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Abstract
The specific problem considered is the number of radial velocity measurements
required to obtain good estimates of physical parameters of binary star. It is assumed
that observations are made at random binary phases. The loss of information due to
poor phase coverage is explored, and a suggested limit on the largest acceptable gap
introduced. The statistical distribution of maximum gap lengths can then be used to
specify the minimum number of velocity measurements to obtain good phase cover-
age with a specified confidence limit. The effects of non-zero orbital eccentricity are
discussed, as are the ramifications of having multiple binary targets. The theory is also
applicable to the characterisation of the radial velocity curves induced by exoplanets
on their host stars, provided that the periods and eccentricities are known (from e.g.
transit observations).

Keywords Radial velocity measurements · binary stars · astrostatistics · stars:
planetary systems

1 Problem statement

Consider the following project: radial velocities of a number of faint binary star targets
are to be obtained by queue scheduling of observing time. The scheduling will be such
that measurements will be obtained at random phases. (For example, the periods may
be much shorter than times between observations). How many visits N per target are
required to ensure good phase coverage? It is assumed that the period P and the orbital
eccentricity e of each of the stars is known from photometric measurements.
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In general, the radial velocity is described by the set of equations

M = 2π

P
(t − t0)

M = E − e sin E

θ = 2 tan−1

[√
1 + e

1 − e
tan(E/2)

]

vr = γ + K [cos(θ + ω) + e cosω] (1)

where γ is the systemic velocity, K the semi-amplitude, θ = θ(t) the true anomaly,
ω the argument of periastron, E the eccentric anomaly, M the mean anomaly, and t0
the time of periastron passage [e.g. Tatum [13] or https://www.astro.uvic.ca/~tatum/
celmechs.html]. This serves as a basis for the material below.

It is well known that the eccentricity of binary orbits can be determined from light
curves alone (e.g. [12]). Approximate eccentricities of exoplanetary orbits can also
be calculated from photometry of transits. If more than one planet orbits a star, the
transit timings will not be perfectly periodic. The transit timing variations can be used
to infer, amongst other quantities, the eccentricities of the planetary orbits (e.g. [1,
4, 6]). The effects of eccentricity on the shape of transit light curves have also been
exploited to derive a relationship between the eccentricity and the mean density of the
host star (e.g. [2, 7], and references therein). Weak limits on the stellar density lead to
sharp limits on the eccentricity of the planetary orbit.

The conclusion is that information (periods, eccentricities) gained from transit
observations can be also used to plan radial velocity observations of exoplanet sys-
tems. Given that the velocities involved are much smaller than those of binary stars,
the theory below pertains to the minimum number of epochs of observation, rather
than the total number of velocity measurements.

2 Adequate phase coverage

Thefirst task is to definewhat exactly ismeant by “good" (or adequate) phase coverage.
A sensible approach is to base the answer on controlling the estimation errors on the
parameters of interest (systemic, velocity, velocity semi-amplitude and argument of
periastron, if e = 0.)

A quantitative answer to the question can be given by noting that for circular orbits,
the observed radial velocity is

vr (t) = γ + K cos(2π t/P + ω′) + ε(t)

whereω′ is the phase at time t = 0 and ε representsmeasurement error. If the velocities
are phased with respect to P ,

vr (t) = γ + K cos[2πψ(t) + φ] + ε(t)

= γ + A cos[2πψ(t)] + B sin[2πψ(t)] + ε(t) (2)
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with 0 ≤ ψ < 1. Equation (2) is in standard linear regression form; it follows imme-
diately that the covariance matrix C of the estimated values of γ , A and B is

C = σ 2
ε (X ′X)−1 ≡ σ 2

ε W (3)

(e.g. [8]). In this case the design matrix X is

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 cos 2πψ1 sin 2πψ1

1 cos 2πψ2 sin 2πψ2

...
...

1 cos 2πψN sin 2πψN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

The considerable advantage of the linear form in (2) is that X , and hence W , does not
contain any unknowns: scale factor σε aside, C is fully characterised by W .

The statistical field of optimal design is concerned with controlling (as much as
possible) the entries in X in order to minimise the variances appearing in the matrix
C . To this end, various measures based on the matrix W has been suggested. Here,
we will refer to only two popular choices: A-optimality, which entails minimising the
trace of W , and D-optimality, which minimises the determinant of W (e.g. [10]).

