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Abstract
We propose a dedicated, ultra-deep spectroscopic survey in the near infrared (NIR),
that will target a mass-limited sample of galaxies during two of the most fundamental
epochs of cosmic evolution: the formation of the first galaxies (at z � 6; cosmic
dawn), and at the peak of galaxy formation activity (at redshift z∼1–3; cosmic noon).
By way of NIR observations (λ=0.8–2μm), it is possible to study the UV Lyman-α
region in the former, and the optical rest-frame in the latter, allowing us to extract
fundamental observables such as gas and stellar kinematics, chemical abundances,
and ages, providing a unique legacy database covering these two crucial stages of
cosmic evolution. The need to work in the NIR at extremely low flux levels makes
a ground-based approach unfeasible due to atmospheric emission and absorption.
Only with the largest facilities of the future (e.g. ELT) will be possible to observe a
reduced set of targets, comprising at most of order thousands of galaxies. Likewise,
from space, the small field of view of JWST and its use as a general purpose facility
will yield a rather small set of high quality NIR spectra of distant galaxies (in the
thousands, at best). Our project (codename Chronos) aims to produce ∼1 million
high quality spectra, with a high S/N in the continuum, where information about the
underlying stellar populations is encoded. The main science drivers are:

– The connection between the star formation history and the mass assembly history.
– The role of AGN and supernova feedback in shaping the formation histories of

galaxies, with a quantitative estimate of quenching timescales.
– The formation of the first galaxies.
– The source of reionization.
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– Evolution of the metallicity-mass relation, including [α/Fe] and individual
abundances.

– Precision cosmology through detailed studies of the “baryon physics” of galaxy
formation, probing the power spectrum over scales k∼1 Mpc−1.

Keywords Instrumentation:spectrographs · Space vehicles: instruments ·
Telescopes · Galaxies: evolution · Galaxies: formation

1 The next steps in extragalactic astrophysics

The era of extragalactic astrophysics began in earnest around the time of the Great
Debate between Shapley and Curtis in 1920 [136]. The debate focused on the nature
of a number of intriguing “nebulae”, at a time when the consensus rested on a Uni-
verse in which the Milky Way was its main constituent, a scenario that harks back
to the model of our Galaxy laid out by Herschel [59]. The discoveries during the
1930s, pioneered by Slipher, Hubble, and Humason resulted in the concept of island
Universes, where each “stellar system”, a galaxy, constitutes a fundamental building
block tracing the largest scales in the Cosmos. It has been nearly a century since this
Great Debate, and our understanding of extragalactic astrophysics has come a long way.

Developments in telescopes, instrumentation and analysis techniques have
allowed us to decipher the intricacies of galaxy formation. At present, the established
paradigm rests on a dark matter dominated cosmic web within which a compara-
tively small mass fraction consists of ordinary matter (“baryons”), mostly in the form
of stars, gas and dust. The first stage of galaxy formation is driven by the (linear)
growth of the dark matter density fluctuations imprinted during the earliest phases of
cosmic evolution. Stable dark matter structures, termed halos, collapse and virialise,
constituting the basic units in this scenario. At the same time, gas accumulates in
the central regions of these halos, leading to cooling and star formation. The general
aspects of this complex process can be explained within the current framework (see,
e.g. [123]), resulting in an overall very successful theory that matches the observa-
tions. However, many of the key processes are only roughly understood, most notably
the “baryon physics” that transforms the smooth distribution of gas at early times
into the galaxies we see today. This complex problem requires large, targeted data
sets probing the most important phases of galaxy formation and evolution. This pro-
posal addresses the next steps that the astrophysics community will follow in the near
future to understand structure formation. High-quality spectroscopic observations of
galaxies are required to probe these important phases. We motivate below the need
for a large, space-based, ultra-deep survey of galaxy spectra in the near-infrared, and
present the technological challenges that must be addressed.

The extremely weak fluxes of the targets, combined with the need to work at near
infrared wavelengths imply such a task must be pursued from space, free of the noise
from atmospheric emission and absorption. Moreover, the need to simultaneously
observe many sources spectroscopically, from an unmanned, unserviceable mission,
defines arguably one of the toughest challenges in space science. Such a task is opti-
mally suited for the 2035-2050 period envisioned by ESA within the Voyage 2050
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call. We emphasize that this science case complements the successful track record
of ESA in this field, with missions such as Herschel (tracing the evolution of dust
in galaxies), Gaia (tracing the gravitational potential of our Galaxy), as well as the
cosmology-orientated missions, Planck and Euclid. We will show below how the
fundamental science case of galaxy formation and evolution requires a future space-
based observatory, beyond the capabilities of the upcoming JWST or large 30-40m
ground-based telescopes such as ESO’s ELT.

2 The evolution of galaxies at the peak of activity

2.1 Star formation across cosmic time

The observational evidence reveals that the overall level of star formation in nearby
galaxies is comparatively low with respect to earlier epochs. Figure 1, derived from
various observational tracers of star formation, shows a characteristic peak in the
cosmic star formation activity in galaxies between redshifts 1 and 3, roughly corre-
sponding to a cosmic time between 2 and 6 Gyr after the Big Bang (or a lookback
time between 8 and 12 Gyr ago). Such a trend can be expected as the gas from the
initial stages is gradually locked into stars and, subsequently, remnants. This trend is
highly packed with complex information regarding the efficiency of star formation,

Fig. 1 Cosmic star formation history: This diagram shows the redshift evolution of the star formation
rate density. Note that detailed spectroscopic optical galaxy surveys exist only out to z � 1, whereas the
epochs of maximum star formation (z∼1–3), and the first stages of formation (z�7) are poorly understood
(from [60]; see also [84])
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the mechanisms of gas infall and outflows, the ejection of gas from evolved phases
of stellar evolution and the bottom-up hierarchy of structure formation.

In addition, the z∼1–3 redshift window corresponds to the peak of AGN activ-
ity [113], and merger rate [118]. Moreover, it is the epoch when the dark matter
halos hosting massive galaxies allow for cold accretion via cosmic streams (see
Section 2.5). Decoding this complex puzzle requires a detailed study of the different
phases of evolution. At present we only have complete galaxy samples amounting
to ∼1 million high quality spectra at low redshift (z�0.2, e.g. SDSS, [157]), along
with samples of spectra at intermediate redshift (z�1.5), e.g. VIPERS [56], VVDS
[72], zCOSMOS [75], GAMA [39], BOSS [32] or LEGA-C [141]. Future spec-
troscopic surveys will also probe similar redshift ranges within the optical spectral
window – e.g., WAVES [40]; WEAVE [31]; DESI [38], MSE [89]. In the NIR, ESO’s
VLT/MOONS [26] will constitute the state-of-the art ground-based survey, but the
expected S/N will not be high enough for studies comparable to those perfomed on
SDSS spectra at z�0.2. We note that many of the spectroscopic surveys (past and
future) are mostly designed as a “redshift machine” (i.e. optimised for cosmology,
using galaxies simply as “test particles”), and the S/N of the data in the continuum is
too low for any of the science presented here to be successfully delivered. None of the
current and future observing facilities, both ground- and space-based, will be capable
of creating the equivalent of the spectroscopic SDSS catalogue at these redshifts.

2.2 Bimodality and galaxy assembly

On a stellar mass vs colour (or age) diagram, galaxies populate two well defined
regions: the red sequence and the blue cloud (see, e.g., [68, 133]). Galaxies on the
red sequence are mostly massive, passively-evolving systems with little or no ongo-
ing star formation. Although the red sequence extends over a wide range in stellar
mass, the most massive galaxies tend to be on the red sequence, with a preferential
early-type morphology. In contrast, blue cloud galaxies have substantial ongoing star
formation, and extend towards the low-mass end. A third component is also defined,
the green valley [90], between these two. However, the identification of this region
as a transition stage between the blue cloud and the red sequence is far from trivial
[3, 121]. There are many studies tracing the redshift evolution of galaxies in these
regions (e.g. [11, 62, 94]), revealing a downsizing trend, so that the bulk of star for-
mation (i.e. the “weight” of the blue cloud) shifts from the most massive galaxies
at high redshift, to lower mass systems in the present epoch. This simple diagram
allows us to present a simplified version of star formation in galaxies, including the
usual bottom-up hierarchy that begins with small star-forming systems, leading to
more massive galaxies through in situ star formation and mergers, both with (“wet”)
and without (“dry”) additional star formation.

