortmund, Germany

Extremes ( ) 2 : –325 34842021

Published online: June 20203

http://crossmark.crossref.org/dialog/?doi=10.1007/s10687-020-00379-y&domain=pdf
http://orcid.org/0000-0002-3745-5370
mailto: lilienthal@statistik.tu-dortmund.de


1 Introduction

In flood frequency analysis, and more generally in statistics for extremes in hydrol-
ogy (Katz et al. 2002), one is typically confronted with a (possibly non-stationary)
version of the following problem: let X1, . . . , Xn denote independent annual max-
imal river flows observed at a specific site and during the past n years, and let
F(x) = P(Xi ≤ x) denote their stationary cumulative distribution function (c.d.f.).
The goal is to estimate a high quantile q = F−1(p), where typically the sample
length n is small and the probability p ∈ (0, 1) is high. This inconvenient imbal-
ance results in estimators with a high variance and constitutes the main motivation
for most of the statistical innovations in the field.

A widely accepted framework for the analysis of annual maxima, or more gen-
erally of block maxima, relies on the assumption that the c.d.f. F belongs to the
3-parametric generalized extreme value (GEV) distribution

Gθ(x) = exp

[
−

(
1 + ξ

x − μ

σ

)−1/ξ
]

for 1 + ξ
x − μ

σ
> 0, (1)

where the parameters θ = (μ, σ, ξ)′ ∈ Θ = R × R+ × R are called location,
scale, and shape, respectively. The model is motivated by the fact that the members
of the GEV family arise as the only possible limits in law of a block maximum
Mb = max{Z1, . . . , Zb} of independent (or weakly serially dependent) identically
distributed random variables Z1, . . . , Zb, after proper standardization and for block
length b → ∞ (de Haan and Ferreira (2006), Th. 1.1.3, and Leadbetter (1974),
Th. 2.1). In much of the recent work related to climate change, the parameter vector
θ is further assumed to depend on covariates, typically time and often in a parametric
way (El Adlouni et al. 2007; Cannon 2009). See Serinaldi and Kilsby (2015) for a
discussion on the merits and pitfalls of non-stationary models for extremes.

Being particularly interested in high quantiles (i.e., the right tail), note that the
GEV family can handle a wide variety of right tail behaviour, with bounded right
tails for ξ < 0, exponential tails for ξ = 0 and arbitrarily heavy tails for ξ > 0.
The drawback of this flexibility shows up in the estimation of the parameter vector θ ,
particularly by a high estimation variance of the shape ξ resulting in a volatile quan-
tile estimate. Different attempts have been made to reduce the estimation uncertainty
for such estimation problems, in statistics for extremes in general and particularly in
flood frequency analysis.

For instance, probability weighted moments or L-moments have been proposed as
alternatives to moment or maximum likelihood (ML) estimators. Indeed, the former
show a superior performance in typical small sample cases (Hosking et al. 1985),
which has been mainly attributed to their restricted parameter space (Coles and Dixon
1999).

Alternative approaches are based on reducing the model complexity, for instance
by restricting oneself to the two-parametric sub-family with a predefined shape like
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ξ = 0, resulting in the location-scale Gumbel model (Lu and Stedinger 1992).
The shortcoming of this approach is that only tails of one specific form (exponen-
tial if ξ = 0) are taken into account, which is not appropriate for many practical
applications, in particular those that are primarily interested in the tails.

Finally, several attempts have been made to include additional sources of infor-
mation into flood analyses. Throughout this paper, we will mainly address regional
and seasonal methods, though other applications of the general methodology are
possible. Regional methods require that observations from d ≥ 2 river stations are
available, with site-specific distributions denoted by Fj , j = 1, . . . , d. The well-
known Index Flood model (Dalrymple (1960), see also the monograph Hosking and
Wallis (2005)) is then based on the assumption that the distribution at each station is
the same except for some local scale. In other words, all local quantile functions are
assumed to be identical to a regional quantile function H−1 except for the local scale
sj = s(Fj ) > 0, that is

H0,IF :
{

∃ c.d.f. H and constants sj = s(Fj ) > 0 such that

F−1
j (p) = sj · H−1(p) ∀ j = 1, . . . , d, p ∈ [0, 1]. (2)

Under this assumption, it is possible to reduce the variability of a quantile estimator
at a specific site by taking observations from other sites into account (see Buishand
(1991) for an application to precipitation extremes). Alternatively, seasonal methods
do not only use time series on an annual scale but consider, say, monthly maximal
flows, allowing for seasonal variability (Waylen and Mk 1982; Buishand and Demaré
1990; Baratti et al. 2012).

The two last-mentioned approaches, the reduction of local model complexity and
the homogenization of a collection of stations, can be considered in the framework
of regularization. Let Fn denote the empirical c.d.f. of the data X1, . . . , Xn and sup-
pose that one aims at minimizing some risk measure R(θ; F) with respect to a model
parameter θ , where the c.d.f. F of the data is unknown. As for instance demonstrated
in Vapnik (2000) by a simple regression example, minimizing the empirical counter-
part R(θ; Fn) over the whole parameter space Θ is typically not the best strategy
in finite samples. A more sophisticated and often preferable strategy (reducing pos-
sible overfitting) takes an additional penalty term Ω(θ) ≥ 0 into account, which
can be interpreted as measuring model complexity or representing a priori expert
knowledge:

θ̂Ω = argmin
θ∈Θ

R(θ; Fn) + Ω(θ). (3)

The idea of accounting for model complexity in the estimation of GEV parameters
is not new. In fact, using the so-called cross-entropy risk R(θ; F) = −E[log gθ (X)],
where gθ is the density of Gθ from Eq. 1 and X is a random variable with
F(x) = P(X ≤ x), then minimizing the empirical cross-entropy R(θ; Fn) =
−n−1 ∑n

i=1 log gθ (Xi) with respect to θ is equivalent to ML estimation. When
including a non-zero penalty, the resulting estimators are therefore called penalized
maximum likelihood (PML) estimators. Coles and Dixon (1999) and Martins and
Stedinger (2000) propose two slightly different estimators of GEV parameters of this
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particular form Eq. 3, with a regularizer Ω(θ) depending only on the shape ξ , thus
aiming at ruling out unusual values of the shape parameter. However, no asymp-
totic theory is provided and it is unknown whether (and under what conditions) the
estimators are consistent. The same is true for related approaches in extremes for
hydrology, see, e.g., the PML estimators in Song et al. (2018) proposed for non-
stationary Pearson-type 3 distributions. It is worthwhile to mention that, due to the
fact that the support of the GEV distribution depends on the parameter, even the
asymptotic behavior of the classical ML estimator is actually quite complicated, and
has just recently been fully derived in Bücher and Segers (2017) and Dombry and
Ferreira (2017).

