
Extremes (2018) 21:405–410
https://doi.org/10.1007/s10687-018-0322-z

Discussion on “Human life is unlimited but short”
by Holger Rootzén and Dmitrii Zholud

Chen Zhou1

Received: 17 April 2018 / Accepted: 18 April 2018 /
Published online: 28 April 2018
© The Author(s) 2018

Keywords Data truncation · Asymptotic bias

1 Introduction

The recent stimulating work of Rootzén and Zholud (2017) provides a detailed
analysis on the tail of the distribution of human life length. One of the important con-
tributions of this work is to address the impact of sampling scheme in the data of the
age of long-lived people. The striking finding is that the length of human life follows
a distribution without a finite endpoint. The data used in this study is the Interna-
tional Database on Longevity (IDL) data1 which underwent a careful data validation
procedure. Validating the data of extreme ages is in general plausible and necessary.
Nevertheless this discussion will focus on an unintended impact of data validation:
using the validated data record may lead to a biased conclusion regarding the tail of
the original dataset.

Rootzén and Zholud (2017) draw the conclusion that human life length is “unli-
mited but short” by fitting a sample of high ages above 110 to the generalized Pareto
distribution (GPD). Based on the estimated shape parameter, the null of γ = 0 is not
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rejected. Notice that the GPD with γ = 0 corresponds to the exponential distribution
which has no finite endpoint. Rootzén and Zholud (2017) denote the three cases
γ > 0, γ = 0 and γ < 0 as “unlimited life length”, “unlimited but short life
length” and “limited life length” and therefore conclude from the statistical analysis
that human life length is “unlimited but short”.

It is debatable whether the case γ = 0 should be interpreted as “unlimited but
short”. The rationale behind fitting the high ages to the GPD follows from the domain
of attraction condition in Extreme Value Theory (EVT). Suppose the distribution
function of the human life length, F , belongs to the domain of attraction of a gen-
eralised extreme value distribution with extreme value index γ . Then the excesses
above a high threshold follow approximately the GPD with a shape parameter γ .
Although the GPD with γ = 0, i.e. the exponential distribution, has no finite end-
point, the original distribution function F with the extreme value index γ = 0 may
still have a finite endpoint, see e.g. Gnedenko (1943, pp. 445). Therefore, the fact
that human life length possesses an extreme value index γ = 0 may not be directly
associated to the conclusion of “unlimited human life”.

Apart from the interpretation, this discussion aims at providing further insight on
the potential distortion to the (estimation of) extreme value index when the data record
is not complete. The essential idea follows the lines of data validation in the IDL
project: data that are classified as “invalid” will be removed from the dataset. Here
I make the assumption that for the record of human life length, the probability of having
an invalid observation depends on the age: high ages are more likely to be missing or
classified as invalid in the record. Such an assumption is reasonable as the record of
death and birth might not have been systematically organized one century ago.

I show that if the data observed is an incomplete subset of the full dataset, the
extreme value index of the observed data might differ from that of the full data. In
particular, if the full dataset possesses an extreme value index γ < 0, i.e. with a
finite endpoint, the observed dataset may possess a higher extreme value index that
is closer to zero. In some example, it is also possible to have the observed dataset
with an extreme value index γ = 0. The situation depends on the probability of data
being classified as invalid. Even if the observed data may share the same extreme
value index as that of the full data, due to the distortion on the second order property
of the observed data, the estimated extreme value index may be biased towards zero.

To summarize, if the data record is incomplete, it is more likely to obtain an (esti-
mated) extreme value index that is closer to zero, and therefore less likely to reject
the null of γ = 0. Overlooking this potential distortion may result in misleading
conclusions.

The incomplete data setup in this discussion should be distinguished from random
data censoring. Einmahl et al. (2008) considered random censoring in extremes. In
their model, the original data may not be observed if it exceeds another random varia-
ble. In such a case, the random threshold is observed and the occurrence of “random
censoring” is recorded. In the random censoring case, the observed data also pos-
sesses a different extreme value index compared to the original data. Different from
random censoring, the model in this discussion can be regarded as “random trunca-
tion”. Once truncated, no further information is observed: neither the value of the
truncated threshold, nor the occurrence of truncation.
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The discussion is organised as follows. Section 2 provides the evaluation for the
impact of incomplete data record. Section 3 discusses the practical consequences.