Models such as those proposed by [42] (see Fig. 2) allow us to express graphically
the complex processes involved. However, the problem with these analyses is how
to properly characterize the formation stage of a galaxy by a simple descriptor such
as galaxy colour. More detailed analyses have been presented of the colour-mass
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Fig. 2 Schematics of galaxy
evolution from the blue cloud to
the red sequence. Three different
scenarios are considered, as
labelled, with the black arrows
representing evolution through
wet mergers and quenching, and
white arrows symbolising stellar
mass growth through dry
mergers (adapted from [42])

diagram, combining photometry and spectroscopy in relatively nearby samples (e.g.
[120]) showing interesting processes that relate the various sources of feedback (see
Section 2.3 below).

However, such studies are complicated by the fact that the underlying stellar pop-
ulations span a wide range of ages and chemical composition, and the star formation
processes do not involve a substantial fraction of the baryonic mass of the galaxy.
Therefore, it is necessary to extend these studies, including high quality spectro-
scopic data, to explore the evolution on the colour-stellar mass diagram with galaxies
targeted during the peak of galaxy formation. At these redshifts (z∼1-3), we will be
dealing with the most important stages of formation.

2.3 The role of star formation and AGN

The bimodality plot (Fig. 2) illustrates the key processes underlying galaxy evolu-
tion. Most importantly, the presence of a large population of passive galaxies on
the red sequence, without an equivalent counterpart of massive galaxies on the blue
cloud requires physical mechanisms by which star formation is quenched. As the
fuel for star formation is cold gas, quenching of any type must resort to reducing
this component, either by heating, photoionisation or mechanical removal of the cold
phase.
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Various theoretical models have been explored over the past decades, most notably
based on the expulsion of gas from supernovae-driven winds (stellar feedback, e.g.
[33]) or from a central supermassive black hole (AGN feedback, e.g. [124]).

A comparison of the observed stellar mass function of galaxies and N-body
simulations of dark matter halos (see Fig. 3) suggests at least two distinct mech-
anisms to expel gas from galaxies, one dominant at the low-mass end, and the
other one controlling the high-mass end. Since the efficiency of stellar winds is
expected to increase in weaker gravitational potentials, one would assume stellar
feedback is responsible for the low-mass trend. Similarly, the increasing efficiency
of AGN feedback with black hole mass would produce the trend at the high-mass
end. Furthermore, the strong correlation between bulge mass (or velocity disper-
sion) and the mass of the central supermassive black hole (Fig. 4, see, e.g. [70,
119]) gives further support to the role of AGN activity in shaping galaxy forma-
tion. However, this picture is too simplistic, requiring a better understanding of the
physics. Detailed analyses of winds driven by nearby starbursting galaxies present
a complex scenario that is not properly described by the latest numerical codes of
galaxy formation [58]. The prevalence of outflows increases towards the younger
phases of galaxy formation. Therefore, detailed studies over complete samples dur-
ing the critical phases of galaxy evolution are needed to understand feedback in
detail.
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Fig. 3 Correlation between the stellar-to-halo mass ratio and halo mass. Even at the peak of the curve
(∼3%) the stellar mass is significantly lower than the cosmic baryon to dark matter ratio, revealing an
inefficient process of star formation. Furthermore, the decrease of this fraction towards both the high- and
low-mass end reveals the complexity of feedback mechanisms (from [9])
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Fig. 4 Correlation between black hole mass and velocity dispersion in local galaxies, from direct
measurements of the SMBH mass (from [57])

2.4 Galaxy growth throughmergers

One of the main methods by which galaxies form is through the merger process,
whereby separate galaxies combine together to form a new system. Merging is a sig-
nificant channel of galaxy formation, and needs to be measured with high precision
if we are to understand how galaxy formation proceeds. Closer to home, the com-
plex structure of the stellar populations found around the Milky Way, its vicinity and
the nearby Andromeda galaxy reflects the contribution of mergers to galaxy growth
(e.g. [45, 64]). Whilst mergers are arguably not the way in which galaxies obtain the
majority of their mass, this process is still likely the main one for triggering AGN and
black hole formation and accounts for 25-50% of the formation of massive galaxies
since z=3 [101]. Thus, a detailed quantitative assessment of galaxy merger rates is a
critical step that has not yet been fully carried out, due to the lack of complete spec-
troscopic samples. Furthermore, there are inconsistencies with the results obtained
so far and a disagreement with theory, showing that more work and better data are
needed in this area.

Firstly, the exact role of mergers in galaxy formation is not clear, with conflicting
results, particularly at higher redshifts (z>1). The merger fraction at z � 1 is likely
high, with a merger rate of ∼0.5–1 mergers Gyr−1 (e.g. [15, 132]). Many merger
rates at high redshift z>1 are measured with galaxy structures, or based on samples
of galaxies in kinematic or photometric redshift pairs. However, our best estimates of
the merger rate differ from theory by up to an order of magnitude (see Fig. 5 contrast-
ing observational results with the latest, state-of-the-art simulations by the Illustris
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Fig. 5 Redshift evolution of the merger rate, R(z) [92]. The observational constraints, shown as points
with different symbols, are in stark contrast with respect to state-of-the-art predictions from the Illustris
numerical simulations of galaxy formation (dashed lines, labelled at different stellar masses [145])

collaboration). Moreover, we do not have robust estimates about the role of minor
mergers in galaxy formation – recovering these will require very deep spectroscopic
observations.

The best way to measure the merger rate at high redshift is through spectroscopic
pairs which requires both position and accurate radial velocity information (e.g. [79]).
However, the most up to date studies have only used 12 pairs at z>2 to measure this
important quantity [131] with a merger fraction with rather large errors (19.4+9

−6%)
due to small number statistics.

A near infrared spectroscopic survey of distant galaxies at z>1 will give us the
information we need to address this issue in detail. A survey with a high complete-
ness level over the z=1–3 range will give us a surface density over 10 times higher
than previous surveys at 1<z<3 such as DEEP2, VVDS, and UDSz. To address this
type of science, the survey strategy needs to incorporate the option of including such
targets in the mask layout (if the method is to proceed with a reconfigurable focal
plane, see Section 6.1). Given the density of targets at the redshifts of interest, the
merger fraction will be measured to an accuracy an order of magnitude better than
what is currently known at these redshifts.

This is necessary to ultimately pin down the amount of mass assembled through
merging, as well as to determine the role of merging on the triggering and quenching
of star formation, and on central AGN activity. For reference, in the most massive
systems with M∗ > 1010M� it will be possible to measure merger fraction ratios of
up to 1:30 down to a stellar mass limit of M∗ = 109.5M�, such that we can study, for
the first time, the role of minor mergers in these processes.

2.5 The role of cold accretion

The evolution of the gaseous component – and its subsequent transformation into
stars – is arguably one of the most complicated problems in extragalactic astro-
physics. Hydrodynamical processes driving the gas flows, and feedback from star
formation, AGN activity or dynamical evolution of the baryon-dominated central



Experimental Astronomy

regions of halos lead to a significant mismatch between the mass assembly history
of dark matter halos, and the star formation histories of galaxies embedded in these
halos. In fact, Fig. 3 illustrates this mismatch.

One key observable of the difference between dark matter growth and galaxy
growth is the presence of massive galaxies at early times (e.g. [24, 51, 80, 107]).
A naive mapping of dark matter growth into stellar mass growth leads to late star
formation in massive galaxies, as found in the first, pioneering computer simu-
lations of galaxy formation (e.g. [67]). The presence of massive galaxies (stellar
mass � 1011M�) with quiescent populations at redshifts z∼2-3 (e.g. [47]) requires
a mechanism by which the commonly adopted process of star formation through
shock-heating of gas after the virialization of the halo, followed by cooling [111]
cannot be the main growth channel in these systems.

We find ourselves in a similar quandary with strong AGN activity at very high
redshift, z � 6 – reflecting the presence of very massive black holes within the first
billion years of cosmic time [43]. In addition to the traditional hot-mode growth, cold
gas can also flow towards the centres of halos, following the filamentary structure
of the dark matter distribution, efficiently feeding the central sites of star formation
at early times [35]. Moreover, this process is found to operate in the most massive
systems at early times [34]. Numerical simulations suggest that clump migration and
angular momentum transfer provides an additional mechanism leading to the creation
of massive stellar cores at early times [23].