The main contributions of this work are as follows: first of all, we present pro-
found asymptotic results in a quite general multivariate setting, going far beyond the
univariate settings mentioned in the previous paragraph. The main theoretical result
is a consistency statement where the rate of convergence depends in an explicit way
on the level of penalization. The results are partly similar to results in Pötscher and
Leeb (2009) in the Gaussian case but the analysis is more difficult due to the non-
smooth behaviour of the GEV distribution at the boundary of its support. Secondly,
we illustrate the issue of choosing a suitable penalizing function Ω for some non-
trivial problems with the prime example being flood frequency analysis based on the
index flood assumption. Moreover, we propose a data-adaptive approach to select a
tuning parameter that controls the level of penalization in finite samples. We illustrate
that the proposed method performs very well compared to existing standard meth-
ods in an extensive simulation study, and that it yields easily interpretable results in
a case study.

It is worthwhile to mention that the PML estimators considered in this paper may
alternatively be interpreted (and even motivated) from a Bayesian perspective (for a
related Bayesian approach to precipitation extremes see, e.g., Cooley et al. (2007)).
In fact, under independence assumptions, a simple calculation shows that the PML
estimator is actually equal to the posterior mode when assuming that θ is a random
variable with prior density proportional to π(θ) = exp(−λΩ(θ)). Hence, on the
one hand, this paper partly offers an alternative view on Bayesian methods, and in
particular provides a frequentist validation for them. On the other hand, the Bayesian
perspective may also allow for an uncertainty assessment of the proposed procedure
in terms of posterior distributions (see also Wood et al. (2017), and citations within).
This paper being frequentist in nature, the latter approach is not pursued further here.

The remainder of this paper is organized as follows: Section 2 provides illus-
trations of possible applications of PML estimators in flood frequency analysis.
Section 3 presents theoretical properties of such estimators in a general multivari-
ate framework with GEV marginals. The degree of penalization is controlled by a
hyperparameter, and the problem of its selection is treated in Section 4. An extensive
simulation study in Section 5 compares the Index Flood penalization to estima-
tors common in hydrology. A case study in Section 6 illustrates the applicability
to hydrological data. Section 7 concludes this paper with a discussion of the most
important findings. Proofs and additional simulation results can be found in an online
supplement.
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2 Regularization in flood frequency analysis

Within this section, we illustrate the broad applicability of PML techniques in flood
frequency analysis. For illustrative purposes, we start with a simple approach based
on penalizing unusual GEV shape parameters in a univariate setting. Then we discuss
two possibilities to include additional data by jointly estimating the parameters at a
set of stations using an Index Flood like penalization (adding regional information)
and by using monthly instead of annual maxima (adding seasonal information).

2.1 Simple shape parameter penalization

Let X1, . . . , Xn represent the data, consisting of independent and identically dis-
tributed observations with unknown distribution function F(x) = P(Xi ≤ x). We
are interested in the estimation of a high quantile q = F−1(p) from a rather small
sample length n. Often enough, flood frequency analysts need to deal with p ≥ 0.99
and n ≤ 50.

Restriction to a 2-parametric sub-family of the GEV-model, like the Gumbel or a
GEV distribution with a fixed shape parameter ξc, reduces the variance of a respective
quantile estimator but possibly leads to a large bias. As a first application, we use
penalization as an alternative to such a strict reduction of model complexity. More
precisely, suppose that an expert claims that the true shape parameter ξ0 is close to
ξc = 0.2. This knowledge may be reflected by choosing a penalty term of the form
Ωλ(θ) = λ(ξ − ξc)

2 with hyperparameter λ ≥ 0 reflecting our confidence in this
prior belief, and by considering the PML estimator

θ̂λ ∈ argmax
θ∈Θ

n∑
i=1

log gθ (Xi) − λ (ξ − ξc)
2. (4)

If the expert was perfectly sure that actually ξ0 = ξc holds, we should choose λ = ∞
and thus enforce an estimate of θ with third component ξ̂ = ξc (using the convention
that ∞ · 0 = 0). Alternatively, we can select any value 0 ≤ λ < ∞ reflecting the
uncertainty in the expert’s prior information with λ = 0 leading to the ordinary ML
estimator.

For further insight, we present the outcome of a small simulation experiment.
Figure 1 depicts common empirical performance measures of estimators q̂λ =
G−1

θ̂λ
(0.99) with θ̂λ from Eq. 4, ξc = 0.2, and increasing values of λ. The measures

are computed from 10 000 independent samples of size n = 50 each with true param-
eter θ0 = (μ0, σ0, ξ0)

′ = (2, 1, 0.4)′. Note that our prior information reflected by
Ωλ(θ) = λ(ξ − 0.2)2 is not centered around the true value of ξ0 = 0.4. The (almost)
unbiasedness of the ML estimator (for λ = 0) is outweighed by larger variability.
Increasing the value of λ can be interpreted as trading variance for bias. In this exam-
ple, the estimator q̂λ with λ = 20 performs best in terms of empirical mean squared
error, and every value λ > 0 leads to better performance than λ = 0, although
ξ0 = 0.4 is not close to our a priori guess ξc = 0.2. Also note that neither λ = 0 nor
λ = ∞ are optimal in this scenario. This can be explained by the strong imbalance
between a small sample length and a comparably high quantile.
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Fig. 1 Empirical MSE, squared bias, and variance of a 0.99 quantile estimate from PML parameter esti-
mation with penalized deviations of the shape parameter to a ξc . Even though ξc = 0.2 does not correspond
to the true ξ0 = 0.4, regularization is still beneficial (n = 50)

Amore comprehensive simulation study reveals that the previous findings strongly
depend on the sample length, the true parameters, the object of interest and the expert
guess/the penalty. In particular, in situations where ξc is much larger than ξ0, the ML
estimator (λ = 0) may still be the best estimator regarding MSE, with values of λ

close to zero leading to acceptable estimation as well. Selecting a suitable value of λ

is the most critical task in application of the PML method and will be discussed in
Section 4 below.