2 The impact of incomplete data record

Assume that the full dataset of the human life lengths consists of i.i.d. observations
X1, · · · , Xn drawn from a distribution F . For simplicity, I shall consider an example
F(x) = 1− (θ − x)−1/γ with θ > 0, γ < 0. This distribution has a finite endpoint θ
with an extreme value index γ < 0. For each given Xi , a Bernoulli random variable
Bi indicates whether Xi will be observed. I assume that the probability of the age
Xi being observed is negatively associated to the age itself, i.e. Pr(Bi = 1|Xi) =
g(θ − Xi), where g : [0, +∞) → [0, 1] is an increasing function.

An alternative view for this setup is to consider a series of i.i.d. positive random
variables {Zi}ni=1 with a common distribution function FZ . Each Xi is observed, i.e.
Bi = 1, if and only if Xi < Zi . Consequently, P(Bi = 1|Xi) = 1 − FZ(Xi). Com-
paring with the model setup, we can interpret the function g as g(t) = 1−FZ(θ − t).
With this alternative view, the model can be interpreted as random truncation: Xi

is truncated by the random threshold Zi . If the truncation occurs, no information
is recorded: neither the value of the truncated threshold, nor the occurrence of
truncation itself.

Eventually, the observed dataset is {Xi : Bi = 1}. Denote Yi = XiBi for i =
1, 2, · · · , n. Since extreme value analysis, such as estimating the extreme value
index, only employs large observations in the observed data, the statistical inference
can be regarded as being based on {Yi} while disregarding the number of observa-
tions n. Consequently, I will study the tail region of the distribution of Y = XB while
omitting the subscript as follows:

Pr(Y > x) = Pr(X > x, B = 1) =
∫ θ

x

g(θ − t)dF (t) (1)

With three examples of the function g, I shall discuss there implication for the
distribution of Y and the corresponding estimation of the extreme value index.

Example 1 The power function: g(x) = xβ for β > 0.

With this function g, I assume that as the age is getting close to the endpoint θ , the
probability of being observed decreases in a power speed towards zero. Moreover, in
the view of data truncation, the random threshold Z follows a distribution FZ(x) =
1 − g(θ − x), which has the same endpoint θ as that of X.

In this case, the distribution of Y can be derived as follows: for x < θ ,

Pr(Y > x) = 1

−γβ + 1
(θ − x)β−1/γ .

Consequently, the distribution of Y has the same finite endpoint θ as the distribution
function F , but a different extreme value index −1/(β−1/γ ) > γ . We conclude that
the extreme value index of the observed data is higher than that of the full dataset,
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and closer to zero. In other words, the random truncation distorts the true value of
the extreme value index.

This example can be generalized to any F that belongs to the Weibull domain of
attraction. The proof of the general result is omitted.

Example 2 Power function with a drift: g(x) = min(c + xβ, 1) for β > 0 and
0 < c < 1.

Compared to the first example, the only difference in this example is that as the
age is getting close to the endpoint θ , the probability of being observed decreases but
is still bounded away from zero. Moreover, in view of data truncation, the random
threshold Z satisfies Pr(Z > θ) = c > 0. This can be interpreted as that Z has a
higher endpoint than θ , which allows all potential ages to be observed with a positive
probability.

In this case, the distribution of Y can be derived as follows. For x > θ −(1−c)1/β ,
we have that g(θ − x) = c + (θ − x)β , which implies that

Pr(Y > x) = c(θ − x)−1/γ + 1

−γβ + 1
(θ − x)β−1/γ .

Consequently, the distribution of Y has the same finite endpoint θ and the same
extreme value index γ as the distribution function F . In this example, the random
truncation does not distort the true value of the extreme value index.

Nevertheless, the tail part of the distribution of Y has an additional second order
term. More specifically, it satisfies the so-called second order condition as in de Haan
and Stadtmüller (1996), with a second order index ρY = γβ and second order auxi-
liary function AY (t) = β cγβ−1

−γβ+1 t
γβ > 0. (Details of the derivation are omitted here.)

Notice that the original distribution function F has a second order index −∞. Hence,
the second order behavior of the tail distribution is distorted by the random truncation.

This example can be generalized to any F that belongs to the Weibull domain of
attraction while satisfying the second order condition with an index ρF < γβ. Again,
the proof of the general result is omitted. In other words, if ρF < γβ, the second
order index of Y is higher than ρF and closer to zero.