However, observational constraints of the role of cold accretion are few, and no
conclusive evidence has been found to date. A large spectroscopic galaxy survey
probing the peak of evolution would allow us to study the hot- and cold-mode growth
channels of star formation and black hole growth, and the connection with redshift
and environment. A detailed analysis of the shape of targeted spectral lines will allow
us to detect and quantify gas inflows, but a large volume of data is necessary given the
small covering factor of accretion flows [44]. The high S/N of this survey will make
studies of individual galaxies (not stacked spectra) available. As of today, state-of-
the-art samples comprise ∼100 spectra with just enough S/N to study bright emission
lines (see, e.g. [53] with VLT/KMOS; or [66] with Keck/MOSFIRE). These studies
give promising results about the presence of this important process of galaxy growth.
Note studies in the Ly-α region (i.e. concerning the cosmic dawn survey, Section 3)
can also be used to obtain constraints on gas inflows [155].

2.6 Size evolution

An additional conundrum raised by the study of massive galaxies at high redshift is
the issue of size evolution. The comoving number density of massive (� 1011M�)
galaxies has been found not to decrease very strongly with redshift (z� 2), with
respect to the predictions from simple models of galaxy formation that mostly link
galaxies to the evolution of the dark matter halos (e.g. [27, 46]).

This would reflect an early formation of these type of galaxies, whereby the bulk of
the stellar mass is in place by redshift z∼2–3. However, the sizes of these galaxies at
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z�1–2 are significantly smaller than their low-redshift counterparts (e.g. [30, 137]).
A large volume of publications has been devoted to propose mechanisms that could
explain this puzzle, including gas outflows as a mechanism to alter the gravitational
potential, “puffing-up” the dense central region.

However, the (old) stellar populations typically found in massive galaxies do not
allow for significant quantities of recent star formation, or cold gas flows to explain
this size evolution [138], suggesting instead a growth process through gas-free (dry)
merging. This merging can proceed dramatically – through a small number of major
mergers [69], where the merging progenitors have similar mass – or through a more
extended and smooth process of minor merging [95]. In addition, one should consider
whether these evolved compact cores end up as massive (and extended) early-
type galaxies in high density regions [110], or as massive bulges of disc galaxies
[36].

Figure 6 shows a diagram of how this may work, from an analysis of massive
galaxies in CANDELS [7], with an interesting evolution from massive compact
systems with a strong star formation rate, towards the quiescent galaxies we see
today, involving both secular processes, galaxy mergers and star formation quench-
ing. Establishing such connections requires a large volume of galaxy spectra at the
peak of galaxy formation activity. All these studies are based on relatively small sam-
ples (� 103) with mostly high-quality photometry (from HST) but comparatively
poor spectroscopic data. Accurate characterization of the stellar population content
of these galaxies will enable us to robustly constrain the processes by which galaxies
grow.

Fig. 6 Mechanism proposed [7] to explain the size evolution of massive galaxies. The grey contour shows
the galaxy distribution at low redshift. Two main growth channels are proposed, involving a mixture of pro-
cesses such as merging, star formation quenching or secular processes. Large, high quality spectroscopic
data at these redshifts will allow us to test in detail these proposals
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2.7 Reaching out: the role of environment

The environment where galaxies reside plays a significant role in shaping their
observed properties and thus their evolution. It essentially deprives them of their hot
and cold gas reservoirs, thus quenching their star formation activity, and also can lit-
erally disrupt them by removing their stars [105]. The observed properties of galaxies
in the local Universe have provided us with a wealth of evidence towards environmen-
tal processes, whose time scales and amplitudes are unfortunately known only at a
qualitative level. A robust quantitative estimate of the dependence of such parameters
on environment and redshift largely remains an open problem.

The Sloan Digital Sky Survey (SDSS) has been the very first survey to perform
an unprecedented and statistically significant census of the photometric and spectro-
scopic properties of z�0 galaxies at optical wavelengths. It has permitted us to detail
star formation activity in galaxies across several orders of magnitude, with respect to
galaxy stellar mass, environment and infall time at z�0. We are now aware that the
number of quenched galaxies – not forming new stars any longer – rises with their
stellar mass at a fixed kind of environment, and with environment magnitude (from
small galaxy groups to large clusters) at fixed stellar mass [103, 140, 147, 148].

We have also learnt from SDSS that the age of the bulk of stars in a galaxy
grows progressively older i) as their infall time increases (i.e. galaxies accreted
onto their present-day host environment early on are now older than those accreted
more recently); 2) as their environment, at fixed infall time, becomes more mas-
sive, indicating that the environment mass enhances the efficiency of those physical
processes able to quench star formation in galaxies [104, 106, 125]. In addition,
recently accreted cluster galaxies appear to be older than equally-massive field
galaxies, an observational result that has been attributed to group-preprocessing: the
star-formation quenching of these recent infallers started already while they were
still living in smaller groups, that later merged with clusters (see Fig. 7, [106]).
Such group-preprocessing has extensively been advocated by semi-analytic models
of galaxy formation and evolution in order to explain the large number of quenched
galaxies observed in clusters [37, 149]

The observational evidence described above highlights the importance of know-
ing the accretion epoch of a galaxy if we want to understand the role of environment.
Unfortunately, we can not use observations of z�0 galaxies to accurately derive their
infall epochs when they became exposed to environmental effects for the first time.
To determine such an important moment in the evolution of galaxies we need to
quantify and study environment at different redshifts; this is what a deep-wide NIR
spectroscopic galaxy survey will enable us to do, by tracing the assembly history of
environments with cosmic time, providing us with a direct measurement of the red-
shift of infall of galaxies as a function of their stellar mass. Moreover, the lensing and
X-ray information from Euclid and eRosita, respectively, combined with the accu-
rate spectroscopic information produced by Chronos will probe the dependence of
the star formation histories on the dark matter halos. While the data from Euclid and
eRosita will mainly target the assembly of massive environments, thus introducing a
significant bias towards star-forming galaxies, Chronos will broaden the study to
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Fig. 7 The stellar age of galaxies less massive than 1010M�h−2 is shown as a function of infall time.
Galaxies are colour-coded regarding halo mass: red circles, orange squares and yellow triangles identify
galaxies in clusters, rich groups and low-mass groups, respectively. The grey stripe indicates the stellar
age of equally-massive galaxies in the field (from [106])

smaller environments and consequently will avoid the selection bias of the Euclid
sample.

When and in which environments did the quenching of the star formation activity
of galaxies start? How fast did it proceed? The quantitative and direct replies to these
inquiries are provided by our measurements of star formation rates, star formation
histories and chemical enrichment of galaxies of different stellar mass, in different
environments at different epochs, from z∼1–3 to z=0. Only these observables allow
us to directly estimate the typical time scales of star formation in galaxies, and to
achieve a model-independent value of the time scales over which galaxy groups and
clusters switched galaxy star formation off, and produced the observed present-day
galaxy populations.

With increasing redshift these measurements shift to infrared wavelengths and
become challenging even for modern ground-based telescopes. Ground-based mea-
surements allow for only a partial characterization of the properties of galaxies at
z>0.5, for which we can mostly measure emission lines (thus star formation rates)
since their absorption lines (used as age and metallicity indicators) become less and
less accessible. The data gathered so far on galaxies at 0.3 <z< 0.8 indicate that the
fraction of quenched galaxies is larger in galaxy groups than in the field, but defini-
tively lower than the fraction of quenched galaxies in groups at z�0 [81, 151]. At
intermediate redshifts, the fraction of star forming galaxies diminishes from 70-100%
in the field to 20-10% in the more massive galaxy clusters [109]. However, the star
formation rates of group galaxies do not significantly differ from those in the field;
only star forming galaxies in clusters show star formation rates a factor of 2 lower
than in the field at fixed stellar mass [81, 109, 146].