2.2 Penalization inspired by the index floodmodel

Practitioners typically have data from several stations in the same region available.
The local record lengths often vary substantially over the stations, typically with
different start times (times of gauge installations) and a common end time. The data
scheme can hence be written as

X1,1, X2,1, X3,1, X4,1, X5,1, . . . , Xn,1 ∼ F1
Xa2+1,2, Xa2+2,2, Xa2+3,2, . . . , Xn,2 ∼ F2

. . .
...

Xad+1,d , Xad+2,d , . . . , Xn,d ∼ Fd

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

observations
from d sites

(5)

where Xi,j shall represent the annual maximum observation at station j in year i

of the observation period. Moreover, n denotes the longest record length, aj + 1
(0 ≤ aj ≤ n) the individual start times and nj = n−aj the individual record lengths.
For ease of presentation, we arranged the samples in Eq. 5 such that the first station
corresponds to that with the full sample length of n1 = n, i.e. a1 = 0.

We assume that the random vectors Xi = (Xi,1, . . . , Xi,d)′, consisting of possi-
bly partially observed values for the different years, are independent and identically
distributed with GEV margins Fj ∈ {Gθj

: θj = (μj , σj , ξj )
′ ∈ Θ} for all

j = 1, . . . , d. Note that we neither assume the d components Xi,j for the same
time point i to be independent nor that we impose a specific model for the spatial
dependence.
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Recall the Index Flood assumption from Eq. 2. If we additionally assume that
the common distribution is a member of the GEV family, i.e., H = Gθ0 for cer-
tain parameters θ0 = (μ0, σ0, ξ0)

′ ∈ Θ , the hypothesis H0,IF is equivalent to
θj = (μj , σj , ξj )

′ satisfying

μ1

σ1
= . . . = μd

σd

= δ0 and ξ1 = . . . = ξd = ξ0 for some δ0, ξ0 ∈ R. (6)

A straightforward combination of the Index Flood principle and penalization tech-
niques suggests to penalize deviations between δj = μj/σj and δ0 and deviations
between ξj and ξ0. Because δ0 and ξ0 are not known, we replace them by approxi-
mations δc and ξc, which can be chosen as weighted means, δc = ∑d

j=1 wjδj and

ξc = ∑d
j=1 wjξj with weights wj = nj/

∑d
j ′=1 nj ′ , or using a priori knowledge. A

suitable penalization is given by

Ωλ(θ) = ((δ1 − δc)
2 , . . . , (δd − δc)

2 , (ξ1 − ξc)
2 , . . . , (ξd − ξc)

2)λ, (7)

with hyperparameter λ = (λ11, . . . , λ1d, λ21, . . . , λ2d)′ ∈ [0, ∞]2d . This results in
the penalized quasi ML estimator (simply denoted by PML throughout)

θ̂λ ∈ argmax
θ∈Θd

d∑
j=1

n∑
i=aj +1

log gθj
(Xi,j ) −

d∑
j=1

{
λ1j (δj − δc)

2 + λ2j (ξj − ξc)
2
}
.

(8)
The term quasi refers to the fact that the likelihood is derived under the additional
assumption of spatially independent observations which is actually not necessary for
consistency of the estimator, see Section 3.

In this application, increasing the hyperparameters λ reflects stronger belief in
ξj ≈ ξc and δj ≈ δc for all j = 1, . . . , d or weaker certainty about the quality of the
local estimator. In fact, both options of regular flood frequency analysis, calculation
of local or regional estimates, are included as special cases when choosing λ = 0
or λ → ∞, respectively. The elegance of this approach lies in the fact that strange
local estimates are effectively ruled out without relying completely on the restrictive
application of the Index Flood model or an arbitrary initial guess. The performance of
this estimator in finite samples will be analysed in detail by simulations in Section 5,
and by a real-data application in Section 6.

2.3 Penalization inspired by seasonal smoothness assumptions

An analysis that considers seasonal or monthly maxima instead of annual maxima
allows to expand the available information and can improve the estimation of very
high quantiles. The underlying motivation is that, due to different flood origins like
snowmelt or heavy rainfall, stochastic characteristics (smoothly) vary over the course
of a year. Fischer et al. (2016) analysed such a seasonal modeling and found gener-
alized extreme value distributions appropriate to describe the distribution of seasonal
maxima. In this section we expand on this by penalizing differences in the shape
parameter of monthly maximal flows assuming a GEV distribution.
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At a particular station, the observed monthly maximal flows are denoted by
M

(m)
1 , . . . , M

(m)
n ∼ F (m), m = 1, . . . , 12. Under the assumption of indepen-

dence of the monthly maxima, quantiles of the annual maximal flows Xi =
max

{
M

(1)
i , . . . , M

(12)
i

}
are given by

F−1(p) =
(
F (1) · . . . · F (12)

)−1
(p). (9)

For illustrative purposes, we consider the distribution of the monthly maxima F (m)

to be given by GEV distributions Gθm , m = 1, . . . , 12, despite the fact that the GEV
assumption is not necessarily met on such a fine scale. The vector of unknown model
parameters θ = (

θ ′
1, . . . , θ

′
12

)′ is estimated by

θ̂λ ∈ argmax
θ∈Θ12

12∑
m=1

n∑
i=1

log gθm

(
M

(m)
i

)
− Ωλ(θ), (10)

using a penalty Ωλ that prefers gradually changing shape parameters ξ1, . . . , ξ12 over
the year. More specifically, we set

Ωλ(θ) = Ωλ (ξ1, . . . , ξ12) = λ
{ 11∑

m=1

(ξm − ξm+1)
2 + (ξ12 − ξ1)

2
}
, (11)

which implies a natural periodicity of one year. Note that we could have also
incorporated similar penalties for location and scale parameters.