The distortion to the second order index has a direct impact on the estimation of the
extreme value index. Notice that Rootzén and Zholud (2017) use the maximum like-
lihood estimator (MLE) for estimating the extreme value index index γ . Not only for
the MLE, but also for most of the existing estimators of γ in the literature, the opti-
mal level of tail observations used, usually denoted as k, is at the level O(n2ρ/(2ρ−1)),
where ρ is the second order index of the underlying distribution. Since ρY > ρF , it
is a direct consequence that the optimal k that can be used for the observed dataset
is at a lower level compared to that used for the full dataset. Consequently, there is a
higher level of estimation uncertainty when using the observed dataset.

In practice, for a given n, one usually choose a fixed k. For example, in Rootzén
and Zholud (2017), k = 566. In such a case the estimator of the extreme value index
using the observed dataset can be severely biased. The asymptotic normality of the
MLE (see Drees et al. (2004)) shows that the bias of the MLE has the same sign as
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the second order auxiliary function A. Since AY (t) > 0, the estimator based on the
observed data is biased upwards, i.e. closer to zero.

To summarize, this example shows that if all ages have some positive chance to be
observed, the observed dataset may still possess the same true extreme value index
as the full dataset. However, when estimating the extreme value index based on the
observed dataset, the estimator is either more inaccurate due to a lower choice of
the number of tail observations, or more biased towards zero, which makes it more
difficult to be detected as significantly different from zero.

Lastly, I provide an artificial example to show that with some specific choice of the
g function, the observed dataset may exhibit a completely different endpoint, even
with γ = 0.

Example 3 g(x) = 0 for x ∈ [0, c] and g(x) = β(x − c)−β−1 exp
{−(x − c)−β

}
for

x > c and β > 0.

With this function g, I simply assume that no age in the region [θ−c, θ ] is observa-
ble. Consequently, the endpoint of Y is reduced to θ − c. Moreover, in view of data
truncation, the random threshold Z a lower endpoint θ − c which does not allow the
ages in the region [θ − c, θ ] to be observed.

For this example, as x → θ − c,

Pr(Y > x) ∼
∫ θ−c

x

β(θ − c − t)−β−1 exp
{−(θ − c − t)−β

} 1

−γ
c−1/γ−1dt

= exp
{−(θ − c − x)−β

} 1

−γ
c−1/γ−1

The derivation shows that Y has an endpoint θ − c and an extreme value index zero.

3 Concluding remarks

In this discussion, I demonstrate that if the dataset is incomplete due to data valida-
tion, the observed dataset may have a different tail behavior compared to the original
dataset. If the original dataset has a negative extreme value index with a finite end-
point, the true extreme value index may be distorted by data truncation: the observed
dataset may have an extreme value index closer to zero, or even equal to zero. Even if
the distortion is only for the second order tail behavior, the estimator of the extreme
value index based on the observed dataset will be biased towards zero and/or suffer
from a high estimation uncertainty.

I remark that such a distortion is particularly pronounced in practice if the number
of large observations used for estimating the extreme value index is limited. Notice
that the MLE has a rate of convergence 1/

√
k where k is the number of large obser-

vations used in the estimation. Further, the asymptotic variance is (γ + 1)2. To test
the null hypothesis that γ = 0 at a significance level α, the point estimate of the
extreme value index must be below −�−1(1 − α/2)/

√
k in order to obtain a sig-

nificant result. For the often used significance level α = 0.05, with k = 566 as in
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Rootzén and Zholud (2017), I get that the threshold is -0.082. Therefore even if the
point estimate is only slightly distorted by the positive bias, it is quite likely that the
result turned to be insignificant.

To summarize, using an incomplete data record may result in potential distortion
to the true value and/or the point estimate of the extreme value index. Together with
the low k used in estimation, one may not reject the null hypothesis that the extreme
value index is zero, which can be false for the original dataset. On top of that, having
a zero extreme value index does not necessarily imply having an infinite endpoint.
Therefore, it is still less evident to conclude that human life is unlimited.

How to make inference on the tail behavior of the full dataset when the observed
dataset is subject to random truncation is still open for research. From the three exam-
ples, it is clear that if the random threshold has a lower endpoint than that of the
original data, such an inference is not feasible because the tail of the original dataset
is not observed at all. If the random threshold has a higher endpoint than that of the
original data, the distortion is limited to a high bias of the estimator. Bias correction
might be a useful tool here for improving statistical inference. The most complicated
case is when the endpoint of the random threshold coincides with that of the original
dataset. This is left for future research.
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