At the highest redshifts probed for environment, 0.8 <z< 1, the more massive
galaxy groups and clusters are mostly populated by quenched galaxies and both
exhibit a 30% fraction of post-starburst galaxies (i.e. with a recently truncated star
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formation activity [6]). In particular, the fraction of post-starburst galaxies in clusters
exceeds that in the field by a factor of 3. Cluster and field galaxies still able to form
new stars share instead similar star formation rates. On the basis of these results, It
has been argued [93] that, at z∼1, either the quenching of star formation due to the
secular evolution of galaxies is faster and more efficient than the quenching induced
by galaxy environment, or both mechanisms occur together with the same time scale.
Which mechanism prevails and over which time scale? At present, we do not know.

To further progress on this issue, we require a facility such as Chronos to observe
a complete stellar-mass limited sample of environments at z≥1–3, and to derive the
star formation histories of their galaxies with an unprecedented accuracy. Chronos
observations will thus deliver the fading time scales of star formation of galaxies of
different stellar mass residing in groups and clusters. This is not simply an incremen-
tal step in our knowledge of environment-driven galaxy evolution. This is the still
missing, fundamental quantitative change from the simple head-count of quenched
or star-forming galaxies to the measurement of physical properties of galaxies in
environments at cosmic noon.

3 First galaxies and the epoch of reionization

3.1 Leaving the dark ages

Cosmic reionization is a landmark event in the history of the Universe. It marks
the end of the “Dark Ages”, when the first stars and galaxies formed, and when
the intergalactic gas was heated to tens of thousands of Kelvin from much colder
temperatures. This global transition, during the first billion years of cosmic history,
had far-reaching effects on the formation of early cosmological structures and left
deep impressions on subsequent galaxy and star formation, some of which persist to
the present day.

The study of this epoch is thus a key frontier in completing our understanding of
cosmic history, and is currently at the forefront of astrophysical research (e.g. [116]).
Nevertheless, despite the considerable progress in both observations and theory (e.g.
see reviews by [41] and [77]) all that is really established about this crucial era is
that Hydrogen reionization was completed by redshift z∼6 (as evidenced by high-
redshift quasar spectra; [43]) and probably commenced around z∼12 (as suggested
by the Planck polarisation measurements, which favour a ‘mean’ redshift of zre =
8.8+1.7

−1.4 ; [108]). However, within these bounds the reionization history is essentially
unknown. New data are required to construct a consistent picture of reionization and
early galaxy formation/growth (see Fig. 8).

Understanding reionization is therefore a key science goal for a number of current
and near-future large observational projects. In particular, it is a key science driver
for the new generation of major low-frequency radio projects (e.g. LOFAR, MWA
and SKA) which aim to map out the cosmic evolution of the neutral atomic Hydro-
gen via 21-cm emission and absorption. However, such radio surveys cannot tell us
about the sources of the ionizing flux, and in any case radio observations at these
high redshifts are overwhelmingly difficult, due to the faintness of the emission and
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Fig. 8 Measures of the neutrality 1 − QHII of the intergalactic medium as a function of redshift. Shown
are the observational constraints, along with model predictions of the evolving IGM neutral fraction (in
red). The bottom panel shows the IGM neutral fraction near the end of the reionization epoch, where the
model fails to capture the complexity of the reionization process. (from [116])

the very strong foregrounds. It is thus essential that radio surveys of the neutral gas
are complemented by near-infrared surveys which can both map out the growth of
ionized regions, and provide a complete census of the ionizing sources.

A genuine multi-wavelength approach is required, and cross-correlations between
different types of observations will be necessary both to ascertain that the detected
signals are genuine signatures of reionization, and to obtain a more complete under-
standing of the reionization process. It has thus become increasingly clear that a
wide-area, sensitive, spectroscopic near-infrared survey of the z=6–12 Universe is
required to obtain a proper understanding of the reionization process and early galaxy
and black-hole formation. Such a survey cannot be undertaken from the ground (due
to Earth’s atmosphere), nor with JWST (inadequate field-of-view), nor Euclid or
WFIRST, renamed the Roman Space Telescope (inadequate sensitivity with slitless
spectra). Only a mission such as Chronos can undertake such a survey and simulta-
neously address the three, key, interelated science goals which we summarize below.
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Moreover, detailed studies of z>6 galaxies in the Ly-α region will complement the
information provided at longer wavelengths by ALMA (e.g. [21]).

3.2 The clustering of Ly-α emitters as a probe of reionization

Cosmological simulations of reionization predict that the highly-clustered, high-
redshift sources of Lyman-continuum photons will lead to an inhomogeneous
distribution of ionized regions. The reionization process is expected to proceed
inside-out, starting from the high-density peaks where the galaxies form. Thus, as
demonstrated by the state-of-the-art simulations shown in Fig. 9, reionization is
predicted to be highly patchy in nature. This prediction is already gaining obser-
vational support from the latest large-area surveys for Ly-α emitters at z∼6.5,
where it has been found that, depending on luminosity, their number density
varies by a factor of 2–10 between different 1

4 deg2 fields [96, 100]. It is thus
clear that surveys over many square degrees are required to gain a representative
view of the Universe at z>6. Crucially, with such a survey, the differential evo-
lution and clustering of Lyman-break galaxies and Ly-α emitting galaxies can be
properly measured for the first time, offering a key signature of the reionization
process.

Fig. 9 The geometry of the epoch of reionization, as illustrated by a slice through a (165 Mpc)3 simulation
volume at z=9. Shown are the density (green/yellow), ionized fraction (red/orange), and ionizing sources
(dark dots) [63]. The necessity of a deep, near-infrared spectroscopic survey covering many square degrees
is clear
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High-redshift galaxies can be selected on the basis of either their redshifted Lyman
break (the sudden drop in emission from an otherwise blue galaxy, due to inter-
galactic absorption at wavelengths λrest < 1216Å), or their redshifted Ly-α emission.
The former class of objects are termed Lyman-Break Galaxies (LBGs) while the lat-
ter are termed Ly-α Emitters (LAEs). In principle, LAEs are simply the subset of
LBGs with detectable Ly-α emission, but the current sensitivity limitations of broad-
band near-infrared imaging over large areas has meant that narrow-band imaging has
been successfully used to yield samples of lower-mass galaxies which are not usu-
ally identified as LBGs (e.g. [99]). Nevertheless, as demonstrated by spectroscopic
follow-up of complete samples of bright LBGs (e.g. [122, 128, 142]), the fraction of
LBGs which are LAEs as a function of redshift, mass, and environment is a poten-
tially very powerful diagnostic of both the nature of the first galaxies, and the physical
process of reionization.

With the unique combination of deep, wide-area near-infrared imaging, provided
by surveys such as Euclid and the Roman Space Telescope, and deep, complete
follow-up near-infrared spectroscopy, made possible with Chronos, we propose to
fully exploit the enormous potential of this approach.

The essential idea of using Chronos to constrain reionization is as follows: while
the Ly-α luminosity of LAEs is affected both by the intrinsic galaxy properties, and
by the HI content (and hence reionization), the luminosity of LBGs (which is mea-
sured in the continuum) depends only on the intrinsic galaxy properties. Thus, a deep,
wide-area, complete survey for LBGs at z∼6–12 with accurate redshifts secured by
Chronos will deliver a definitive measurement of the evolving luminosity function
and clustering of the emerging young galaxy population, while the analysis of the
follow-up spectroscopy will enable us to determine which LBGs reside in sufficiently
large ionized bubbles for them to also be observed as LAEs. In order to prevent
strong damping wing absorption of Ly-α photons, a galaxy must carve out a bub-
ble of radius RI of 500–1000 physical kpc at z∼8. According to reionization history
predictions from cosmological simulations, consistent with the various reionization
constraints, the I fraction at this redshift is around χ ∼ 0.5–0.7. RI for a typical
galaxy with a star-formation rate of Ṁ∗ = 1 M� yr−1 is expected to be considerably
smaller (though it depends on poorly established values of the ionizing photon escape
fraction; cf. [112]). Thus, such galaxies will be only marginally detectable in the Ly-
α line if they are isolated. In practice, some of these galaxies will be highly clustered
and therefore will help each other in building a HII region which is large enough to
clear the surrounding HI and make it transparent to Ly-α photons.

This argument emphasizes the importance of clustering studies of LAEs, for which
the proposed survey is optimally designed. A key aim is to compute in great detail
the two-point correlation function of LAEs and its redshift evolution. For the reasons
outlined above, reionization is expected to increase the measured clustering of emit-
ters and the angular features of the enhancement would be essentially impossible to
attribute to anything other than reionization.