Figure 2 shows the outcome of a simulation experiment based on 10 000 indepen-
dent samples of n = 50 independent GEV observations per month with μ0 = 2,
σ0 = 1 and shapes following a sine curve ξ

(m)
0 = 0.35 + 0.25 sin(mπ/6 + 3), m =

1, . . . , 12, with a period of one year. The boxplots illustrate the distribution of the

Fig. 2 Top: Boxplots of the difference between shape parameter estimate and true shape parameter for
every month and three choices of λ. Bottom: Empirical MSE of each month’s 0.99 quantile estimate. The
choice λ = 0 leads to the smallest overall bias of the shape parameter but λ = 100 to the smallest MSE of
the 0.99 quantile estimate
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difference between the shape estimate and the true shape parameter for each month
and different penalties λ ∈ {0, 100, 1000}. The empirical MSE of the respective
0.99 quantile estimate of each month are depicted below. The regular ML estimator
(λ = 0) leads to the lowest overall bias, but trading some variance for bias, a much
smaller MSE can be achieved by λ = 100. This choice also leads to the smallest
MSE of the yearly 0.99 quantile estimate calculated using Eq. 9 among the consid-
ered penalties (MSE of 226 compared to 1728 for λ = 0 and 232 for λ = 1000). An
approach using only yearly maxima would have resulted in an MSE of 839, so the
seasonal model yields a substantial gain in this situation.

2.4 Further extensions

The examples presented before assumed stationary distributions (over the years), but,
due to known or unknown causes like river regulations or climate change, the assump-
tion of stationarity is often not justified. PML estimators can be applied in such
scenarios. An intuitive way to model a time-dependent distribution Ft = G(θt ) is by
splitting the time span {1, . . . , n} into b blocks for which we assume stationarity, i.e.,

θt = κ(t) =

⎧⎪⎪⎨
⎪⎪⎩

θ1 = (μ1, σ1, ξ1)
′, t ∈ [i0, i1),

...
...

θb = (μb, σb, ξb)
′, t ∈ [ib−1, ib],

(12)

for given 1 = i0 < i1 < · · · < ib−1 < ib = n (based on our simulation expe-
rience with the stationary setting, we would recommend to at least choose block
lengths ij − ij−1 ≥ 20, but this recommendation should be taken with some care). It
is reasonable to penalize differences between parameters of consecutive blocks, for
example Ωλ(θ) = λ

∑b
j=1(ξj − ξj−1)

2, possibly in addition to other penalizations.
Since the main focus of this paper is to analyse PML estimators in the context of
regionalization, we restrict to stationarity in the following sections.

In the previous three subsections, we have also focused on squared distances in the
penalization term. As an alternative, one could use absolute differences as in LASSO
regression (Tibshirani (1996)), which lead to a built-in variable selection in regres-
sion problems by automatically setting coefficients to zero. In the seasonal context
illustrated in Section 2.3 using absolute distances would result in an estimator simi-
lar to the Fused LASSO (Tibshirani et al. 2005). In our applications, however, there
is no particular advantage in setting individual parameters exactly equal to other
parameters or to pre-described values. Throughout our simulation study described
in Section 5, we have checked the performance of absolute differences (similar
to a LASSO approach) and of a combination of absolute and squared differences
(similar to the so-called elastic net) in different settings, but these choices lead to
inferior empirical MSEs as compared to quadratic differences and also to higher
computation times. We concentrate on quadratic differences in this work and use the
Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS), a quasi-Newton method, for
the optimization of the objective function Eqs. 4, 8 or 10, respectively, to be given in
a general form in Eq. 13 in the next section.
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3 Theoretical results

We show that the PML estimator exists (i.e., the maximization problem has a solu-
tion) and is consistent under fairly general conditions on the penalty. We also provide
a result about the rate of consistency, which turns out to depend explicitly on the
strength of penalization. All proofs are deferred to Section A in the supplementary
material.

Let X1, . . . , Xn with Xi = (Xi1, . . . , Xid)′ be an i.i.d. sequence from X =
(X1, . . . , Xd)′, a d-dimensional random vector with marginal cumulative distribu-
tion functions denoted by F1, . . . , Fd . We assume that the marginal laws are from
the GEV-family, that is, there exists θ0j = (μ0j , σ0j , ξ0j )

′ ∈ Θ−1 = R × (0, ∞) ×
(−1, ∞) such that Fj = Gθ0j , for j = 1, . . . , d. Note that the parameter set Θ−1 is
restricted to ξ0j > −1 since otherwise the classical ML estimator for the GEV param-
eters is not consistent (Dombry 2015). The dependence between the coordinates of
X is left unspecified.

Note that the setting of Section 2.2 fits into this framework, with d denoting the
number of sites, as long as aj = 0 for j = 2, . . . , d (the results can however be
easily extended to situations with n′ = n − ad → ∞). The setting of Section 2.3
is accomplished with d = 12; additionally, the coordinates of X are assumed to be
stochastically independent then.

Let θ0 = (θ ′
01, . . . , θ

′
0d)′ ∈ Θd

−1 denote the stacked vector of true marginal param-
eters. A generic vector of marginal parameters will be denoted by θ = (θ ′

1, . . . , θ
′
d)′,

with θj = (μj , σj , ξj )
′. Let θ̂ denote any local maximum of the function

Qn(θ) = 1

n

n∑
i=1

d∑
j=1

log gθj
(Xij ) − 1

n
λ′

nΩ(θ) ≡ 1

n

n∑
i=1

�θ (Xi) − 1

n
λ′

nΩ(θ), (13)

where Ω : Θd
−1 → [0, ∞)m denotes an arbitrary penalty function.

The following first main result shows that there always exists a strongly consistent
local maximizer, as soon as the smoothing parameter is of smaller order than n. Sim-
ilar results have been obtained for Lasso-type estimators in a linear regression model
in Knight and Fu (2000), although their results are easier to obtain due to the convex-
ity of their criterion function. Our proof is based on similar arguments as in Dombry
(2015).

Proposition 1 (Strong Consistency) Let K denote an arbitrarily large compact sub-
set of Θd

−1, containing θ0 in its interior. Suppose that the penalty Ω is continuous.

Then, provided λ = λn satisfies ‖λn‖ = o(n) as n → ∞, any estimator θ̂n such that

Qn(θ̂n) = sup
θ∈K

Qn(θ), (14)

such maximizers always existing, is strongly consistent for θ0, as n → ∞.