Figures 1 and 2 illustrate application of the two optimality criteria to the problem
at hand. Proceeding from a regular grid of phase valuesψ spanning the interval [0, 1),
gaps are introduced, as plotted in Fig. 1. Gaps are increased in length, and for each
“design" the matrix W is calculated. The traces and determinants of W are plotted in
Fig. 2, normalisedwith respect to the values for zero gap length. As expected, trace(W )

Phase
0 0.2 0.4 0.6 0.8 1

Fig. 1 The pattern of phase spacings used to derive the results in Fig. 2: a regular grid spacing covering the
interval [0, 1), with a single large gap
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Fig. 2 The effect of large gaps in a regularly spaced coverage of the phase interval [0, 1), as in Fig. 1.
Top panel: the A-optimal criterion. Bottom panel: D-optimal criterion. Dots and circles respectively show
results for full observation grids of 20 and 60 points

and |W | increase with increasing gap lengths, demonstrating the sub-optimality with
respect to the complete set of phases ψ .

The interpretation of the A-optimality criterion is more transparent: it is essentially
the sum of the three variances (of the estimated values of γ , A and B). For gap lengths
longer than 0.45, trace(W ) > 5, i.e. a five-fold increase in the variance. The precise
choice will obviously be dependent on the context. Here, illustrative numerical values
will be given assuming maximum acceptable phase gaps of 0.4.

3 Probability of large gaps

It is convenient to think of phase as being defined on a circle with unit circumference,
so that ψ and ψ + k, with k being any integer, refer to the same radial velocity phases.
The phase of each radial velocity measurement corresponds uniquely to a point placed
randomly on the unit circle. The definition of good phase coverage is then equivalent
to placing a limit 
 on the largest arc length between any two points on the unit circle.
This problem appears to have been first addressed by Stevens [11]. We will use the
result (e.g. [5])

F(
) =
L∑
j=0

(−1) j
(
N

j

)
(1 − j
)N−1 (5)

where F is the cumulative distribution function (CDF), and L = �1/
� is the greatest
integer smaller than, or equal to, 1/
.
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Fig. 3 Probability density functions of 
 [Equation (6)]. From right to left, N = 5, 10, 15, 25

The probability density function (PDF) corresponding to (5) is

f (
) = N (N − 1)
L∑
j=1

(−1) j−1
(
N − 1

j − 1

)
(1 − j
)N−2 . (6)

A few examples are plotted in Fig. 3. As intuition would suggest, PDFs are more
compact and concentrated at smaller 
 as N increases. Note that gaps of length 0.4
are unlikely by the time N = 15, and seem virtually impossible at N = 25.

Two notes: first, although the shapes of the PDFs in Fig. 3 resemble those of skew
normal distributions, the standardised skewness coefficient γ1 < 1 for the latter, while
the skewness associated with the PDF f slightly exceeds unity for N ≥ 10. Second,
Holst [5], amongst others, discussed the asymptotic distribution of the largest arc
length. Although this has a conveniently simple form, numerical experiments show
that it is not a good approximation to (5) for the relatively small values of N considered
here.

For 0.34 < 
 < 0.5, L = 2 and

F(
) = 1 − (N − 1)(1 − 
)N−1 + 1

2
N (N − 1)(1 − 2
)N−1 .

For 
 = 0.4, F(
) = 0.989 for N = 15, i.e. in only 1% of cases will phase gaps larger
than 0.4 be encountered if vr is measured 15 times. A 99.9% certainty that 
 < 0.4
requires N = 21.

4 Several stars

The treatment up to this point has focussed on single targets. Consider a group of M
stars, eachwith N measurements of vr taken at randomphases. Let p be the probability
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Table 1 Probabilities of finding 0, 1 or 2 stars with inadequate phase coverage (largest gap ≥ 0.4)

M m = 0 m = 1 m = 2
N = 15 N = 21 N = 15 N = 21 N = 15 N = 21

5 0.946 0.996 0.053 0.004 0.001 0

10 0.896 0.993 0.099 0.007 0.005 0

20 0.802 0.986 0.178 0.014 0.019 1E-4

50 0.576 0.964 0.320 0.035 0.087 6E-4

The number of measurements is N , for each of the M stars

of an unacceptably large phase gap for a single star. Then the probability that m of the
M stars will have poorly determined parameters has a binomial distribution:

P(m = x) =
(
M

x

)
px (1 − p)M−x (7)

Table 1 contains some illustrative results: with N = 21 randommeasurements per star
there is an reasonable (95%) chance that all M datasets will be acceptable (at least for
M ≤ 50).