In fact, under some scenarios, the apparent clustering of LAEs can be well in
excess of the intrinsic clustering of halos in the concordance cosmology. Observing
such enhanced clustering would confirm the prediction that the HII regions dur-
ing reionization are large [83]. As required to meet our primary science goals, the
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Chronos surveys will result in by far the largest and most representative catalogues
of LBGs and LAEs ever assembled at z>6. Detailed predictions for the number
of LBGs as extrapolated from existing ground-based and HST imaging surveys are
deferred to the next subsection. However, here we note that the line sensitivity of
the 100 deg2 spectroscopic survey will enable the identification of LAEs with a Ly-
α luminosity ≥ 1042.4 erg s−1, while over the smaller ultra-deep 10 deg2 survey this
line-luminosity limit will extend to ≥ 1041.6 erg s−1. Crucially this will extend the Ly-
α detectability of LBG galaxies at z∼8, with brightness J∼27AB, down to “typical”
equivalent widths of ∼15Å [28, 122, 128, 142].

The total number of LAEs in the combined surveys (100 + 10 deg2) will obviously
depend on some of the key unknowns that Chronos is designed to measure, in
particular the fraction of LBGs which display detectable Ly-α emission as a function
of redshift, mass and environment. However, if the observed LAE fraction of bright
LBGs at z∼7 is taken as a guide, the proposed surveys will uncover ∼10,000 LAEs
at z>6.5.

3.3 The emerging galaxy population at z>7, and the supply of reionizing photons

The proposed survey will provide a detailed spectroscopic characterization of an
unprecedently large sample of LBGs and LAEs. Crucially, as well as being assembled
over representative cosmological volumes of the Universe at z∼6–12, these samples
will provide excellent sampling of the brighter end of the galaxy UV luminosity func-
tion at early epochs. As demonstrated by work on the galaxy luminosity function at
z∼7–9 [82], an accurate determination of the faint-end slope of the luminosity func-
tion (crucial for understanding reionization) is in fact currently limited by uncertainty
in L∗ and Φ∗. Consequently, a large, robust, spectroscopically-confirmed sample of
brighter LBGs over this crucial epoch is required to yield definitive measurements of
the evolving luminosity functions of LBGs and LAEs.

Leaving aside the uncertainties in the numbers of LAEs discussed above, we can
establish a reasonable expectation of the number of photometrically-selected LBGs
which will be available within the timescales expected for such a mission. For exam-
ple, scaling from existing HST and ground-based studies, the “Deep” component of
the Euclid survey (reaching J∼26AB at 5σ over ∼40 deg2), is expected to yield
∼6000 LBGs in the redshift range 6.5<z<7.5 with J<26AB (selected as “z-drops”),
∼1200 at 7.5<z<8.5 (“Y-drops”), and several hundred at z>8.5 (“J-drops”) [16, 17,
82].

Therefore, the planned spectroscopic follow-up over 10 deg2, will be able to target
(at least) ∼1500 LBGs in the redshift range 6.5<z<7.5, ∼300 in the redshift bin
7.5<z<8.5, and an as yet to be determined number of candidate LBGs at 8.5<z<9.5.
The proposed depth and density of the Chronos near-infrared spectroscopy will
allow detection of Ly-α line emission from these galaxies down to a 5σ flux limit
10−18 erg cm−2 s−1, enabling rejection of any low-redshift interlopers, determination
of the LAE fraction down to equivalent widths of ∼10Å, and accurate spectroscopic
redshifts for the LAE subset.
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3.4 The contribution of AGN to reionization & the early growth of black holes

SDSS has revolutionised studies of quasars at the highest redshifts, and provided
the first evidence that the epoch of reionization was coming to an end around z>6
[8]. As with the studies of galaxies discussed above, pushing to higher redshifts is
impossible with optical surveys, regardless of depth, due to the fact that the Gunn-
Peterson trough occupies all optical bands at z>6.5. Therefore, to push these studies
further in redshift needs deep wide-field surveys in the near-infrared.

The wide-area, ground-based VISTA near-infrared public surveys such as
VIKING and the VISTA hemisphere survey are slowly beginning to uncover a few
bright quasars at z∼7 (e.g. [91]). Evidence combining X-ray and near-IR data sug-
gests that faint quasars at z∼6 may be commoner than previously thought, and might
contribute to reionization significantly [54, 85]. It is expected that Euclid and the
Roman Space Telescope will be able to provide a good determination of the bright
end of the QSO luminosity function at z>6. However, the shape of the QSO lumi-
nosity function at these redshifts can only be studied with detailed near-infrared
spectroscopy over a significant survey area. This is the only direct way to properly
determine the contribution of accreting black holes to the reionization of the Universe
and constrain the density of black holes within the first Gyr after the Big Bang; the
combination of depth and area proposed in this NIR survey provides the ideal way in
which to measure the evolving luminosity function of quasars at 6.5<z<10.

4 Precision cosmology

The Euclid mission will revolutionize cosmology, however the ultimate precision
of Euclid will be limited by our understanding of galaxy evolution on small-scales
(�1 Mpc) due to baryonic feedback mechanisms. For example AGN feedback should
have a sizeable 20% effect on the amplitude of the matter power spectrum [139],
amongst many other studies. Without calibration data on small-scales from large
complete spectroscopic samples, Euclid will be required to either marginalize over
such effects, remove them from the analyses using filter techniques, or model them
using a phenomenological ansatz such as the halo model.

Understanding galaxy evolution will therefore enable precision cosmology to be
extended beyond the Euclid baseline to smaller scales, allowing for an increased
sensitivity of modified gravity models, and up to a ten fold improvement on dark
energy constraints than from Euclid alone. As example of beyond- Euclid cosmology
enabled by small-scale information, we list the following:

– Neutrino Physics. Massive neutrinos impact the matter power spectrum on both
linear and non-linear scales. In particular, information on the neutrino hierarchy
is amplified on small-scales [65].

– Warm Dark Matter. The temperature, and particle mass, of dark matter is still
unknown. In fact models in which dark matter has a small temperature are still
allowed by the data. If dark matter is warm then any signature of its effects will
be seen on small-scales, e.g. in the stellar mass function.
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– Modified Gravity. The accelerated expansion could be a symptom of our gravity
model, general relativity, being incorrect. Models that change general relativity
can have a scale-dependence, and chameleon mechanisms can act on relatively
small scales [2].

Figure 10 shows the sensitivity of three beyond- Euclid cosmological models to
small-scale information. The deep redshift range would also constrain early-dark
energy models, complementing the Euclid cosmology objectives using techniques
such as those in [86], applied to SDSS data.

5 Scientific requirements

5.1 Introduction

The study of galaxy formation and evolution involves a large range of measurement
concepts. A deep spectroscopic galaxy survey – combined with high resolution NIR
imaging from Euclid and the Roman Space Telescope – provides the optimal dataset.
Note, however, the inherently more complex task of gathering high-quality spectro-
scopic data with respect to imaging. A spectral resolution R ≡ λ/�λ ∼ 1500−3000
is needed both for accurate velocity dispersion measurements, and to beat the degen-
eracies present in spectral features. This limit is mainly set by the typical stellar

Fig. 10 A sample of new physical effects that can be tested using small-scale information. Shown is the
ratio of the unaffected power spectrum compared to that with the new physical effects, as a function of
scale, at redshift zero. The solid line (from [87]) shows the impact of a 1.25 keV warm dark matter particle.
The dot-dashed line shows the impact of a massive neutrinos with total mass of 0.4 eV [160], and the
dashed line shows a Hu-Sawicki modified gravity model with an amplitude deviation in the Lagrangian of
10−6 [4]
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Fig. 11 Stellar mass of a range of stellar populations with respect to redshift, with apparent magnitude
H=24AB and H=26AB (from the synthetic models of [18]). The shaded regions extend from old stellar
populations (formed at zFOR = 10) to a younger galaxy (age 50 Myr). Real galaxies will mostly sit within
the shaded regions

velocity dispersions found in galaxies (50–300 km s−1), and by the need to ade-
quately resolve targeted emission lines and absorption features. Figure 11 quantifies
the magnitude limit within the targeted redshift range. Ideally, a H=26AB limit, in the
continuum, would provide complete samples down to a stellar mass of M∗ � 109M�
across the peak of galaxy formation activity (z∼1–3). Note that at higher redshifts,
the analysis will rely on emission lines, although it will be possible to work in the
continuum of the most massive galaxies (M∗ � 109.5M� at z∼ 6).