While the estimator is strongly consistent for any smoothing parameter of the order
o(n), it turns out that the rate of convergence of ‖θ̂n − θ0‖ to zero in fact depends
on the precise order of the smoothing parameter. The following second main results
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shows that we obtain the usual parametric rate for ‖λn‖ = O(
√

n), and smaller
rates for ‖λn‖ between n1/2 and n, asymptotically. Similar results have been obtained
for Lasso-type estimators in simple linear regression models in Pötscher and Leeb
(2009), Section 4. For technical reasons, we restrict ourselves to the reduced param-
eter set Θ−1/2 = R × (0, ∞) × (−1/2, ∞), as this is the set where the GEV family
is differentiable in quadratic mean and the usual ML estimator is

√
n-consistent and

asymptotically normal, see Bücher and Segers (2017).

Proposition 2 (Rate of Convergence) Suppose that the conditions of Proposition 1
are met, with K denoting a compact subset of Θd

−1/2 containing θ0 in its interior.
Additionally, let Q be Lipschitz-continuous on K . Then, as n → ∞,

‖θ̂n − θ0‖ =
{

OP(n−1/2) if ‖λn‖ = O(
√

n),

OP(n−1/2+κ) if ‖λn‖ = O(n1/2+κ) for some κ ∈ [0, 1/2). (15)

Regarding the proof, the regime ‖λn‖ = o(
√

n) may be treated with Theorem 5.52
and Corollary 5.53 in Van der Vaart (2000), see also Bücher and Segers (2017),
Proposition D.1. For ‖λn‖ of larger order, a suitable adaptation of Theorem 5.52 in
Van der Vaart (2000) is needed, which may be interesting in its own right; this is Propo-
sition 6 in the supplementary material. An empirical illustration of the consistency
statements with rate can be found in Section B in the supplementary material.

A next desirable result would consist of deriving the precise asymptotic distri-
bution of θ̂n. This, however, is beyond the scope of this paper and left for future
research; note that the problem is difficult due to the fact that the support of the
GEV-family depends on the parameter (whence standard theory does not apply).

4 Hyperparameter selection

In this section, strategies to select appropriate values of λ are discussed. We restrict
attention to estimator Eq. 8 inspired by the index flood model, but similar approaches
are applicable to the seasonal smoothing estimator Eq. 10 or the general estimator Eq. 14.

We propose a cross-validation procedure based on the empirical cross-entropy.
The set of observed years, I = {1, . . . , n}, is partitioned evenly into K subsets,
I1, . . . , IK ⊂ I , that do not necessarily consist of consecutive years and are cho-
sen randomly. Let F

(k)
n be the empirical c.d.f. of the k-th subset and let θ̂

(−k)
λ =

((θ̂
(−k)
λ,1 )′, . . . , (θ̂ (−k)

λ,d )′)′ be the estimator of θ0 calculated without the data of the k-
th group. Select the parameter λ ∈ [0, ∞]m that minimizes the sum of empirical
cross-entropies R(θ̂

(−k)
λ , F

(k)
n ) over all groups, i.e.,

λCV = argmin
λ∈[0,∞]m

K∑
k=1

R(θ̂
(−k)
λ , F (k)

n )

= argmax
λ∈[0,∞]m

K∑
k=1

∑
i ∈ Ik

∑
{j :aj <i}

log g
θ̂

(−k)
λ,j

(Xi,j ). (16)
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Throughout our simulation experiments and applications, we choose the often-
recommended K = 10 groups (Hastie et al. (2009), page 242). The much higher
computational cost of a Leave-one-out cross-validation using K = n did not lead to
a better quality of the selected hyperparameter in our experiments.

If λ is high dimensional, the optimization of Eq. 16 can become very complex
or even not feasible. In this case, constraints on λ can simplify calculations. More
precisely, for some m′ ≤ m, let τ : [0, ∞]m′ → [0, ∞]m be a given fixed function.
The resulting constrained estimator associated with τ is written as λCV = τ(λCV

cons)

with

λCV
cons = argmax

λ∈[0,∞]m′

K∑
k=1

∑
i ∈ Ik

∑
{j :aj <i}

g
θ̂

(−k)
τ (λ),j

(Xi,j ). (17)

The most simple constraint is equality of all hyperparameters, i.e., λ1j = λ2j = λ

for all j = 1, . . . , d, which is achieved using τ(λ) = (λ, . . . , λ)′, λ ∈ [0, ∞]. We
refer to hyperparameters derived using this τ as λCV

global .
Note that equality of all hyperparameters does not imply that the penalization

effect is the same for sites with different record lengths. Indeed, the log-likelihood
part of Eq. 8 consists of different numbers of observations while the penalization
term is independent of the observation length. Hence, the ratio between those two
parts is different according to the length of records, penalizing sites with few records
(relatively) more than sites with many records.

Alternatively, to have stronger differences in the penalization effect but still a fea-
sible dimension of λ, the constraint λ1j = λ2j = λj for all j = 1, . . . , d can be
used, and is achieved by τ(λ1, . . . , λd) = (λ1, . . . , λd, λ1, . . . , λd)′. We denote this
selection as λCV

local .
As we will see in the results of the simulation study, globally selected hyper-

parameters tend to have high bias and low variance while individually selected
hyperparameters tend to have low bias and high variance. To investigate whether
combinations of the local and global λ result in a better estimation, we also consider
λCV

comb,α = αλCV
local + (1 − α)λCV

global, α ∈ [0, 1].
In regional flood frequency analysis, groups of stations are often built based on

site characteristics like mean elevation, mean slope, or catchment area. An alternative
to purely observation-based cross-validation procedures could be to map a measure
of the goodness-of-fit of a given site to a given group to the λ-space [0, ∞]m. We
will briefly investigate this approach in the case study in Section 6.

5 Simulation study

In this section we compare the performance of the PML estimator for regional flood
quantile estimation with standard methods in this field.