5 Non-circular orbits

The problem is somewhatmore complicated if the eccentricity e �= 0. Note first though
that the last of equations (1) can still be written as a linear regression, albeit in terms
of θ , rather than t or ψ :

vr [θ(t)] = γ ′ + K cos[θ(t) + ω] + ε(t)

with γ ′ = γ + e cos(ω). This means that the discussion in Section 2 applies, with a
limit on the maximum gap in the phased values of true anomaly to be specified. We
assume the same numerical value, 0.4, as in Section 2.

The main problem introduced by the non-zero eccentricity is that, contrasting with
the case e = 0, the random time points of observation do not map into a uniform
distribution of phase values. Instead, the distribution is given by the Jacobian of the
transformation from ψ to θ (e.g. [9]):

fθ (θ) =
∣∣∣∣dψ

dθ

∣∣∣∣
=

∣∣∣∣dψ

dE

dE

dθ

∣∣∣∣
= 1

2π
(1 − e cos E)

d

dt

{
2 tan−1 [α tan(θ/2)]

}
= 1

2π

{
1 − e cos

[
2 tan−1(α tan(θ/2)

]} α

cos2(θ/2) + α2 sin2(θ/2)
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Fig. 4 Simulated probability density functions of 
 for elliptical orbits. Top panel: e = 0.2; from right to
left N = 10, 20, 30, 50. Bottom panel: e = 0.5; from right to left N = 15, 30, 45, 60

where α ≡ √
(1 − e)/1 + e) and −π ≤ θ < π . It is slightly more convenient to work

in terms of 0 ≤ φ = (θ + 2π)/2π < 1, in which case

fφ(φ) =
{
1 − e cos

[
2 tan−1(α cot(πφ)

]} α

sin2(πφ) + α2 cos2(πφ)
. (8)

A few examples of the largest gap PDFs resulting from (8) are plotted in Fig. 4.
In order to produce these, many datasets of size N were simulated from (8), and the
largest gap in the ordered phases φ for each determined. PDFs were then estimated by
a kernel density procedure applied to the collection of largest gaps. Unsurprisingly,
considerably larger N , as compared with the e = 0 case, are required to thoroughly
cover the full phase range (compare Fig. 3). This point is further explored in Table 2
which gives, for a variety of eccentricities, values of N needed to guarantee acceptably
small phase gaps.

Table 2 The number of
observation N required to ensure
a probability p of a maximum
gap 
 = 0.4 in the true anomaly
θ , for different values of the
eccentricity e

p Eccentricity e
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 12 13 14 17 22 28 40 62 114 325

0.01 15 17 20 24 30 40 57 89 165 472

0.001 21 22 27 33 42 57 82 125 233 670

Each entry in the Table is the result of 40000 draws of sample size N
from the PDF (8)
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Fig. 5 Standard errors σK on the velocity semi-amplitude estimated from subsamples of measurements by
Gorrini et al. [3]. Squares, circles and diamonds respectively denote subsamples of size N = 16, 18 and 20

6 An illustation

The central point of this paper is illustrated by subsampling radial velocity measure-
ments of the planet-hosting star GJ 3988 [3]. The P = 6.944 d orbit of GJ 3988b is
circular, so that the discussion in Section 3 applies.

Gorrini et al. [3] obtained 164 velocity measurements, of which three values devi-
ating more than 15 ms−1 from the mean were discarded. Small subsamples were
randomly drawn from the remaining 161 velocities, such that the times of observation
were at least P/2 = 3.472 d apart. For each subsample the velocity semi-amplitude
K was calculated, and the maximum phase gap 
 noted. Of interest is the dependence
on 
 of the uncertainty σK of the semi-amplitude. This was found be drawing many
(105) subsamples for a given value of N , binning together those K with similar values
of 
, and calculating the bin standard deviations. The results can be seen in Fig. 5,
which shows the expected monotonic increases of σK with 
.

7 Concluding remarks

In order to keep the discussion above as simple and general as possible, fitting radial
velocity models to observations has been treated as a linear least squares problem. In
practice, this would not lead to direct estimation of quantities of interest such as K
and ω. In order to estimate these, and other parameters explicitly, nonlinear regression
is required, and error estimates would depend on the parameters of each individual
system.

In general, Equations (7) and (5) should provide a good guideline for the minimum
number of visits to each target. Adhering to those criteria will help guard against
estimation errors induced by insufficient phase coverage of binary/exoplanet orbits.
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In implementation, Equation (7) can first be used for the specified number of targets
M to place a limit on the probability p. The number of visits N can then be solved for
from Equation (5). Of course, objects with substantially eccentric orbits will require
more visits, and will have to be treated on an individual basis. Furthermore, in the case
of exoplanets, random errors (corresponding to the scale factor σε) will play a more
important role, necessitating repeated measurements at each target visit.
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