Regarding the issue of target selection for spectroscopy, H=26AB is the sensitivity
limit expected for the deep fields with Euclid/NISP [71], and the Roman Space
Telescope/WFI will provide photometry slightly deeper than this [127].

Note the highly challenging measurements: at the faint end, a H=26AB distant
galaxy produces a flux of ∼3 photons per second in a perfect, unobstructed 3 m
diameter telescope through the WFC3/F160W passband. Furthermore, the same col-
lecting area yields ∼30 photons per hour, per spectral resolution element, in the
continuum of a spectrum at R=2000. The sky brightness at the best ground-based
sites reach μ

Sky
H,AB ∼19.5 mag arcsec−2 [129], and the zodiacal background can be

as high as μZodi
H,AB ∼21.5 mag arcsec−2 in the same spectral region1. At these lim-

iting magnitudes, any successful project must be based in space, and requires very
long integration times, pointing towards the darkest regions away from the galactic
plane and the ecliptic. For reference, the best spectroscopic samples of galaxies at

1Wide Field Camera 3 Instrument Handbook for cycle 24 (STScI, v8.0, Jan 2016)
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z∼2–3 with state-of-the-art, ground-based facilities (e.g. VLT/X-SHOOTER) reach
K�21.5AB, and have noisy continua (e.g. [88]).

In a presentation for the future ESA L2/L3 science cases [48], we argued that any
ground-based facility, including future telescopes such as ELT or TMT, will not be
capable of providing a clean spectrum over a wide spectral window, needed to trace
in detail the continuum associated to the stellar populations of galaxies at the peak of
formation.

5.2 Tentative mission concept

The proposed science case will require a large aperture survey telescope in space
(between 3 m and 6 m diameter), ideally at L2, although bolder options in the future
may consider a lunar platform (allowing for service missions, and providing added
value to a future human exploration programme to the Moon). The survey will entail
long total integration times per field, over the 100 ks mark – requiring fine pointing
accuracy. Such a survey would be, by far, the deepest ever taken. The baseline con-
cept [48] was equivalent to taking one Hubble Ultra Deep Field every fortnight for
five years. Such characteristics place Chronos as an L-type mission, ideally includ-
ing cross-collaborations with international space agencies outside the ESA domain. A
smaller, M-type, mission could be envisioned for technology development, targetting
the most luminous galaxies in the two cosmic intervals under study.

5.3 Why target onemillion spectra?

The aim of the survey is to provide a legacy database of high quality galaxy spectra,
sampling both the peak (z∼1–3) as well as the first phases (z � 6) of galaxy for-
mation. In contrast with cosmology-driven missions – such as Euclid or Planck –
that have a unique figure of merit for the constraint of a reduced set of cosmological
parameters, Chronos will be a “general-purpose” survey. Regarding sample size,
we use as reference, the best spectroscopic dataset of galaxy spectra at z�0.2, namely
the “classic” Sloan Digital Sky Survey (SDSS), comprising approximately 1 million
optical spectra of galaxies brighter than r∼18 AB ( e.g., [157]). The problems fac-
ing galaxy formation studies are not as “clean” as, for instance, finding w in a dark
energy-dominated cosmology, or water vapour in an exoplanet. Galaxy formation is
a highly complex field, involving a large set of physical mechanisms. Such complex
questions need large datasets to be able to probe in detail variations of the observables
with respect to properties such as the stellar mass, size or morphology of the galaxy
under consideration, the mass of its host halo, the potential nuclear activity (ongoing
or recent), the presence of infall/outflows, or tidal interactions from nearby inter-
lopers. Therefore, it is necessary to probe this multi-parameter space in sufficient
depth to understand in detail the role of the mechanisms driving galaxy formation.
This is where a large multiplex mission such as Chronos exceeds the specifica-
tions of future large facilities such as JWST or ELT. Although JWST/NIRSpec will
obviously have the capability of observing deep NIR spectra of distant galaxies, its
small field of view, lower multiplex and oversubscription – across a wide range of
disciplines – will allow such a powerful telescope to gather, at most, ∼1,000 galaxy
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spectra at similar spectral resolution, within the remit of this science case [114].
Doubtlessly, it will help tackle the science drivers listed above. However, such a
small sample will always lead to the question of whether the observed sources are
representative. Furthermore, if one wants to explore the effect of one of the param-
eters/observables listed above, it will be necessary to divide the sample accordingly.
As an example, studies of environment-related processes done at lower redshift with
SDSS or GAMA, work with samples between 10 and 100 times larger than the
potential output of JWST. Chronos should be considered a successor to JWST and
ELT-class facilities in galaxy formation studies.

5.4 Why the proposed spectral mode?

Table 1 shows the overal properties of the proposed survey. Choosing a wider wave-
length coverage would enable us to target additional spectral features. In principle, it
would be possible to extend the coverage to K band. Note that the targeted spectral
coverage is suitable for the analysis of the feature-rich region around the 4000Å break
in the “cosmic-noon” sample. Those features will be good enough to determine accu-
rate kinematics, stellar population properties (age and chemical composition) and gas
parameters. Extending the data, e.g. to 3 μm would add Hα at the highest redshifts of
the “cosmic noon” sample (z∼4), which will obviously increase the science return,
as the Hα region will allow us to improve on estimates of star formation rates, or
characterize in more detail the ionization state of the gas. In the “cosmic dawn” sam-
ple, the key region is the Lyα interval, fully covered at the required redshifts by the
proposed wavelength range, so a limited extended spectral coverage in this sample is
not so beneficial.

However, we emphasize that a significant increase in wavelength coverage at fixed
spectral resolution could make the spectrograph prohibitively expensive in a high
multiplex system such as Chronos. The main science drivers cannot be fulfilled at
lower spectral resolution, and a lower multiplex will make the proposed survey size
unfeasible within a 5 year mission concept, so a wider spectral coverage should not be

Table 1 Summary of the
Chronos survey specifications Spectral range 0.8–2μm

Spectral resolution 1500-3000

Target Multiplex � 5000

Field of View (deg2) � 0.2

SURVEY Wide Deep

Sensitivity (@S/N=20) H=24AB H=26AB

Line Sensitivity (@5σ ) 5 × 10−19cgs 8 × 10−20cgs

Galaxy density (z=1–3, deg−2) 4.8 × 104 1.2 × 105

Coverage (deg2) 100 10
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the major direction to improve on this concept. Note also that Chronos will operate
with ultra-faint sources. At longer wavelengths, the thermal background of the tele-
scope will impose additional costly solutions to keep the background at acceptable
levels.

5.5 Comparison with current and future projects

Chronos will play a unique role in the landscape of future near-infrared spectro-
scopic surveys. The MOONS multi-fiber spectrograph at the ESO VLT will have a
multiplex of about 1000 fibers over a field of view (FoV) of 500 arcmin2, and will
cover 0.6–1.8 μm at R∼5000 [26]. The Subaru Prime Focus Spectrograph (PFS)
will use up to 2400 fibers over 1.3 deg2, and will cover 0.38-1.26 μm at R∼4300
in the near-IR (λ >0.94 μm) [130]. The Maunakea Spectroscopic Explorer (MSE)
is planned as a dedicated 10m-class telescope with a high multiplex (2,000–3,000)
spectrograph that will work at low and high spectral resolution [89]. However, the
data taken with these promising facilities will be inevitably affected by the atmo-
sphere (opaque spectral windows, telluric absorption lines, OH emission line forest,
high sky background) which will severely limit the sensitivity, the quality of the
spectra and the capability to observe the continuum of faint objects. Having both con-
tinuum and absorption information in galaxy spectra over a wide spectral window
allows us to break the degeneracies that entangle the properties of the stellar pop-
ulations. In the case of space-based facilities, JWST will have a very small survey
efficiency due to its small FoV and is therefore expected to play a complementary
role in the detailed study of small samples of objects. Euclid and the Roman Space
Telescope will survey very wide sky areas (15,000 deg2 and 5,000 deg2, respectively)
in the near-infrared (∼1–2 μm), but the spectroscopy will be slitless and with low
resolution (R<500). This makes Euclid and the Roman Space Telescope powerful
missions for redshift surveys based on fairly bright emission lines, but less suitable
for detailed spectroscopic studies. For these reasons, Chronos will play a unique
and unprecedented role thanks to its uninterrupted and wide near-IR spectral range
(rest-frame optical for z>1 objects), extremely high sensitivity due to the low back-
ground, capability to detect the continuum down to H=24-26AB, high S/N ratio
suitable to perform astrophysical and evolutionary studies, very high multiplexing,
wide sky coverage and large (SDSS-like) samples of objects.