5.1 Scenarios

We generate several synthetic data sets of different types and different lengths. Het-
erogeneity can manifest in many different forms and is hard to capture systematically.
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To include a wide variety of heterogeneity structures, we consider four different
types: (I) a setting in which the sites are divided into two groups (called “groups”),
(II) sites with linearly varying parameters (“linear”), (III) a setting in which four sites
vary in different directions from the remaining, equally distributed sites (“single”),
and (IV) a setting with parameters that are arranged in a spherical fashion (“spher-
ical”). All sites follow GEV(μj , σj , ξj ) distributions with the location parameter of
station j = 1, . . . , d set to μj = 5j . The location-scale ratio δj = μj/σj (and hence
the scale parameter) and the shape parameter ξj of station j are selected using the
following formulas in the four settings (I)-(IV):

δj = 1.8 + r × �1(j, d), ξj = 0.2 + 2r × �2(j, d) (18)

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1(j, d) = �2(j, d) = sign( j−1
d−1 − 1

2 ), (I)

�1(j, d) = �2(j, d) = j−1
d−1 − 1

2 , (II)

�1(j, d) = 1{1,2}(j) − 1{3,4}(j), �2(j, d) = 1{1,3}(j) − 1{2,4}(j), (III)

�1(j, d) = cos( j
d
2π), �2(j, d) = sin( j

d
2π) (IV)

and with parameter r ∈ R+ controlling the degree of heterogeneity, 1A denoting
the indicator function of a set A and sign the signum function. Figure 3 illustrates
the four settings, for the choices of r = 0.1 (I), r = 0.2 (II) and r = 0.15 (III and
IV). The central coordinate (1.8, 0.2) was chosen because it is an average coordinate
in the case study presented in Section 6. We select record lengths between 20 and
100 observations and d = 12 stations. Quantile estimates of different heights are
calculated from B = 5000 replications of each scenario using the methods described
in the following section.

For the ease of a clear presentation, we only present results in spatially indepen-
dent settings. Alternative simulation scenarios based on dependent data (with depen-
dency described by a Gumbel copula) did not exhibit any fundamental qualitative
differences, aside from increased estimator variances for all methods.

5.2 Methods

We compare local and regional methods that are based either on ML estimation
(including our proposed penalized estimator) or L-moments.

Fig. 3 Representation of the four data settings. Sites differ group-wise, linearly, in a circular fashion, or
with single outliers in terms of loc-scale-ratio and shape parameter
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L-moment based estimators are very common in hydrology, see Hosking (1990)
for an introduction. The local L-moment method, denoted by l-local, calcu-
lates L-moments for each site individually and converts them to GEV parameters
θ̂L
j = (μ̂L

j , σ̂ L
j , ξ̂L

j )′, j = 1, . . . , d. The regional L-moment method, l-regional,
uses the well-known regional flood frequency approach of Hosking and Wallis
(2005), which is based on the Index Flood model given in Eq. 2. L-moments are
calculated from the normalized series Xij /sj , i = 1, . . . , nj , with individual Index
Floods sj , j = 1, . . . , d, being calculated as local arithmetic means. Regional L-
moments are built as weighted means of these, with weights equal to the record
lengths. Regional GEV parameters θ̂R = (μ̂R, σ̂R, ξ̂R)′ are calculated by convert-
ing the regional L-moments to GEV parameters. Local parameter estimates are then
given through θ̂

LReg
j = (μ̂R sj , σ̂R sj , ξ̂R)′, j = 1, . . . , d. Note that Hosking and

Wallis (2005) describe a much more comprehensive procedure, beginning with data
screenings, identifications of homogeneous regions, and tests to check assumptions.
We only concentrate on the data information pooling scheme in this study.

The local ML approach (denoted as ml-local) calculates ML estimates at each
site individually by optimizing

θ̂ML
j = argmax

θ∈Θ

n∑
i=aj +1

log gθ (Xi,j ), j = 1, . . . , d. (19)

Starting values for the numerical optimization are chosen from L-moments.
Our proposed method is the PML estimator described in Eq. 8. Throughout the

optimization, we fix δc and ξc using weighted means of local L-estimates δc =
n−1 ∑d

j=1 nj

μ̂L
j

σ̂L
j

and ξc = n−1 ∑d
j=1 nj ξ̂

L
j . This reduces the optimization problem

to an individual maximization at each site:

θ̂λ = argmax
θ∈Θd

d∑
j=1

n∑
i=aj +1

log gθj
(Xi,j ) −

d∑
j=1

(
λ1j (δj − δc)

2 + λ2j (ξj − ξc)
2
)

=

⎛
⎜⎜⎜⎝
argmax

θ1∈Θ

∑n
i=a1+1 log gθ1(Xi,1) − λ11 (δ1 − δc)

2 − λ21 (ξ1 − ξc)
2

...
argmax

θd∈Θ

∑n
i=ad+1 log gθd

(Xi,d) − λ1d (δd − δc)
2 − λ2d (ξd − ξc)

2

⎞
⎟⎟⎟⎠ . (20)

To determine appropriate hyperparameters λ we use cross-validation as described in
Section 4 with K = 10 subsets. We use and compare the constrained hyperparame-
ters λCV

global , λCV
local , as well as combinations λCV

comb,α with α ∈ {0.25, 0.5, 0.75}. The
methods will be denoted by pml-gl, pml-ll, pml-cl-0.25, pml-cl-0.5, or
pml-cl-0.75, respectively.

All parameter estimates θ̂ are converted to quantile estimates by q̂ = F−1
θ̂

(p), p ∈
(0, 1).
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5.3 Performancemeasures

To assess the quality of the methods we use common performance measures. Let
qj = qj (Fj ) be a specific quantile of a distribution Fj and q̂b,j = q̂b,j (θ̂λ,b) the
corresponding estimation in sample b = 1, . . . , B. For each method we calculate the
average empirical relative mean squared error as

relMSE = d−1
d∑

j=1

B−1
B∑

b=1

(q̂b,j − qj )
2

q2
j

. (21)

We also examine the composition of this measure by calculating the mean
empirical relative squared bias and mean empirical relative variance as

relSqBias = d−1
d∑

j=1

(
B−1

B∑
b=1

q̂b,j − qj

qj

)2
, (22)

relVar = d−1
d∑

j=1

B−1
B∑

b=1

( q̂b,j − B−1 ∑B
b′=1 q̂b′,j

qj

)2
. (23)

5.4 Results

Figure 4 displays the relative MSE of the 0.99 quantile estimation for the PML
methods with different hyperparameters in the linear and the single setting. The two
settings not displayed are qualitatively comparable to the linear one. The global λ-
selection, which selects the same hyperparameter for all sites, is the best choice in
most of these situations. The relative MSE tends to get worse if a higher propor-
tion of the local selection is used, with the only exception being the single setting
with a high degree of heterogeneity. In this case, the locally chosen hyperparameters
typically differ a lot so that improvements over equally chosen hyperparameters are
possible. Since the improvement is not large however, we stick with λglobal for PML
estimation in the following.

Fig. 4 Relative MSE depending on the heterogeneity r for different λ-selections (n = 80). The two
settings not displayed are qualitatively comparable to the linear case
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Fig. 5 Relative MSE of the 0.99 quantile estimators depending on the distance r for two settings and
records of length n = 80

Figure 5 depicts the relative MSE of the estimates for the 0.99 quantile for record
lengths of n = 80 and two settings. These illustrations are representative also for
other quantiles, record lengths (as we will see later), and the other two settings. Both
L-moment based methods perform well for their intended application, the regional
one for homogeneous groups (small r) and the local one for heterogeneous groups
(large r), but they lack quality if they are applied to the contrary situation. The PML
estimator overcomes this problem by allowing to gradually choose between local or
regional estimation. Using the globally selected hyperparameter λ it performs best or
close to the best in all these situations, independently of the degree of heterogeneity
r . The local L-moment based estimation outperforms the local ML based one in all
settings considered here. As already discussed in Hosking et al. (1985), this is likely
due to the short record length.

The top panels of Fig. 6 show the influence of the record length on the relative
MSE in the linear setting for three degrees of heterogeneity. The local ML method
fails for record lengths smaller than, say, n = 40 but it catches up with increasing

Fig. 6 Results for the linear setting. Top: Relative MSEs for the 0.99 quantile and different record lengths
n. Bottom: Relative MSE as a function of the estimated quantile
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record length, while the L-moment estimations are not that much influenced by small
record lengths. The PML estimator gives good results for record lengths larger than
n = 30 and is nearly as good as the regional L-moment estimator in homogeneous
groups (r = 0) and surpasses all other methods in groups of higher heterogeneity.

The bottom panels of Fig. 6 show the MSE of the estimation of different quantiles
in the linear setting for n = 80. The methods show stable relative performances for
all quantiles and each heterogeneity. For homogeneous groups, the local methods
show much larger MSE than the regional ones. As opposed to the regional L-moment
estimator, the PML estimator remains the best choice among these methods as the
heterogeneity increases.

Figure 7 finally splits the MSE into the squared bias and the variance. The squared
bias increases rapidly with increasing heterogeneity for the regional L-moment
method, while for the other methods it is rather small as compared to the variance.
The variance is substantially smaller for the regional estimators than for the local
ones, with a small advantage for the regional L-moment estimator in this respect.

Overall, the PML estimator combines a small squared bias with a low variance,
which results in a good relative MSE. The proposed cross-validation procedure is
able to provide hyperparameters that adapt to local or regional solutions depending
on the data situation and can reduce the relative mean square error substantially in
this way.

6 Case study

We illustrate the application of our PML estimator with a case study. The data set
consists of flood peaks (maximal water discharge in m3/sec) at 26 stations in the Elbe
river

basin in Saxony, Germany, located at the north side of the Ore Mountains (with
a mountaintop of 1244 m a.s.l.) and its foothills. The sites differ in mean elevation
(from 168 m to 754 m a.s.l.) and catchment area (from around 36 km2 to 5433 km2)
and consist of record lengths between 64 and 103 years.

We begin by illustrating the seasonal estimation method from Section 2.3 using
monthly flood peaks at Rothenthal, a rather small catchment located in the OreMoun-
tains on the border between Germany and Czech Republic. The data set consists of

Fig. 7 Squared Bias and Variance of 0.99 quantile estimators depending on the heterogeneity r in the
linear setting, n = 80
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measurements for 84 years. The top panel of Fig. 8 contains the peaks separated by
month. The estimator defined in Eq. 10 was calculated for different values of λ. The
resulting shape parameter estimates are given in the bottom panel of Fig. 8. The regu-
lar ML estimate varies sharply and seems to be strongly influenced by single events;
e.g. the shape of August is significantly higher than the shape of July although the
distributions of the peaks look similar except for one very high event in August.
Penalization leads to less extreme estimates and to a much smoother estimation curve.
A 10-fold cross-validation was calculated using formula Eq. 16 and found λ = 44.72
to be the best choice (filled points in the bottom panel of Fig. 8). The cross-validated
solution has a clear seasonal variability but avoids spikes or extreme estimates.

Next, we focus on the PML estimator in a regional setting based on annual max-
ima, as described in Section 2.2. Section 5 illustrates that the PML estimator for
regional estimation yields comparably good results both in homogeneous and mod-
erately heterogeneous situations, which is why small to moderate deviations from the
homogeneity assumption can be tolerated when using this estimator. In order to pro-
tect against heavy deviations from homogeneity, it may however be advantageous to
perform a group building process first. For that purpose, site characteristics (catch-
ment area, mean elevation, proportion of forest area, stream density, length of stream
network) are used to construct two groups by an application of k-means clustering
on standardized site characteristics. One resulting group (mostly) contains sites with
small catchment areas located at higher elevations of the Ore Mountains, while the
other group includes sites with bigger catchment areas further downstream. Smaller

Fig. 8 Top: Monthly maximal discharges for each calendar month. Bottom: Shape parameter estimates
using a seasonal penalization term. Filled points indicate the estimates based on the cross-validated
hyperparameter
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catchments are more strongly affected by single events and therefore often feature
larger shape parameters in a GEV model, so that the grouping appears to be rea-
sonable. To analyse the influence of the group-building process, the estimates are
calculated once with a single group containing all sites and once after division into
these two groups. Subsequently, d denotes the number of sites of the respective group
under consideration; thus, its meaning may change from line to line.

The PML estimator of Eq. 20 is calculated for each group (or for all sites together)
with a globally cross-validated λ (i.e. λ1j = λ2j = λ ∀j = 1, . . . , d). Regarding the
choice of δc and ξc, preliminary simulation results showed that selecting δc and ξc as
weighted means of the corresponding local values results in rather ragged estimation
paths λ �→ (γ̂j (λ), μ̂j /σ̂j (λ))′. Much smoother paths are obtained by fixing the
group centres δc and ξc at pre-specified weighted means of local L-moment estimates
throughout the optimization. We therefore choose to present results for the latter
approach only. The selected hyperparameters from the cross-validation are λCV

global =
0.79 if no grouping is applied and λCV

1,global = 0.25 and λCV
2,global = 1.02 if the sites

are grouped. Figure 9 shows the respective estimates for both cases. In both plots,
the lines indicate all estimates obtained by the PML estimator using λ ∈ [0, ∞),
with the local ML estimate (i.e. λ = 0) being the most outward point of the line.
The bold points indicate the estimates chosen by the cross-validated λCV

global . Without
grouping, the estimates vary moderately around the centre, clearly less than ordinary
ML estimates would do. With two groups, there are clear differences: the first group
(filled circles) has a medium level of regionalization, resulting in estimates in the
middle of the path. Regionalization is much stronger for the other group, with all
estimates being closer to the centre of the group.