5.6 Star formation history of galaxies

The stellar component in a galaxy is made up of a complex mixture of ages and
chemical composition, reflecting its past formation history. For instance, galaxies that
underwent recent episodes of star formation will include a young stellar component,
characterised by strong Balmer absorption (e.g. [150]); an efficient process of gas
and metal outflows will be reflected in the chemical composition, targeted through
metallicity-sensitive spectral indices such as Mgb and 〈Fe〉 (e.g. [135]); abundance
variations between different chemical elements, such as [Mg/Fe], map the efficiency
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of star formation (e.g. [134]); variations in the stellar initial mass function (a funda-
mental component of any galaxy formation model) can be constrained through the
analysis of gravity-sensitive indices (e.g. [49, 61]).

The stellar component of a galaxy encodes a fossil record of its evolution. In
contrast, the gaseous component gives a snapshot of the “ongoing” processes. The
analysis of the unresolved stellar populations in distant galaxies is tackled through
targeted line strengths and spectral fitting, by comparing high-quality spectroscopic
data with the latest stellar population synthesis models (e.g. [143, 144]). Such meth-
ods have been very successful at understanding the formation history of low redshift
galaxies by use of spectra from the Sloan Digital Sky Survey (e.g. [52]). Similar type
of studies at high redshift are fraught with the difficulties of dealing with very faint
sources, in an observer frame (NIR) where the complex and highly variable airglow
and telluric absorption makes ground-based observations tremendously challenging.
Figure 12 shows a test with synthetic spectra of the S/N level required to constrain

Fig. 12 The red lines are model predictions from [18] for two age-sensitive ( left) and two metallicity
sensitive ( right) line strengths for a galaxy with velocity dispersion σ =200 km s−1, as a function of age
and metallicity, respectively (the bottom axes show the age and metallicity ranges). The orange lines are
the estimated measurements, along with a 1 σ error bar, given as a function of S/N (shown in the top axes).
The simulated data correspond to a population at solar metallicity and age 3 Gyr, marked with vertical
dashed blue lines, along with a ±0.1 dex interval in grey
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stellar population parameters from a set of line strengths. For a 0.1 dex (statistical)
accuracy in log(Age) or log(Z/Z�), typical values of S/N of ∼10–20 per resolution
element are required in the continuum. This is a challenging target for galaxies at
z∼ 2 − 3, given the faint flux levels in the continuum shown in Fig. 11.

5.7 The role of AGN

Studies of the past star formation histories of galaxies (Section 5.6) need to be
compared with diagnostics of AGN activity, to understand the connection between
galaxy growth and that of the central SMBH. Such studies are based on emission
line diagrams (e.g. [5]) that trace the ionisation state of the interstellar medium. The
requirements with regards to the S/N and spectral resolution are similar to the lim-
its imposed by the analysis of stellar populations, although we note that emission
line constraints will be less stringent, in general, to those in the continuum. At high
enough S/N, it may be possible to separate the central component (dominated by the
AGN) from the bulk of the galaxy. As reference, a 0.1 arcsec resolution element maps
into a projected physical distance of 0.8–1 kpc at z∼1–3.

5.8 Environment andmerger history of galaxies

Large spectroscopic redshift surveys are needed to characterize the environment of
galaxies in detail (e.g. [117, 156]). A mass-limited complete survey will allow us to
probe the merging history of galaxies, either from the study of dynamically close
pairs (e.g. [50, 79]) or through morphological studies (e.g. [78]).

Although deep NIR imaging surveys will be available at the time of a potential L4
mission, there will not be a comprehensive counterpart of spectroscopic observations,
except for reduced sets of galaxies (�1,000) observed by JWST, or E-ELT-like tele-
scopes from the ground. In order to beat cosmic variance it is necessary to obtain
spectroscopic redshifts covering large enough volumes. As a rough estimate, we use
the state-of-the-art Sloan Digital Sky Survey as reference. The original low-redshift
dataset, limited to r< 17.7AB, can be considered “complete” out to redshift z�0.2,
covering a comoving volume of 5.5 × 10−5 Gpc3 per square degree. At the peak
of galaxy formation activity, z∼ 1 − 3, the equivalent volume is 0.02 Gpc3 per
square degree. Since the SDSS footprint extends over ∼ 104 deg2 on the sky, a sim-
ilar comoving volume will be probed by Chronos if covering 30 deg2. Although a
detailed analysis is beyond the scope of this proposal, it may be advisable to opt for
a tiered survey, from shallower samples (H<24AB) over 100 deg2 to deeper regions,
covering ∼ 5 − 10 deg2 at H<26AB.

5.9 Gas and stellar kinematics and chemistry

The emission and absorption line positions and shapes are a valuable tool to study
the kinematics and chemical composition of the stellar and gaseous components.
Through high volumes of high S/N data with high enough spectral resolution, it will
be possible to trace stellar kinematics and the mechanisms of gas outflows and stellar
feedback. Moreover, information such as the velocity dispersion or the spin parameter
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can be used to constrain the properties of the dark matter halos hosting galaxies at
z∼1-3 (e.g. [19, 154]). More detailed analyses can be gathered by integral field units,
where the spectra of different regions of the galaxy are extracted separately. Such
instruments have facilitated detailed analyses of the stellar and gaseous components
in nearby (e.g. ATLAS3D [22]) and distant (e.g. KMOS3D [152]) galaxies. Due to
the faintness of the sources and the need for a high multiplex system covering a
wide field of view, we would, in principle, decide against an IFU-based instrument,
although this issue would be an important one to tackle during the definition phase
(see Section 6). Also note that at the redshifts probed, the (spatial) resolving power
is rather limited, expecting a resolution – measured as a physical projected distance
– around 1 kpc at z∼1–3. The high S/N requirements of the previous cases align with
this one, but on the issue of kinematics, a slightly higher spectral resolution may be
desired. Note also that at high resolution, high S/N spectra may be used to disentangle
different components – such as bulge and disc [98].

5.10 Observations of galaxies in the high redshift Universe

Deep NIR spectroscopy from space is the only way to confirm the continuum break
at 1216Å in the high redshift Universe (z�6). Ground-based instruments only detect
these objects when they have strong Ly-α lines in clean regions of the night sky spec-
trum. This line can be scattered by neutral intergalactic gas, and is likely to be weaker
at such redshifts. The goal of achieving enough S/N in the continuum is important
to properly characterize the properties of the underlying stellar populations, some-
thing that could be done with individual galaxies in the deep survey, and with stacked
subsamples in the wide survey.

6 Measurement concept

6.1 Reconfigurable focal planes for space applications

JWST will be the first astronomy mission to have a true multi-object spectroscopic
capability via the micro-shutter arrays in the NIRSpec instrument, which can observe
up to 100 sources simultaneously over a field-of-view around 3′×3′ [74]. Scaling this
technology to the field sizes and multiplex advantage required for the next generation
of space-based spectroscopic survey instruments is not straightforward however, and
will likely require a new approach. There are currently three technologies which show
promise in this area.