Finally, we want to give a small example of how additional information can be
used to improve the hyperparameter cross-validation. For that purpose we use a con-
straint function τ as in Section 4 in which we incorporate information about the
dissimilarity of the sites to their group. The respective calculations are done for
both groups separately. To measure the dissimilarities, we calculate the Euclidean
distances distj , j = 1, . . . , d, of each site to the mean of the corresponding

Fig. 9 PML estimates without (left) and with group-building (right). Lines mark all possible estimates for
different hyperparameters, points indicate the cross-validated solution
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Fig. 10 Left: Mappings dist �→ λcons
� /dist for λcons

1 = 1.03 (green line, Group 1) and λcons
2 = 8.46

(blue line, Group 2). The dots and diamonds indicate the individual sites in the respective groups. Right:
Estimates using the hyperparameters λ� = τ(λcons

� )

group in the space of the standardized site characteristics that were used for the k-
means group building process. The constraint function τ is now constructed with
two aspects in mind: first, we want to ensure that the final hyperparameter λ =
(λ11, λ21, . . . , λd1, λd2)

′ = τ(λcons) allows for an individual degree of regional-
ization λ1j = λ2j = λj at each site and, second, that these λj have a reciprocal
relationship to the dissimilarity distj . Hence, we set, for λcons ∈ [0, ∞],

τ(λcons) = τ(dist1,...,distd )(λ
cons)

= (λcons/dist1, . . . , λ
cons/distd , λcons/dist1, . . . , λ

cons/distd)′. (24)

A suitable value of λcons is found by applying formula Eq. 17 and the final
hyperparameter is then selected as λ = τ(λcons).

The obtained cross-validated hyperparameters are given by λcons
1 = 1.03 and

λcons
2 = 8.46 for Group 1 and 2, respectively. In the left panel of Fig. 10, we depict the

mappings dist �→ λcons
� /dist for � = 1, 2, with the dots and diamonds representing

the sites in Group 1 and 2, respectively. It can be seen that the final hyperparameters
λj = λ1j = λ2j are comparable for Group 1, while the variation is larger within
Group 2, with one outlying site. In the right panel of Fig. 10 the corresponding esti-
mates are given. Since Group 1 is mapped to small hyperparameters, the estimates
are further away from the group centre. Group 2 is mapped to higher hyperparame-
ters and has estimates close to the centre. These findings are similar to the previous
ones, but with an even more regionalized second group.

Finally, Fig. 11 presents 95%-confidence intervals of site-specific 0.99 quantile
estimates that are calculated applying a non-parametric resampling technique. More
precisely, we create bootstrap samples by randomly drawing n years of the original
dataset with replacement, calculate the estimates using the different methods in each
bootstrap sample, and use the empirical 0.025 and 0.975 quantiles as confidence
interval limits. For comparison, confidence intervals based on the local L-moment
estimator, the ML estimator and the regional L-moment estimator using the same
groups as our PML estimator are added as well (the latter is calculated using the
dissimilarity information distj as described above). The lengths of the confidence
intervals based on PML estimation are shorter than those of local estimations and
comparable to the size of regional L-moments. This indicates that the variability of
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Fig. 11 Bootstrap confidence intervals of 0.99 quantile estimates using different estimators at all 26 sites.
The intervals around filled dots and diamonds belong to the sites of Group 1 and 2, respectively

the PML estimator is similar to a regional procedure while maintaining individual
estimations.

7 Discussion

This paper discusses PML estimators in extreme value models and provides theo-
retical large sample results for a rather general GEV framework. We prove strong
consistency if the hyperparameter is of order o(n) and show how the rate of
convergence depends on the order of the hyperparameter.

Applications cover simple constraints on the shape parameter, seasonal con-
straints, and an Index Flood like regularization for regional flood frequency analysis.
The latter is of particular interest and analysed using synthetic data in a simulation
study and real data in a case study. The penalization term is chosen to represent the
well-known index flood model by penalizing deviations from local parameter esti-
mates to regionally calculated ones. A hyperparameter controls the influence of that
term and thus the balance between local and regional estimates. In contrast to former
methods, this enables us to adjust the degree of regionalization.

A crucial point in regularization techniques is the choice of hyperparameters,
with common approaches being based on cross-validation procedures. Through
simulations we have found that in our short record scenarios a globally selected
hyperparameter (i.e. the same parameter for each site) is usually advantageous over
selecting an individual parameter. The only setting in which this was not the case is
a scenario in which the majority of sites is completely homogeneous and only few
outlying sites differ from them. In this case the optimal hyperparameters differ a lot
so that improvements over equally chosen hyperparameters are possible.

The main result of the simulation study is that the PML estimator generally pro-
vides competitive or even better quantile estimates as compared to other methods
when there is uncertainty about the homogeneity of the group of sites. While the
local L moment estimator and the regional L moment estimator using the Index Flood
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model offer good results in each of the situation they are designed for, they lack qual-
ity if the situation is not clear or misspecified. The PML estimator overcomes this
problem by allowing to gradually choose between local or regional estimation.

The real-world applicability has been demonstrated at a set of 26 gauges in Ger-
many which were divided into two groups based on site-characteristics. Using this
example we have shown how surrogate information like the distance of the stations
to the center of the group in the space of site characteristics can be used to derive
hyperparameters. The latter provides a promising alternative to observation-based
cross-validation in situations of short record lengths.

The paper leaves several opportunities for further research. On the theoretical
side, the asymptotic distribution of the PML estimator could be investigated. On
the methodological side, extensions to the peaks-over-threshold approach might be
of interest. In terms of applications, the approach described in Section 2.4 to cope
with possible non-stationarities deserves a comprehensive investigation. Regarding
regional flood frequency analysis, further investigations could concern the possibility
that each site is not only penalised to the centre of one group but to multiple groups.
Indeed, it seems more realistic that, for each site, there is no native membership to
one group but different degrees of membership to several groups.
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