1. Digital Micromirror Arrays (DMDs): Digital micromirror technology was devel-
oped in the 1990s by Texas Instruments for use in light projection systems
(see Fig. 13). The current state-of-the-art is 2kx1k devices with 13 μm pixels
but larger format devices (up to 16 million pixels) are under development (c.f.
62,000 micro-shutters in JWST NIRSpec). These devices are also well matched
in pixel size to the focal planes of small to medium size telescopes. DMDs
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Fig. 13 Photomicrograph of tilted DMD micromirrors. The neighbouring mirrors have been removed to
reveal the substructure (courtesy ASME/Texas Instruments)

were first proposed for the ESA M-class SPACE mission concept [25] which
later evolved into the Euclid mission. The primary technological challenges in
exploiting DMDs in space are: (i) developing radiation-hard electronics to drive
the DMDs (the MEMS technology used in the mirrors themselves are not sus-
ceptible to damage except by extreme micrometeorite events), (ii) demonstrating
reliable operation at cryogenic temperatures as required for observations at near-
infrared wavelengths, (iii) modifying the visible-light windows on commercial
devices to allow extended operation into the near-infrared, (iv) improving the
contrast/scattered light for bright objects. Preliminary work has been undertaken
during studies for SPACE/ Euclid and elsewhere [158, 159] but further work is
required to raise the TRL.

2. Reconfigurable Slits: A near-infrared multi-object spectroscopy target selection
system which has been successfully deployed on the ground-based MOSFIRE
instrument at Keck is the Configurable Slit Unit (CSU) [126]. This is a form
of micro-mechanical system which employs voice-coil actuated “inch-worm”
motors to position up to 46 slitlets (each 5 mm long) in a 4′ × 4′ field. This
technology has been proven to be reliable in cryogenic operation (at 120K) over
several years. Whilst the 1-D motion of the slits in the focal plane reduces target
acquisition efficiency somewhat, the contiguous slits allow for improved sky-
subtraction compared to devices (like the DMD) where the local sky is obtained
via separate apertures. The primary technology challenges of adopting this tech-
nology for space applications would be the substantial miniaturization required
and increasing the multiplex gain by 1 or 2 orders of magnitude, possibly using
a piezo-electric drive system.

3. Liquid Crystal Masks: Liquid crystal (LC) masks are widely used as spatial light
modulators in a number of laboratory applications. Whilst fundamentally relying
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on the ability of polarizing crystals to transmit or block linearly polarized light,
they can be made to work more efficiently on unpolarized light using polymer
dispersed liquid crystals (PDLCs). By combining an optically active material
with an appropriate electrode structure, reconfigurable masks can be obtained
which only transmit light in a specific spatial pattern [153]. Devices in for-
mats up to 1024x768 are commercially available with up to 36 μm pixels. The
primary technological challenges would be: (i) operation efficiency (switching
times) at low temperatures due to the properties of the LC medium, (ii) contrast
limits (many commercial devices have contrast ratios <100:1), (iii) limitations
on bandwidth due to the chromatic properties of LCs, (iv) limitations due to
non-orthogonal illumination.

In addition to the above reconfigurable focal plane solutions, which segment
the focal plane spatially according to preselected target positions, an alternative
approach is to select targets from a fixed grid of sub-areas across the focal plane
(one target per sub-area) using a “beam-steering” approach. Many of these rely on
similar underlying technologies to those discussed above (i.e. MEMS and/or variable
prisms) and should be explored in the context of specific mission requirements. They
are particularly suitable to selecting targets for spatially-resolved (“integral field”)
spectroscopic studies.

6.2 Large format integral field units

A complementary approach to massively multiplexed spectroscopy when the tar-
get densities are high enough, is to use some form of integral field spectroscopy
(IFS) which delivers a full spectral datacube for a contiguous region of sky. The
IFS approach also opens up a large serendipity space since no imaging surveys are
required to pre-select targets.

Integral field units have been widely used on ground-based telescopes (e.g. [1])
and a small-format device (30 × 30 spatial pixels) will be launched on JWST as one
of the observing modes for the NIRSpec spectrograph [12]. Integral field systems can
be realized using a number of techniques but the favoured approach for space infrared
systems is the diamond-machined image slicer [76] which can take advantage of
monolithic manufacturing methods and a robust thermal design approach. Technol-
ogy developments would be required to develop wide-field integral field systems for
space applications, but the generic approach using a “field-splitter” front-end optic
to feed multiple sub-systems is well-understood from ground-based instruments (e.g.
[102]). Mass, power and data rate budgets remain to be explored but will be common
to all wide-field spectroscopic facilities.

6.3 NIR detector technology

A successful outcome of a survey such as Chronos also rests on highly efficient
NIR detector technology, with minimal noise and well-understood systematics. The
survey operates at a very low-photon regime, where it is essential to control the noise
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sources, and to understand in detail the response of the detector. For instance, cross-
talk and persistence are substantial problems that can hinder the observations, and
need to be characterised in exquisite detail.

The best available technology for this science case involves HgCdTe-based detec-
tors, where the spectral range can be optimised by the choice of the ratio of Hg to Cd,
that modifies the band gap between 0.1 and 1.5 eV. As of today, US-based companies
can provide 4k×4k HgCdTe arrays with high enough TRL for a space mission (e.g.
Teledyne, [10]). However, given the long timescales expected for a potential mission,
and aligned with ESA’s investment in NIR detector technology development [97],
it would be desirable to involve European groups (such as CEA-LETI, Selex ES or
Caeleste) in the development of ultra-sensitive NIR detectors and the associated elec-
tronics. New HgCdTe-based technology with avalanche photodiodes, developed by
Selex appears quite promising for astrophysics applications [55].

6.4 Photonics-based approach

An alternative approach to the traditional spectrograph design is to adopt a photonics-
based instrument, creating the equivalent version of an integrated circuit in elec-
tronics. Astrophotonics has produced several revolutionary technologies that are
changing the way we think of conventional astronomical instrumentation. In partic-
ular, the invention of the photonic lantern allows us to reformat the input to any
instrument into a diffraction-limited output [73]. In principle, any spectrograph
operating at any resolving power can be designed to fit within a shoebox [13, 14].
These authors refer to this as the photonic integrated multimode microspectrograph
(PIMMS) concept and it has been demonstrated at the telescope and in space (see
Fig. 14), also taking advantage of the CubeSat architecture [20]. Suitable optical
designs are presented in [115]. Presently, the main limitation is that the ideal detec-
tor has yet to be realized, although discussions are ongoing with detector companies.
This technology is ideally suited to optical and infrared spectroscopy, and may over-
come the technological challenges faced by conventional spectrograph designs within
ESA’s Voyage 2035-2050 long-term plan.

Fig. 14 As seen above, the PIMMS concept has been demonstrated at the telescope [29], on a balloon
(2012) and onboard the Inspire cubesat (2017-8) flown by the University of Sydney [20]
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7 Summary

Responding to ESA’s call regarding the Voyage 2050 long-term plan to define the
future space missions that will address the astrophysics science questions during
the 2035-2050 period, we present here the motivation for an all-sky, survey mode,
ultra-deep NIR spectroscopic mission from space, to tackle the most important open
questions in extragalactic astrophysics. The observer NIR spectral range allows us
to probe the two most important phases of galaxy evolution, namely the formation
of the first galaxies (at z� 6; cosmic dawn, in the UV Lyman-α rest-frame), and the
peak of galaxy formation activity (at redshift z∼1–3; cosmic noon, in the optical
rest-frame). The faintness of these distant sources and the need for a large number of
spectra – to produce robust statistical constraints on the mechanisms of galaxy evolu-
tion – pose one of the strongest challenges faced by any astrophysics mission to date.
To put the mission in context, the survey requires the equivalent of gathering one
Hubble Ultra-Deep Field every fortnight for five years. In order to probe all possible
models of galaxy evolution, we need to split the sample with respect to a sizeable
set of parameters such as stellar mass, velocity dispersion, size, nebular activity, or
environment, requiring a large sample, comparable to the ∼1 million spectra from
the SDSS classic survey, an unachievable goal with state-of-the-art facilities such as
JWST or ground-based ELTs.

We note that cosmology-driven redshift surveys impose much weaker constraints
on the S/N in the continuum, as they only use galaxies as “test particles”, thus only
requiring a redshift measurement. This project focuses on the galaxies themselves.
The proposed database is needed to solve the key open questions in galaxy formation.
The purpose of this proposal is to start a comprehensive study of such a demand-
ing survey, focusing on the challenging technical aspects involving an ultra-deep
(H∼24-26 AB), high multiplex (�5,000), NIR (0.8–2 μm) space-based spectrograph,
at optimal resolution for galaxy formation studies (∼2,000), and with a large field of
view (�0.2 deg2).
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